Properties

Label 9248.2.a.z.1.3
Level $9248$
Weight $2$
Character 9248.1
Self dual yes
Analytic conductor $73.846$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9248,2,Mod(1,9248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9248.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9248, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9248 = 2^{5} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9248.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-6,0,0,0,6,0,0,0,2,0,0,0,0,0,0,0,-4,0,0,0,2,0,0,0,-22, 0,0,0,14,0,0,0,-16,0,0,0,8,0,0,0,4,0,0,0,22,0,0,0,-30,0,0,0,-18,0,0,0, -28,0,0,0,36,0,0,0,-4,0,0,0,-20,0,0,0,46,0,0,0,-32,0,0,0,0,0,0,0,8,0,0, 0,-14,0,0,0,-30,0,0,0,12,0,0,0,-46,0,0,0,20,0,0,0,-30,0,0,0,42,0,0,0,16, 0,0,0,-12,0,0,0,58,0,0,0,4,0,0,0,-40,0,0,0,-86,0,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(145)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8456517893\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.45968.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.64232\) of defining polynomial
Character \(\chi\) \(=\) 9248.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.64232 q^{3} -3.30278 q^{5} +3.78190 q^{7} -0.302776 q^{9} +5.42422 q^{11} -4.90833 q^{13} -5.42422 q^{15} -1.64232 q^{19} +6.21110 q^{21} +3.78190 q^{23} +5.90833 q^{25} -5.42422 q^{27} -3.69722 q^{29} -5.42422 q^{31} +8.90833 q^{33} -12.4908 q^{35} -4.00000 q^{37} -8.06106 q^{39} +9.21110 q^{41} +1.14507 q^{43} +1.00000 q^{45} -11.9935 q^{47} +7.30278 q^{49} -12.9083 q^{53} -17.9150 q^{55} -2.69722 q^{57} -15.1276 q^{59} +0.211103 q^{61} -1.14507 q^{63} +16.2111 q^{65} +6.56929 q^{67} +6.21110 q^{69} +6.56929 q^{71} +2.21110 q^{73} +9.70338 q^{75} +20.5139 q^{77} -8.00000 q^{81} -8.21161 q^{83} -6.07204 q^{87} -5.21110 q^{89} -18.5628 q^{91} -8.90833 q^{93} +5.42422 q^{95} -16.5139 q^{97} -1.64232 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{5} + 6 q^{9} + 2 q^{13} - 4 q^{21} + 2 q^{25} - 22 q^{29} + 14 q^{33} - 16 q^{37} + 8 q^{41} + 4 q^{45} + 22 q^{49} - 30 q^{53} - 18 q^{57} - 28 q^{61} + 36 q^{65} - 4 q^{69} - 20 q^{73} + 46 q^{77}+ \cdots - 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.64232 0.948196 0.474098 0.880472i \(-0.342774\pi\)
0.474098 + 0.880472i \(0.342774\pi\)
\(4\) 0 0
\(5\) −3.30278 −1.47705 −0.738523 0.674228i \(-0.764476\pi\)
−0.738523 + 0.674228i \(0.764476\pi\)
\(6\) 0 0
\(7\) 3.78190 1.42942 0.714712 0.699419i \(-0.246558\pi\)
0.714712 + 0.699419i \(0.246558\pi\)
\(8\) 0 0
\(9\) −0.302776 −0.100925
\(10\) 0 0
\(11\) 5.42422 1.63547 0.817733 0.575598i \(-0.195231\pi\)
0.817733 + 0.575598i \(0.195231\pi\)
\(12\) 0 0
\(13\) −4.90833 −1.36132 −0.680662 0.732597i \(-0.738308\pi\)
−0.680662 + 0.732597i \(0.738308\pi\)
\(14\) 0 0
\(15\) −5.42422 −1.40053
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −1.64232 −0.376775 −0.188387 0.982095i \(-0.560326\pi\)
−0.188387 + 0.982095i \(0.560326\pi\)
\(20\) 0 0
\(21\) 6.21110 1.35537
\(22\) 0 0
\(23\) 3.78190 0.788581 0.394290 0.918986i \(-0.370990\pi\)
0.394290 + 0.918986i \(0.370990\pi\)
\(24\) 0 0
\(25\) 5.90833 1.18167
\(26\) 0 0
\(27\) −5.42422 −1.04389
\(28\) 0 0
\(29\) −3.69722 −0.686557 −0.343279 0.939234i \(-0.611538\pi\)
−0.343279 + 0.939234i \(0.611538\pi\)
\(30\) 0 0
\(31\) −5.42422 −0.974219 −0.487110 0.873341i \(-0.661949\pi\)
−0.487110 + 0.873341i \(0.661949\pi\)
\(32\) 0 0
\(33\) 8.90833 1.55074
\(34\) 0 0
\(35\) −12.4908 −2.11133
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) −8.06106 −1.29080
\(40\) 0 0
\(41\) 9.21110 1.43853 0.719266 0.694735i \(-0.244478\pi\)
0.719266 + 0.694735i \(0.244478\pi\)
\(42\) 0 0
\(43\) 1.14507 0.174621 0.0873106 0.996181i \(-0.472173\pi\)
0.0873106 + 0.996181i \(0.472173\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −11.9935 −1.74943 −0.874717 0.484634i \(-0.838953\pi\)
−0.874717 + 0.484634i \(0.838953\pi\)
\(48\) 0 0
\(49\) 7.30278 1.04325
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −12.9083 −1.77310 −0.886548 0.462638i \(-0.846903\pi\)
−0.886548 + 0.462638i \(0.846903\pi\)
\(54\) 0 0
\(55\) −17.9150 −2.41566
\(56\) 0 0
\(57\) −2.69722 −0.357256
\(58\) 0 0
\(59\) −15.1276 −1.96945 −0.984723 0.174127i \(-0.944290\pi\)
−0.984723 + 0.174127i \(0.944290\pi\)
\(60\) 0 0
\(61\) 0.211103 0.0270289 0.0135145 0.999909i \(-0.495698\pi\)
0.0135145 + 0.999909i \(0.495698\pi\)
\(62\) 0 0
\(63\) −1.14507 −0.144265
\(64\) 0 0
\(65\) 16.2111 2.01074
\(66\) 0 0
\(67\) 6.56929 0.802567 0.401283 0.915954i \(-0.368564\pi\)
0.401283 + 0.915954i \(0.368564\pi\)
\(68\) 0 0
\(69\) 6.21110 0.747729
\(70\) 0 0
\(71\) 6.56929 0.779631 0.389816 0.920893i \(-0.372539\pi\)
0.389816 + 0.920893i \(0.372539\pi\)
\(72\) 0 0
\(73\) 2.21110 0.258790 0.129395 0.991593i \(-0.458696\pi\)
0.129395 + 0.991593i \(0.458696\pi\)
\(74\) 0 0
\(75\) 9.70338 1.12045
\(76\) 0 0
\(77\) 20.5139 2.33777
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −8.00000 −0.888889
\(82\) 0 0
\(83\) −8.21161 −0.901342 −0.450671 0.892690i \(-0.648815\pi\)
−0.450671 + 0.892690i \(0.648815\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −6.07204 −0.650991
\(88\) 0 0
\(89\) −5.21110 −0.552376 −0.276188 0.961104i \(-0.589071\pi\)
−0.276188 + 0.961104i \(0.589071\pi\)
\(90\) 0 0
\(91\) −18.5628 −1.94591
\(92\) 0 0
\(93\) −8.90833 −0.923750
\(94\) 0 0
\(95\) 5.42422 0.556514
\(96\) 0 0
\(97\) −16.5139 −1.67673 −0.838365 0.545109i \(-0.816488\pi\)
−0.838365 + 0.545109i \(0.816488\pi\)
\(98\) 0 0
\(99\) −1.64232 −0.165060
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) 15.1276 1.49057 0.745284 0.666748i \(-0.232314\pi\)
0.745284 + 0.666748i \(0.232314\pi\)
\(104\) 0 0
\(105\) −20.5139 −2.00195
\(106\) 0 0
\(107\) 11.9935 1.15946 0.579728 0.814810i \(-0.303159\pi\)
0.579728 + 0.814810i \(0.303159\pi\)
\(108\) 0 0
\(109\) 19.4222 1.86031 0.930155 0.367167i \(-0.119672\pi\)
0.930155 + 0.367167i \(0.119672\pi\)
\(110\) 0 0
\(111\) −6.56929 −0.623530
\(112\) 0 0
\(113\) −2.09167 −0.196768 −0.0983840 0.995149i \(-0.531367\pi\)
−0.0983840 + 0.995149i \(0.531367\pi\)
\(114\) 0 0
\(115\) −12.4908 −1.16477
\(116\) 0 0
\(117\) 1.48612 0.137392
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 18.4222 1.67475
\(122\) 0 0
\(123\) 15.1276 1.36401
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −1.14507 −0.101608 −0.0508042 0.998709i \(-0.516178\pi\)
−0.0508042 + 0.998709i \(0.516178\pi\)
\(128\) 0 0
\(129\) 1.88057 0.165575
\(130\) 0 0
\(131\) 6.56929 0.573962 0.286981 0.957936i \(-0.407348\pi\)
0.286981 + 0.957936i \(0.407348\pi\)
\(132\) 0 0
\(133\) −6.21110 −0.538571
\(134\) 0 0
\(135\) 17.9150 1.54188
\(136\) 0 0
\(137\) −2.78890 −0.238272 −0.119136 0.992878i \(-0.538012\pi\)
−0.119136 + 0.992878i \(0.538012\pi\)
\(138\) 0 0
\(139\) −4.77641 −0.405130 −0.202565 0.979269i \(-0.564928\pi\)
−0.202565 + 0.979269i \(0.564928\pi\)
\(140\) 0 0
\(141\) −19.6972 −1.65881
\(142\) 0 0
\(143\) −26.6239 −2.22640
\(144\) 0 0
\(145\) 12.2111 1.01408
\(146\) 0 0
\(147\) 11.9935 0.989208
\(148\) 0 0
\(149\) 9.21110 0.754603 0.377301 0.926090i \(-0.376852\pi\)
0.377301 + 0.926090i \(0.376852\pi\)
\(150\) 0 0
\(151\) −5.42422 −0.441417 −0.220709 0.975340i \(-0.570837\pi\)
−0.220709 + 0.975340i \(0.570837\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 17.9150 1.43897
\(156\) 0 0
\(157\) −13.9083 −1.11001 −0.555003 0.831849i \(-0.687283\pi\)
−0.555003 + 0.831849i \(0.687283\pi\)
\(158\) 0 0
\(159\) −21.1996 −1.68124
\(160\) 0 0
\(161\) 14.3028 1.12722
\(162\) 0 0
\(163\) −11.9935 −0.939405 −0.469702 0.882825i \(-0.655639\pi\)
−0.469702 + 0.882825i \(0.655639\pi\)
\(164\) 0 0
\(165\) −29.4222 −2.29052
\(166\) 0 0
\(167\) −4.92697 −0.381260 −0.190630 0.981662i \(-0.561053\pi\)
−0.190630 + 0.981662i \(0.561053\pi\)
\(168\) 0 0
\(169\) 11.0917 0.853206
\(170\) 0 0
\(171\) 0.497255 0.0380261
\(172\) 0 0
\(173\) −8.21110 −0.624279 −0.312139 0.950036i \(-0.601046\pi\)
−0.312139 + 0.950036i \(0.601046\pi\)
\(174\) 0 0
\(175\) 22.3447 1.68910
\(176\) 0 0
\(177\) −24.8444 −1.86742
\(178\) 0 0
\(179\) 9.35668 0.699351 0.349676 0.936871i \(-0.386292\pi\)
0.349676 + 0.936871i \(0.386292\pi\)
\(180\) 0 0
\(181\) −18.2111 −1.35362 −0.676810 0.736157i \(-0.736638\pi\)
−0.676810 + 0.736157i \(0.736638\pi\)
\(182\) 0 0
\(183\) 0.346699 0.0256287
\(184\) 0 0
\(185\) 13.2111 0.971300
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −20.5139 −1.49217
\(190\) 0 0
\(191\) −11.4963 −0.831840 −0.415920 0.909401i \(-0.636540\pi\)
−0.415920 + 0.909401i \(0.636540\pi\)
\(192\) 0 0
\(193\) −5.00000 −0.359908 −0.179954 0.983675i \(-0.557595\pi\)
−0.179954 + 0.983675i \(0.557595\pi\)
\(194\) 0 0
\(195\) 26.6239 1.90657
\(196\) 0 0
\(197\) −22.9361 −1.63413 −0.817064 0.576547i \(-0.804400\pi\)
−0.817064 + 0.576547i \(0.804400\pi\)
\(198\) 0 0
\(199\) −7.71436 −0.546856 −0.273428 0.961892i \(-0.588158\pi\)
−0.273428 + 0.961892i \(0.588158\pi\)
\(200\) 0 0
\(201\) 10.7889 0.760990
\(202\) 0 0
\(203\) −13.9825 −0.981382
\(204\) 0 0
\(205\) −30.4222 −2.12478
\(206\) 0 0
\(207\) −1.14507 −0.0795877
\(208\) 0 0
\(209\) −8.90833 −0.616202
\(210\) 0 0
\(211\) −18.9095 −1.30178 −0.650892 0.759170i \(-0.725605\pi\)
−0.650892 + 0.759170i \(0.725605\pi\)
\(212\) 0 0
\(213\) 10.7889 0.739243
\(214\) 0 0
\(215\) −3.78190 −0.257924
\(216\) 0 0
\(217\) −20.5139 −1.39257
\(218\) 0 0
\(219\) 3.63134 0.245384
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −11.3457 −0.759764 −0.379882 0.925035i \(-0.624035\pi\)
−0.379882 + 0.925035i \(0.624035\pi\)
\(224\) 0 0
\(225\) −1.78890 −0.119260
\(226\) 0 0
\(227\) −22.8420 −1.51607 −0.758037 0.652211i \(-0.773841\pi\)
−0.758037 + 0.652211i \(0.773841\pi\)
\(228\) 0 0
\(229\) −6.78890 −0.448623 −0.224311 0.974517i \(-0.572013\pi\)
−0.224311 + 0.974517i \(0.572013\pi\)
\(230\) 0 0
\(231\) 33.6904 2.21667
\(232\) 0 0
\(233\) 22.4222 1.46893 0.734464 0.678648i \(-0.237434\pi\)
0.734464 + 0.678648i \(0.237434\pi\)
\(234\) 0 0
\(235\) 39.6119 2.58399
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −20.5518 −1.32939 −0.664694 0.747116i \(-0.731438\pi\)
−0.664694 + 0.747116i \(0.731438\pi\)
\(240\) 0 0
\(241\) −13.9083 −0.895914 −0.447957 0.894055i \(-0.647848\pi\)
−0.447957 + 0.894055i \(0.647848\pi\)
\(242\) 0 0
\(243\) 3.13409 0.201052
\(244\) 0 0
\(245\) −24.1194 −1.54093
\(246\) 0 0
\(247\) 8.06106 0.512913
\(248\) 0 0
\(249\) −13.4861 −0.854648
\(250\) 0 0
\(251\) 16.7699 1.05851 0.529254 0.848463i \(-0.322472\pi\)
0.529254 + 0.848463i \(0.322472\pi\)
\(252\) 0 0
\(253\) 20.5139 1.28970
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.4861 0.716485 0.358242 0.933629i \(-0.383376\pi\)
0.358242 + 0.933629i \(0.383376\pi\)
\(258\) 0 0
\(259\) −15.1276 −0.939984
\(260\) 0 0
\(261\) 1.11943 0.0692909
\(262\) 0 0
\(263\) 3.63134 0.223918 0.111959 0.993713i \(-0.464287\pi\)
0.111959 + 0.993713i \(0.464287\pi\)
\(264\) 0 0
\(265\) 42.6333 2.61894
\(266\) 0 0
\(267\) −8.55831 −0.523760
\(268\) 0 0
\(269\) 7.09167 0.432387 0.216193 0.976351i \(-0.430636\pi\)
0.216193 + 0.976351i \(0.430636\pi\)
\(270\) 0 0
\(271\) 10.3512 0.628790 0.314395 0.949292i \(-0.398198\pi\)
0.314395 + 0.949292i \(0.398198\pi\)
\(272\) 0 0
\(273\) −30.4861 −1.84510
\(274\) 0 0
\(275\) 32.0481 1.93257
\(276\) 0 0
\(277\) −25.2111 −1.51479 −0.757394 0.652958i \(-0.773528\pi\)
−0.757394 + 0.652958i \(0.773528\pi\)
\(278\) 0 0
\(279\) 1.64232 0.0983233
\(280\) 0 0
\(281\) 10.0917 0.602019 0.301009 0.953621i \(-0.402676\pi\)
0.301009 + 0.953621i \(0.402676\pi\)
\(282\) 0 0
\(283\) −30.2552 −1.79849 −0.899243 0.437450i \(-0.855882\pi\)
−0.899243 + 0.437450i \(0.855882\pi\)
\(284\) 0 0
\(285\) 8.90833 0.527684
\(286\) 0 0
\(287\) 34.8355 2.05627
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −27.1211 −1.58987
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 49.9631 2.90896
\(296\) 0 0
\(297\) −29.4222 −1.70725
\(298\) 0 0
\(299\) −18.5628 −1.07351
\(300\) 0 0
\(301\) 4.33053 0.249608
\(302\) 0 0
\(303\) 4.92697 0.283047
\(304\) 0 0
\(305\) −0.697224 −0.0399230
\(306\) 0 0
\(307\) 11.3457 0.647533 0.323767 0.946137i \(-0.395051\pi\)
0.323767 + 0.946137i \(0.395051\pi\)
\(308\) 0 0
\(309\) 24.8444 1.41335
\(310\) 0 0
\(311\) 13.4853 0.764680 0.382340 0.924022i \(-0.375118\pi\)
0.382340 + 0.924022i \(0.375118\pi\)
\(312\) 0 0
\(313\) 18.4222 1.04128 0.520642 0.853775i \(-0.325693\pi\)
0.520642 + 0.853775i \(0.325693\pi\)
\(314\) 0 0
\(315\) 3.78190 0.213086
\(316\) 0 0
\(317\) 15.4222 0.866197 0.433099 0.901347i \(-0.357420\pi\)
0.433099 + 0.901347i \(0.357420\pi\)
\(318\) 0 0
\(319\) −20.0546 −1.12284
\(320\) 0 0
\(321\) 19.6972 1.09939
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −29.0000 −1.60863
\(326\) 0 0
\(327\) 31.8975 1.76394
\(328\) 0 0
\(329\) −45.3583 −2.50068
\(330\) 0 0
\(331\) 33.0426 1.81619 0.908093 0.418769i \(-0.137538\pi\)
0.908093 + 0.418769i \(0.137538\pi\)
\(332\) 0 0
\(333\) 1.21110 0.0663680
\(334\) 0 0
\(335\) −21.6969 −1.18543
\(336\) 0 0
\(337\) 18.1194 0.987028 0.493514 0.869738i \(-0.335712\pi\)
0.493514 + 0.869738i \(0.335712\pi\)
\(338\) 0 0
\(339\) −3.43520 −0.186575
\(340\) 0 0
\(341\) −29.4222 −1.59330
\(342\) 0 0
\(343\) 1.14507 0.0618278
\(344\) 0 0
\(345\) −20.5139 −1.10443
\(346\) 0 0
\(347\) −1.64232 −0.0881645 −0.0440823 0.999028i \(-0.514036\pi\)
−0.0440823 + 0.999028i \(0.514036\pi\)
\(348\) 0 0
\(349\) −31.4222 −1.68199 −0.840996 0.541041i \(-0.818030\pi\)
−0.840996 + 0.541041i \(0.818030\pi\)
\(350\) 0 0
\(351\) 26.6239 1.42108
\(352\) 0 0
\(353\) 18.6333 0.991751 0.495875 0.868394i \(-0.334847\pi\)
0.495875 + 0.868394i \(0.334847\pi\)
\(354\) 0 0
\(355\) −21.6969 −1.15155
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.78739 −0.147113 −0.0735564 0.997291i \(-0.523435\pi\)
−0.0735564 + 0.997291i \(0.523435\pi\)
\(360\) 0 0
\(361\) −16.3028 −0.858041
\(362\) 0 0
\(363\) 30.2552 1.58799
\(364\) 0 0
\(365\) −7.30278 −0.382245
\(366\) 0 0
\(367\) −30.2552 −1.57931 −0.789655 0.613552i \(-0.789740\pi\)
−0.789655 + 0.613552i \(0.789740\pi\)
\(368\) 0 0
\(369\) −2.78890 −0.145184
\(370\) 0 0
\(371\) −48.8180 −2.53451
\(372\) 0 0
\(373\) −8.21110 −0.425155 −0.212577 0.977144i \(-0.568186\pi\)
−0.212577 + 0.977144i \(0.568186\pi\)
\(374\) 0 0
\(375\) −4.92697 −0.254428
\(376\) 0 0
\(377\) 18.1472 0.934628
\(378\) 0 0
\(379\) −5.42422 −0.278624 −0.139312 0.990249i \(-0.544489\pi\)
−0.139312 + 0.990249i \(0.544489\pi\)
\(380\) 0 0
\(381\) −1.88057 −0.0963445
\(382\) 0 0
\(383\) −18.0656 −0.923107 −0.461553 0.887112i \(-0.652708\pi\)
−0.461553 + 0.887112i \(0.652708\pi\)
\(384\) 0 0
\(385\) −67.7527 −3.45300
\(386\) 0 0
\(387\) −0.346699 −0.0176237
\(388\) 0 0
\(389\) 17.0000 0.861934 0.430967 0.902368i \(-0.358172\pi\)
0.430967 + 0.902368i \(0.358172\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 10.7889 0.544228
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −13.7889 −0.692045 −0.346022 0.938226i \(-0.612468\pi\)
−0.346022 + 0.938226i \(0.612468\pi\)
\(398\) 0 0
\(399\) −10.2006 −0.510671
\(400\) 0 0
\(401\) 28.3305 1.41476 0.707380 0.706834i \(-0.249877\pi\)
0.707380 + 0.706834i \(0.249877\pi\)
\(402\) 0 0
\(403\) 26.6239 1.32623
\(404\) 0 0
\(405\) 26.4222 1.31293
\(406\) 0 0
\(407\) −21.6969 −1.07548
\(408\) 0 0
\(409\) −34.2111 −1.69163 −0.845815 0.533476i \(-0.820885\pi\)
−0.845815 + 0.533476i \(0.820885\pi\)
\(410\) 0 0
\(411\) −4.58027 −0.225928
\(412\) 0 0
\(413\) −57.2111 −2.81517
\(414\) 0 0
\(415\) 27.1211 1.33132
\(416\) 0 0
\(417\) −7.84441 −0.384142
\(418\) 0 0
\(419\) −14.2837 −0.697802 −0.348901 0.937160i \(-0.613445\pi\)
−0.348901 + 0.937160i \(0.613445\pi\)
\(420\) 0 0
\(421\) 19.4861 0.949695 0.474848 0.880068i \(-0.342503\pi\)
0.474848 + 0.880068i \(0.342503\pi\)
\(422\) 0 0
\(423\) 3.63134 0.176562
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.798369 0.0386358
\(428\) 0 0
\(429\) −43.7250 −2.11106
\(430\) 0 0
\(431\) −5.77092 −0.277976 −0.138988 0.990294i \(-0.544385\pi\)
−0.138988 + 0.990294i \(0.544385\pi\)
\(432\) 0 0
\(433\) 10.7889 0.518481 0.259241 0.965813i \(-0.416528\pi\)
0.259241 + 0.965813i \(0.416528\pi\)
\(434\) 0 0
\(435\) 20.0546 0.961543
\(436\) 0 0
\(437\) −6.21110 −0.297117
\(438\) 0 0
\(439\) −26.2772 −1.25414 −0.627070 0.778963i \(-0.715746\pi\)
−0.627070 + 0.778963i \(0.715746\pi\)
\(440\) 0 0
\(441\) −2.21110 −0.105291
\(442\) 0 0
\(443\) −9.70338 −0.461022 −0.230511 0.973070i \(-0.574040\pi\)
−0.230511 + 0.973070i \(0.574040\pi\)
\(444\) 0 0
\(445\) 17.2111 0.815885
\(446\) 0 0
\(447\) 15.1276 0.715511
\(448\) 0 0
\(449\) 0.908327 0.0428666 0.0214333 0.999770i \(-0.493177\pi\)
0.0214333 + 0.999770i \(0.493177\pi\)
\(450\) 0 0
\(451\) 49.9631 2.35267
\(452\) 0 0
\(453\) −8.90833 −0.418550
\(454\) 0 0
\(455\) 61.3088 2.87420
\(456\) 0 0
\(457\) −17.7250 −0.829140 −0.414570 0.910018i \(-0.636068\pi\)
−0.414570 + 0.910018i \(0.636068\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15.6333 0.728116 0.364058 0.931376i \(-0.381391\pi\)
0.364058 + 0.931376i \(0.381391\pi\)
\(462\) 0 0
\(463\) 13.1386 0.610602 0.305301 0.952256i \(-0.401243\pi\)
0.305301 + 0.952256i \(0.401243\pi\)
\(464\) 0 0
\(465\) 29.4222 1.36442
\(466\) 0 0
\(467\) −25.4788 −1.17902 −0.589509 0.807762i \(-0.700679\pi\)
−0.589509 + 0.807762i \(0.700679\pi\)
\(468\) 0 0
\(469\) 24.8444 1.14721
\(470\) 0 0
\(471\) −22.8420 −1.05250
\(472\) 0 0
\(473\) 6.21110 0.285587
\(474\) 0 0
\(475\) −9.70338 −0.445222
\(476\) 0 0
\(477\) 3.90833 0.178950
\(478\) 0 0
\(479\) 3.13409 0.143200 0.0716001 0.997433i \(-0.477189\pi\)
0.0716001 + 0.997433i \(0.477189\pi\)
\(480\) 0 0
\(481\) 19.6333 0.895202
\(482\) 0 0
\(483\) 23.4898 1.06882
\(484\) 0 0
\(485\) 54.5416 2.47661
\(486\) 0 0
\(487\) −29.9085 −1.35528 −0.677642 0.735392i \(-0.736998\pi\)
−0.677642 + 0.735392i \(0.736998\pi\)
\(488\) 0 0
\(489\) −19.6972 −0.890739
\(490\) 0 0
\(491\) −5.77092 −0.260438 −0.130219 0.991485i \(-0.541568\pi\)
−0.130219 + 0.991485i \(0.541568\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 5.42422 0.243801
\(496\) 0 0
\(497\) 24.8444 1.11442
\(498\) 0 0
\(499\) 15.9260 0.712944 0.356472 0.934306i \(-0.383979\pi\)
0.356472 + 0.934306i \(0.383979\pi\)
\(500\) 0 0
\(501\) −8.09167 −0.361509
\(502\) 0 0
\(503\) 5.42422 0.241854 0.120927 0.992661i \(-0.461413\pi\)
0.120927 + 0.992661i \(0.461413\pi\)
\(504\) 0 0
\(505\) −9.90833 −0.440915
\(506\) 0 0
\(507\) 18.2161 0.809006
\(508\) 0 0
\(509\) 3.78890 0.167940 0.0839700 0.996468i \(-0.473240\pi\)
0.0839700 + 0.996468i \(0.473240\pi\)
\(510\) 0 0
\(511\) 8.36217 0.369921
\(512\) 0 0
\(513\) 8.90833 0.393312
\(514\) 0 0
\(515\) −49.9631 −2.20164
\(516\) 0 0
\(517\) −65.0555 −2.86114
\(518\) 0 0
\(519\) −13.4853 −0.591938
\(520\) 0 0
\(521\) −9.21110 −0.403546 −0.201773 0.979432i \(-0.564670\pi\)
−0.201773 + 0.979432i \(0.564670\pi\)
\(522\) 0 0
\(523\) 11.9935 0.524440 0.262220 0.965008i \(-0.415545\pi\)
0.262220 + 0.965008i \(0.415545\pi\)
\(524\) 0 0
\(525\) 36.6972 1.60160
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −8.69722 −0.378140
\(530\) 0 0
\(531\) 4.58027 0.198767
\(532\) 0 0
\(533\) −45.2111 −1.95831
\(534\) 0 0
\(535\) −39.6119 −1.71257
\(536\) 0 0
\(537\) 15.3667 0.663122
\(538\) 0 0
\(539\) 39.6119 1.70620
\(540\) 0 0
\(541\) 3.69722 0.158956 0.0794780 0.996837i \(-0.474675\pi\)
0.0794780 + 0.996837i \(0.474675\pi\)
\(542\) 0 0
\(543\) −29.9085 −1.28350
\(544\) 0 0
\(545\) −64.1472 −2.74776
\(546\) 0 0
\(547\) −27.1211 −1.15962 −0.579808 0.814753i \(-0.696872\pi\)
−0.579808 + 0.814753i \(0.696872\pi\)
\(548\) 0 0
\(549\) −0.0639167 −0.00272790
\(550\) 0 0
\(551\) 6.07204 0.258677
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 21.6969 0.920982
\(556\) 0 0
\(557\) 17.2111 0.729258 0.364629 0.931153i \(-0.381196\pi\)
0.364629 + 0.931153i \(0.381196\pi\)
\(558\) 0 0
\(559\) −5.62037 −0.237716
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.55831 0.360690 0.180345 0.983603i \(-0.442279\pi\)
0.180345 + 0.983603i \(0.442279\pi\)
\(564\) 0 0
\(565\) 6.90833 0.290635
\(566\) 0 0
\(567\) −30.2552 −1.27060
\(568\) 0 0
\(569\) −21.7889 −0.913438 −0.456719 0.889611i \(-0.650976\pi\)
−0.456719 + 0.889611i \(0.650976\pi\)
\(570\) 0 0
\(571\) 16.7699 0.701800 0.350900 0.936413i \(-0.385876\pi\)
0.350900 + 0.936413i \(0.385876\pi\)
\(572\) 0 0
\(573\) −18.8806 −0.788747
\(574\) 0 0
\(575\) 22.3447 0.931839
\(576\) 0 0
\(577\) 32.6333 1.35854 0.679271 0.733887i \(-0.262296\pi\)
0.679271 + 0.733887i \(0.262296\pi\)
\(578\) 0 0
\(579\) −8.21161 −0.341263
\(580\) 0 0
\(581\) −31.0555 −1.28840
\(582\) 0 0
\(583\) −70.0177 −2.89984
\(584\) 0 0
\(585\) −4.90833 −0.202934
\(586\) 0 0
\(587\) −29.9085 −1.23446 −0.617228 0.786784i \(-0.711744\pi\)
−0.617228 + 0.786784i \(0.711744\pi\)
\(588\) 0 0
\(589\) 8.90833 0.367061
\(590\) 0 0
\(591\) −37.6685 −1.54947
\(592\) 0 0
\(593\) −22.2111 −0.912101 −0.456050 0.889954i \(-0.650736\pi\)
−0.456050 + 0.889954i \(0.650736\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −12.6695 −0.518527
\(598\) 0 0
\(599\) 22.8420 0.933297 0.466649 0.884443i \(-0.345461\pi\)
0.466649 + 0.884443i \(0.345461\pi\)
\(600\) 0 0
\(601\) 29.7527 1.21364 0.606820 0.794839i \(-0.292445\pi\)
0.606820 + 0.794839i \(0.292445\pi\)
\(602\) 0 0
\(603\) −1.98902 −0.0809992
\(604\) 0 0
\(605\) −60.8444 −2.47368
\(606\) 0 0
\(607\) 22.8420 0.927127 0.463563 0.886064i \(-0.346571\pi\)
0.463563 + 0.886064i \(0.346571\pi\)
\(608\) 0 0
\(609\) −22.9638 −0.930542
\(610\) 0 0
\(611\) 58.8681 2.38155
\(612\) 0 0
\(613\) 10.7889 0.435759 0.217880 0.975976i \(-0.430086\pi\)
0.217880 + 0.975976i \(0.430086\pi\)
\(614\) 0 0
\(615\) −49.9631 −2.01471
\(616\) 0 0
\(617\) −47.0555 −1.89438 −0.947192 0.320668i \(-0.896093\pi\)
−0.947192 + 0.320668i \(0.896093\pi\)
\(618\) 0 0
\(619\) −1.14507 −0.0460241 −0.0230121 0.999735i \(-0.507326\pi\)
−0.0230121 + 0.999735i \(0.507326\pi\)
\(620\) 0 0
\(621\) −20.5139 −0.823194
\(622\) 0 0
\(623\) −19.7079 −0.789579
\(624\) 0 0
\(625\) −19.6333 −0.785332
\(626\) 0 0
\(627\) −14.6303 −0.584280
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.64232 0.0653798 0.0326899 0.999466i \(-0.489593\pi\)
0.0326899 + 0.999466i \(0.489593\pi\)
\(632\) 0 0
\(633\) −31.0555 −1.23435
\(634\) 0 0
\(635\) 3.78190 0.150080
\(636\) 0 0
\(637\) −35.8444 −1.42021
\(638\) 0 0
\(639\) −1.98902 −0.0786845
\(640\) 0 0
\(641\) 22.7250 0.897583 0.448791 0.893637i \(-0.351855\pi\)
0.448791 + 0.893637i \(0.351855\pi\)
\(642\) 0 0
\(643\) 1.98902 0.0784393 0.0392197 0.999231i \(-0.487513\pi\)
0.0392197 + 0.999231i \(0.487513\pi\)
\(644\) 0 0
\(645\) −6.21110 −0.244562
\(646\) 0 0
\(647\) 7.71436 0.303283 0.151641 0.988436i \(-0.451544\pi\)
0.151641 + 0.988436i \(0.451544\pi\)
\(648\) 0 0
\(649\) −82.0555 −3.22096
\(650\) 0 0
\(651\) −33.6904 −1.32043
\(652\) 0 0
\(653\) −1.42221 −0.0556552 −0.0278276 0.999613i \(-0.508859\pi\)
−0.0278276 + 0.999613i \(0.508859\pi\)
\(654\) 0 0
\(655\) −21.6969 −0.847768
\(656\) 0 0
\(657\) −0.669468 −0.0261184
\(658\) 0 0
\(659\) 7.71436 0.300509 0.150254 0.988647i \(-0.451991\pi\)
0.150254 + 0.988647i \(0.451991\pi\)
\(660\) 0 0
\(661\) 32.5139 1.26464 0.632322 0.774706i \(-0.282102\pi\)
0.632322 + 0.774706i \(0.282102\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 20.5139 0.795494
\(666\) 0 0
\(667\) −13.9825 −0.541406
\(668\) 0 0
\(669\) −18.6333 −0.720405
\(670\) 0 0
\(671\) 1.14507 0.0442048
\(672\) 0 0
\(673\) −14.4222 −0.555935 −0.277968 0.960590i \(-0.589661\pi\)
−0.277968 + 0.960590i \(0.589661\pi\)
\(674\) 0 0
\(675\) −32.0481 −1.23353
\(676\) 0 0
\(677\) 22.4861 0.864212 0.432106 0.901823i \(-0.357771\pi\)
0.432106 + 0.901823i \(0.357771\pi\)
\(678\) 0 0
\(679\) −62.4539 −2.39676
\(680\) 0 0
\(681\) −37.5139 −1.43753
\(682\) 0 0
\(683\) −50.3098 −1.92505 −0.962525 0.271192i \(-0.912582\pi\)
−0.962525 + 0.271192i \(0.912582\pi\)
\(684\) 0 0
\(685\) 9.21110 0.351938
\(686\) 0 0
\(687\) −11.1496 −0.425382
\(688\) 0 0
\(689\) 63.3583 2.41376
\(690\) 0 0
\(691\) 19.4068 0.738268 0.369134 0.929376i \(-0.379654\pi\)
0.369134 + 0.929376i \(0.379654\pi\)
\(692\) 0 0
\(693\) −6.21110 −0.235940
\(694\) 0 0
\(695\) 15.7754 0.598396
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 36.8245 1.39283
\(700\) 0 0
\(701\) −24.2111 −0.914441 −0.457220 0.889353i \(-0.651155\pi\)
−0.457220 + 0.889353i \(0.651155\pi\)
\(702\) 0 0
\(703\) 6.56929 0.247766
\(704\) 0 0
\(705\) 65.0555 2.45013
\(706\) 0 0
\(707\) 11.3457 0.426699
\(708\) 0 0
\(709\) −16.9083 −0.635006 −0.317503 0.948257i \(-0.602844\pi\)
−0.317503 + 0.948257i \(0.602844\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −20.5139 −0.768251
\(714\) 0 0
\(715\) 87.9327 3.28849
\(716\) 0 0
\(717\) −33.7527 −1.26052
\(718\) 0 0
\(719\) 24.8310 0.926039 0.463020 0.886348i \(-0.346766\pi\)
0.463020 + 0.886348i \(0.346766\pi\)
\(720\) 0 0
\(721\) 57.2111 2.13065
\(722\) 0 0
\(723\) −22.8420 −0.849502
\(724\) 0 0
\(725\) −21.8444 −0.811281
\(726\) 0 0
\(727\) −38.8135 −1.43951 −0.719757 0.694226i \(-0.755747\pi\)
−0.719757 + 0.694226i \(0.755747\pi\)
\(728\) 0 0
\(729\) 29.1472 1.07953
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −4.90833 −0.181293 −0.0906466 0.995883i \(-0.528893\pi\)
−0.0906466 + 0.995883i \(0.528893\pi\)
\(734\) 0 0
\(735\) −39.6119 −1.46111
\(736\) 0 0
\(737\) 35.6333 1.31257
\(738\) 0 0
\(739\) −20.8529 −0.767088 −0.383544 0.923523i \(-0.625297\pi\)
−0.383544 + 0.923523i \(0.625297\pi\)
\(740\) 0 0
\(741\) 13.2389 0.486342
\(742\) 0 0
\(743\) 29.4113 1.07899 0.539497 0.841987i \(-0.318614\pi\)
0.539497 + 0.841987i \(0.318614\pi\)
\(744\) 0 0
\(745\) −30.4222 −1.11458
\(746\) 0 0
\(747\) 2.48628 0.0909681
\(748\) 0 0
\(749\) 45.3583 1.65736
\(750\) 0 0
\(751\) 9.70338 0.354081 0.177041 0.984204i \(-0.443348\pi\)
0.177041 + 0.984204i \(0.443348\pi\)
\(752\) 0 0
\(753\) 27.5416 1.00367
\(754\) 0 0
\(755\) 17.9150 0.651993
\(756\) 0 0
\(757\) −22.2111 −0.807276 −0.403638 0.914919i \(-0.632255\pi\)
−0.403638 + 0.914919i \(0.632255\pi\)
\(758\) 0 0
\(759\) 33.6904 1.22288
\(760\) 0 0
\(761\) −34.2111 −1.24015 −0.620076 0.784542i \(-0.712898\pi\)
−0.620076 + 0.784542i \(0.712898\pi\)
\(762\) 0 0
\(763\) 73.4529 2.65917
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 74.2512 2.68106
\(768\) 0 0
\(769\) −11.3305 −0.408589 −0.204295 0.978909i \(-0.565490\pi\)
−0.204295 + 0.978909i \(0.565490\pi\)
\(770\) 0 0
\(771\) 18.8639 0.679367
\(772\) 0 0
\(773\) 18.6333 0.670193 0.335097 0.942184i \(-0.391231\pi\)
0.335097 + 0.942184i \(0.391231\pi\)
\(774\) 0 0
\(775\) −32.0481 −1.15120
\(776\) 0 0
\(777\) −24.8444 −0.891288
\(778\) 0 0
\(779\) −15.1276 −0.542003
\(780\) 0 0
\(781\) 35.6333 1.27506
\(782\) 0 0
\(783\) 20.0546 0.716692
\(784\) 0 0
\(785\) 45.9361 1.63953
\(786\) 0 0
\(787\) 43.3938 1.54682 0.773411 0.633905i \(-0.218549\pi\)
0.773411 + 0.633905i \(0.218549\pi\)
\(788\) 0 0
\(789\) 5.96384 0.212318
\(790\) 0 0
\(791\) −7.91050 −0.281265
\(792\) 0 0
\(793\) −1.03616 −0.0367951
\(794\) 0 0
\(795\) 70.0177 2.48327
\(796\) 0 0
\(797\) −23.8444 −0.844612 −0.422306 0.906453i \(-0.638779\pi\)
−0.422306 + 0.906453i \(0.638779\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 1.57779 0.0557486
\(802\) 0 0
\(803\) 11.9935 0.423242
\(804\) 0 0
\(805\) −47.2389 −1.66495
\(806\) 0 0
\(807\) 11.6468 0.409987
\(808\) 0 0
\(809\) 4.36669 0.153525 0.0767624 0.997049i \(-0.475542\pi\)
0.0767624 + 0.997049i \(0.475542\pi\)
\(810\) 0 0
\(811\) 15.1276 0.531202 0.265601 0.964083i \(-0.414430\pi\)
0.265601 + 0.964083i \(0.414430\pi\)
\(812\) 0 0
\(813\) 17.0000 0.596216
\(814\) 0 0
\(815\) 39.6119 1.38754
\(816\) 0 0
\(817\) −1.88057 −0.0657928
\(818\) 0 0
\(819\) 5.62037 0.196391
\(820\) 0 0
\(821\) −2.57779 −0.0899657 −0.0449828 0.998988i \(-0.514323\pi\)
−0.0449828 + 0.998988i \(0.514323\pi\)
\(822\) 0 0
\(823\) 46.8290 1.63236 0.816178 0.577800i \(-0.196089\pi\)
0.816178 + 0.577800i \(0.196089\pi\)
\(824\) 0 0
\(825\) 52.6333 1.83246
\(826\) 0 0
\(827\) 35.6794 1.24070 0.620348 0.784327i \(-0.286991\pi\)
0.620348 + 0.784327i \(0.286991\pi\)
\(828\) 0 0
\(829\) 26.4222 0.917681 0.458841 0.888519i \(-0.348265\pi\)
0.458841 + 0.888519i \(0.348265\pi\)
\(830\) 0 0
\(831\) −41.4048 −1.43632
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 16.2727 0.563139
\(836\) 0 0
\(837\) 29.4222 1.01698
\(838\) 0 0
\(839\) 47.9741 1.65625 0.828124 0.560545i \(-0.189408\pi\)
0.828124 + 0.560545i \(0.189408\pi\)
\(840\) 0 0
\(841\) −15.3305 −0.528639
\(842\) 0 0
\(843\) 16.5738 0.570831
\(844\) 0 0
\(845\) −36.6333 −1.26022
\(846\) 0 0
\(847\) 69.6710 2.39392
\(848\) 0 0
\(849\) −49.6888 −1.70532
\(850\) 0 0
\(851\) −15.1276 −0.518568
\(852\) 0 0
\(853\) −19.7889 −0.677559 −0.338779 0.940866i \(-0.610014\pi\)
−0.338779 + 0.940866i \(0.610014\pi\)
\(854\) 0 0
\(855\) −1.64232 −0.0561663
\(856\) 0 0
\(857\) 43.4222 1.48327 0.741637 0.670801i \(-0.234050\pi\)
0.741637 + 0.670801i \(0.234050\pi\)
\(858\) 0 0
\(859\) −49.9631 −1.70472 −0.852359 0.522957i \(-0.824829\pi\)
−0.852359 + 0.522957i \(0.824829\pi\)
\(860\) 0 0
\(861\) 57.2111 1.94975
\(862\) 0 0
\(863\) 25.4788 0.867308 0.433654 0.901079i \(-0.357224\pi\)
0.433654 + 0.901079i \(0.357224\pi\)
\(864\) 0 0
\(865\) 27.1194 0.922088
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −32.2442 −1.09255
\(872\) 0 0
\(873\) 5.00000 0.169224
\(874\) 0 0
\(875\) −11.3457 −0.383555
\(876\) 0 0
\(877\) −32.3305 −1.09172 −0.545862 0.837875i \(-0.683798\pi\)
−0.545862 + 0.837875i \(0.683798\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42.3583 1.42709 0.713543 0.700611i \(-0.247089\pi\)
0.713543 + 0.700611i \(0.247089\pi\)
\(882\) 0 0
\(883\) −13.4853 −0.453816 −0.226908 0.973916i \(-0.572862\pi\)
−0.226908 + 0.973916i \(0.572862\pi\)
\(884\) 0 0
\(885\) 82.0555 2.75827
\(886\) 0 0
\(887\) 25.4788 0.855494 0.427747 0.903898i \(-0.359307\pi\)
0.427747 + 0.903898i \(0.359307\pi\)
\(888\) 0 0
\(889\) −4.33053 −0.145241
\(890\) 0 0
\(891\) −43.3938 −1.45375
\(892\) 0 0
\(893\) 19.6972 0.659142
\(894\) 0 0
\(895\) −30.9030 −1.03297
\(896\) 0 0
\(897\) −30.4861 −1.01790
\(898\) 0 0
\(899\) 20.0546 0.668857
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 7.11213 0.236677
\(904\) 0 0
\(905\) 60.1472 1.99936
\(906\) 0 0
\(907\) −21.3502 −0.708922 −0.354461 0.935071i \(-0.615336\pi\)
−0.354461 + 0.935071i \(0.615336\pi\)
\(908\) 0 0
\(909\) −0.908327 −0.0301273
\(910\) 0 0
\(911\) 12.3402 0.408850 0.204425 0.978882i \(-0.434468\pi\)
0.204425 + 0.978882i \(0.434468\pi\)
\(912\) 0 0
\(913\) −44.5416 −1.47411
\(914\) 0 0
\(915\) −1.14507 −0.0378548
\(916\) 0 0
\(917\) 24.8444 0.820435
\(918\) 0 0
\(919\) −43.0471 −1.41999 −0.709996 0.704205i \(-0.751303\pi\)
−0.709996 + 0.704205i \(0.751303\pi\)
\(920\) 0 0
\(921\) 18.6333 0.613988
\(922\) 0 0
\(923\) −32.2442 −1.06133
\(924\) 0 0
\(925\) −23.6333 −0.777058
\(926\) 0 0
\(927\) −4.58027 −0.150436
\(928\) 0 0
\(929\) 11.0917 0.363906 0.181953 0.983307i \(-0.441758\pi\)
0.181953 + 0.983307i \(0.441758\pi\)
\(930\) 0 0
\(931\) −11.9935 −0.393072
\(932\) 0 0
\(933\) 22.1472 0.725066
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −36.1472 −1.18088 −0.590439 0.807083i \(-0.701045\pi\)
−0.590439 + 0.807083i \(0.701045\pi\)
\(938\) 0 0
\(939\) 30.2552 0.987341
\(940\) 0 0
\(941\) −8.33053 −0.271568 −0.135784 0.990738i \(-0.543355\pi\)
−0.135784 + 0.990738i \(0.543355\pi\)
\(942\) 0 0
\(943\) 34.8355 1.13440
\(944\) 0 0
\(945\) 67.7527 2.20400
\(946\) 0 0
\(947\) −44.5389 −1.44732 −0.723659 0.690157i \(-0.757541\pi\)
−0.723659 + 0.690157i \(0.757541\pi\)
\(948\) 0 0
\(949\) −10.8528 −0.352297
\(950\) 0 0
\(951\) 25.3282 0.821324
\(952\) 0 0
\(953\) 32.5139 1.05323 0.526614 0.850105i \(-0.323461\pi\)
0.526614 + 0.850105i \(0.323461\pi\)
\(954\) 0 0
\(955\) 37.9696 1.22867
\(956\) 0 0
\(957\) −32.9361 −1.06467
\(958\) 0 0
\(959\) −10.5473 −0.340591
\(960\) 0 0
\(961\) −1.57779 −0.0508966
\(962\) 0 0
\(963\) −3.63134 −0.117018
\(964\) 0 0
\(965\) 16.5139 0.531601
\(966\) 0 0
\(967\) 31.0536 0.998616 0.499308 0.866425i \(-0.333588\pi\)
0.499308 + 0.866425i \(0.333588\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 16.9205 0.543004 0.271502 0.962438i \(-0.412480\pi\)
0.271502 + 0.962438i \(0.412480\pi\)
\(972\) 0 0
\(973\) −18.0639 −0.579103
\(974\) 0 0
\(975\) −47.6274 −1.52530
\(976\) 0 0
\(977\) 27.6972 0.886113 0.443056 0.896494i \(-0.353894\pi\)
0.443056 + 0.896494i \(0.353894\pi\)
\(978\) 0 0
\(979\) −28.2662 −0.903391
\(980\) 0 0
\(981\) −5.88057 −0.187752
\(982\) 0 0
\(983\) 8.55831 0.272968 0.136484 0.990642i \(-0.456420\pi\)
0.136484 + 0.990642i \(0.456420\pi\)
\(984\) 0 0
\(985\) 75.7527 2.41368
\(986\) 0 0
\(987\) −74.4930 −2.37114
\(988\) 0 0
\(989\) 4.33053 0.137703
\(990\) 0 0
\(991\) −52.9010 −1.68046 −0.840228 0.542233i \(-0.817579\pi\)
−0.840228 + 0.542233i \(0.817579\pi\)
\(992\) 0 0
\(993\) 54.2666 1.72210
\(994\) 0 0
\(995\) 25.4788 0.807732
\(996\) 0 0
\(997\) −32.3028 −1.02304 −0.511520 0.859272i \(-0.670917\pi\)
−0.511520 + 0.859272i \(0.670917\pi\)
\(998\) 0 0
\(999\) 21.6969 0.686459
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9248.2.a.z.1.3 yes 4
4.3 odd 2 inner 9248.2.a.z.1.2 4
17.16 even 2 9248.2.a.bi.1.2 yes 4
68.67 odd 2 9248.2.a.bi.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9248.2.a.z.1.2 4 4.3 odd 2 inner
9248.2.a.z.1.3 yes 4 1.1 even 1 trivial
9248.2.a.bi.1.2 yes 4 17.16 even 2
9248.2.a.bi.1.3 yes 4 68.67 odd 2