Properties

Label 9248.2.a.y.1.4
Level $9248$
Weight $2$
Character 9248.1
Self dual yes
Analytic conductor $73.846$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9248,2,Mod(1,9248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9248, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9248.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9248 = 2^{5} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9248.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,2,0,-6,0,6,0,0,0,2,0,8,0,0,0,-6,0,12,0,-6,0,2,0,-8, 0,2,0,0,0,-10,0,-14,0,0,0,-26,0,-16,0,8,0,-20,0,8,0,14,0,0,0,-6,0,-22, 0,6,0,-16,0,20,0,-24,0,4,0,0,0,-4,0,0,0,4,0,-8,0,-2,0,-24,0,32,0,26,0, 0,0,-10,0,0,0,-32,0,26,0,32,0,-22,0,50,0,-4,0,-32,0,-14,0,-32,0,28,0,32, 0,10,0,10,0,2,0,0,0,-8,0,-8,0,36,0,-8,0,-46,0,-16,0,4,0,38,0,24,0,-22, 0,2,0,-2,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(145)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8456517893\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.14272.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 5x^{2} + 2x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.716360\) of defining polynomial
Character \(\chi\) \(=\) 9248.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.52559 q^{3} +1.05411 q^{5} -0.244878 q^{7} +3.37861 q^{9} +0.662250 q^{11} -4.99707 q^{13} +2.66225 q^{15} -5.85009 q^{19} -0.618463 q^{21} -5.18784 q^{23} -3.88885 q^{25} +0.956213 q^{27} -0.0541097 q^{29} +4.28071 q^{31} +1.67257 q^{33} -0.258129 q^{35} +8.48390 q^{37} -12.6206 q^{39} -7.54094 q^{41} -5.82165 q^{43} +3.56143 q^{45} +6.20319 q^{47} -6.94003 q^{49} -6.91955 q^{53} +0.698084 q^{55} -14.7749 q^{57} -7.54094 q^{59} +1.38154 q^{61} -0.827348 q^{63} -5.26746 q^{65} +1.40202 q^{67} -13.1024 q^{69} +3.54094 q^{71} +13.0248 q^{73} -9.82165 q^{75} -0.162171 q^{77} -4.67550 q^{79} -7.72083 q^{81} +10.6338 q^{83} -0.136659 q^{87} -13.4269 q^{89} +1.22367 q^{91} +10.8113 q^{93} -6.16664 q^{95} -9.81133 q^{97} +2.23748 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{5} - 6 q^{7} + 6 q^{9} + 2 q^{13} + 8 q^{15} - 6 q^{19} + 12 q^{21} - 6 q^{23} + 2 q^{25} - 8 q^{27} + 2 q^{29} - 10 q^{33} - 14 q^{35} - 26 q^{39} - 16 q^{41} + 8 q^{43} - 20 q^{45}+ \cdots + 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.52559 1.45815 0.729075 0.684433i \(-0.239950\pi\)
0.729075 + 0.684433i \(0.239950\pi\)
\(4\) 0 0
\(5\) 1.05411 0.471412 0.235706 0.971824i \(-0.424260\pi\)
0.235706 + 0.971824i \(0.424260\pi\)
\(6\) 0 0
\(7\) −0.244878 −0.0925553 −0.0462777 0.998929i \(-0.514736\pi\)
−0.0462777 + 0.998929i \(0.514736\pi\)
\(8\) 0 0
\(9\) 3.37861 1.12620
\(10\) 0 0
\(11\) 0.662250 0.199676 0.0998379 0.995004i \(-0.468168\pi\)
0.0998379 + 0.995004i \(0.468168\pi\)
\(12\) 0 0
\(13\) −4.99707 −1.38594 −0.692969 0.720967i \(-0.743698\pi\)
−0.692969 + 0.720967i \(0.743698\pi\)
\(14\) 0 0
\(15\) 2.66225 0.687390
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −5.85009 −1.34210 −0.671051 0.741411i \(-0.734157\pi\)
−0.671051 + 0.741411i \(0.734157\pi\)
\(20\) 0 0
\(21\) −0.618463 −0.134960
\(22\) 0 0
\(23\) −5.18784 −1.08174 −0.540870 0.841106i \(-0.681905\pi\)
−0.540870 + 0.841106i \(0.681905\pi\)
\(24\) 0 0
\(25\) −3.88885 −0.777771
\(26\) 0 0
\(27\) 0.956213 0.184023
\(28\) 0 0
\(29\) −0.0541097 −0.0100479 −0.00502396 0.999987i \(-0.501599\pi\)
−0.00502396 + 0.999987i \(0.501599\pi\)
\(30\) 0 0
\(31\) 4.28071 0.768839 0.384419 0.923159i \(-0.374402\pi\)
0.384419 + 0.923159i \(0.374402\pi\)
\(32\) 0 0
\(33\) 1.67257 0.291157
\(34\) 0 0
\(35\) −0.258129 −0.0436317
\(36\) 0 0
\(37\) 8.48390 1.39474 0.697372 0.716709i \(-0.254352\pi\)
0.697372 + 0.716709i \(0.254352\pi\)
\(38\) 0 0
\(39\) −12.6206 −2.02091
\(40\) 0 0
\(41\) −7.54094 −1.17770 −0.588848 0.808244i \(-0.700418\pi\)
−0.588848 + 0.808244i \(0.700418\pi\)
\(42\) 0 0
\(43\) −5.82165 −0.887793 −0.443897 0.896078i \(-0.646404\pi\)
−0.443897 + 0.896078i \(0.646404\pi\)
\(44\) 0 0
\(45\) 3.56143 0.530906
\(46\) 0 0
\(47\) 6.20319 0.904828 0.452414 0.891808i \(-0.350563\pi\)
0.452414 + 0.891808i \(0.350563\pi\)
\(48\) 0 0
\(49\) −6.94003 −0.991434
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.91955 −0.950473 −0.475237 0.879858i \(-0.657638\pi\)
−0.475237 + 0.879858i \(0.657638\pi\)
\(54\) 0 0
\(55\) 0.698084 0.0941296
\(56\) 0 0
\(57\) −14.7749 −1.95699
\(58\) 0 0
\(59\) −7.54094 −0.981747 −0.490873 0.871231i \(-0.663322\pi\)
−0.490873 + 0.871231i \(0.663322\pi\)
\(60\) 0 0
\(61\) 1.38154 0.176888 0.0884439 0.996081i \(-0.471811\pi\)
0.0884439 + 0.996081i \(0.471811\pi\)
\(62\) 0 0
\(63\) −0.827348 −0.104236
\(64\) 0 0
\(65\) −5.26746 −0.653348
\(66\) 0 0
\(67\) 1.40202 0.171284 0.0856422 0.996326i \(-0.472706\pi\)
0.0856422 + 0.996326i \(0.472706\pi\)
\(68\) 0 0
\(69\) −13.1024 −1.57734
\(70\) 0 0
\(71\) 3.54094 0.420232 0.210116 0.977676i \(-0.432616\pi\)
0.210116 + 0.977676i \(0.432616\pi\)
\(72\) 0 0
\(73\) 13.0248 1.52444 0.762221 0.647317i \(-0.224109\pi\)
0.762221 + 0.647317i \(0.224109\pi\)
\(74\) 0 0
\(75\) −9.82165 −1.13411
\(76\) 0 0
\(77\) −0.162171 −0.0184811
\(78\) 0 0
\(79\) −4.67550 −0.526035 −0.263017 0.964791i \(-0.584718\pi\)
−0.263017 + 0.964791i \(0.584718\pi\)
\(80\) 0 0
\(81\) −7.72083 −0.857870
\(82\) 0 0
\(83\) 10.6338 1.16721 0.583606 0.812037i \(-0.301641\pi\)
0.583606 + 0.812037i \(0.301641\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.136659 −0.0146514
\(88\) 0 0
\(89\) −13.4269 −1.42324 −0.711622 0.702562i \(-0.752039\pi\)
−0.711622 + 0.702562i \(0.752039\pi\)
\(90\) 0 0
\(91\) 1.22367 0.128276
\(92\) 0 0
\(93\) 10.8113 1.12108
\(94\) 0 0
\(95\) −6.16664 −0.632684
\(96\) 0 0
\(97\) −9.81133 −0.996189 −0.498095 0.867123i \(-0.665967\pi\)
−0.498095 + 0.867123i \(0.665967\pi\)
\(98\) 0 0
\(99\) 2.23748 0.224876
\(100\) 0 0
\(101\) 17.3698 1.72836 0.864181 0.503181i \(-0.167837\pi\)
0.864181 + 0.503181i \(0.167837\pi\)
\(102\) 0 0
\(103\) −18.7779 −1.85024 −0.925119 0.379677i \(-0.876035\pi\)
−0.925119 + 0.379677i \(0.876035\pi\)
\(104\) 0 0
\(105\) −0.651927 −0.0636216
\(106\) 0 0
\(107\) −3.79681 −0.367052 −0.183526 0.983015i \(-0.558751\pi\)
−0.183526 + 0.983015i \(0.558751\pi\)
\(108\) 0 0
\(109\) 8.32450 0.797342 0.398671 0.917094i \(-0.369471\pi\)
0.398671 + 0.917094i \(0.369471\pi\)
\(110\) 0 0
\(111\) 21.4269 2.03375
\(112\) 0 0
\(113\) 6.67257 0.627703 0.313851 0.949472i \(-0.398381\pi\)
0.313851 + 0.949472i \(0.398381\pi\)
\(114\) 0 0
\(115\) −5.46855 −0.509945
\(116\) 0 0
\(117\) −16.8832 −1.56085
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.5614 −0.960130
\(122\) 0 0
\(123\) −19.0453 −1.71726
\(124\) 0 0
\(125\) −9.36983 −0.838063
\(126\) 0 0
\(127\) 5.82165 0.516588 0.258294 0.966066i \(-0.416840\pi\)
0.258294 + 0.966066i \(0.416840\pi\)
\(128\) 0 0
\(129\) −14.7031 −1.29454
\(130\) 0 0
\(131\) −19.7208 −1.72302 −0.861508 0.507743i \(-0.830480\pi\)
−0.861508 + 0.507743i \(0.830480\pi\)
\(132\) 0 0
\(133\) 1.43256 0.124219
\(134\) 0 0
\(135\) 1.00795 0.0867508
\(136\) 0 0
\(137\) −0.267462 −0.0228508 −0.0114254 0.999935i \(-0.503637\pi\)
−0.0114254 + 0.999935i \(0.503637\pi\)
\(138\) 0 0
\(139\) −19.0738 −1.61782 −0.808908 0.587935i \(-0.799941\pi\)
−0.808908 + 0.587935i \(0.799941\pi\)
\(140\) 0 0
\(141\) 15.6667 1.31938
\(142\) 0 0
\(143\) −3.30931 −0.276738
\(144\) 0 0
\(145\) −0.0570376 −0.00473671
\(146\) 0 0
\(147\) −17.5277 −1.44566
\(148\) 0 0
\(149\) −23.2618 −1.90568 −0.952839 0.303476i \(-0.901853\pi\)
−0.952839 + 0.303476i \(0.901853\pi\)
\(150\) 0 0
\(151\) −6.30555 −0.513139 −0.256569 0.966526i \(-0.582592\pi\)
−0.256569 + 0.966526i \(0.582592\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.51234 0.362440
\(156\) 0 0
\(157\) −8.55850 −0.683042 −0.341521 0.939874i \(-0.610942\pi\)
−0.341521 + 0.939874i \(0.610942\pi\)
\(158\) 0 0
\(159\) −17.4759 −1.38593
\(160\) 0 0
\(161\) 1.27039 0.100121
\(162\) 0 0
\(163\) 21.0321 1.64736 0.823680 0.567055i \(-0.191917\pi\)
0.823680 + 0.567055i \(0.191917\pi\)
\(164\) 0 0
\(165\) 1.76307 0.137255
\(166\) 0 0
\(167\) 3.66015 0.283231 0.141616 0.989922i \(-0.454770\pi\)
0.141616 + 0.989922i \(0.454770\pi\)
\(168\) 0 0
\(169\) 11.9707 0.920825
\(170\) 0 0
\(171\) −19.7652 −1.51148
\(172\) 0 0
\(173\) 22.9108 1.74187 0.870937 0.491395i \(-0.163513\pi\)
0.870937 + 0.491395i \(0.163513\pi\)
\(174\) 0 0
\(175\) 0.952296 0.0719868
\(176\) 0 0
\(177\) −19.0453 −1.43153
\(178\) 0 0
\(179\) 4.48750 0.335412 0.167706 0.985837i \(-0.446364\pi\)
0.167706 + 0.985837i \(0.446364\pi\)
\(180\) 0 0
\(181\) −4.69599 −0.349050 −0.174525 0.984653i \(-0.555839\pi\)
−0.174525 + 0.984653i \(0.555839\pi\)
\(182\) 0 0
\(183\) 3.48920 0.257929
\(184\) 0 0
\(185\) 8.94296 0.657500
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.234156 −0.0170323
\(190\) 0 0
\(191\) −7.09287 −0.513222 −0.256611 0.966515i \(-0.582606\pi\)
−0.256611 + 0.966515i \(0.582606\pi\)
\(192\) 0 0
\(193\) −12.0819 −0.869673 −0.434836 0.900510i \(-0.643194\pi\)
−0.434836 + 0.900510i \(0.643194\pi\)
\(194\) 0 0
\(195\) −13.3035 −0.952680
\(196\) 0 0
\(197\) 8.83767 0.629658 0.314829 0.949148i \(-0.398053\pi\)
0.314829 + 0.949148i \(0.398053\pi\)
\(198\) 0 0
\(199\) 17.8975 1.26872 0.634361 0.773037i \(-0.281263\pi\)
0.634361 + 0.773037i \(0.281263\pi\)
\(200\) 0 0
\(201\) 3.54094 0.249759
\(202\) 0 0
\(203\) 0.0132503 0.000929989 0
\(204\) 0 0
\(205\) −7.94898 −0.555181
\(206\) 0 0
\(207\) −17.5277 −1.21826
\(208\) 0 0
\(209\) −3.87422 −0.267986
\(210\) 0 0
\(211\) 16.0533 1.10515 0.552577 0.833462i \(-0.313645\pi\)
0.552577 + 0.833462i \(0.313645\pi\)
\(212\) 0 0
\(213\) 8.94296 0.612762
\(214\) 0 0
\(215\) −6.13666 −0.418517
\(216\) 0 0
\(217\) −1.04825 −0.0711601
\(218\) 0 0
\(219\) 32.8954 2.22287
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 24.5313 1.64274 0.821369 0.570396i \(-0.193210\pi\)
0.821369 + 0.570396i \(0.193210\pi\)
\(224\) 0 0
\(225\) −13.1389 −0.875928
\(226\) 0 0
\(227\) 15.4650 1.02645 0.513223 0.858256i \(-0.328452\pi\)
0.513223 + 0.858256i \(0.328452\pi\)
\(228\) 0 0
\(229\) −21.9473 −1.45032 −0.725160 0.688581i \(-0.758234\pi\)
−0.725160 + 0.688581i \(0.758234\pi\)
\(230\) 0 0
\(231\) −0.409577 −0.0269482
\(232\) 0 0
\(233\) 4.57148 0.299487 0.149744 0.988725i \(-0.452155\pi\)
0.149744 + 0.988725i \(0.452155\pi\)
\(234\) 0 0
\(235\) 6.53884 0.426547
\(236\) 0 0
\(237\) −11.8084 −0.767038
\(238\) 0 0
\(239\) −12.4458 −0.805053 −0.402526 0.915408i \(-0.631868\pi\)
−0.402526 + 0.915408i \(0.631868\pi\)
\(240\) 0 0
\(241\) 26.2587 1.69147 0.845735 0.533603i \(-0.179162\pi\)
0.845735 + 0.533603i \(0.179162\pi\)
\(242\) 0 0
\(243\) −22.3683 −1.43493
\(244\) 0 0
\(245\) −7.31556 −0.467374
\(246\) 0 0
\(247\) 29.2333 1.86007
\(248\) 0 0
\(249\) 26.8567 1.70197
\(250\) 0 0
\(251\) −23.4217 −1.47837 −0.739183 0.673505i \(-0.764788\pi\)
−0.739183 + 0.673505i \(0.764788\pi\)
\(252\) 0 0
\(253\) −3.43565 −0.215997
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.07895 0.316816 0.158408 0.987374i \(-0.449364\pi\)
0.158408 + 0.987374i \(0.449364\pi\)
\(258\) 0 0
\(259\) −2.07752 −0.129091
\(260\) 0 0
\(261\) −0.182816 −0.0113160
\(262\) 0 0
\(263\) 8.71553 0.537423 0.268711 0.963221i \(-0.413402\pi\)
0.268711 + 0.963221i \(0.413402\pi\)
\(264\) 0 0
\(265\) −7.29396 −0.448065
\(266\) 0 0
\(267\) −33.9108 −2.07531
\(268\) 0 0
\(269\) −13.4810 −0.821949 −0.410975 0.911647i \(-0.634812\pi\)
−0.410975 + 0.911647i \(0.634812\pi\)
\(270\) 0 0
\(271\) 22.5330 1.36878 0.684391 0.729115i \(-0.260068\pi\)
0.684391 + 0.729115i \(0.260068\pi\)
\(272\) 0 0
\(273\) 3.09050 0.187046
\(274\) 0 0
\(275\) −2.57539 −0.155302
\(276\) 0 0
\(277\) 9.66949 0.580983 0.290492 0.956878i \(-0.406181\pi\)
0.290492 + 0.956878i \(0.406181\pi\)
\(278\) 0 0
\(279\) 14.4629 0.865869
\(280\) 0 0
\(281\) 7.12578 0.425088 0.212544 0.977151i \(-0.431825\pi\)
0.212544 + 0.977151i \(0.431825\pi\)
\(282\) 0 0
\(283\) −25.8859 −1.53876 −0.769379 0.638792i \(-0.779434\pi\)
−0.769379 + 0.638792i \(0.779434\pi\)
\(284\) 0 0
\(285\) −15.5744 −0.922548
\(286\) 0 0
\(287\) 1.84661 0.109002
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −24.7794 −1.45259
\(292\) 0 0
\(293\) 18.5249 1.08223 0.541117 0.840947i \(-0.318001\pi\)
0.541117 + 0.840947i \(0.318001\pi\)
\(294\) 0 0
\(295\) −7.94898 −0.462807
\(296\) 0 0
\(297\) 0.633252 0.0367450
\(298\) 0 0
\(299\) 25.9240 1.49922
\(300\) 0 0
\(301\) 1.42560 0.0821700
\(302\) 0 0
\(303\) 43.8691 2.52021
\(304\) 0 0
\(305\) 1.45629 0.0833870
\(306\) 0 0
\(307\) −18.1001 −1.03303 −0.516514 0.856279i \(-0.672771\pi\)
−0.516514 + 0.856279i \(0.672771\pi\)
\(308\) 0 0
\(309\) −47.4252 −2.69793
\(310\) 0 0
\(311\) −29.0505 −1.64730 −0.823650 0.567098i \(-0.808066\pi\)
−0.823650 + 0.567098i \(0.808066\pi\)
\(312\) 0 0
\(313\) 3.13290 0.177082 0.0885410 0.996073i \(-0.471780\pi\)
0.0885410 + 0.996073i \(0.471780\pi\)
\(314\) 0 0
\(315\) −0.872116 −0.0491382
\(316\) 0 0
\(317\) −15.4839 −0.869663 −0.434831 0.900512i \(-0.643192\pi\)
−0.434831 + 0.900512i \(0.643192\pi\)
\(318\) 0 0
\(319\) −0.0358341 −0.00200633
\(320\) 0 0
\(321\) −9.58919 −0.535217
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 19.4329 1.07794
\(326\) 0 0
\(327\) 21.0243 1.16265
\(328\) 0 0
\(329\) −1.51903 −0.0837467
\(330\) 0 0
\(331\) 8.46132 0.465076 0.232538 0.972587i \(-0.425297\pi\)
0.232538 + 0.972587i \(0.425297\pi\)
\(332\) 0 0
\(333\) 28.6638 1.57077
\(334\) 0 0
\(335\) 1.47789 0.0807456
\(336\) 0 0
\(337\) 16.5015 0.898892 0.449446 0.893308i \(-0.351621\pi\)
0.449446 + 0.893308i \(0.351621\pi\)
\(338\) 0 0
\(339\) 16.8522 0.915285
\(340\) 0 0
\(341\) 2.83490 0.153519
\(342\) 0 0
\(343\) 3.41361 0.184318
\(344\) 0 0
\(345\) −13.8113 −0.743577
\(346\) 0 0
\(347\) −17.3545 −0.931637 −0.465819 0.884880i \(-0.654240\pi\)
−0.465819 + 0.884880i \(0.654240\pi\)
\(348\) 0 0
\(349\) 17.3698 0.929785 0.464893 0.885367i \(-0.346093\pi\)
0.464893 + 0.885367i \(0.346093\pi\)
\(350\) 0 0
\(351\) −4.77826 −0.255045
\(352\) 0 0
\(353\) 13.2574 0.705621 0.352810 0.935695i \(-0.385226\pi\)
0.352810 + 0.935695i \(0.385226\pi\)
\(354\) 0 0
\(355\) 3.73254 0.198103
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −33.6966 −1.77844 −0.889219 0.457482i \(-0.848751\pi\)
−0.889219 + 0.457482i \(0.848751\pi\)
\(360\) 0 0
\(361\) 15.2236 0.801240
\(362\) 0 0
\(363\) −26.6738 −1.40001
\(364\) 0 0
\(365\) 13.7296 0.718641
\(366\) 0 0
\(367\) −5.46341 −0.285188 −0.142594 0.989781i \(-0.545544\pi\)
−0.142594 + 0.989781i \(0.545544\pi\)
\(368\) 0 0
\(369\) −25.4779 −1.32633
\(370\) 0 0
\(371\) 1.69445 0.0879713
\(372\) 0 0
\(373\) 5.30401 0.274631 0.137316 0.990527i \(-0.456153\pi\)
0.137316 + 0.990527i \(0.456153\pi\)
\(374\) 0 0
\(375\) −23.6643 −1.22202
\(376\) 0 0
\(377\) 0.270390 0.0139258
\(378\) 0 0
\(379\) 2.01159 0.103328 0.0516642 0.998665i \(-0.483547\pi\)
0.0516642 + 0.998665i \(0.483547\pi\)
\(380\) 0 0
\(381\) 14.7031 0.753263
\(382\) 0 0
\(383\) 6.71719 0.343232 0.171616 0.985164i \(-0.445101\pi\)
0.171616 + 0.985164i \(0.445101\pi\)
\(384\) 0 0
\(385\) −0.170946 −0.00871220
\(386\) 0 0
\(387\) −19.6691 −0.999836
\(388\) 0 0
\(389\) −11.7631 −0.596412 −0.298206 0.954502i \(-0.596388\pi\)
−0.298206 + 0.954502i \(0.596388\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −49.8067 −2.51242
\(394\) 0 0
\(395\) −4.92849 −0.247979
\(396\) 0 0
\(397\) 7.29396 0.366074 0.183037 0.983106i \(-0.441407\pi\)
0.183037 + 0.983106i \(0.441407\pi\)
\(398\) 0 0
\(399\) 3.61806 0.181130
\(400\) 0 0
\(401\) −23.0748 −1.15230 −0.576149 0.817345i \(-0.695445\pi\)
−0.576149 + 0.817345i \(0.695445\pi\)
\(402\) 0 0
\(403\) −21.3910 −1.06556
\(404\) 0 0
\(405\) −8.13860 −0.404410
\(406\) 0 0
\(407\) 5.61846 0.278497
\(408\) 0 0
\(409\) 23.8554 1.17957 0.589787 0.807559i \(-0.299212\pi\)
0.589787 + 0.807559i \(0.299212\pi\)
\(410\) 0 0
\(411\) −0.675500 −0.0333200
\(412\) 0 0
\(413\) 1.84661 0.0908659
\(414\) 0 0
\(415\) 11.2092 0.550238
\(416\) 0 0
\(417\) −48.1725 −2.35902
\(418\) 0 0
\(419\) 9.50119 0.464163 0.232082 0.972696i \(-0.425446\pi\)
0.232082 + 0.972696i \(0.425446\pi\)
\(420\) 0 0
\(421\) 12.9749 0.632359 0.316180 0.948699i \(-0.397600\pi\)
0.316180 + 0.948699i \(0.397600\pi\)
\(422\) 0 0
\(423\) 20.9582 1.01902
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.338309 −0.0163719
\(428\) 0 0
\(429\) −8.35796 −0.403526
\(430\) 0 0
\(431\) −25.6293 −1.23452 −0.617261 0.786759i \(-0.711758\pi\)
−0.617261 + 0.786759i \(0.711758\pi\)
\(432\) 0 0
\(433\) 2.43256 0.116901 0.0584507 0.998290i \(-0.481384\pi\)
0.0584507 + 0.998290i \(0.481384\pi\)
\(434\) 0 0
\(435\) −0.144054 −0.00690684
\(436\) 0 0
\(437\) 30.3493 1.45181
\(438\) 0 0
\(439\) −0.179888 −0.00858557 −0.00429279 0.999991i \(-0.501366\pi\)
−0.00429279 + 0.999991i \(0.501366\pi\)
\(440\) 0 0
\(441\) −23.4477 −1.11656
\(442\) 0 0
\(443\) 29.1958 1.38714 0.693568 0.720391i \(-0.256038\pi\)
0.693568 + 0.720391i \(0.256038\pi\)
\(444\) 0 0
\(445\) −14.1534 −0.670935
\(446\) 0 0
\(447\) −58.7497 −2.77877
\(448\) 0 0
\(449\) 17.9649 0.847815 0.423907 0.905706i \(-0.360658\pi\)
0.423907 + 0.905706i \(0.360658\pi\)
\(450\) 0 0
\(451\) −4.99399 −0.235158
\(452\) 0 0
\(453\) −15.9252 −0.748233
\(454\) 0 0
\(455\) 1.28989 0.0604709
\(456\) 0 0
\(457\) 33.0162 1.54443 0.772217 0.635359i \(-0.219148\pi\)
0.772217 + 0.635359i \(0.219148\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 29.4269 1.37055 0.685273 0.728286i \(-0.259683\pi\)
0.685273 + 0.728286i \(0.259683\pi\)
\(462\) 0 0
\(463\) −4.51008 −0.209601 −0.104801 0.994493i \(-0.533420\pi\)
−0.104801 + 0.994493i \(0.533420\pi\)
\(464\) 0 0
\(465\) 11.3963 0.528492
\(466\) 0 0
\(467\) −28.7229 −1.32914 −0.664569 0.747227i \(-0.731385\pi\)
−0.664569 + 0.747227i \(0.731385\pi\)
\(468\) 0 0
\(469\) −0.343325 −0.0158533
\(470\) 0 0
\(471\) −21.6153 −0.995979
\(472\) 0 0
\(473\) −3.85539 −0.177271
\(474\) 0 0
\(475\) 22.7501 1.04385
\(476\) 0 0
\(477\) −23.3785 −1.07043
\(478\) 0 0
\(479\) −13.0951 −0.598332 −0.299166 0.954201i \(-0.596708\pi\)
−0.299166 + 0.954201i \(0.596708\pi\)
\(480\) 0 0
\(481\) −42.3947 −1.93303
\(482\) 0 0
\(483\) 3.20849 0.145991
\(484\) 0 0
\(485\) −10.3422 −0.469616
\(486\) 0 0
\(487\) −23.8400 −1.08030 −0.540148 0.841570i \(-0.681632\pi\)
−0.540148 + 0.841570i \(0.681632\pi\)
\(488\) 0 0
\(489\) 53.1184 2.40210
\(490\) 0 0
\(491\) 37.0886 1.67378 0.836892 0.547369i \(-0.184370\pi\)
0.836892 + 0.547369i \(0.184370\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 2.35855 0.106009
\(496\) 0 0
\(497\) −0.867099 −0.0388947
\(498\) 0 0
\(499\) 4.75362 0.212801 0.106401 0.994323i \(-0.466067\pi\)
0.106401 + 0.994323i \(0.466067\pi\)
\(500\) 0 0
\(501\) 9.24405 0.412994
\(502\) 0 0
\(503\) −15.0421 −0.670695 −0.335348 0.942094i \(-0.608854\pi\)
−0.335348 + 0.942094i \(0.608854\pi\)
\(504\) 0 0
\(505\) 18.3097 0.814771
\(506\) 0 0
\(507\) 30.2332 1.34270
\(508\) 0 0
\(509\) −12.9983 −0.576141 −0.288071 0.957609i \(-0.593014\pi\)
−0.288071 + 0.957609i \(0.593014\pi\)
\(510\) 0 0
\(511\) −3.18950 −0.141095
\(512\) 0 0
\(513\) −5.59393 −0.246978
\(514\) 0 0
\(515\) −19.7939 −0.872225
\(516\) 0 0
\(517\) 4.10806 0.180672
\(518\) 0 0
\(519\) 57.8632 2.53991
\(520\) 0 0
\(521\) −25.6171 −1.12231 −0.561153 0.827712i \(-0.689642\pi\)
−0.561153 + 0.827712i \(0.689642\pi\)
\(522\) 0 0
\(523\) 15.5277 0.678978 0.339489 0.940610i \(-0.389746\pi\)
0.339489 + 0.940610i \(0.389746\pi\)
\(524\) 0 0
\(525\) 2.40511 0.104968
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 3.91369 0.170161
\(530\) 0 0
\(531\) −25.4779 −1.10565
\(532\) 0 0
\(533\) 37.6826 1.63222
\(534\) 0 0
\(535\) −4.00226 −0.173033
\(536\) 0 0
\(537\) 11.3336 0.489081
\(538\) 0 0
\(539\) −4.59604 −0.197965
\(540\) 0 0
\(541\) 0.158134 0.00679873 0.00339936 0.999994i \(-0.498918\pi\)
0.00339936 + 0.999994i \(0.498918\pi\)
\(542\) 0 0
\(543\) −11.8601 −0.508967
\(544\) 0 0
\(545\) 8.77494 0.375877
\(546\) 0 0
\(547\) −15.6317 −0.668364 −0.334182 0.942509i \(-0.608460\pi\)
−0.334182 + 0.942509i \(0.608460\pi\)
\(548\) 0 0
\(549\) 4.66768 0.199212
\(550\) 0 0
\(551\) 0.316547 0.0134853
\(552\) 0 0
\(553\) 1.14493 0.0486873
\(554\) 0 0
\(555\) 22.5863 0.958734
\(556\) 0 0
\(557\) 15.8332 0.670876 0.335438 0.942062i \(-0.391116\pi\)
0.335438 + 0.942062i \(0.391116\pi\)
\(558\) 0 0
\(559\) 29.0912 1.23043
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −25.8232 −1.08832 −0.544159 0.838982i \(-0.683151\pi\)
−0.544159 + 0.838982i \(0.683151\pi\)
\(564\) 0 0
\(565\) 7.03362 0.295907
\(566\) 0 0
\(567\) 1.89066 0.0794004
\(568\) 0 0
\(569\) −34.9517 −1.46525 −0.732627 0.680631i \(-0.761706\pi\)
−0.732627 + 0.680631i \(0.761706\pi\)
\(570\) 0 0
\(571\) −16.6073 −0.694994 −0.347497 0.937681i \(-0.612968\pi\)
−0.347497 + 0.937681i \(0.612968\pi\)
\(572\) 0 0
\(573\) −17.9137 −0.748355
\(574\) 0 0
\(575\) 20.1747 0.841345
\(576\) 0 0
\(577\) 2.61846 0.109008 0.0545040 0.998514i \(-0.482642\pi\)
0.0545040 + 0.998514i \(0.482642\pi\)
\(578\) 0 0
\(579\) −30.5139 −1.26811
\(580\) 0 0
\(581\) −2.60399 −0.108032
\(582\) 0 0
\(583\) −4.58247 −0.189787
\(584\) 0 0
\(585\) −17.7967 −0.735803
\(586\) 0 0
\(587\) −1.14841 −0.0473998 −0.0236999 0.999719i \(-0.507545\pi\)
−0.0236999 + 0.999719i \(0.507545\pi\)
\(588\) 0 0
\(589\) −25.0426 −1.03186
\(590\) 0 0
\(591\) 22.3203 0.918136
\(592\) 0 0
\(593\) 40.8742 1.67850 0.839251 0.543744i \(-0.182994\pi\)
0.839251 + 0.543744i \(0.182994\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 45.2018 1.84999
\(598\) 0 0
\(599\) −27.8875 −1.13945 −0.569725 0.821835i \(-0.692950\pi\)
−0.569725 + 0.821835i \(0.692950\pi\)
\(600\) 0 0
\(601\) 17.0468 0.695351 0.347676 0.937615i \(-0.386971\pi\)
0.347676 + 0.937615i \(0.386971\pi\)
\(602\) 0 0
\(603\) 4.73689 0.192901
\(604\) 0 0
\(605\) −11.1329 −0.452617
\(606\) 0 0
\(607\) −17.6562 −0.716645 −0.358322 0.933598i \(-0.616651\pi\)
−0.358322 + 0.933598i \(0.616651\pi\)
\(608\) 0 0
\(609\) 0.0334648 0.00135606
\(610\) 0 0
\(611\) −30.9978 −1.25404
\(612\) 0 0
\(613\) 5.39031 0.217713 0.108856 0.994057i \(-0.465281\pi\)
0.108856 + 0.994057i \(0.465281\pi\)
\(614\) 0 0
\(615\) −20.0759 −0.809537
\(616\) 0 0
\(617\) −12.6960 −0.511121 −0.255561 0.966793i \(-0.582260\pi\)
−0.255561 + 0.966793i \(0.582260\pi\)
\(618\) 0 0
\(619\) −0.162216 −0.00652000 −0.00326000 0.999995i \(-0.501038\pi\)
−0.00326000 + 0.999995i \(0.501038\pi\)
\(620\) 0 0
\(621\) −4.96068 −0.199065
\(622\) 0 0
\(623\) 3.28795 0.131729
\(624\) 0 0
\(625\) 9.56744 0.382698
\(626\) 0 0
\(627\) −9.78470 −0.390763
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −9.14421 −0.364025 −0.182013 0.983296i \(-0.558261\pi\)
−0.182013 + 0.983296i \(0.558261\pi\)
\(632\) 0 0
\(633\) 40.5440 1.61148
\(634\) 0 0
\(635\) 6.13666 0.243526
\(636\) 0 0
\(637\) 34.6799 1.37407
\(638\) 0 0
\(639\) 11.9634 0.473267
\(640\) 0 0
\(641\) −5.73531 −0.226531 −0.113266 0.993565i \(-0.536131\pi\)
−0.113266 + 0.993565i \(0.536131\pi\)
\(642\) 0 0
\(643\) −42.7497 −1.68588 −0.842942 0.538005i \(-0.819178\pi\)
−0.842942 + 0.538005i \(0.819178\pi\)
\(644\) 0 0
\(645\) −15.4987 −0.610260
\(646\) 0 0
\(647\) −15.6566 −0.615523 −0.307761 0.951464i \(-0.599580\pi\)
−0.307761 + 0.951464i \(0.599580\pi\)
\(648\) 0 0
\(649\) −4.99399 −0.196031
\(650\) 0 0
\(651\) −2.64746 −0.103762
\(652\) 0 0
\(653\) 40.6477 1.59067 0.795334 0.606171i \(-0.207295\pi\)
0.795334 + 0.606171i \(0.207295\pi\)
\(654\) 0 0
\(655\) −20.7879 −0.812251
\(656\) 0 0
\(657\) 44.0058 1.71683
\(658\) 0 0
\(659\) 19.8975 0.775097 0.387549 0.921849i \(-0.373322\pi\)
0.387549 + 0.921849i \(0.373322\pi\)
\(660\) 0 0
\(661\) 38.3449 1.49144 0.745722 0.666257i \(-0.232105\pi\)
0.745722 + 0.666257i \(0.232105\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.51008 0.0585582
\(666\) 0 0
\(667\) 0.280713 0.0108692
\(668\) 0 0
\(669\) 61.9561 2.39536
\(670\) 0 0
\(671\) 0.914923 0.0353202
\(672\) 0 0
\(673\) −24.5879 −0.947795 −0.473897 0.880580i \(-0.657153\pi\)
−0.473897 + 0.880580i \(0.657153\pi\)
\(674\) 0 0
\(675\) −3.71857 −0.143128
\(676\) 0 0
\(677\) 38.3448 1.47371 0.736854 0.676052i \(-0.236310\pi\)
0.736854 + 0.676052i \(0.236310\pi\)
\(678\) 0 0
\(679\) 2.40258 0.0922026
\(680\) 0 0
\(681\) 39.0581 1.49671
\(682\) 0 0
\(683\) −18.1016 −0.692640 −0.346320 0.938116i \(-0.612569\pi\)
−0.346320 + 0.938116i \(0.612569\pi\)
\(684\) 0 0
\(685\) −0.281935 −0.0107722
\(686\) 0 0
\(687\) −55.4299 −2.11478
\(688\) 0 0
\(689\) 34.5775 1.31730
\(690\) 0 0
\(691\) −38.9678 −1.48241 −0.741203 0.671281i \(-0.765744\pi\)
−0.741203 + 0.671281i \(0.765744\pi\)
\(692\) 0 0
\(693\) −0.547911 −0.0208134
\(694\) 0 0
\(695\) −20.1058 −0.762658
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 11.5457 0.436698
\(700\) 0 0
\(701\) 19.5352 0.737836 0.368918 0.929462i \(-0.379728\pi\)
0.368918 + 0.929462i \(0.379728\pi\)
\(702\) 0 0
\(703\) −49.6316 −1.87189
\(704\) 0 0
\(705\) 16.5144 0.621970
\(706\) 0 0
\(707\) −4.25349 −0.159969
\(708\) 0 0
\(709\) 18.6362 0.699896 0.349948 0.936769i \(-0.386199\pi\)
0.349948 + 0.936769i \(0.386199\pi\)
\(710\) 0 0
\(711\) −15.7967 −0.592422
\(712\) 0 0
\(713\) −22.2077 −0.831683
\(714\) 0 0
\(715\) −3.48838 −0.130458
\(716\) 0 0
\(717\) −31.4330 −1.17389
\(718\) 0 0
\(719\) 47.1841 1.75967 0.879835 0.475279i \(-0.157653\pi\)
0.879835 + 0.475279i \(0.157653\pi\)
\(720\) 0 0
\(721\) 4.59829 0.171249
\(722\) 0 0
\(723\) 66.3187 2.46642
\(724\) 0 0
\(725\) 0.210425 0.00781498
\(726\) 0 0
\(727\) −14.9413 −0.554142 −0.277071 0.960849i \(-0.589364\pi\)
−0.277071 + 0.960849i \(0.589364\pi\)
\(728\) 0 0
\(729\) −33.3307 −1.23447
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 41.7691 1.54278 0.771388 0.636365i \(-0.219563\pi\)
0.771388 + 0.636365i \(0.219563\pi\)
\(734\) 0 0
\(735\) −18.4761 −0.681501
\(736\) 0 0
\(737\) 0.928490 0.0342014
\(738\) 0 0
\(739\) −4.54817 −0.167307 −0.0836537 0.996495i \(-0.526659\pi\)
−0.0836537 + 0.996495i \(0.526659\pi\)
\(740\) 0 0
\(741\) 73.8314 2.71227
\(742\) 0 0
\(743\) −41.6549 −1.52817 −0.764085 0.645116i \(-0.776809\pi\)
−0.764085 + 0.645116i \(0.776809\pi\)
\(744\) 0 0
\(745\) −24.5205 −0.898360
\(746\) 0 0
\(747\) 35.9275 1.31452
\(748\) 0 0
\(749\) 0.929757 0.0339726
\(750\) 0 0
\(751\) 8.76461 0.319825 0.159913 0.987131i \(-0.448879\pi\)
0.159913 + 0.987131i \(0.448879\pi\)
\(752\) 0 0
\(753\) −59.1537 −2.15568
\(754\) 0 0
\(755\) −6.64674 −0.241900
\(756\) 0 0
\(757\) −6.85974 −0.249322 −0.124661 0.992199i \(-0.539784\pi\)
−0.124661 + 0.992199i \(0.539784\pi\)
\(758\) 0 0
\(759\) −8.67704 −0.314957
\(760\) 0 0
\(761\) 19.7369 0.715462 0.357731 0.933825i \(-0.383551\pi\)
0.357731 + 0.933825i \(0.383551\pi\)
\(762\) 0 0
\(763\) −2.03849 −0.0737983
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 37.6826 1.36064
\(768\) 0 0
\(769\) 8.40361 0.303042 0.151521 0.988454i \(-0.451583\pi\)
0.151521 + 0.988454i \(0.451583\pi\)
\(770\) 0 0
\(771\) 12.8273 0.461966
\(772\) 0 0
\(773\) −25.0759 −0.901916 −0.450958 0.892545i \(-0.648918\pi\)
−0.450958 + 0.892545i \(0.648918\pi\)
\(774\) 0 0
\(775\) −16.6471 −0.597980
\(776\) 0 0
\(777\) −5.24698 −0.188234
\(778\) 0 0
\(779\) 44.1152 1.58059
\(780\) 0 0
\(781\) 2.34499 0.0839102
\(782\) 0 0
\(783\) −0.0517404 −0.00184905
\(784\) 0 0
\(785\) −9.02159 −0.321995
\(786\) 0 0
\(787\) −25.1477 −0.896418 −0.448209 0.893929i \(-0.647938\pi\)
−0.448209 + 0.893929i \(0.647938\pi\)
\(788\) 0 0
\(789\) 22.0119 0.783643
\(790\) 0 0
\(791\) −1.63397 −0.0580972
\(792\) 0 0
\(793\) −6.90364 −0.245156
\(794\) 0 0
\(795\) −18.4216 −0.653346
\(796\) 0 0
\(797\) 33.2544 1.17793 0.588966 0.808158i \(-0.299535\pi\)
0.588966 + 0.808158i \(0.299535\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −45.3641 −1.60286
\(802\) 0 0
\(803\) 8.62570 0.304394
\(804\) 0 0
\(805\) 1.33913 0.0471981
\(806\) 0 0
\(807\) −34.0474 −1.19853
\(808\) 0 0
\(809\) −23.2618 −0.817840 −0.408920 0.912570i \(-0.634095\pi\)
−0.408920 + 0.912570i \(0.634095\pi\)
\(810\) 0 0
\(811\) 19.9987 0.702248 0.351124 0.936329i \(-0.385800\pi\)
0.351124 + 0.936329i \(0.385800\pi\)
\(812\) 0 0
\(813\) 56.9091 1.99589
\(814\) 0 0
\(815\) 22.1701 0.776585
\(816\) 0 0
\(817\) 34.0572 1.19151
\(818\) 0 0
\(819\) 4.13432 0.144465
\(820\) 0 0
\(821\) 0.109722 0.00382932 0.00191466 0.999998i \(-0.499391\pi\)
0.00191466 + 0.999998i \(0.499391\pi\)
\(822\) 0 0
\(823\) 34.3566 1.19759 0.598797 0.800900i \(-0.295645\pi\)
0.598797 + 0.800900i \(0.295645\pi\)
\(824\) 0 0
\(825\) −6.50439 −0.226454
\(826\) 0 0
\(827\) −12.8156 −0.445643 −0.222822 0.974859i \(-0.571527\pi\)
−0.222822 + 0.974859i \(0.571527\pi\)
\(828\) 0 0
\(829\) −4.29365 −0.149124 −0.0745622 0.997216i \(-0.523756\pi\)
−0.0745622 + 0.997216i \(0.523756\pi\)
\(830\) 0 0
\(831\) 24.4212 0.847161
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 3.85820 0.133519
\(836\) 0 0
\(837\) 4.09327 0.141484
\(838\) 0 0
\(839\) 49.5276 1.70988 0.854941 0.518726i \(-0.173593\pi\)
0.854941 + 0.518726i \(0.173593\pi\)
\(840\) 0 0
\(841\) −28.9971 −0.999899
\(842\) 0 0
\(843\) 17.9968 0.619843
\(844\) 0 0
\(845\) 12.6185 0.434088
\(846\) 0 0
\(847\) 2.58626 0.0888651
\(848\) 0 0
\(849\) −65.3773 −2.24374
\(850\) 0 0
\(851\) −44.0131 −1.50875
\(852\) 0 0
\(853\) −5.70168 −0.195222 −0.0976110 0.995225i \(-0.531120\pi\)
−0.0976110 + 0.995225i \(0.531120\pi\)
\(854\) 0 0
\(855\) −20.8347 −0.712530
\(856\) 0 0
\(857\) −55.0131 −1.87921 −0.939606 0.342257i \(-0.888809\pi\)
−0.939606 + 0.342257i \(0.888809\pi\)
\(858\) 0 0
\(859\) −20.6389 −0.704192 −0.352096 0.935964i \(-0.614531\pi\)
−0.352096 + 0.935964i \(0.614531\pi\)
\(860\) 0 0
\(861\) 4.66379 0.158941
\(862\) 0 0
\(863\) −50.7829 −1.72867 −0.864335 0.502917i \(-0.832260\pi\)
−0.864335 + 0.502917i \(0.832260\pi\)
\(864\) 0 0
\(865\) 24.1505 0.821140
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.09635 −0.105036
\(870\) 0 0
\(871\) −7.00601 −0.237390
\(872\) 0 0
\(873\) −33.1486 −1.12191
\(874\) 0 0
\(875\) 2.29447 0.0775672
\(876\) 0 0
\(877\) 10.0395 0.339009 0.169505 0.985529i \(-0.445783\pi\)
0.169505 + 0.985529i \(0.445783\pi\)
\(878\) 0 0
\(879\) 46.7863 1.57806
\(880\) 0 0
\(881\) −4.07895 −0.137423 −0.0687116 0.997637i \(-0.521889\pi\)
−0.0687116 + 0.997637i \(0.521889\pi\)
\(882\) 0 0
\(883\) −29.5124 −0.993171 −0.496585 0.867988i \(-0.665413\pi\)
−0.496585 + 0.867988i \(0.665413\pi\)
\(884\) 0 0
\(885\) −20.0759 −0.674843
\(886\) 0 0
\(887\) 20.9759 0.704302 0.352151 0.935943i \(-0.385450\pi\)
0.352151 + 0.935943i \(0.385450\pi\)
\(888\) 0 0
\(889\) −1.42560 −0.0478130
\(890\) 0 0
\(891\) −5.11312 −0.171296
\(892\) 0 0
\(893\) −36.2892 −1.21437
\(894\) 0 0
\(895\) 4.73032 0.158117
\(896\) 0 0
\(897\) 65.4735 2.18610
\(898\) 0 0
\(899\) −0.231628 −0.00772523
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 3.60047 0.119816
\(904\) 0 0
\(905\) −4.95009 −0.164546
\(906\) 0 0
\(907\) −48.2978 −1.60370 −0.801850 0.597525i \(-0.796151\pi\)
−0.801850 + 0.597525i \(0.796151\pi\)
\(908\) 0 0
\(909\) 58.6859 1.94649
\(910\) 0 0
\(911\) 58.2360 1.92945 0.964723 0.263268i \(-0.0848004\pi\)
0.964723 + 0.263268i \(0.0848004\pi\)
\(912\) 0 0
\(913\) 7.04224 0.233064
\(914\) 0 0
\(915\) 3.67800 0.121591
\(916\) 0 0
\(917\) 4.82920 0.159474
\(918\) 0 0
\(919\) −15.5299 −0.512286 −0.256143 0.966639i \(-0.582452\pi\)
−0.256143 + 0.966639i \(0.582452\pi\)
\(920\) 0 0
\(921\) −45.7135 −1.50631
\(922\) 0 0
\(923\) −17.6943 −0.582416
\(924\) 0 0
\(925\) −32.9926 −1.08479
\(926\) 0 0
\(927\) −63.4431 −2.08374
\(928\) 0 0
\(929\) −29.8243 −0.978503 −0.489252 0.872143i \(-0.662730\pi\)
−0.489252 + 0.872143i \(0.662730\pi\)
\(930\) 0 0
\(931\) 40.5998 1.33061
\(932\) 0 0
\(933\) −73.3696 −2.40201
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 15.8038 0.516288 0.258144 0.966106i \(-0.416889\pi\)
0.258144 + 0.966106i \(0.416889\pi\)
\(938\) 0 0
\(939\) 7.91243 0.258212
\(940\) 0 0
\(941\) 17.1888 0.560340 0.280170 0.959950i \(-0.409609\pi\)
0.280170 + 0.959950i \(0.409609\pi\)
\(942\) 0 0
\(943\) 39.1212 1.27396
\(944\) 0 0
\(945\) −0.246826 −0.00802925
\(946\) 0 0
\(947\) 23.8875 0.776238 0.388119 0.921609i \(-0.373125\pi\)
0.388119 + 0.921609i \(0.373125\pi\)
\(948\) 0 0
\(949\) −65.0861 −2.11278
\(950\) 0 0
\(951\) −39.1060 −1.26810
\(952\) 0 0
\(953\) 5.53350 0.179248 0.0896238 0.995976i \(-0.471434\pi\)
0.0896238 + 0.995976i \(0.471434\pi\)
\(954\) 0 0
\(955\) −7.47666 −0.241939
\(956\) 0 0
\(957\) −0.0905024 −0.00292553
\(958\) 0 0
\(959\) 0.0654957 0.00211497
\(960\) 0 0
\(961\) −12.6755 −0.408887
\(962\) 0 0
\(963\) −12.8279 −0.413375
\(964\) 0 0
\(965\) −12.7356 −0.409974
\(966\) 0 0
\(967\) −43.6249 −1.40288 −0.701441 0.712727i \(-0.747460\pi\)
−0.701441 + 0.712727i \(0.747460\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 55.2417 1.77279 0.886395 0.462929i \(-0.153201\pi\)
0.886395 + 0.462929i \(0.153201\pi\)
\(972\) 0 0
\(973\) 4.67075 0.149737
\(974\) 0 0
\(975\) 49.0795 1.57180
\(976\) 0 0
\(977\) −37.1550 −1.18869 −0.594346 0.804209i \(-0.702589\pi\)
−0.594346 + 0.804209i \(0.702589\pi\)
\(978\) 0 0
\(979\) −8.89194 −0.284188
\(980\) 0 0
\(981\) 28.1252 0.897970
\(982\) 0 0
\(983\) −46.8158 −1.49319 −0.746597 0.665277i \(-0.768313\pi\)
−0.746597 + 0.665277i \(0.768313\pi\)
\(984\) 0 0
\(985\) 9.31587 0.296828
\(986\) 0 0
\(987\) −3.83644 −0.122115
\(988\) 0 0
\(989\) 30.2018 0.960361
\(990\) 0 0
\(991\) 10.9847 0.348939 0.174469 0.984663i \(-0.444179\pi\)
0.174469 + 0.984663i \(0.444179\pi\)
\(992\) 0 0
\(993\) 21.3698 0.678151
\(994\) 0 0
\(995\) 18.8659 0.598091
\(996\) 0 0
\(997\) −40.3932 −1.27927 −0.639633 0.768680i \(-0.720914\pi\)
−0.639633 + 0.768680i \(0.720914\pi\)
\(998\) 0 0
\(999\) 8.11241 0.256665
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9248.2.a.y.1.4 yes 4
4.3 odd 2 9248.2.a.bk.1.1 yes 4
17.16 even 2 9248.2.a.bj.1.1 yes 4
68.67 odd 2 9248.2.a.x.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9248.2.a.x.1.4 4 68.67 odd 2
9248.2.a.y.1.4 yes 4 1.1 even 1 trivial
9248.2.a.bj.1.1 yes 4 17.16 even 2
9248.2.a.bk.1.1 yes 4 4.3 odd 2