Properties

Label 9248.2.a.bz.1.20
Level $9248$
Weight $2$
Character 9248.1
Self dual yes
Analytic conductor $73.846$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9248,2,Mod(1,9248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9248, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9248.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9248 = 2^{5} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9248.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,28,0,0,0,-8,0,16,0,0,0,40,0,-32,0,0,0,28,0, 0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,40,0,0,0,32,0,36,0,0,0,-40,0,48,0,0,0, 8,0,0,0,0,0,0,0,72,0,-48,0,0,0,0,0,0,0,-48,0,0,0,36,0,24,0,0,0,96,0,64, 0,0,0,-32,0,0,0,0,0,0,0,-40,0,128,0,0,0,0,0,0,0,48,0,0,0,96,0,-72,0,0, 0,60,0,32,0,0,0,32,0,0,0,0,0,0,0,112,0,16,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(145)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8456517893\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 40 x^{18} + 620 x^{16} - 4784 x^{14} + 19585 x^{12} - 41912 x^{10} + 43536 x^{8} - 20328 x^{6} + \cdots + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 544)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Root \(0.477107\) of defining polynomial
Character \(\chi\) \(=\) 9248.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.39376 q^{3} +2.27168 q^{5} +0.186067 q^{7} +8.51759 q^{9} +1.19207 q^{11} -2.84300 q^{13} +7.70955 q^{15} +4.60126 q^{19} +0.631465 q^{21} -5.60989 q^{23} +0.160551 q^{25} +18.7253 q^{27} +7.06390 q^{29} -8.72354 q^{31} +4.04561 q^{33} +0.422684 q^{35} -7.81018 q^{37} -9.64847 q^{39} +4.47854 q^{41} -0.493780 q^{43} +19.3493 q^{45} +8.40946 q^{47} -6.96538 q^{49} +8.95423 q^{53} +2.70801 q^{55} +15.6156 q^{57} +11.0983 q^{59} +4.88796 q^{61} +1.58484 q^{63} -6.45841 q^{65} -0.650160 q^{67} -19.0386 q^{69} +6.93455 q^{71} -4.09576 q^{73} +0.544870 q^{75} +0.221805 q^{77} +1.59878 q^{79} +37.9965 q^{81} +4.79814 q^{83} +23.9732 q^{87} +5.87757 q^{89} -0.528988 q^{91} -29.6056 q^{93} +10.4526 q^{95} +2.97084 q^{97} +10.1536 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 28 q^{9} - 8 q^{13} + 16 q^{15} + 40 q^{19} - 32 q^{21} + 28 q^{25} + 32 q^{35} + 40 q^{43} + 32 q^{47} + 36 q^{49} - 40 q^{53} + 48 q^{55} + 8 q^{59} + 72 q^{67} - 48 q^{69} - 48 q^{77} + 36 q^{81}+ \cdots - 32 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.39376 1.95939 0.979693 0.200502i \(-0.0642574\pi\)
0.979693 + 0.200502i \(0.0642574\pi\)
\(4\) 0 0
\(5\) 2.27168 1.01593 0.507964 0.861378i \(-0.330398\pi\)
0.507964 + 0.861378i \(0.330398\pi\)
\(6\) 0 0
\(7\) 0.186067 0.0703265 0.0351633 0.999382i \(-0.488805\pi\)
0.0351633 + 0.999382i \(0.488805\pi\)
\(8\) 0 0
\(9\) 8.51759 2.83920
\(10\) 0 0
\(11\) 1.19207 0.359424 0.179712 0.983719i \(-0.442483\pi\)
0.179712 + 0.983719i \(0.442483\pi\)
\(12\) 0 0
\(13\) −2.84300 −0.788507 −0.394254 0.919002i \(-0.628997\pi\)
−0.394254 + 0.919002i \(0.628997\pi\)
\(14\) 0 0
\(15\) 7.70955 1.99060
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 4.60126 1.05560 0.527801 0.849368i \(-0.323017\pi\)
0.527801 + 0.849368i \(0.323017\pi\)
\(20\) 0 0
\(21\) 0.631465 0.137797
\(22\) 0 0
\(23\) −5.60989 −1.16974 −0.584872 0.811126i \(-0.698855\pi\)
−0.584872 + 0.811126i \(0.698855\pi\)
\(24\) 0 0
\(25\) 0.160551 0.0321101
\(26\) 0 0
\(27\) 18.7253 3.60369
\(28\) 0 0
\(29\) 7.06390 1.31173 0.655867 0.754876i \(-0.272303\pi\)
0.655867 + 0.754876i \(0.272303\pi\)
\(30\) 0 0
\(31\) −8.72354 −1.56679 −0.783397 0.621521i \(-0.786515\pi\)
−0.783397 + 0.621521i \(0.786515\pi\)
\(32\) 0 0
\(33\) 4.04561 0.704250
\(34\) 0 0
\(35\) 0.422684 0.0714467
\(36\) 0 0
\(37\) −7.81018 −1.28399 −0.641993 0.766711i \(-0.721892\pi\)
−0.641993 + 0.766711i \(0.721892\pi\)
\(38\) 0 0
\(39\) −9.64847 −1.54499
\(40\) 0 0
\(41\) 4.47854 0.699430 0.349715 0.936856i \(-0.386278\pi\)
0.349715 + 0.936856i \(0.386278\pi\)
\(42\) 0 0
\(43\) −0.493780 −0.0753007 −0.0376503 0.999291i \(-0.511987\pi\)
−0.0376503 + 0.999291i \(0.511987\pi\)
\(44\) 0 0
\(45\) 19.3493 2.88442
\(46\) 0 0
\(47\) 8.40946 1.22665 0.613323 0.789832i \(-0.289832\pi\)
0.613323 + 0.789832i \(0.289832\pi\)
\(48\) 0 0
\(49\) −6.96538 −0.995054
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.95423 1.22996 0.614979 0.788544i \(-0.289165\pi\)
0.614979 + 0.788544i \(0.289165\pi\)
\(54\) 0 0
\(55\) 2.70801 0.365149
\(56\) 0 0
\(57\) 15.6156 2.06833
\(58\) 0 0
\(59\) 11.0983 1.44488 0.722440 0.691433i \(-0.243020\pi\)
0.722440 + 0.691433i \(0.243020\pi\)
\(60\) 0 0
\(61\) 4.88796 0.625839 0.312920 0.949780i \(-0.398693\pi\)
0.312920 + 0.949780i \(0.398693\pi\)
\(62\) 0 0
\(63\) 1.58484 0.199671
\(64\) 0 0
\(65\) −6.45841 −0.801067
\(66\) 0 0
\(67\) −0.650160 −0.0794297 −0.0397149 0.999211i \(-0.512645\pi\)
−0.0397149 + 0.999211i \(0.512645\pi\)
\(68\) 0 0
\(69\) −19.0386 −2.29198
\(70\) 0 0
\(71\) 6.93455 0.822979 0.411490 0.911414i \(-0.365009\pi\)
0.411490 + 0.911414i \(0.365009\pi\)
\(72\) 0 0
\(73\) −4.09576 −0.479373 −0.239686 0.970850i \(-0.577045\pi\)
−0.239686 + 0.970850i \(0.577045\pi\)
\(74\) 0 0
\(75\) 0.544870 0.0629161
\(76\) 0 0
\(77\) 0.221805 0.0252770
\(78\) 0 0
\(79\) 1.59878 0.179876 0.0899382 0.995947i \(-0.471333\pi\)
0.0899382 + 0.995947i \(0.471333\pi\)
\(80\) 0 0
\(81\) 37.9965 4.22184
\(82\) 0 0
\(83\) 4.79814 0.526665 0.263332 0.964705i \(-0.415178\pi\)
0.263332 + 0.964705i \(0.415178\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 23.9732 2.57019
\(88\) 0 0
\(89\) 5.87757 0.623021 0.311510 0.950243i \(-0.399165\pi\)
0.311510 + 0.950243i \(0.399165\pi\)
\(90\) 0 0
\(91\) −0.528988 −0.0554530
\(92\) 0 0
\(93\) −29.6056 −3.06996
\(94\) 0 0
\(95\) 10.4526 1.07242
\(96\) 0 0
\(97\) 2.97084 0.301643 0.150821 0.988561i \(-0.451808\pi\)
0.150821 + 0.988561i \(0.451808\pi\)
\(98\) 0 0
\(99\) 10.1536 1.02047
\(100\) 0 0
\(101\) −8.27417 −0.823311 −0.411656 0.911340i \(-0.635049\pi\)
−0.411656 + 0.911340i \(0.635049\pi\)
\(102\) 0 0
\(103\) 0.744658 0.0733734 0.0366867 0.999327i \(-0.488320\pi\)
0.0366867 + 0.999327i \(0.488320\pi\)
\(104\) 0 0
\(105\) 1.43449 0.139992
\(106\) 0 0
\(107\) 14.6373 1.41504 0.707521 0.706693i \(-0.249814\pi\)
0.707521 + 0.706693i \(0.249814\pi\)
\(108\) 0 0
\(109\) 12.0516 1.15434 0.577168 0.816625i \(-0.304158\pi\)
0.577168 + 0.816625i \(0.304158\pi\)
\(110\) 0 0
\(111\) −26.5059 −2.51582
\(112\) 0 0
\(113\) 7.69564 0.723945 0.361972 0.932189i \(-0.382104\pi\)
0.361972 + 0.932189i \(0.382104\pi\)
\(114\) 0 0
\(115\) −12.7439 −1.18838
\(116\) 0 0
\(117\) −24.2155 −2.23873
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.57896 −0.870815
\(122\) 0 0
\(123\) 15.1991 1.37045
\(124\) 0 0
\(125\) −10.9937 −0.983307
\(126\) 0 0
\(127\) −4.77984 −0.424142 −0.212071 0.977254i \(-0.568021\pi\)
−0.212071 + 0.977254i \(0.568021\pi\)
\(128\) 0 0
\(129\) −1.67577 −0.147543
\(130\) 0 0
\(131\) 5.03058 0.439524 0.219762 0.975554i \(-0.429472\pi\)
0.219762 + 0.975554i \(0.429472\pi\)
\(132\) 0 0
\(133\) 0.856141 0.0742368
\(134\) 0 0
\(135\) 42.5381 3.66110
\(136\) 0 0
\(137\) −9.57731 −0.818244 −0.409122 0.912480i \(-0.634165\pi\)
−0.409122 + 0.912480i \(0.634165\pi\)
\(138\) 0 0
\(139\) −11.1075 −0.942122 −0.471061 0.882101i \(-0.656129\pi\)
−0.471061 + 0.882101i \(0.656129\pi\)
\(140\) 0 0
\(141\) 28.5397 2.40347
\(142\) 0 0
\(143\) −3.38907 −0.283408
\(144\) 0 0
\(145\) 16.0470 1.33263
\(146\) 0 0
\(147\) −23.6388 −1.94970
\(148\) 0 0
\(149\) −11.4334 −0.936657 −0.468329 0.883554i \(-0.655144\pi\)
−0.468329 + 0.883554i \(0.655144\pi\)
\(150\) 0 0
\(151\) −20.1594 −1.64055 −0.820275 0.571970i \(-0.806179\pi\)
−0.820275 + 0.571970i \(0.806179\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −19.8171 −1.59175
\(156\) 0 0
\(157\) 11.6143 0.926925 0.463463 0.886116i \(-0.346607\pi\)
0.463463 + 0.886116i \(0.346607\pi\)
\(158\) 0 0
\(159\) 30.3885 2.40996
\(160\) 0 0
\(161\) −1.04381 −0.0822640
\(162\) 0 0
\(163\) −13.0569 −1.02269 −0.511347 0.859375i \(-0.670853\pi\)
−0.511347 + 0.859375i \(0.670853\pi\)
\(164\) 0 0
\(165\) 9.19034 0.715467
\(166\) 0 0
\(167\) 12.1544 0.940538 0.470269 0.882523i \(-0.344157\pi\)
0.470269 + 0.882523i \(0.344157\pi\)
\(168\) 0 0
\(169\) −4.91733 −0.378256
\(170\) 0 0
\(171\) 39.1917 2.99706
\(172\) 0 0
\(173\) −10.0019 −0.760430 −0.380215 0.924898i \(-0.624150\pi\)
−0.380215 + 0.924898i \(0.624150\pi\)
\(174\) 0 0
\(175\) 0.0298731 0.00225819
\(176\) 0 0
\(177\) 37.6651 2.83108
\(178\) 0 0
\(179\) 10.0633 0.752167 0.376084 0.926586i \(-0.377271\pi\)
0.376084 + 0.926586i \(0.377271\pi\)
\(180\) 0 0
\(181\) 18.7651 1.39480 0.697399 0.716683i \(-0.254340\pi\)
0.697399 + 0.716683i \(0.254340\pi\)
\(182\) 0 0
\(183\) 16.5886 1.22626
\(184\) 0 0
\(185\) −17.7423 −1.30444
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 3.48416 0.253435
\(190\) 0 0
\(191\) −13.6260 −0.985940 −0.492970 0.870046i \(-0.664089\pi\)
−0.492970 + 0.870046i \(0.664089\pi\)
\(192\) 0 0
\(193\) −20.7673 −1.49486 −0.747431 0.664340i \(-0.768713\pi\)
−0.747431 + 0.664340i \(0.768713\pi\)
\(194\) 0 0
\(195\) −21.9183 −1.56960
\(196\) 0 0
\(197\) 13.4565 0.958738 0.479369 0.877614i \(-0.340866\pi\)
0.479369 + 0.877614i \(0.340866\pi\)
\(198\) 0 0
\(199\) −18.1793 −1.28870 −0.644348 0.764733i \(-0.722871\pi\)
−0.644348 + 0.764733i \(0.722871\pi\)
\(200\) 0 0
\(201\) −2.20649 −0.155633
\(202\) 0 0
\(203\) 1.31436 0.0922497
\(204\) 0 0
\(205\) 10.1738 0.710571
\(206\) 0 0
\(207\) −47.7827 −3.32113
\(208\) 0 0
\(209\) 5.48504 0.379408
\(210\) 0 0
\(211\) −5.24428 −0.361031 −0.180515 0.983572i \(-0.557777\pi\)
−0.180515 + 0.983572i \(0.557777\pi\)
\(212\) 0 0
\(213\) 23.5342 1.61253
\(214\) 0 0
\(215\) −1.12171 −0.0765001
\(216\) 0 0
\(217\) −1.62316 −0.110187
\(218\) 0 0
\(219\) −13.9000 −0.939276
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1.13949 −0.0763057 −0.0381529 0.999272i \(-0.512147\pi\)
−0.0381529 + 0.999272i \(0.512147\pi\)
\(224\) 0 0
\(225\) 1.36750 0.0911669
\(226\) 0 0
\(227\) −2.71599 −0.180266 −0.0901332 0.995930i \(-0.528729\pi\)
−0.0901332 + 0.995930i \(0.528729\pi\)
\(228\) 0 0
\(229\) −3.97062 −0.262386 −0.131193 0.991357i \(-0.541881\pi\)
−0.131193 + 0.991357i \(0.541881\pi\)
\(230\) 0 0
\(231\) 0.752752 0.0495275
\(232\) 0 0
\(233\) −7.09286 −0.464669 −0.232334 0.972636i \(-0.574636\pi\)
−0.232334 + 0.972636i \(0.574636\pi\)
\(234\) 0 0
\(235\) 19.1036 1.24618
\(236\) 0 0
\(237\) 5.42586 0.352447
\(238\) 0 0
\(239\) −12.9067 −0.834866 −0.417433 0.908708i \(-0.637070\pi\)
−0.417433 + 0.908708i \(0.637070\pi\)
\(240\) 0 0
\(241\) −12.7571 −0.821755 −0.410877 0.911691i \(-0.634778\pi\)
−0.410877 + 0.911691i \(0.634778\pi\)
\(242\) 0 0
\(243\) 72.7749 4.66851
\(244\) 0 0
\(245\) −15.8231 −1.01090
\(246\) 0 0
\(247\) −13.0814 −0.832350
\(248\) 0 0
\(249\) 16.2837 1.03194
\(250\) 0 0
\(251\) −10.0282 −0.632974 −0.316487 0.948597i \(-0.602503\pi\)
−0.316487 + 0.948597i \(0.602503\pi\)
\(252\) 0 0
\(253\) −6.68740 −0.420433
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.6402 0.663718 0.331859 0.943329i \(-0.392324\pi\)
0.331859 + 0.943329i \(0.392324\pi\)
\(258\) 0 0
\(259\) −1.45321 −0.0902983
\(260\) 0 0
\(261\) 60.1674 3.72427
\(262\) 0 0
\(263\) −29.8304 −1.83942 −0.919710 0.392599i \(-0.871576\pi\)
−0.919710 + 0.392599i \(0.871576\pi\)
\(264\) 0 0
\(265\) 20.3412 1.24955
\(266\) 0 0
\(267\) 19.9470 1.22074
\(268\) 0 0
\(269\) −17.3642 −1.05871 −0.529357 0.848399i \(-0.677567\pi\)
−0.529357 + 0.848399i \(0.677567\pi\)
\(270\) 0 0
\(271\) 16.7401 1.01689 0.508445 0.861095i \(-0.330221\pi\)
0.508445 + 0.861095i \(0.330221\pi\)
\(272\) 0 0
\(273\) −1.79526 −0.108654
\(274\) 0 0
\(275\) 0.191388 0.0115411
\(276\) 0 0
\(277\) −10.9479 −0.657793 −0.328896 0.944366i \(-0.606677\pi\)
−0.328896 + 0.944366i \(0.606677\pi\)
\(278\) 0 0
\(279\) −74.3035 −4.44844
\(280\) 0 0
\(281\) 2.14920 0.128211 0.0641053 0.997943i \(-0.479581\pi\)
0.0641053 + 0.997943i \(0.479581\pi\)
\(282\) 0 0
\(283\) −6.02720 −0.358280 −0.179140 0.983824i \(-0.557331\pi\)
−0.179140 + 0.983824i \(0.557331\pi\)
\(284\) 0 0
\(285\) 35.4736 2.10128
\(286\) 0 0
\(287\) 0.833306 0.0491885
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 10.0823 0.591034
\(292\) 0 0
\(293\) −16.0762 −0.939181 −0.469591 0.882884i \(-0.655599\pi\)
−0.469591 + 0.882884i \(0.655599\pi\)
\(294\) 0 0
\(295\) 25.2119 1.46790
\(296\) 0 0
\(297\) 22.3220 1.29525
\(298\) 0 0
\(299\) 15.9489 0.922351
\(300\) 0 0
\(301\) −0.0918759 −0.00529564
\(302\) 0 0
\(303\) −28.0805 −1.61318
\(304\) 0 0
\(305\) 11.1039 0.635808
\(306\) 0 0
\(307\) 13.6643 0.779861 0.389930 0.920844i \(-0.372499\pi\)
0.389930 + 0.920844i \(0.372499\pi\)
\(308\) 0 0
\(309\) 2.52719 0.143767
\(310\) 0 0
\(311\) 13.0617 0.740662 0.370331 0.928900i \(-0.379244\pi\)
0.370331 + 0.928900i \(0.379244\pi\)
\(312\) 0 0
\(313\) −27.0908 −1.53126 −0.765631 0.643280i \(-0.777573\pi\)
−0.765631 + 0.643280i \(0.777573\pi\)
\(314\) 0 0
\(315\) 3.60025 0.202851
\(316\) 0 0
\(317\) 2.39770 0.134669 0.0673343 0.997730i \(-0.478551\pi\)
0.0673343 + 0.997730i \(0.478551\pi\)
\(318\) 0 0
\(319\) 8.42069 0.471468
\(320\) 0 0
\(321\) 49.6754 2.77261
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −0.456446 −0.0253191
\(326\) 0 0
\(327\) 40.9003 2.26179
\(328\) 0 0
\(329\) 1.56472 0.0862658
\(330\) 0 0
\(331\) 1.77188 0.0973911 0.0486955 0.998814i \(-0.484494\pi\)
0.0486955 + 0.998814i \(0.484494\pi\)
\(332\) 0 0
\(333\) −66.5239 −3.64549
\(334\) 0 0
\(335\) −1.47696 −0.0806949
\(336\) 0 0
\(337\) −29.1295 −1.58678 −0.793392 0.608711i \(-0.791687\pi\)
−0.793392 + 0.608711i \(0.791687\pi\)
\(338\) 0 0
\(339\) 26.1171 1.41849
\(340\) 0 0
\(341\) −10.3991 −0.563143
\(342\) 0 0
\(343\) −2.59849 −0.140305
\(344\) 0 0
\(345\) −43.2497 −2.32849
\(346\) 0 0
\(347\) 6.69745 0.359538 0.179769 0.983709i \(-0.442465\pi\)
0.179769 + 0.983709i \(0.442465\pi\)
\(348\) 0 0
\(349\) −5.37824 −0.287891 −0.143945 0.989586i \(-0.545979\pi\)
−0.143945 + 0.989586i \(0.545979\pi\)
\(350\) 0 0
\(351\) −53.2362 −2.84154
\(352\) 0 0
\(353\) −15.2597 −0.812192 −0.406096 0.913831i \(-0.633110\pi\)
−0.406096 + 0.913831i \(0.633110\pi\)
\(354\) 0 0
\(355\) 15.7531 0.836088
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.25634 −0.224641 −0.112321 0.993672i \(-0.535828\pi\)
−0.112321 + 0.993672i \(0.535828\pi\)
\(360\) 0 0
\(361\) 2.17162 0.114296
\(362\) 0 0
\(363\) −32.5087 −1.70626
\(364\) 0 0
\(365\) −9.30428 −0.487008
\(366\) 0 0
\(367\) −13.9583 −0.728618 −0.364309 0.931278i \(-0.618695\pi\)
−0.364309 + 0.931278i \(0.618695\pi\)
\(368\) 0 0
\(369\) 38.1463 1.98582
\(370\) 0 0
\(371\) 1.66608 0.0864987
\(372\) 0 0
\(373\) 31.1872 1.61481 0.807407 0.589995i \(-0.200870\pi\)
0.807407 + 0.589995i \(0.200870\pi\)
\(374\) 0 0
\(375\) −37.3100 −1.92668
\(376\) 0 0
\(377\) −20.0827 −1.03431
\(378\) 0 0
\(379\) −2.13418 −0.109626 −0.0548128 0.998497i \(-0.517456\pi\)
−0.0548128 + 0.998497i \(0.517456\pi\)
\(380\) 0 0
\(381\) −16.2216 −0.831059
\(382\) 0 0
\(383\) 3.09120 0.157953 0.0789765 0.996876i \(-0.474835\pi\)
0.0789765 + 0.996876i \(0.474835\pi\)
\(384\) 0 0
\(385\) 0.503871 0.0256796
\(386\) 0 0
\(387\) −4.20581 −0.213793
\(388\) 0 0
\(389\) −8.78360 −0.445346 −0.222673 0.974893i \(-0.571478\pi\)
−0.222673 + 0.974893i \(0.571478\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 17.0726 0.861197
\(394\) 0 0
\(395\) 3.63191 0.182741
\(396\) 0 0
\(397\) −1.15420 −0.0579276 −0.0289638 0.999580i \(-0.509221\pi\)
−0.0289638 + 0.999580i \(0.509221\pi\)
\(398\) 0 0
\(399\) 2.90553 0.145459
\(400\) 0 0
\(401\) 27.0893 1.35278 0.676388 0.736546i \(-0.263544\pi\)
0.676388 + 0.736546i \(0.263544\pi\)
\(402\) 0 0
\(403\) 24.8011 1.23543
\(404\) 0 0
\(405\) 86.3161 4.28908
\(406\) 0 0
\(407\) −9.31031 −0.461495
\(408\) 0 0
\(409\) −24.1618 −1.19473 −0.597363 0.801971i \(-0.703785\pi\)
−0.597363 + 0.801971i \(0.703785\pi\)
\(410\) 0 0
\(411\) −32.5030 −1.60326
\(412\) 0 0
\(413\) 2.06503 0.101613
\(414\) 0 0
\(415\) 10.8999 0.535054
\(416\) 0 0
\(417\) −37.6960 −1.84598
\(418\) 0 0
\(419\) −9.17329 −0.448145 −0.224072 0.974573i \(-0.571935\pi\)
−0.224072 + 0.974573i \(0.571935\pi\)
\(420\) 0 0
\(421\) −22.0797 −1.07610 −0.538049 0.842914i \(-0.680838\pi\)
−0.538049 + 0.842914i \(0.680838\pi\)
\(422\) 0 0
\(423\) 71.6283 3.48269
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.909486 0.0440131
\(428\) 0 0
\(429\) −11.5017 −0.555306
\(430\) 0 0
\(431\) −32.3906 −1.56020 −0.780100 0.625655i \(-0.784832\pi\)
−0.780100 + 0.625655i \(0.784832\pi\)
\(432\) 0 0
\(433\) −15.2827 −0.734438 −0.367219 0.930135i \(-0.619690\pi\)
−0.367219 + 0.930135i \(0.619690\pi\)
\(434\) 0 0
\(435\) 54.4595 2.61113
\(436\) 0 0
\(437\) −25.8126 −1.23478
\(438\) 0 0
\(439\) −27.6550 −1.31990 −0.659950 0.751310i \(-0.729423\pi\)
−0.659950 + 0.751310i \(0.729423\pi\)
\(440\) 0 0
\(441\) −59.3282 −2.82515
\(442\) 0 0
\(443\) 27.8405 1.32274 0.661371 0.750059i \(-0.269975\pi\)
0.661371 + 0.750059i \(0.269975\pi\)
\(444\) 0 0
\(445\) 13.3520 0.632944
\(446\) 0 0
\(447\) −38.8020 −1.83527
\(448\) 0 0
\(449\) 9.74950 0.460107 0.230054 0.973178i \(-0.426110\pi\)
0.230054 + 0.973178i \(0.426110\pi\)
\(450\) 0 0
\(451\) 5.33875 0.251392
\(452\) 0 0
\(453\) −68.4161 −3.21447
\(454\) 0 0
\(455\) −1.20169 −0.0563363
\(456\) 0 0
\(457\) 23.4839 1.09853 0.549266 0.835647i \(-0.314907\pi\)
0.549266 + 0.835647i \(0.314907\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −29.6741 −1.38206 −0.691030 0.722826i \(-0.742843\pi\)
−0.691030 + 0.722826i \(0.742843\pi\)
\(462\) 0 0
\(463\) −1.76853 −0.0821906 −0.0410953 0.999155i \(-0.513085\pi\)
−0.0410953 + 0.999155i \(0.513085\pi\)
\(464\) 0 0
\(465\) −67.2546 −3.11886
\(466\) 0 0
\(467\) 13.3902 0.619626 0.309813 0.950797i \(-0.399734\pi\)
0.309813 + 0.950797i \(0.399734\pi\)
\(468\) 0 0
\(469\) −0.120973 −0.00558602
\(470\) 0 0
\(471\) 39.4163 1.81620
\(472\) 0 0
\(473\) −0.588622 −0.0270648
\(474\) 0 0
\(475\) 0.738735 0.0338955
\(476\) 0 0
\(477\) 76.2684 3.49209
\(478\) 0 0
\(479\) 0.908139 0.0414940 0.0207470 0.999785i \(-0.493396\pi\)
0.0207470 + 0.999785i \(0.493396\pi\)
\(480\) 0 0
\(481\) 22.2044 1.01243
\(482\) 0 0
\(483\) −3.54245 −0.161187
\(484\) 0 0
\(485\) 6.74880 0.306447
\(486\) 0 0
\(487\) 23.8055 1.07873 0.539365 0.842072i \(-0.318664\pi\)
0.539365 + 0.842072i \(0.318664\pi\)
\(488\) 0 0
\(489\) −44.3118 −2.00385
\(490\) 0 0
\(491\) 40.1358 1.81130 0.905652 0.424023i \(-0.139382\pi\)
0.905652 + 0.424023i \(0.139382\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 23.0657 1.03673
\(496\) 0 0
\(497\) 1.29029 0.0578773
\(498\) 0 0
\(499\) 22.3207 0.999210 0.499605 0.866253i \(-0.333478\pi\)
0.499605 + 0.866253i \(0.333478\pi\)
\(500\) 0 0
\(501\) 41.2492 1.84288
\(502\) 0 0
\(503\) 5.49623 0.245065 0.122532 0.992465i \(-0.460898\pi\)
0.122532 + 0.992465i \(0.460898\pi\)
\(504\) 0 0
\(505\) −18.7963 −0.836425
\(506\) 0 0
\(507\) −16.6882 −0.741150
\(508\) 0 0
\(509\) 8.82625 0.391217 0.195608 0.980682i \(-0.437332\pi\)
0.195608 + 0.980682i \(0.437332\pi\)
\(510\) 0 0
\(511\) −0.762084 −0.0337126
\(512\) 0 0
\(513\) 86.1602 3.80407
\(514\) 0 0
\(515\) 1.69163 0.0745421
\(516\) 0 0
\(517\) 10.0247 0.440886
\(518\) 0 0
\(519\) −33.9440 −1.48998
\(520\) 0 0
\(521\) −23.9271 −1.04827 −0.524133 0.851637i \(-0.675610\pi\)
−0.524133 + 0.851637i \(0.675610\pi\)
\(522\) 0 0
\(523\) 16.4633 0.719891 0.359946 0.932973i \(-0.382795\pi\)
0.359946 + 0.932973i \(0.382795\pi\)
\(524\) 0 0
\(525\) 0.101382 0.00442467
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 8.47089 0.368300
\(530\) 0 0
\(531\) 94.5311 4.10230
\(532\) 0 0
\(533\) −12.7325 −0.551506
\(534\) 0 0
\(535\) 33.2513 1.43758
\(536\) 0 0
\(537\) 34.1524 1.47379
\(538\) 0 0
\(539\) −8.30324 −0.357646
\(540\) 0 0
\(541\) −11.9309 −0.512950 −0.256475 0.966551i \(-0.582561\pi\)
−0.256475 + 0.966551i \(0.582561\pi\)
\(542\) 0 0
\(543\) 63.6842 2.73295
\(544\) 0 0
\(545\) 27.3775 1.17272
\(546\) 0 0
\(547\) 37.9117 1.62099 0.810494 0.585747i \(-0.199199\pi\)
0.810494 + 0.585747i \(0.199199\pi\)
\(548\) 0 0
\(549\) 41.6336 1.77688
\(550\) 0 0
\(551\) 32.5029 1.38467
\(552\) 0 0
\(553\) 0.297479 0.0126501
\(554\) 0 0
\(555\) −60.2129 −2.55590
\(556\) 0 0
\(557\) −9.57355 −0.405644 −0.202822 0.979216i \(-0.565011\pi\)
−0.202822 + 0.979216i \(0.565011\pi\)
\(558\) 0 0
\(559\) 1.40382 0.0593752
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6.05324 0.255114 0.127557 0.991831i \(-0.459286\pi\)
0.127557 + 0.991831i \(0.459286\pi\)
\(564\) 0 0
\(565\) 17.4821 0.735476
\(566\) 0 0
\(567\) 7.06988 0.296907
\(568\) 0 0
\(569\) −0.439066 −0.0184066 −0.00920329 0.999958i \(-0.502930\pi\)
−0.00920329 + 0.999958i \(0.502930\pi\)
\(570\) 0 0
\(571\) −10.7246 −0.448813 −0.224406 0.974496i \(-0.572044\pi\)
−0.224406 + 0.974496i \(0.572044\pi\)
\(572\) 0 0
\(573\) −46.2432 −1.93184
\(574\) 0 0
\(575\) −0.900671 −0.0375606
\(576\) 0 0
\(577\) −10.2170 −0.425341 −0.212671 0.977124i \(-0.568216\pi\)
−0.212671 + 0.977124i \(0.568216\pi\)
\(578\) 0 0
\(579\) −70.4791 −2.92901
\(580\) 0 0
\(581\) 0.892774 0.0370385
\(582\) 0 0
\(583\) 10.6741 0.442076
\(584\) 0 0
\(585\) −55.0101 −2.27439
\(586\) 0 0
\(587\) 32.1892 1.32859 0.664296 0.747470i \(-0.268731\pi\)
0.664296 + 0.747470i \(0.268731\pi\)
\(588\) 0 0
\(589\) −40.1393 −1.65391
\(590\) 0 0
\(591\) 45.6682 1.87854
\(592\) 0 0
\(593\) 6.18495 0.253985 0.126993 0.991904i \(-0.459468\pi\)
0.126993 + 0.991904i \(0.459468\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −61.6961 −2.52505
\(598\) 0 0
\(599\) 41.9523 1.71412 0.857062 0.515214i \(-0.172287\pi\)
0.857062 + 0.515214i \(0.172287\pi\)
\(600\) 0 0
\(601\) −1.95380 −0.0796972 −0.0398486 0.999206i \(-0.512688\pi\)
−0.0398486 + 0.999206i \(0.512688\pi\)
\(602\) 0 0
\(603\) −5.53780 −0.225516
\(604\) 0 0
\(605\) −21.7604 −0.884685
\(606\) 0 0
\(607\) −9.30960 −0.377865 −0.188933 0.981990i \(-0.560503\pi\)
−0.188933 + 0.981990i \(0.560503\pi\)
\(608\) 0 0
\(609\) 4.46061 0.180753
\(610\) 0 0
\(611\) −23.9081 −0.967220
\(612\) 0 0
\(613\) −20.2988 −0.819861 −0.409931 0.912117i \(-0.634447\pi\)
−0.409931 + 0.912117i \(0.634447\pi\)
\(614\) 0 0
\(615\) 34.5275 1.39228
\(616\) 0 0
\(617\) −32.6776 −1.31555 −0.657776 0.753213i \(-0.728503\pi\)
−0.657776 + 0.753213i \(0.728503\pi\)
\(618\) 0 0
\(619\) −34.1665 −1.37327 −0.686633 0.727004i \(-0.740912\pi\)
−0.686633 + 0.727004i \(0.740912\pi\)
\(620\) 0 0
\(621\) −105.047 −4.21540
\(622\) 0 0
\(623\) 1.09362 0.0438149
\(624\) 0 0
\(625\) −25.7770 −1.03108
\(626\) 0 0
\(627\) 18.6149 0.743408
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 49.7912 1.98216 0.991078 0.133285i \(-0.0425526\pi\)
0.991078 + 0.133285i \(0.0425526\pi\)
\(632\) 0 0
\(633\) −17.7978 −0.707399
\(634\) 0 0
\(635\) −10.8583 −0.430898
\(636\) 0 0
\(637\) 19.8026 0.784608
\(638\) 0 0
\(639\) 59.0656 2.33660
\(640\) 0 0
\(641\) −5.67460 −0.224133 −0.112067 0.993701i \(-0.535747\pi\)
−0.112067 + 0.993701i \(0.535747\pi\)
\(642\) 0 0
\(643\) −12.6399 −0.498469 −0.249234 0.968443i \(-0.580179\pi\)
−0.249234 + 0.968443i \(0.580179\pi\)
\(644\) 0 0
\(645\) −3.80682 −0.149893
\(646\) 0 0
\(647\) 12.8430 0.504909 0.252454 0.967609i \(-0.418762\pi\)
0.252454 + 0.967609i \(0.418762\pi\)
\(648\) 0 0
\(649\) 13.2300 0.519324
\(650\) 0 0
\(651\) −5.50861 −0.215899
\(652\) 0 0
\(653\) 30.0133 1.17451 0.587255 0.809402i \(-0.300209\pi\)
0.587255 + 0.809402i \(0.300209\pi\)
\(654\) 0 0
\(655\) 11.4279 0.446525
\(656\) 0 0
\(657\) −34.8860 −1.36103
\(658\) 0 0
\(659\) −41.3664 −1.61141 −0.805703 0.592319i \(-0.798212\pi\)
−0.805703 + 0.592319i \(0.798212\pi\)
\(660\) 0 0
\(661\) −32.4280 −1.26130 −0.630652 0.776066i \(-0.717213\pi\)
−0.630652 + 0.776066i \(0.717213\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.94488 0.0754193
\(666\) 0 0
\(667\) −39.6277 −1.53439
\(668\) 0 0
\(669\) −3.86714 −0.149512
\(670\) 0 0
\(671\) 5.82681 0.224942
\(672\) 0 0
\(673\) −23.0871 −0.889941 −0.444970 0.895545i \(-0.646786\pi\)
−0.444970 + 0.895545i \(0.646786\pi\)
\(674\) 0 0
\(675\) 3.00636 0.115715
\(676\) 0 0
\(677\) −36.1481 −1.38928 −0.694642 0.719355i \(-0.744437\pi\)
−0.694642 + 0.719355i \(0.744437\pi\)
\(678\) 0 0
\(679\) 0.552773 0.0212135
\(680\) 0 0
\(681\) −9.21740 −0.353211
\(682\) 0 0
\(683\) −16.6737 −0.638003 −0.319002 0.947754i \(-0.603348\pi\)
−0.319002 + 0.947754i \(0.603348\pi\)
\(684\) 0 0
\(685\) −21.7566 −0.831278
\(686\) 0 0
\(687\) −13.4753 −0.514115
\(688\) 0 0
\(689\) −25.4569 −0.969831
\(690\) 0 0
\(691\) 17.6213 0.670345 0.335172 0.942157i \(-0.391205\pi\)
0.335172 + 0.942157i \(0.391205\pi\)
\(692\) 0 0
\(693\) 1.88924 0.0717664
\(694\) 0 0
\(695\) −25.2326 −0.957128
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −24.0714 −0.910466
\(700\) 0 0
\(701\) 17.8045 0.672468 0.336234 0.941778i \(-0.390847\pi\)
0.336234 + 0.941778i \(0.390847\pi\)
\(702\) 0 0
\(703\) −35.9367 −1.35538
\(704\) 0 0
\(705\) 64.8331 2.44176
\(706\) 0 0
\(707\) −1.53955 −0.0579006
\(708\) 0 0
\(709\) −20.5394 −0.771373 −0.385686 0.922630i \(-0.626035\pi\)
−0.385686 + 0.922630i \(0.626035\pi\)
\(710\) 0 0
\(711\) 13.6177 0.510704
\(712\) 0 0
\(713\) 48.9381 1.83275
\(714\) 0 0
\(715\) −7.69890 −0.287922
\(716\) 0 0
\(717\) −43.8022 −1.63582
\(718\) 0 0
\(719\) −3.20609 −0.119567 −0.0597835 0.998211i \(-0.519041\pi\)
−0.0597835 + 0.998211i \(0.519041\pi\)
\(720\) 0 0
\(721\) 0.138556 0.00516010
\(722\) 0 0
\(723\) −43.2944 −1.61013
\(724\) 0 0
\(725\) 1.13411 0.0421199
\(726\) 0 0
\(727\) 3.21632 0.119287 0.0596433 0.998220i \(-0.481004\pi\)
0.0596433 + 0.998220i \(0.481004\pi\)
\(728\) 0 0
\(729\) 132.991 4.92559
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 23.0730 0.852221 0.426111 0.904671i \(-0.359883\pi\)
0.426111 + 0.904671i \(0.359883\pi\)
\(734\) 0 0
\(735\) −53.6999 −1.98075
\(736\) 0 0
\(737\) −0.775039 −0.0285489
\(738\) 0 0
\(739\) 22.4355 0.825303 0.412652 0.910889i \(-0.364603\pi\)
0.412652 + 0.910889i \(0.364603\pi\)
\(740\) 0 0
\(741\) −44.3951 −1.63090
\(742\) 0 0
\(743\) 24.5950 0.902304 0.451152 0.892447i \(-0.351013\pi\)
0.451152 + 0.892447i \(0.351013\pi\)
\(744\) 0 0
\(745\) −25.9730 −0.951577
\(746\) 0 0
\(747\) 40.8686 1.49530
\(748\) 0 0
\(749\) 2.72351 0.0995150
\(750\) 0 0
\(751\) −30.2007 −1.10204 −0.551019 0.834493i \(-0.685761\pi\)
−0.551019 + 0.834493i \(0.685761\pi\)
\(752\) 0 0
\(753\) −34.0333 −1.24024
\(754\) 0 0
\(755\) −45.7958 −1.66668
\(756\) 0 0
\(757\) −10.7066 −0.389138 −0.194569 0.980889i \(-0.562331\pi\)
−0.194569 + 0.980889i \(0.562331\pi\)
\(758\) 0 0
\(759\) −22.6954 −0.823792
\(760\) 0 0
\(761\) −5.58389 −0.202416 −0.101208 0.994865i \(-0.532271\pi\)
−0.101208 + 0.994865i \(0.532271\pi\)
\(762\) 0 0
\(763\) 2.24240 0.0811805
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −31.5526 −1.13930
\(768\) 0 0
\(769\) 19.5700 0.705714 0.352857 0.935677i \(-0.385210\pi\)
0.352857 + 0.935677i \(0.385210\pi\)
\(770\) 0 0
\(771\) 36.1103 1.30048
\(772\) 0 0
\(773\) 9.61450 0.345810 0.172905 0.984939i \(-0.444685\pi\)
0.172905 + 0.984939i \(0.444685\pi\)
\(774\) 0 0
\(775\) −1.40057 −0.0503099
\(776\) 0 0
\(777\) −4.93185 −0.176929
\(778\) 0 0
\(779\) 20.6069 0.738320
\(780\) 0 0
\(781\) 8.26649 0.295798
\(782\) 0 0
\(783\) 132.274 4.72709
\(784\) 0 0
\(785\) 26.3841 0.941690
\(786\) 0 0
\(787\) 14.2050 0.506354 0.253177 0.967420i \(-0.418525\pi\)
0.253177 + 0.967420i \(0.418525\pi\)
\(788\) 0 0
\(789\) −101.237 −3.60413
\(790\) 0 0
\(791\) 1.43190 0.0509125
\(792\) 0 0
\(793\) −13.8965 −0.493479
\(794\) 0 0
\(795\) 69.0330 2.44835
\(796\) 0 0
\(797\) −4.63015 −0.164008 −0.0820042 0.996632i \(-0.526132\pi\)
−0.0820042 + 0.996632i \(0.526132\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 50.0627 1.76888
\(802\) 0 0
\(803\) −4.88245 −0.172298
\(804\) 0 0
\(805\) −2.37121 −0.0835743
\(806\) 0 0
\(807\) −58.9298 −2.07443
\(808\) 0 0
\(809\) −5.51571 −0.193922 −0.0969610 0.995288i \(-0.530912\pi\)
−0.0969610 + 0.995288i \(0.530912\pi\)
\(810\) 0 0
\(811\) −51.4712 −1.80740 −0.903699 0.428168i \(-0.859159\pi\)
−0.903699 + 0.428168i \(0.859159\pi\)
\(812\) 0 0
\(813\) 56.8119 1.99248
\(814\) 0 0
\(815\) −29.6611 −1.03898
\(816\) 0 0
\(817\) −2.27201 −0.0794876
\(818\) 0 0
\(819\) −4.50570 −0.157442
\(820\) 0 0
\(821\) −42.6171 −1.48735 −0.743673 0.668544i \(-0.766918\pi\)
−0.743673 + 0.668544i \(0.766918\pi\)
\(822\) 0 0
\(823\) 5.47648 0.190898 0.0954491 0.995434i \(-0.469571\pi\)
0.0954491 + 0.995434i \(0.469571\pi\)
\(824\) 0 0
\(825\) 0.649524 0.0226135
\(826\) 0 0
\(827\) −29.5473 −1.02746 −0.513730 0.857952i \(-0.671737\pi\)
−0.513730 + 0.857952i \(0.671737\pi\)
\(828\) 0 0
\(829\) −38.7372 −1.34540 −0.672700 0.739916i \(-0.734865\pi\)
−0.672700 + 0.739916i \(0.734865\pi\)
\(830\) 0 0
\(831\) −37.1544 −1.28887
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 27.6110 0.955519
\(836\) 0 0
\(837\) −163.351 −5.64625
\(838\) 0 0
\(839\) 48.0586 1.65917 0.829583 0.558383i \(-0.188578\pi\)
0.829583 + 0.558383i \(0.188578\pi\)
\(840\) 0 0
\(841\) 20.8987 0.720646
\(842\) 0 0
\(843\) 7.29387 0.251214
\(844\) 0 0
\(845\) −11.1706 −0.384281
\(846\) 0 0
\(847\) −1.78232 −0.0612414
\(848\) 0 0
\(849\) −20.4549 −0.702009
\(850\) 0 0
\(851\) 43.8143 1.50193
\(852\) 0 0
\(853\) −29.6676 −1.01580 −0.507899 0.861416i \(-0.669578\pi\)
−0.507899 + 0.861416i \(0.669578\pi\)
\(854\) 0 0
\(855\) 89.0311 3.04480
\(856\) 0 0
\(857\) −1.74727 −0.0596855 −0.0298428 0.999555i \(-0.509501\pi\)
−0.0298428 + 0.999555i \(0.509501\pi\)
\(858\) 0 0
\(859\) −21.5736 −0.736082 −0.368041 0.929810i \(-0.619971\pi\)
−0.368041 + 0.929810i \(0.619971\pi\)
\(860\) 0 0
\(861\) 2.82804 0.0963793
\(862\) 0 0
\(863\) 9.73076 0.331239 0.165619 0.986190i \(-0.447038\pi\)
0.165619 + 0.986190i \(0.447038\pi\)
\(864\) 0 0
\(865\) −22.7212 −0.772543
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.90586 0.0646518
\(870\) 0 0
\(871\) 1.84841 0.0626309
\(872\) 0 0
\(873\) 25.3043 0.856422
\(874\) 0 0
\(875\) −2.04556 −0.0691526
\(876\) 0 0
\(877\) 29.6861 1.00243 0.501214 0.865323i \(-0.332887\pi\)
0.501214 + 0.865323i \(0.332887\pi\)
\(878\) 0 0
\(879\) −54.5587 −1.84022
\(880\) 0 0
\(881\) 9.94921 0.335197 0.167599 0.985855i \(-0.446399\pi\)
0.167599 + 0.985855i \(0.446399\pi\)
\(882\) 0 0
\(883\) 49.2844 1.65855 0.829277 0.558838i \(-0.188753\pi\)
0.829277 + 0.558838i \(0.188753\pi\)
\(884\) 0 0
\(885\) 85.5632 2.87617
\(886\) 0 0
\(887\) −9.46670 −0.317861 −0.158930 0.987290i \(-0.550805\pi\)
−0.158930 + 0.987290i \(0.550805\pi\)
\(888\) 0 0
\(889\) −0.889368 −0.0298285
\(890\) 0 0
\(891\) 45.2946 1.51743
\(892\) 0 0
\(893\) 38.6941 1.29485
\(894\) 0 0
\(895\) 22.8607 0.764148
\(896\) 0 0
\(897\) 54.1269 1.80724
\(898\) 0 0
\(899\) −61.6223 −2.05522
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −0.311804 −0.0103762
\(904\) 0 0
\(905\) 42.6284 1.41702
\(906\) 0 0
\(907\) 28.3490 0.941314 0.470657 0.882316i \(-0.344017\pi\)
0.470657 + 0.882316i \(0.344017\pi\)
\(908\) 0 0
\(909\) −70.4760 −2.33754
\(910\) 0 0
\(911\) −14.4019 −0.477157 −0.238579 0.971123i \(-0.576681\pi\)
−0.238579 + 0.971123i \(0.576681\pi\)
\(912\) 0 0
\(913\) 5.71974 0.189296
\(914\) 0 0
\(915\) 37.6840 1.24579
\(916\) 0 0
\(917\) 0.936023 0.0309102
\(918\) 0 0
\(919\) −55.5023 −1.83085 −0.915427 0.402485i \(-0.868147\pi\)
−0.915427 + 0.402485i \(0.868147\pi\)
\(920\) 0 0
\(921\) 46.3732 1.52805
\(922\) 0 0
\(923\) −19.7149 −0.648925
\(924\) 0 0
\(925\) −1.25393 −0.0412289
\(926\) 0 0
\(927\) 6.34269 0.208321
\(928\) 0 0
\(929\) −32.3658 −1.06189 −0.530944 0.847407i \(-0.678163\pi\)
−0.530944 + 0.847407i \(0.678163\pi\)
\(930\) 0 0
\(931\) −32.0495 −1.05038
\(932\) 0 0
\(933\) 44.3283 1.45124
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −43.4263 −1.41868 −0.709338 0.704868i \(-0.751006\pi\)
−0.709338 + 0.704868i \(0.751006\pi\)
\(938\) 0 0
\(939\) −91.9396 −3.00033
\(940\) 0 0
\(941\) −21.2959 −0.694227 −0.347114 0.937823i \(-0.612838\pi\)
−0.347114 + 0.937823i \(0.612838\pi\)
\(942\) 0 0
\(943\) −25.1241 −0.818154
\(944\) 0 0
\(945\) 7.91491 0.257472
\(946\) 0 0
\(947\) 11.7935 0.383238 0.191619 0.981469i \(-0.438626\pi\)
0.191619 + 0.981469i \(0.438626\pi\)
\(948\) 0 0
\(949\) 11.6443 0.377989
\(950\) 0 0
\(951\) 8.13723 0.263868
\(952\) 0 0
\(953\) 29.3924 0.952114 0.476057 0.879414i \(-0.342066\pi\)
0.476057 + 0.879414i \(0.342066\pi\)
\(954\) 0 0
\(955\) −30.9539 −1.00164
\(956\) 0 0
\(957\) 28.5778 0.923788
\(958\) 0 0
\(959\) −1.78202 −0.0575443
\(960\) 0 0
\(961\) 45.1002 1.45485
\(962\) 0 0
\(963\) 124.674 4.01758
\(964\) 0 0
\(965\) −47.1767 −1.51867
\(966\) 0 0
\(967\) 6.19462 0.199205 0.0996027 0.995027i \(-0.468243\pi\)
0.0996027 + 0.995027i \(0.468243\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.28848 0.0413494 0.0206747 0.999786i \(-0.493419\pi\)
0.0206747 + 0.999786i \(0.493419\pi\)
\(972\) 0 0
\(973\) −2.06673 −0.0662562
\(974\) 0 0
\(975\) −1.54907 −0.0496098
\(976\) 0 0
\(977\) 43.5640 1.39373 0.696867 0.717200i \(-0.254577\pi\)
0.696867 + 0.717200i \(0.254577\pi\)
\(978\) 0 0
\(979\) 7.00649 0.223928
\(980\) 0 0
\(981\) 102.651 3.27739
\(982\) 0 0
\(983\) 52.2558 1.66670 0.833351 0.552744i \(-0.186419\pi\)
0.833351 + 0.552744i \(0.186419\pi\)
\(984\) 0 0
\(985\) 30.5690 0.974009
\(986\) 0 0
\(987\) 5.31028 0.169028
\(988\) 0 0
\(989\) 2.77005 0.0880825
\(990\) 0 0
\(991\) 38.6122 1.22656 0.613278 0.789867i \(-0.289851\pi\)
0.613278 + 0.789867i \(0.289851\pi\)
\(992\) 0 0
\(993\) 6.01331 0.190827
\(994\) 0 0
\(995\) −41.2976 −1.30922
\(996\) 0 0
\(997\) −21.4135 −0.678173 −0.339086 0.940755i \(-0.610118\pi\)
−0.339086 + 0.940755i \(0.610118\pi\)
\(998\) 0 0
\(999\) −146.248 −4.62709
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9248.2.a.bz.1.20 20
4.3 odd 2 9248.2.a.by.1.1 20
17.3 odd 16 544.2.bb.f.417.5 yes 20
17.6 odd 16 544.2.bb.f.257.5 yes 20
17.16 even 2 inner 9248.2.a.bz.1.1 20
68.3 even 16 544.2.bb.e.417.1 yes 20
68.23 even 16 544.2.bb.e.257.1 20
68.67 odd 2 9248.2.a.by.1.20 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
544.2.bb.e.257.1 20 68.23 even 16
544.2.bb.e.417.1 yes 20 68.3 even 16
544.2.bb.f.257.5 yes 20 17.6 odd 16
544.2.bb.f.417.5 yes 20 17.3 odd 16
9248.2.a.by.1.1 20 4.3 odd 2
9248.2.a.by.1.20 20 68.67 odd 2
9248.2.a.bz.1.1 20 17.16 even 2 inner
9248.2.a.bz.1.20 20 1.1 even 1 trivial