gp: [N,k,chi] = [924,2,Mod(223,924)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("924.223");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(924, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 0, 5, 8]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [192,2,48]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{19}^{96} + 251 T_{19}^{94} - 228 T_{19}^{93} + 36138 T_{19}^{92} - 54636 T_{19}^{91} + \cdots + 12\!\cdots\!36 \)
T19^96 + 251*T19^94 - 228*T19^93 + 36138*T19^92 - 54636*T19^91 + 3974510*T19^90 - 8264076*T19^89 + 370297760*T19^88 - 952308032*T19^87 + 29841579111*T19^86 - 89916433736*T19^85 + 2115529473817*T19^84 - 7246682598968*T19^83 + 134481915559265*T19^82 - 511493491704524*T19^81 + 7762720342655362*T19^80 - 31945202902324752*T19^79 + 408256766448882655*T19^78 - 1779484024076093896*T19^77 + 19632654365851846126*T19^76 - 89184845657937557876*T19^75 + 866491926812127905223*T19^74 - 4040865811949076726428*T19^73 + 35114059647696344677844*T19^72 - 165585425718634729922340*T19^71 + 1303215921338407654261653*T19^70 - 6136204894551062309298880*T19^69 + 44214722193769971146623333*T19^68 - 205765940208169544251033800*T19^67 + 1368779046614449564956323088*T19^66 - 6233309171815255956900638356*T19^65 + 38497323615584169811990709866*T19^64 - 169773490622549048737645883908*T19^63 + 977621132451695302148673974833*T19^62 - 4138983666056762601248815349836*T19^61 + 22335953728286491128347490208732*T19^60 - 90298302591512128140356201884864*T19^59 + 459547055546172545784242788039334*T19^58 - 1768297133743344996360008869500552*T19^57 + 8535764516472754618861100321267739*T19^56 - 31145061148492351481307266680756148*T19^55 + 143092967455763900993143189896852768*T19^54 - 492339865179717095531314457752236248*T19^53 + 2159852087803018745219090614512036429*T19^52 - 6961717401623631471626348203917284044*T19^51 + 29316219995252389496825193118479389217*T19^50 - 87907436038264420681182430758630738724*T19^49 + 357950783472615961322078169846689683787*T19^48 - 988957581568164428713845385557225075464*T19^47 + 3918266726499541250792816651740883634711*T19^46 - 9802821348365301024259053356864979312952*T19^45 + 38240124918855572130158759022794956818059*T19^44 - 84338825057113714426604001367810475210060*T19^43 + 331336543221549213185179024984585919660910*T19^42 - 625255683700693980777308510156349463318844*T19^41 + 2576629046418652848736830514795432217842993*T19^40 - 3979376158660418414590792510210847604033620*T19^39 + 18222530071923140375347154007686358421183110*T19^38 - 21362261746634184629494452364406985343184784*T19^37 + 117148458938693591495837035377743620751613888*T19^36 - 89376433402247652085967531924188596533836368*T19^35 + 675748602259022455515183622207386944353358704*T19^34 - 231582462367384203972472912630785481564558784*T19^33 + 3570479332124848541023831688341804804279476368*T19^32 + 217190668560174458528300472625408404890087808*T19^31 + 17554731746910316931578110067519926499720351616*T19^30 + 6925846194972140059380418368946635749442578944*T19^29 + 78044029911715276015229541880157148645431869440*T19^28 + 55579271243345871823115474484821518713268357120*T19^27 + 301039046733149237708917078785534442086029419520*T19^26 + 289321309143710716594371543503397718613063970816*T19^25 + 1099250810497862766611192299098821730694462689280*T19^24 + 1147326448900556037563825551756862286878169251840*T19^23 + 3430389491926255980110859112621882364258916040704*T19^22 + 4147708928255961942902920486559944902229171634176*T19^21 + 9007963917139513349671227022567016728796497182720*T19^20 + 10928123400560443021943231220409879377742735081472*T19^19 + 20783546592141403075914765271566435352389372346368*T19^18 + 23124116102243691207937416428277698287711857672192*T19^17 + 36994903178990920243362872049562776932096304742400*T19^16 + 42434179723995238679434471143037697233898612719616*T19^15 + 57430823860218162052611827382486793748073907486720*T19^14 + 63053547448673282335395764464779789901599885754368*T19^13 + 76352604747383745158418769427213220811602141380608*T19^12 + 76875116629284422500825157277496289901657014140928*T19^11 + 78076491775042142952883660622571162539384165629952*T19^10 + 64480698228115642834394606925016595524254349393920*T19^9 + 50012455769231325832466390553646391668470603317248*T19^8 + 32894161777039664503150108739881891011751804141568*T19^7 + 18592715546528565111480786708568439530571356438528*T19^6 + 7483006930752387867843660351078004047641439109120*T19^5 + 2780062528774090701652780164152921176439470948352*T19^4 + 886711219023981597111658601813632058881011089408*T19^3 + 259903289723199235177625266697111709843260964864*T19^2 + 16036390533351139829527727502503022352360538112*T19 + 12826757022633738792487221514882703427566043136
acting on \(S_{2}^{\mathrm{new}}(924, [\chi])\).