Properties

Label 924.2
Level 924
Weight 2
Dimension 9316
Nonzero newspaces 32
Newform subspaces 78
Sturm bound 92160
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 924 = 2^{2} \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 32 \)
Newform subspaces: \( 78 \)
Sturm bound: \(92160\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(924))\).

Total New Old
Modular forms 24240 9684 14556
Cusp forms 21841 9316 12525
Eisenstein series 2399 368 2031

Trace form

\( 9316 q - 2 q^{3} - 28 q^{4} - 12 q^{5} - 8 q^{6} - 26 q^{7} + 12 q^{8} - 38 q^{9} + 28 q^{10} - 14 q^{11} - 4 q^{12} - 32 q^{13} + 58 q^{14} + 36 q^{15} + 100 q^{16} + 44 q^{17} + 36 q^{18} + 92 q^{19}+ \cdots + 234 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(924))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
924.2.a \(\chi_{924}(1, \cdot)\) 924.2.a.a 1 1
924.2.a.b 1
924.2.a.c 1
924.2.a.d 1
924.2.a.e 1
924.2.a.f 1
924.2.a.g 1
924.2.a.h 1
924.2.c \(\chi_{924}(727, \cdot)\) 924.2.c.a 40 1
924.2.c.b 40
924.2.d \(\chi_{924}(197, \cdot)\) 924.2.d.a 8 1
924.2.d.b 16
924.2.f \(\chi_{924}(155, \cdot)\) 924.2.f.a 60 1
924.2.f.b 60
924.2.i \(\chi_{924}(769, \cdot)\) 924.2.i.a 4 1
924.2.i.b 12
924.2.k \(\chi_{924}(43, \cdot)\) 924.2.k.a 4 1
924.2.k.b 4
924.2.k.c 32
924.2.k.d 32
924.2.l \(\chi_{924}(881, \cdot)\) 924.2.l.a 4 1
924.2.l.b 4
924.2.l.c 8
924.2.l.d 12
924.2.n \(\chi_{924}(923, \cdot)\) 924.2.n.a 8 1
924.2.n.b 8
924.2.n.c 8
924.2.n.d 8
924.2.n.e 16
924.2.n.f 24
924.2.n.g 112
924.2.q \(\chi_{924}(529, \cdot)\) 924.2.q.a 2 2
924.2.q.b 2
924.2.q.c 2
924.2.q.d 4
924.2.q.e 8
924.2.q.f 10
924.2.r \(\chi_{924}(169, \cdot)\) 924.2.r.a 4 4
924.2.r.b 4
924.2.r.c 4
924.2.r.d 4
924.2.r.e 16
924.2.r.f 16
924.2.t \(\chi_{924}(89, \cdot)\) 924.2.t.a 52 2
924.2.u \(\chi_{924}(571, \cdot)\) 924.2.u.a 192 2
924.2.y \(\chi_{924}(131, \cdot)\) 924.2.y.a 8 2
924.2.y.b 8
924.2.y.c 352
924.2.ba \(\chi_{924}(65, \cdot)\) 924.2.ba.a 64 2
924.2.bb \(\chi_{924}(199, \cdot)\) 924.2.bb.a 80 2
924.2.bb.b 80
924.2.bd \(\chi_{924}(241, \cdot)\) 924.2.bd.a 32 2
924.2.bg \(\chi_{924}(23, \cdot)\) 924.2.bg.a 160 2
924.2.bg.b 160
924.2.bj \(\chi_{924}(83, \cdot)\) 924.2.bj.a 32 4
924.2.bj.b 704
924.2.bl \(\chi_{924}(125, \cdot)\) 924.2.bl.a 8 4
924.2.bl.b 8
924.2.bl.c 112
924.2.bm \(\chi_{924}(127, \cdot)\) 924.2.bm.a 144 4
924.2.bm.b 144
924.2.bo \(\chi_{924}(13, \cdot)\) 924.2.bo.a 64 4
924.2.br \(\chi_{924}(71, \cdot)\) 924.2.br.a 8 4
924.2.br.b 8
924.2.br.c 560
924.2.bt \(\chi_{924}(29, \cdot)\) 924.2.bt.a 96 4
924.2.bu \(\chi_{924}(223, \cdot)\) 924.2.bu.a 192 4
924.2.bu.b 192
924.2.bw \(\chi_{924}(25, \cdot)\) 924.2.bw.a 64 8
924.2.bw.b 64
924.2.bx \(\chi_{924}(179, \cdot)\) 924.2.bx.a 1472 8
924.2.ca \(\chi_{924}(61, \cdot)\) 924.2.ca.a 128 8
924.2.cc \(\chi_{924}(31, \cdot)\) 924.2.cc.a 384 8
924.2.cc.b 384
924.2.cd \(\chi_{924}(149, \cdot)\) 924.2.cd.a 256 8
924.2.cf \(\chi_{924}(215, \cdot)\) 924.2.cf.a 1472 8
924.2.cj \(\chi_{924}(79, \cdot)\) 924.2.cj.a 768 8
924.2.ck \(\chi_{924}(5, \cdot)\) 924.2.ck.a 256 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(924))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(924)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(77))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(132))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(154))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(231))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(308))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(462))\)\(^{\oplus 2}\)