Properties

Label 9196.2.a.v.1.13
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9196,2,Mod(1,9196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9196.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,-2,0,-6,0,4,0,12,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} - 25 x^{12} + 52 x^{11} + 222 x^{10} - 492 x^{9} - 800 x^{8} + 1984 x^{7} + 854 x^{6} + \cdots + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(-2.80947\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.80947 q^{3} +1.54127 q^{5} +1.86523 q^{7} +4.89312 q^{9} +5.24687 q^{13} +4.33016 q^{15} +7.79245 q^{17} -1.00000 q^{19} +5.24030 q^{21} +1.79343 q^{23} -2.62448 q^{25} +5.31867 q^{27} -2.99075 q^{29} +0.235398 q^{31} +2.87482 q^{35} +2.81816 q^{37} +14.7409 q^{39} +9.72869 q^{41} -2.90049 q^{43} +7.54163 q^{45} -7.40622 q^{47} -3.52093 q^{49} +21.8927 q^{51} -10.4680 q^{53} -2.80947 q^{57} +0.554631 q^{59} -3.56898 q^{61} +9.12678 q^{63} +8.08685 q^{65} +1.59694 q^{67} +5.03858 q^{69} -4.80573 q^{71} -5.12586 q^{73} -7.37340 q^{75} +7.05506 q^{79} +0.263273 q^{81} -12.5690 q^{83} +12.0103 q^{85} -8.40241 q^{87} +10.2773 q^{89} +9.78660 q^{91} +0.661345 q^{93} -1.54127 q^{95} -17.6824 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{3} - 6 q^{5} + 4 q^{7} + 12 q^{9} + 4 q^{13} + 2 q^{15} + 8 q^{17} - 14 q^{19} + 18 q^{21} - 2 q^{23} + 8 q^{25} + 10 q^{27} - 4 q^{29} - 2 q^{31} + 24 q^{35} - 10 q^{37} + 24 q^{39} + 4 q^{41}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.80947 1.62205 0.811024 0.585013i \(-0.198910\pi\)
0.811024 + 0.585013i \(0.198910\pi\)
\(4\) 0 0
\(5\) 1.54127 0.689278 0.344639 0.938735i \(-0.388001\pi\)
0.344639 + 0.938735i \(0.388001\pi\)
\(6\) 0 0
\(7\) 1.86523 0.704990 0.352495 0.935814i \(-0.385333\pi\)
0.352495 + 0.935814i \(0.385333\pi\)
\(8\) 0 0
\(9\) 4.89312 1.63104
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 5.24687 1.45522 0.727610 0.685991i \(-0.240631\pi\)
0.727610 + 0.685991i \(0.240631\pi\)
\(14\) 0 0
\(15\) 4.33016 1.11804
\(16\) 0 0
\(17\) 7.79245 1.88995 0.944973 0.327147i \(-0.106087\pi\)
0.944973 + 0.327147i \(0.106087\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 5.24030 1.14353
\(22\) 0 0
\(23\) 1.79343 0.373956 0.186978 0.982364i \(-0.440131\pi\)
0.186978 + 0.982364i \(0.440131\pi\)
\(24\) 0 0
\(25\) −2.62448 −0.524896
\(26\) 0 0
\(27\) 5.31867 1.02358
\(28\) 0 0
\(29\) −2.99075 −0.555368 −0.277684 0.960672i \(-0.589567\pi\)
−0.277684 + 0.960672i \(0.589567\pi\)
\(30\) 0 0
\(31\) 0.235398 0.0422788 0.0211394 0.999777i \(-0.493271\pi\)
0.0211394 + 0.999777i \(0.493271\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.87482 0.485934
\(36\) 0 0
\(37\) 2.81816 0.463302 0.231651 0.972799i \(-0.425587\pi\)
0.231651 + 0.972799i \(0.425587\pi\)
\(38\) 0 0
\(39\) 14.7409 2.36044
\(40\) 0 0
\(41\) 9.72869 1.51937 0.759683 0.650293i \(-0.225354\pi\)
0.759683 + 0.650293i \(0.225354\pi\)
\(42\) 0 0
\(43\) −2.90049 −0.442320 −0.221160 0.975237i \(-0.570984\pi\)
−0.221160 + 0.975237i \(0.570984\pi\)
\(44\) 0 0
\(45\) 7.54163 1.12424
\(46\) 0 0
\(47\) −7.40622 −1.08031 −0.540154 0.841566i \(-0.681634\pi\)
−0.540154 + 0.841566i \(0.681634\pi\)
\(48\) 0 0
\(49\) −3.52093 −0.502990
\(50\) 0 0
\(51\) 21.8927 3.06558
\(52\) 0 0
\(53\) −10.4680 −1.43789 −0.718947 0.695064i \(-0.755376\pi\)
−0.718947 + 0.695064i \(0.755376\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.80947 −0.372123
\(58\) 0 0
\(59\) 0.554631 0.0722068 0.0361034 0.999348i \(-0.488505\pi\)
0.0361034 + 0.999348i \(0.488505\pi\)
\(60\) 0 0
\(61\) −3.56898 −0.456961 −0.228481 0.973548i \(-0.573376\pi\)
−0.228481 + 0.973548i \(0.573376\pi\)
\(62\) 0 0
\(63\) 9.12678 1.14987
\(64\) 0 0
\(65\) 8.08685 1.00305
\(66\) 0 0
\(67\) 1.59694 0.195097 0.0975487 0.995231i \(-0.468900\pi\)
0.0975487 + 0.995231i \(0.468900\pi\)
\(68\) 0 0
\(69\) 5.03858 0.606574
\(70\) 0 0
\(71\) −4.80573 −0.570336 −0.285168 0.958478i \(-0.592049\pi\)
−0.285168 + 0.958478i \(0.592049\pi\)
\(72\) 0 0
\(73\) −5.12586 −0.599937 −0.299968 0.953949i \(-0.596976\pi\)
−0.299968 + 0.953949i \(0.596976\pi\)
\(74\) 0 0
\(75\) −7.37340 −0.851407
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7.05506 0.793757 0.396878 0.917871i \(-0.370094\pi\)
0.396878 + 0.917871i \(0.370094\pi\)
\(80\) 0 0
\(81\) 0.263273 0.0292526
\(82\) 0 0
\(83\) −12.5690 −1.37962 −0.689812 0.723988i \(-0.742307\pi\)
−0.689812 + 0.723988i \(0.742307\pi\)
\(84\) 0 0
\(85\) 12.0103 1.30270
\(86\) 0 0
\(87\) −8.40241 −0.900833
\(88\) 0 0
\(89\) 10.2773 1.08939 0.544697 0.838633i \(-0.316645\pi\)
0.544697 + 0.838633i \(0.316645\pi\)
\(90\) 0 0
\(91\) 9.78660 1.02591
\(92\) 0 0
\(93\) 0.661345 0.0685782
\(94\) 0 0
\(95\) −1.54127 −0.158131
\(96\) 0 0
\(97\) −17.6824 −1.79537 −0.897686 0.440636i \(-0.854753\pi\)
−0.897686 + 0.440636i \(0.854753\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.19286 0.616212 0.308106 0.951352i \(-0.400305\pi\)
0.308106 + 0.951352i \(0.400305\pi\)
\(102\) 0 0
\(103\) 11.6680 1.14969 0.574843 0.818264i \(-0.305063\pi\)
0.574843 + 0.818264i \(0.305063\pi\)
\(104\) 0 0
\(105\) 8.07673 0.788208
\(106\) 0 0
\(107\) 2.50561 0.242227 0.121113 0.992639i \(-0.461354\pi\)
0.121113 + 0.992639i \(0.461354\pi\)
\(108\) 0 0
\(109\) −8.15730 −0.781327 −0.390664 0.920533i \(-0.627754\pi\)
−0.390664 + 0.920533i \(0.627754\pi\)
\(110\) 0 0
\(111\) 7.91752 0.751498
\(112\) 0 0
\(113\) −4.12795 −0.388325 −0.194162 0.980969i \(-0.562199\pi\)
−0.194162 + 0.980969i \(0.562199\pi\)
\(114\) 0 0
\(115\) 2.76416 0.257759
\(116\) 0 0
\(117\) 25.6736 2.37352
\(118\) 0 0
\(119\) 14.5347 1.33239
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 27.3325 2.46449
\(124\) 0 0
\(125\) −11.7514 −1.05108
\(126\) 0 0
\(127\) −10.1520 −0.900845 −0.450423 0.892815i \(-0.648727\pi\)
−0.450423 + 0.892815i \(0.648727\pi\)
\(128\) 0 0
\(129\) −8.14884 −0.717465
\(130\) 0 0
\(131\) −6.59368 −0.576093 −0.288046 0.957616i \(-0.593006\pi\)
−0.288046 + 0.957616i \(0.593006\pi\)
\(132\) 0 0
\(133\) −1.86523 −0.161736
\(134\) 0 0
\(135\) 8.19751 0.705530
\(136\) 0 0
\(137\) −17.5770 −1.50170 −0.750852 0.660471i \(-0.770357\pi\)
−0.750852 + 0.660471i \(0.770357\pi\)
\(138\) 0 0
\(139\) 20.5855 1.74604 0.873018 0.487688i \(-0.162160\pi\)
0.873018 + 0.487688i \(0.162160\pi\)
\(140\) 0 0
\(141\) −20.8076 −1.75231
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −4.60956 −0.382803
\(146\) 0 0
\(147\) −9.89194 −0.815874
\(148\) 0 0
\(149\) 3.76525 0.308461 0.154231 0.988035i \(-0.450710\pi\)
0.154231 + 0.988035i \(0.450710\pi\)
\(150\) 0 0
\(151\) 14.5935 1.18760 0.593801 0.804612i \(-0.297627\pi\)
0.593801 + 0.804612i \(0.297627\pi\)
\(152\) 0 0
\(153\) 38.1294 3.08258
\(154\) 0 0
\(155\) 0.362813 0.0291418
\(156\) 0 0
\(157\) −17.8442 −1.42412 −0.712060 0.702119i \(-0.752237\pi\)
−0.712060 + 0.702119i \(0.752237\pi\)
\(158\) 0 0
\(159\) −29.4096 −2.33233
\(160\) 0 0
\(161\) 3.34515 0.263635
\(162\) 0 0
\(163\) 16.4706 1.29007 0.645037 0.764151i \(-0.276842\pi\)
0.645037 + 0.764151i \(0.276842\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −13.8569 −1.07228 −0.536141 0.844129i \(-0.680118\pi\)
−0.536141 + 0.844129i \(0.680118\pi\)
\(168\) 0 0
\(169\) 14.5296 1.11766
\(170\) 0 0
\(171\) −4.89312 −0.374186
\(172\) 0 0
\(173\) −15.0657 −1.14542 −0.572710 0.819758i \(-0.694108\pi\)
−0.572710 + 0.819758i \(0.694108\pi\)
\(174\) 0 0
\(175\) −4.89525 −0.370046
\(176\) 0 0
\(177\) 1.55822 0.117123
\(178\) 0 0
\(179\) −24.2405 −1.81182 −0.905911 0.423468i \(-0.860813\pi\)
−0.905911 + 0.423468i \(0.860813\pi\)
\(180\) 0 0
\(181\) −20.5837 −1.52998 −0.764988 0.644045i \(-0.777255\pi\)
−0.764988 + 0.644045i \(0.777255\pi\)
\(182\) 0 0
\(183\) −10.0269 −0.741213
\(184\) 0 0
\(185\) 4.34355 0.319344
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 9.92052 0.721612
\(190\) 0 0
\(191\) −3.28957 −0.238025 −0.119012 0.992893i \(-0.537973\pi\)
−0.119012 + 0.992893i \(0.537973\pi\)
\(192\) 0 0
\(193\) −21.9797 −1.58213 −0.791066 0.611731i \(-0.790473\pi\)
−0.791066 + 0.611731i \(0.790473\pi\)
\(194\) 0 0
\(195\) 22.7198 1.62700
\(196\) 0 0
\(197\) 8.53727 0.608255 0.304128 0.952631i \(-0.401635\pi\)
0.304128 + 0.952631i \(0.401635\pi\)
\(198\) 0 0
\(199\) 19.4322 1.37751 0.688755 0.724994i \(-0.258158\pi\)
0.688755 + 0.724994i \(0.258158\pi\)
\(200\) 0 0
\(201\) 4.48656 0.316457
\(202\) 0 0
\(203\) −5.57842 −0.391528
\(204\) 0 0
\(205\) 14.9946 1.04727
\(206\) 0 0
\(207\) 8.77546 0.609937
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.342104 0.0235514 0.0117757 0.999931i \(-0.496252\pi\)
0.0117757 + 0.999931i \(0.496252\pi\)
\(212\) 0 0
\(213\) −13.5016 −0.925112
\(214\) 0 0
\(215\) −4.47044 −0.304882
\(216\) 0 0
\(217\) 0.439071 0.0298061
\(218\) 0 0
\(219\) −14.4010 −0.973127
\(220\) 0 0
\(221\) 40.8860 2.75029
\(222\) 0 0
\(223\) 17.1816 1.15057 0.575284 0.817954i \(-0.304892\pi\)
0.575284 + 0.817954i \(0.304892\pi\)
\(224\) 0 0
\(225\) −12.8419 −0.856127
\(226\) 0 0
\(227\) 7.47515 0.496143 0.248072 0.968742i \(-0.420203\pi\)
0.248072 + 0.968742i \(0.420203\pi\)
\(228\) 0 0
\(229\) −22.7824 −1.50550 −0.752752 0.658304i \(-0.771274\pi\)
−0.752752 + 0.658304i \(0.771274\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.12655 −0.0738026 −0.0369013 0.999319i \(-0.511749\pi\)
−0.0369013 + 0.999319i \(0.511749\pi\)
\(234\) 0 0
\(235\) −11.4150 −0.744633
\(236\) 0 0
\(237\) 19.8210 1.28751
\(238\) 0 0
\(239\) 14.1200 0.913346 0.456673 0.889635i \(-0.349041\pi\)
0.456673 + 0.889635i \(0.349041\pi\)
\(240\) 0 0
\(241\) 10.8532 0.699115 0.349558 0.936915i \(-0.386332\pi\)
0.349558 + 0.936915i \(0.386332\pi\)
\(242\) 0 0
\(243\) −15.2163 −0.976129
\(244\) 0 0
\(245\) −5.42671 −0.346700
\(246\) 0 0
\(247\) −5.24687 −0.333850
\(248\) 0 0
\(249\) −35.3122 −2.23782
\(250\) 0 0
\(251\) 24.9764 1.57650 0.788249 0.615356i \(-0.210988\pi\)
0.788249 + 0.615356i \(0.210988\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 33.7425 2.11304
\(256\) 0 0
\(257\) −8.89768 −0.555022 −0.277511 0.960722i \(-0.589510\pi\)
−0.277511 + 0.960722i \(0.589510\pi\)
\(258\) 0 0
\(259\) 5.25650 0.326623
\(260\) 0 0
\(261\) −14.6341 −0.905827
\(262\) 0 0
\(263\) −4.61780 −0.284746 −0.142373 0.989813i \(-0.545473\pi\)
−0.142373 + 0.989813i \(0.545473\pi\)
\(264\) 0 0
\(265\) −16.1341 −0.991109
\(266\) 0 0
\(267\) 28.8738 1.76705
\(268\) 0 0
\(269\) 20.2974 1.23756 0.618778 0.785566i \(-0.287628\pi\)
0.618778 + 0.785566i \(0.287628\pi\)
\(270\) 0 0
\(271\) 18.8874 1.14733 0.573663 0.819092i \(-0.305522\pi\)
0.573663 + 0.819092i \(0.305522\pi\)
\(272\) 0 0
\(273\) 27.4952 1.66408
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −14.0953 −0.846904 −0.423452 0.905919i \(-0.639182\pi\)
−0.423452 + 0.905919i \(0.639182\pi\)
\(278\) 0 0
\(279\) 1.15183 0.0689584
\(280\) 0 0
\(281\) −9.63700 −0.574895 −0.287448 0.957796i \(-0.592807\pi\)
−0.287448 + 0.957796i \(0.592807\pi\)
\(282\) 0 0
\(283\) −16.7048 −0.992999 −0.496500 0.868037i \(-0.665382\pi\)
−0.496500 + 0.868037i \(0.665382\pi\)
\(284\) 0 0
\(285\) −4.33016 −0.256496
\(286\) 0 0
\(287\) 18.1462 1.07114
\(288\) 0 0
\(289\) 43.7223 2.57190
\(290\) 0 0
\(291\) −49.6781 −2.91218
\(292\) 0 0
\(293\) −11.7168 −0.684503 −0.342251 0.939608i \(-0.611189\pi\)
−0.342251 + 0.939608i \(0.611189\pi\)
\(294\) 0 0
\(295\) 0.854838 0.0497706
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.40988 0.544188
\(300\) 0 0
\(301\) −5.41007 −0.311831
\(302\) 0 0
\(303\) 17.3986 0.999526
\(304\) 0 0
\(305\) −5.50077 −0.314973
\(306\) 0 0
\(307\) 13.9523 0.796302 0.398151 0.917320i \(-0.369652\pi\)
0.398151 + 0.917320i \(0.369652\pi\)
\(308\) 0 0
\(309\) 32.7810 1.86484
\(310\) 0 0
\(311\) 20.7977 1.17933 0.589664 0.807649i \(-0.299260\pi\)
0.589664 + 0.807649i \(0.299260\pi\)
\(312\) 0 0
\(313\) −13.2692 −0.750018 −0.375009 0.927021i \(-0.622360\pi\)
−0.375009 + 0.927021i \(0.622360\pi\)
\(314\) 0 0
\(315\) 14.0669 0.792577
\(316\) 0 0
\(317\) −8.65780 −0.486270 −0.243135 0.969992i \(-0.578176\pi\)
−0.243135 + 0.969992i \(0.578176\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 7.03944 0.392903
\(322\) 0 0
\(323\) −7.79245 −0.433584
\(324\) 0 0
\(325\) −13.7703 −0.763839
\(326\) 0 0
\(327\) −22.9177 −1.26735
\(328\) 0 0
\(329\) −13.8143 −0.761606
\(330\) 0 0
\(331\) 1.75889 0.0966771 0.0483385 0.998831i \(-0.484607\pi\)
0.0483385 + 0.998831i \(0.484607\pi\)
\(332\) 0 0
\(333\) 13.7896 0.755664
\(334\) 0 0
\(335\) 2.46132 0.134476
\(336\) 0 0
\(337\) 20.0982 1.09482 0.547410 0.836865i \(-0.315614\pi\)
0.547410 + 0.836865i \(0.315614\pi\)
\(338\) 0 0
\(339\) −11.5974 −0.629882
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −19.6239 −1.05959
\(344\) 0 0
\(345\) 7.76583 0.418098
\(346\) 0 0
\(347\) 32.4866 1.74397 0.871986 0.489531i \(-0.162832\pi\)
0.871986 + 0.489531i \(0.162832\pi\)
\(348\) 0 0
\(349\) −8.48961 −0.454438 −0.227219 0.973844i \(-0.572963\pi\)
−0.227219 + 0.973844i \(0.572963\pi\)
\(350\) 0 0
\(351\) 27.9064 1.48953
\(352\) 0 0
\(353\) 9.66484 0.514408 0.257204 0.966357i \(-0.417199\pi\)
0.257204 + 0.966357i \(0.417199\pi\)
\(354\) 0 0
\(355\) −7.40694 −0.393120
\(356\) 0 0
\(357\) 40.8348 2.16121
\(358\) 0 0
\(359\) 32.9359 1.73829 0.869146 0.494556i \(-0.164669\pi\)
0.869146 + 0.494556i \(0.164669\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.90035 −0.413523
\(366\) 0 0
\(367\) −11.8270 −0.617365 −0.308683 0.951165i \(-0.599888\pi\)
−0.308683 + 0.951165i \(0.599888\pi\)
\(368\) 0 0
\(369\) 47.6037 2.47815
\(370\) 0 0
\(371\) −19.5253 −1.01370
\(372\) 0 0
\(373\) 7.09287 0.367255 0.183628 0.982996i \(-0.441216\pi\)
0.183628 + 0.982996i \(0.441216\pi\)
\(374\) 0 0
\(375\) −33.0152 −1.70490
\(376\) 0 0
\(377\) −15.6921 −0.808182
\(378\) 0 0
\(379\) −3.01618 −0.154931 −0.0774654 0.996995i \(-0.524683\pi\)
−0.0774654 + 0.996995i \(0.524683\pi\)
\(380\) 0 0
\(381\) −28.5218 −1.46121
\(382\) 0 0
\(383\) −9.43358 −0.482033 −0.241017 0.970521i \(-0.577481\pi\)
−0.241017 + 0.970521i \(0.577481\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −14.1924 −0.721442
\(388\) 0 0
\(389\) 24.5734 1.24592 0.622960 0.782254i \(-0.285930\pi\)
0.622960 + 0.782254i \(0.285930\pi\)
\(390\) 0 0
\(391\) 13.9752 0.706756
\(392\) 0 0
\(393\) −18.5247 −0.934450
\(394\) 0 0
\(395\) 10.8738 0.547119
\(396\) 0 0
\(397\) 13.3211 0.668567 0.334283 0.942473i \(-0.391506\pi\)
0.334283 + 0.942473i \(0.391506\pi\)
\(398\) 0 0
\(399\) −5.24030 −0.262343
\(400\) 0 0
\(401\) 21.3127 1.06431 0.532153 0.846648i \(-0.321383\pi\)
0.532153 + 0.846648i \(0.321383\pi\)
\(402\) 0 0
\(403\) 1.23510 0.0615249
\(404\) 0 0
\(405\) 0.405776 0.0201632
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 19.1599 0.947397 0.473699 0.880687i \(-0.342919\pi\)
0.473699 + 0.880687i \(0.342919\pi\)
\(410\) 0 0
\(411\) −49.3820 −2.43583
\(412\) 0 0
\(413\) 1.03451 0.0509051
\(414\) 0 0
\(415\) −19.3722 −0.950945
\(416\) 0 0
\(417\) 57.8342 2.83215
\(418\) 0 0
\(419\) 2.56201 0.125162 0.0625811 0.998040i \(-0.480067\pi\)
0.0625811 + 0.998040i \(0.480067\pi\)
\(420\) 0 0
\(421\) 12.7793 0.622825 0.311413 0.950275i \(-0.399198\pi\)
0.311413 + 0.950275i \(0.399198\pi\)
\(422\) 0 0
\(423\) −36.2395 −1.76203
\(424\) 0 0
\(425\) −20.4511 −0.992026
\(426\) 0 0
\(427\) −6.65696 −0.322153
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −28.1639 −1.35661 −0.678303 0.734782i \(-0.737284\pi\)
−0.678303 + 0.734782i \(0.737284\pi\)
\(432\) 0 0
\(433\) 11.6009 0.557505 0.278752 0.960363i \(-0.410079\pi\)
0.278752 + 0.960363i \(0.410079\pi\)
\(434\) 0 0
\(435\) −12.9504 −0.620925
\(436\) 0 0
\(437\) −1.79343 −0.0857913
\(438\) 0 0
\(439\) −1.47386 −0.0703435 −0.0351717 0.999381i \(-0.511198\pi\)
−0.0351717 + 0.999381i \(0.511198\pi\)
\(440\) 0 0
\(441\) −17.2283 −0.820397
\(442\) 0 0
\(443\) 13.4441 0.638749 0.319374 0.947629i \(-0.396527\pi\)
0.319374 + 0.947629i \(0.396527\pi\)
\(444\) 0 0
\(445\) 15.8401 0.750895
\(446\) 0 0
\(447\) 10.5783 0.500339
\(448\) 0 0
\(449\) 21.8671 1.03197 0.515985 0.856598i \(-0.327426\pi\)
0.515985 + 0.856598i \(0.327426\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 41.0000 1.92635
\(454\) 0 0
\(455\) 15.0838 0.707140
\(456\) 0 0
\(457\) −5.70673 −0.266950 −0.133475 0.991052i \(-0.542614\pi\)
−0.133475 + 0.991052i \(0.542614\pi\)
\(458\) 0 0
\(459\) 41.4455 1.93451
\(460\) 0 0
\(461\) −12.9195 −0.601722 −0.300861 0.953668i \(-0.597274\pi\)
−0.300861 + 0.953668i \(0.597274\pi\)
\(462\) 0 0
\(463\) 28.5096 1.32495 0.662477 0.749083i \(-0.269505\pi\)
0.662477 + 0.749083i \(0.269505\pi\)
\(464\) 0 0
\(465\) 1.01931 0.0472695
\(466\) 0 0
\(467\) 2.58383 0.119565 0.0597826 0.998211i \(-0.480959\pi\)
0.0597826 + 0.998211i \(0.480959\pi\)
\(468\) 0 0
\(469\) 2.97866 0.137542
\(470\) 0 0
\(471\) −50.1326 −2.30999
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 2.62448 0.120419
\(476\) 0 0
\(477\) −51.2214 −2.34526
\(478\) 0 0
\(479\) −32.8637 −1.50158 −0.750791 0.660539i \(-0.770328\pi\)
−0.750791 + 0.660539i \(0.770328\pi\)
\(480\) 0 0
\(481\) 14.7865 0.674206
\(482\) 0 0
\(483\) 9.39810 0.427628
\(484\) 0 0
\(485\) −27.2533 −1.23751
\(486\) 0 0
\(487\) −40.5729 −1.83854 −0.919268 0.393633i \(-0.871218\pi\)
−0.919268 + 0.393633i \(0.871218\pi\)
\(488\) 0 0
\(489\) 46.2736 2.09256
\(490\) 0 0
\(491\) −14.5913 −0.658495 −0.329247 0.944244i \(-0.606795\pi\)
−0.329247 + 0.944244i \(0.606795\pi\)
\(492\) 0 0
\(493\) −23.3052 −1.04962
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8.96378 −0.402081
\(498\) 0 0
\(499\) −37.3905 −1.67383 −0.836914 0.547334i \(-0.815643\pi\)
−0.836914 + 0.547334i \(0.815643\pi\)
\(500\) 0 0
\(501\) −38.9306 −1.73929
\(502\) 0 0
\(503\) −4.25395 −0.189674 −0.0948371 0.995493i \(-0.530233\pi\)
−0.0948371 + 0.995493i \(0.530233\pi\)
\(504\) 0 0
\(505\) 9.54488 0.424741
\(506\) 0 0
\(507\) 40.8206 1.81291
\(508\) 0 0
\(509\) −0.379840 −0.0168361 −0.00841806 0.999965i \(-0.502680\pi\)
−0.00841806 + 0.999965i \(0.502680\pi\)
\(510\) 0 0
\(511\) −9.56090 −0.422949
\(512\) 0 0
\(513\) −5.31867 −0.234825
\(514\) 0 0
\(515\) 17.9836 0.792452
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −42.3265 −1.85793
\(520\) 0 0
\(521\) −16.6703 −0.730339 −0.365169 0.930941i \(-0.618989\pi\)
−0.365169 + 0.930941i \(0.618989\pi\)
\(522\) 0 0
\(523\) 9.60201 0.419867 0.209933 0.977716i \(-0.432675\pi\)
0.209933 + 0.977716i \(0.432675\pi\)
\(524\) 0 0
\(525\) −13.7531 −0.600233
\(526\) 0 0
\(527\) 1.83433 0.0799047
\(528\) 0 0
\(529\) −19.7836 −0.860157
\(530\) 0 0
\(531\) 2.71388 0.117772
\(532\) 0 0
\(533\) 51.0452 2.21101
\(534\) 0 0
\(535\) 3.86183 0.166962
\(536\) 0 0
\(537\) −68.1030 −2.93886
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 34.1325 1.46747 0.733735 0.679436i \(-0.237775\pi\)
0.733735 + 0.679436i \(0.237775\pi\)
\(542\) 0 0
\(543\) −57.8293 −2.48169
\(544\) 0 0
\(545\) −12.5726 −0.538552
\(546\) 0 0
\(547\) −32.0027 −1.36834 −0.684168 0.729324i \(-0.739835\pi\)
−0.684168 + 0.729324i \(0.739835\pi\)
\(548\) 0 0
\(549\) −17.4635 −0.745322
\(550\) 0 0
\(551\) 2.99075 0.127410
\(552\) 0 0
\(553\) 13.1593 0.559590
\(554\) 0 0
\(555\) 12.2031 0.517991
\(556\) 0 0
\(557\) −8.41274 −0.356459 −0.178230 0.983989i \(-0.557037\pi\)
−0.178230 + 0.983989i \(0.557037\pi\)
\(558\) 0 0
\(559\) −15.2185 −0.643673
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 41.6071 1.75353 0.876766 0.480918i \(-0.159697\pi\)
0.876766 + 0.480918i \(0.159697\pi\)
\(564\) 0 0
\(565\) −6.36229 −0.267664
\(566\) 0 0
\(567\) 0.491065 0.0206228
\(568\) 0 0
\(569\) 20.3380 0.852612 0.426306 0.904579i \(-0.359815\pi\)
0.426306 + 0.904579i \(0.359815\pi\)
\(570\) 0 0
\(571\) 11.0944 0.464286 0.232143 0.972682i \(-0.425426\pi\)
0.232143 + 0.972682i \(0.425426\pi\)
\(572\) 0 0
\(573\) −9.24194 −0.386088
\(574\) 0 0
\(575\) −4.70682 −0.196288
\(576\) 0 0
\(577\) 28.4516 1.18446 0.592228 0.805771i \(-0.298249\pi\)
0.592228 + 0.805771i \(0.298249\pi\)
\(578\) 0 0
\(579\) −61.7512 −2.56629
\(580\) 0 0
\(581\) −23.4440 −0.972621
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 39.5700 1.63602
\(586\) 0 0
\(587\) −6.27687 −0.259074 −0.129537 0.991575i \(-0.541349\pi\)
−0.129537 + 0.991575i \(0.541349\pi\)
\(588\) 0 0
\(589\) −0.235398 −0.00969942
\(590\) 0 0
\(591\) 23.9852 0.986619
\(592\) 0 0
\(593\) 43.8980 1.80267 0.901337 0.433118i \(-0.142587\pi\)
0.901337 + 0.433118i \(0.142587\pi\)
\(594\) 0 0
\(595\) 22.4019 0.918389
\(596\) 0 0
\(597\) 54.5941 2.23439
\(598\) 0 0
\(599\) 24.0381 0.982168 0.491084 0.871112i \(-0.336601\pi\)
0.491084 + 0.871112i \(0.336601\pi\)
\(600\) 0 0
\(601\) −34.1183 −1.39171 −0.695857 0.718180i \(-0.744975\pi\)
−0.695857 + 0.718180i \(0.744975\pi\)
\(602\) 0 0
\(603\) 7.81403 0.318212
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 15.6867 0.636702 0.318351 0.947973i \(-0.396871\pi\)
0.318351 + 0.947973i \(0.396871\pi\)
\(608\) 0 0
\(609\) −15.6724 −0.635078
\(610\) 0 0
\(611\) −38.8595 −1.57209
\(612\) 0 0
\(613\) −42.0977 −1.70031 −0.850156 0.526531i \(-0.823492\pi\)
−0.850156 + 0.526531i \(0.823492\pi\)
\(614\) 0 0
\(615\) 42.1268 1.69872
\(616\) 0 0
\(617\) 12.1355 0.488558 0.244279 0.969705i \(-0.421449\pi\)
0.244279 + 0.969705i \(0.421449\pi\)
\(618\) 0 0
\(619\) −35.7908 −1.43855 −0.719277 0.694723i \(-0.755527\pi\)
−0.719277 + 0.694723i \(0.755527\pi\)
\(620\) 0 0
\(621\) 9.53865 0.382773
\(622\) 0 0
\(623\) 19.1695 0.768011
\(624\) 0 0
\(625\) −4.98970 −0.199588
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 21.9603 0.875616
\(630\) 0 0
\(631\) 42.9721 1.71069 0.855347 0.518056i \(-0.173344\pi\)
0.855347 + 0.518056i \(0.173344\pi\)
\(632\) 0 0
\(633\) 0.961130 0.0382015
\(634\) 0 0
\(635\) −15.6470 −0.620933
\(636\) 0 0
\(637\) −18.4739 −0.731961
\(638\) 0 0
\(639\) −23.5150 −0.930241
\(640\) 0 0
\(641\) −33.7064 −1.33132 −0.665661 0.746254i \(-0.731850\pi\)
−0.665661 + 0.746254i \(0.731850\pi\)
\(642\) 0 0
\(643\) 13.7572 0.542530 0.271265 0.962505i \(-0.412558\pi\)
0.271265 + 0.962505i \(0.412558\pi\)
\(644\) 0 0
\(645\) −12.5596 −0.494533
\(646\) 0 0
\(647\) 50.7127 1.99372 0.996860 0.0791837i \(-0.0252314\pi\)
0.996860 + 0.0791837i \(0.0252314\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 1.23356 0.0483469
\(652\) 0 0
\(653\) 2.43762 0.0953913 0.0476956 0.998862i \(-0.484812\pi\)
0.0476956 + 0.998862i \(0.484812\pi\)
\(654\) 0 0
\(655\) −10.1627 −0.397088
\(656\) 0 0
\(657\) −25.0815 −0.978521
\(658\) 0 0
\(659\) 23.0932 0.899582 0.449791 0.893134i \(-0.351498\pi\)
0.449791 + 0.893134i \(0.351498\pi\)
\(660\) 0 0
\(661\) −9.25390 −0.359935 −0.179967 0.983673i \(-0.557599\pi\)
−0.179967 + 0.983673i \(0.557599\pi\)
\(662\) 0 0
\(663\) 114.868 4.46110
\(664\) 0 0
\(665\) −2.87482 −0.111481
\(666\) 0 0
\(667\) −5.36369 −0.207683
\(668\) 0 0
\(669\) 48.2713 1.86628
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −30.4680 −1.17446 −0.587228 0.809421i \(-0.699781\pi\)
−0.587228 + 0.809421i \(0.699781\pi\)
\(674\) 0 0
\(675\) −13.9587 −0.537272
\(676\) 0 0
\(677\) −2.23854 −0.0860342 −0.0430171 0.999074i \(-0.513697\pi\)
−0.0430171 + 0.999074i \(0.513697\pi\)
\(678\) 0 0
\(679\) −32.9816 −1.26572
\(680\) 0 0
\(681\) 21.0012 0.804768
\(682\) 0 0
\(683\) 11.2964 0.432246 0.216123 0.976366i \(-0.430659\pi\)
0.216123 + 0.976366i \(0.430659\pi\)
\(684\) 0 0
\(685\) −27.0909 −1.03509
\(686\) 0 0
\(687\) −64.0065 −2.44200
\(688\) 0 0
\(689\) −54.9244 −2.09245
\(690\) 0 0
\(691\) 13.9515 0.530742 0.265371 0.964146i \(-0.414506\pi\)
0.265371 + 0.964146i \(0.414506\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 31.7278 1.20350
\(696\) 0 0
\(697\) 75.8104 2.87152
\(698\) 0 0
\(699\) −3.16500 −0.119711
\(700\) 0 0
\(701\) −34.6890 −1.31018 −0.655092 0.755549i \(-0.727370\pi\)
−0.655092 + 0.755549i \(0.727370\pi\)
\(702\) 0 0
\(703\) −2.81816 −0.106289
\(704\) 0 0
\(705\) −32.0701 −1.20783
\(706\) 0 0
\(707\) 11.5511 0.434423
\(708\) 0 0
\(709\) −41.6961 −1.56593 −0.782964 0.622067i \(-0.786293\pi\)
−0.782964 + 0.622067i \(0.786293\pi\)
\(710\) 0 0
\(711\) 34.5213 1.29465
\(712\) 0 0
\(713\) 0.422170 0.0158104
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 39.6697 1.48149
\(718\) 0 0
\(719\) −32.4310 −1.20947 −0.604737 0.796425i \(-0.706722\pi\)
−0.604737 + 0.796425i \(0.706722\pi\)
\(720\) 0 0
\(721\) 21.7635 0.810516
\(722\) 0 0
\(723\) 30.4917 1.13400
\(724\) 0 0
\(725\) 7.84916 0.291510
\(726\) 0 0
\(727\) 12.2214 0.453268 0.226634 0.973980i \(-0.427228\pi\)
0.226634 + 0.973980i \(0.427228\pi\)
\(728\) 0 0
\(729\) −43.5397 −1.61258
\(730\) 0 0
\(731\) −22.6019 −0.835962
\(732\) 0 0
\(733\) −12.3011 −0.454353 −0.227176 0.973854i \(-0.572949\pi\)
−0.227176 + 0.973854i \(0.572949\pi\)
\(734\) 0 0
\(735\) −15.2462 −0.562364
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −17.7857 −0.654258 −0.327129 0.944980i \(-0.606081\pi\)
−0.327129 + 0.944980i \(0.606081\pi\)
\(740\) 0 0
\(741\) −14.7409 −0.541521
\(742\) 0 0
\(743\) −40.9433 −1.50206 −0.751032 0.660266i \(-0.770443\pi\)
−0.751032 + 0.660266i \(0.770443\pi\)
\(744\) 0 0
\(745\) 5.80327 0.212615
\(746\) 0 0
\(747\) −61.5015 −2.25022
\(748\) 0 0
\(749\) 4.67354 0.170767
\(750\) 0 0
\(751\) 42.3079 1.54384 0.771919 0.635721i \(-0.219297\pi\)
0.771919 + 0.635721i \(0.219297\pi\)
\(752\) 0 0
\(753\) 70.1706 2.55716
\(754\) 0 0
\(755\) 22.4926 0.818588
\(756\) 0 0
\(757\) 5.41121 0.196674 0.0983369 0.995153i \(-0.468648\pi\)
0.0983369 + 0.995153i \(0.468648\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 43.7033 1.58424 0.792122 0.610362i \(-0.208976\pi\)
0.792122 + 0.610362i \(0.208976\pi\)
\(762\) 0 0
\(763\) −15.2152 −0.550828
\(764\) 0 0
\(765\) 58.7678 2.12475
\(766\) 0 0
\(767\) 2.91008 0.105077
\(768\) 0 0
\(769\) 0.759135 0.0273751 0.0136875 0.999906i \(-0.495643\pi\)
0.0136875 + 0.999906i \(0.495643\pi\)
\(770\) 0 0
\(771\) −24.9978 −0.900273
\(772\) 0 0
\(773\) 20.8205 0.748862 0.374431 0.927255i \(-0.377838\pi\)
0.374431 + 0.927255i \(0.377838\pi\)
\(774\) 0 0
\(775\) −0.617798 −0.0221920
\(776\) 0 0
\(777\) 14.7680 0.529798
\(778\) 0 0
\(779\) −9.72869 −0.348567
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −15.9068 −0.568462
\(784\) 0 0
\(785\) −27.5027 −0.981614
\(786\) 0 0
\(787\) −7.22568 −0.257568 −0.128784 0.991673i \(-0.541107\pi\)
−0.128784 + 0.991673i \(0.541107\pi\)
\(788\) 0 0
\(789\) −12.9736 −0.461872
\(790\) 0 0
\(791\) −7.69956 −0.273765
\(792\) 0 0
\(793\) −18.7260 −0.664979
\(794\) 0 0
\(795\) −45.3282 −1.60763
\(796\) 0 0
\(797\) 25.3558 0.898149 0.449075 0.893494i \(-0.351754\pi\)
0.449075 + 0.893494i \(0.351754\pi\)
\(798\) 0 0
\(799\) −57.7126 −2.04173
\(800\) 0 0
\(801\) 50.2882 1.77684
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 5.15579 0.181718
\(806\) 0 0
\(807\) 57.0250 2.00737
\(808\) 0 0
\(809\) 36.1256 1.27011 0.635055 0.772467i \(-0.280978\pi\)
0.635055 + 0.772467i \(0.280978\pi\)
\(810\) 0 0
\(811\) 39.9298 1.40212 0.701062 0.713100i \(-0.252710\pi\)
0.701062 + 0.713100i \(0.252710\pi\)
\(812\) 0 0
\(813\) 53.0635 1.86102
\(814\) 0 0
\(815\) 25.3856 0.889220
\(816\) 0 0
\(817\) 2.90049 0.101475
\(818\) 0 0
\(819\) 47.8870 1.67331
\(820\) 0 0
\(821\) 42.2807 1.47561 0.737803 0.675017i \(-0.235864\pi\)
0.737803 + 0.675017i \(0.235864\pi\)
\(822\) 0 0
\(823\) −38.9439 −1.35750 −0.678750 0.734369i \(-0.737478\pi\)
−0.678750 + 0.734369i \(0.737478\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.1059 0.490510 0.245255 0.969459i \(-0.421128\pi\)
0.245255 + 0.969459i \(0.421128\pi\)
\(828\) 0 0
\(829\) 1.01184 0.0351425 0.0175713 0.999846i \(-0.494407\pi\)
0.0175713 + 0.999846i \(0.494407\pi\)
\(830\) 0 0
\(831\) −39.6003 −1.37372
\(832\) 0 0
\(833\) −27.4367 −0.950624
\(834\) 0 0
\(835\) −21.3573 −0.739100
\(836\) 0 0
\(837\) 1.25201 0.0432756
\(838\) 0 0
\(839\) 23.4592 0.809901 0.404951 0.914339i \(-0.367289\pi\)
0.404951 + 0.914339i \(0.367289\pi\)
\(840\) 0 0
\(841\) −20.0554 −0.691567
\(842\) 0 0
\(843\) −27.0749 −0.932508
\(844\) 0 0
\(845\) 22.3941 0.770381
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −46.9317 −1.61069
\(850\) 0 0
\(851\) 5.05416 0.173254
\(852\) 0 0
\(853\) −51.6125 −1.76718 −0.883589 0.468262i \(-0.844880\pi\)
−0.883589 + 0.468262i \(0.844880\pi\)
\(854\) 0 0
\(855\) −7.54163 −0.257918
\(856\) 0 0
\(857\) −32.4436 −1.10825 −0.554126 0.832433i \(-0.686948\pi\)
−0.554126 + 0.832433i \(0.686948\pi\)
\(858\) 0 0
\(859\) 9.45118 0.322470 0.161235 0.986916i \(-0.448452\pi\)
0.161235 + 0.986916i \(0.448452\pi\)
\(860\) 0 0
\(861\) 50.9813 1.73744
\(862\) 0 0
\(863\) 18.7459 0.638118 0.319059 0.947735i \(-0.396633\pi\)
0.319059 + 0.947735i \(0.396633\pi\)
\(864\) 0 0
\(865\) −23.2203 −0.789513
\(866\) 0 0
\(867\) 122.836 4.17174
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 8.37894 0.283910
\(872\) 0 0
\(873\) −86.5220 −2.92832
\(874\) 0 0
\(875\) −21.9190 −0.740998
\(876\) 0 0
\(877\) 0.740973 0.0250209 0.0125104 0.999922i \(-0.496018\pi\)
0.0125104 + 0.999922i \(0.496018\pi\)
\(878\) 0 0
\(879\) −32.9180 −1.11030
\(880\) 0 0
\(881\) −25.4342 −0.856899 −0.428450 0.903566i \(-0.640940\pi\)
−0.428450 + 0.903566i \(0.640940\pi\)
\(882\) 0 0
\(883\) −5.05448 −0.170097 −0.0850485 0.996377i \(-0.527105\pi\)
−0.0850485 + 0.996377i \(0.527105\pi\)
\(884\) 0 0
\(885\) 2.40164 0.0807303
\(886\) 0 0
\(887\) 7.21513 0.242260 0.121130 0.992637i \(-0.461348\pi\)
0.121130 + 0.992637i \(0.461348\pi\)
\(888\) 0 0
\(889\) −18.9358 −0.635087
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.40622 0.247840
\(894\) 0 0
\(895\) −37.3613 −1.24885
\(896\) 0 0
\(897\) 26.4368 0.882698
\(898\) 0 0
\(899\) −0.704017 −0.0234803
\(900\) 0 0
\(901\) −81.5716 −2.71754
\(902\) 0 0
\(903\) −15.1994 −0.505805
\(904\) 0 0
\(905\) −31.7251 −1.05458
\(906\) 0 0
\(907\) −56.5190 −1.87668 −0.938341 0.345712i \(-0.887637\pi\)
−0.938341 + 0.345712i \(0.887637\pi\)
\(908\) 0 0
\(909\) 30.3024 1.00507
\(910\) 0 0
\(911\) −53.5531 −1.77429 −0.887147 0.461487i \(-0.847316\pi\)
−0.887147 + 0.461487i \(0.847316\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −15.4542 −0.510902
\(916\) 0 0
\(917\) −12.2987 −0.406139
\(918\) 0 0
\(919\) 16.2472 0.535946 0.267973 0.963426i \(-0.413646\pi\)
0.267973 + 0.963426i \(0.413646\pi\)
\(920\) 0 0
\(921\) 39.1987 1.29164
\(922\) 0 0
\(923\) −25.2151 −0.829964
\(924\) 0 0
\(925\) −7.39619 −0.243185
\(926\) 0 0
\(927\) 57.0931 1.87518
\(928\) 0 0
\(929\) −25.5616 −0.838650 −0.419325 0.907836i \(-0.637733\pi\)
−0.419325 + 0.907836i \(0.637733\pi\)
\(930\) 0 0
\(931\) 3.52093 0.115394
\(932\) 0 0
\(933\) 58.4304 1.91293
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 37.2756 1.21774 0.608871 0.793269i \(-0.291623\pi\)
0.608871 + 0.793269i \(0.291623\pi\)
\(938\) 0 0
\(939\) −37.2793 −1.21657
\(940\) 0 0
\(941\) 14.0711 0.458706 0.229353 0.973343i \(-0.426339\pi\)
0.229353 + 0.973343i \(0.426339\pi\)
\(942\) 0 0
\(943\) 17.4477 0.568176
\(944\) 0 0
\(945\) 15.2902 0.497391
\(946\) 0 0
\(947\) −42.8042 −1.39095 −0.695475 0.718550i \(-0.744806\pi\)
−0.695475 + 0.718550i \(0.744806\pi\)
\(948\) 0 0
\(949\) −26.8947 −0.873040
\(950\) 0 0
\(951\) −24.3238 −0.788754
\(952\) 0 0
\(953\) 54.3682 1.76116 0.880579 0.473899i \(-0.157154\pi\)
0.880579 + 0.473899i \(0.157154\pi\)
\(954\) 0 0
\(955\) −5.07012 −0.164065
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −32.7851 −1.05868
\(960\) 0 0
\(961\) −30.9446 −0.998213
\(962\) 0 0
\(963\) 12.2603 0.395082
\(964\) 0 0
\(965\) −33.8767 −1.09053
\(966\) 0 0
\(967\) −33.3309 −1.07185 −0.535925 0.844266i \(-0.680037\pi\)
−0.535925 + 0.844266i \(0.680037\pi\)
\(968\) 0 0
\(969\) −21.8927 −0.703293
\(970\) 0 0
\(971\) −61.1816 −1.96341 −0.981706 0.190404i \(-0.939020\pi\)
−0.981706 + 0.190404i \(0.939020\pi\)
\(972\) 0 0
\(973\) 38.3966 1.23094
\(974\) 0 0
\(975\) −38.6873 −1.23898
\(976\) 0 0
\(977\) 16.5055 0.528057 0.264029 0.964515i \(-0.414949\pi\)
0.264029 + 0.964515i \(0.414949\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −39.9146 −1.27438
\(982\) 0 0
\(983\) −12.1534 −0.387635 −0.193817 0.981038i \(-0.562087\pi\)
−0.193817 + 0.981038i \(0.562087\pi\)
\(984\) 0 0
\(985\) 13.1583 0.419257
\(986\) 0 0
\(987\) −38.8108 −1.23536
\(988\) 0 0
\(989\) −5.20182 −0.165408
\(990\) 0 0
\(991\) 52.1321 1.65603 0.828016 0.560705i \(-0.189470\pi\)
0.828016 + 0.560705i \(0.189470\pi\)
\(992\) 0 0
\(993\) 4.94154 0.156815
\(994\) 0 0
\(995\) 29.9503 0.949487
\(996\) 0 0
\(997\) −10.2550 −0.324780 −0.162390 0.986727i \(-0.551920\pi\)
−0.162390 + 0.986727i \(0.551920\pi\)
\(998\) 0 0
\(999\) 14.9888 0.474226
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.v.1.13 yes 14
11.10 odd 2 9196.2.a.u.1.13 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9196.2.a.u.1.13 14 11.10 odd 2
9196.2.a.v.1.13 yes 14 1.1 even 1 trivial