Properties

Label 9196.2.a.u.1.9
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9196,2,Mod(1,9196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9196.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,-2,0,-6,0,-4,0,12,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} - 25 x^{12} + 52 x^{11} + 222 x^{10} - 492 x^{9} - 800 x^{8} + 1984 x^{7} + 854 x^{6} + \cdots + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-0.280760\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.280760 q^{3} +1.39648 q^{5} +1.54858 q^{7} -2.92117 q^{9} -1.91235 q^{13} +0.392077 q^{15} +0.813559 q^{17} +1.00000 q^{19} +0.434779 q^{21} +2.02620 q^{23} -3.04983 q^{25} -1.66243 q^{27} -8.17401 q^{29} +9.56752 q^{31} +2.16257 q^{35} -10.7516 q^{37} -0.536912 q^{39} +1.31964 q^{41} -1.86077 q^{43} -4.07937 q^{45} +3.67963 q^{47} -4.60190 q^{49} +0.228415 q^{51} +8.16070 q^{53} +0.280760 q^{57} -6.79179 q^{59} -0.315351 q^{61} -4.52367 q^{63} -2.67057 q^{65} +3.73653 q^{67} +0.568876 q^{69} -13.6592 q^{71} -15.4134 q^{73} -0.856270 q^{75} +5.29213 q^{79} +8.29678 q^{81} +8.84752 q^{83} +1.13612 q^{85} -2.29493 q^{87} +7.43563 q^{89} -2.96143 q^{91} +2.68617 q^{93} +1.39648 q^{95} -5.01854 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{3} - 6 q^{5} - 4 q^{7} + 12 q^{9} - 4 q^{13} + 2 q^{15} - 8 q^{17} + 14 q^{19} - 18 q^{21} - 2 q^{23} + 8 q^{25} + 10 q^{27} + 4 q^{29} - 2 q^{31} - 24 q^{35} - 10 q^{37} - 24 q^{39} - 4 q^{41}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.280760 0.162097 0.0810484 0.996710i \(-0.474173\pi\)
0.0810484 + 0.996710i \(0.474173\pi\)
\(4\) 0 0
\(5\) 1.39648 0.624527 0.312263 0.949996i \(-0.398913\pi\)
0.312263 + 0.949996i \(0.398913\pi\)
\(6\) 0 0
\(7\) 1.54858 0.585308 0.292654 0.956218i \(-0.405462\pi\)
0.292654 + 0.956218i \(0.405462\pi\)
\(8\) 0 0
\(9\) −2.92117 −0.973725
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −1.91235 −0.530391 −0.265196 0.964195i \(-0.585437\pi\)
−0.265196 + 0.964195i \(0.585437\pi\)
\(14\) 0 0
\(15\) 0.392077 0.101234
\(16\) 0 0
\(17\) 0.813559 0.197317 0.0986585 0.995121i \(-0.468545\pi\)
0.0986585 + 0.995121i \(0.468545\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0.434779 0.0948765
\(22\) 0 0
\(23\) 2.02620 0.422492 0.211246 0.977433i \(-0.432248\pi\)
0.211246 + 0.977433i \(0.432248\pi\)
\(24\) 0 0
\(25\) −3.04983 −0.609966
\(26\) 0 0
\(27\) −1.66243 −0.319934
\(28\) 0 0
\(29\) −8.17401 −1.51788 −0.758938 0.651163i \(-0.774281\pi\)
−0.758938 + 0.651163i \(0.774281\pi\)
\(30\) 0 0
\(31\) 9.56752 1.71838 0.859189 0.511659i \(-0.170969\pi\)
0.859189 + 0.511659i \(0.170969\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.16257 0.365540
\(36\) 0 0
\(37\) −10.7516 −1.76755 −0.883777 0.467908i \(-0.845008\pi\)
−0.883777 + 0.467908i \(0.845008\pi\)
\(38\) 0 0
\(39\) −0.536912 −0.0859747
\(40\) 0 0
\(41\) 1.31964 0.206094 0.103047 0.994677i \(-0.467141\pi\)
0.103047 + 0.994677i \(0.467141\pi\)
\(42\) 0 0
\(43\) −1.86077 −0.283765 −0.141883 0.989883i \(-0.545316\pi\)
−0.141883 + 0.989883i \(0.545316\pi\)
\(44\) 0 0
\(45\) −4.07937 −0.608117
\(46\) 0 0
\(47\) 3.67963 0.536730 0.268365 0.963317i \(-0.413517\pi\)
0.268365 + 0.963317i \(0.413517\pi\)
\(48\) 0 0
\(49\) −4.60190 −0.657415
\(50\) 0 0
\(51\) 0.228415 0.0319844
\(52\) 0 0
\(53\) 8.16070 1.12096 0.560479 0.828168i \(-0.310617\pi\)
0.560479 + 0.828168i \(0.310617\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.280760 0.0371875
\(58\) 0 0
\(59\) −6.79179 −0.884216 −0.442108 0.896962i \(-0.645769\pi\)
−0.442108 + 0.896962i \(0.645769\pi\)
\(60\) 0 0
\(61\) −0.315351 −0.0403765 −0.0201883 0.999796i \(-0.506427\pi\)
−0.0201883 + 0.999796i \(0.506427\pi\)
\(62\) 0 0
\(63\) −4.52367 −0.569929
\(64\) 0 0
\(65\) −2.67057 −0.331244
\(66\) 0 0
\(67\) 3.73653 0.456490 0.228245 0.973604i \(-0.426701\pi\)
0.228245 + 0.973604i \(0.426701\pi\)
\(68\) 0 0
\(69\) 0.568876 0.0684846
\(70\) 0 0
\(71\) −13.6592 −1.62105 −0.810525 0.585705i \(-0.800818\pi\)
−0.810525 + 0.585705i \(0.800818\pi\)
\(72\) 0 0
\(73\) −15.4134 −1.80400 −0.902002 0.431731i \(-0.857903\pi\)
−0.902002 + 0.431731i \(0.857903\pi\)
\(74\) 0 0
\(75\) −0.856270 −0.0988736
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5.29213 0.595411 0.297706 0.954658i \(-0.403779\pi\)
0.297706 + 0.954658i \(0.403779\pi\)
\(80\) 0 0
\(81\) 8.29678 0.921864
\(82\) 0 0
\(83\) 8.84752 0.971141 0.485571 0.874197i \(-0.338612\pi\)
0.485571 + 0.874197i \(0.338612\pi\)
\(84\) 0 0
\(85\) 1.13612 0.123230
\(86\) 0 0
\(87\) −2.29493 −0.246043
\(88\) 0 0
\(89\) 7.43563 0.788175 0.394088 0.919073i \(-0.371061\pi\)
0.394088 + 0.919073i \(0.371061\pi\)
\(90\) 0 0
\(91\) −2.96143 −0.310442
\(92\) 0 0
\(93\) 2.68617 0.278543
\(94\) 0 0
\(95\) 1.39648 0.143276
\(96\) 0 0
\(97\) −5.01854 −0.509555 −0.254778 0.967000i \(-0.582002\pi\)
−0.254778 + 0.967000i \(0.582002\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −19.5446 −1.94476 −0.972381 0.233399i \(-0.925015\pi\)
−0.972381 + 0.233399i \(0.925015\pi\)
\(102\) 0 0
\(103\) 8.70528 0.857757 0.428878 0.903362i \(-0.358909\pi\)
0.428878 + 0.903362i \(0.358909\pi\)
\(104\) 0 0
\(105\) 0.607161 0.0592529
\(106\) 0 0
\(107\) 11.5632 1.11786 0.558929 0.829216i \(-0.311213\pi\)
0.558929 + 0.829216i \(0.311213\pi\)
\(108\) 0 0
\(109\) −3.97367 −0.380609 −0.190304 0.981725i \(-0.560947\pi\)
−0.190304 + 0.981725i \(0.560947\pi\)
\(110\) 0 0
\(111\) −3.01862 −0.286515
\(112\) 0 0
\(113\) −14.1577 −1.33185 −0.665925 0.746019i \(-0.731963\pi\)
−0.665925 + 0.746019i \(0.731963\pi\)
\(114\) 0 0
\(115\) 2.82956 0.263858
\(116\) 0 0
\(117\) 5.58632 0.516455
\(118\) 0 0
\(119\) 1.25986 0.115491
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0.370503 0.0334071
\(124\) 0 0
\(125\) −11.2415 −1.00547
\(126\) 0 0
\(127\) −17.1116 −1.51841 −0.759204 0.650853i \(-0.774411\pi\)
−0.759204 + 0.650853i \(0.774411\pi\)
\(128\) 0 0
\(129\) −0.522430 −0.0459974
\(130\) 0 0
\(131\) −6.30045 −0.550473 −0.275236 0.961377i \(-0.588756\pi\)
−0.275236 + 0.961377i \(0.588756\pi\)
\(132\) 0 0
\(133\) 1.54858 0.134279
\(134\) 0 0
\(135\) −2.32155 −0.199808
\(136\) 0 0
\(137\) 1.63865 0.139999 0.0699996 0.997547i \(-0.477700\pi\)
0.0699996 + 0.997547i \(0.477700\pi\)
\(138\) 0 0
\(139\) −8.26174 −0.700751 −0.350376 0.936609i \(-0.613946\pi\)
−0.350376 + 0.936609i \(0.613946\pi\)
\(140\) 0 0
\(141\) 1.03309 0.0870022
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −11.4149 −0.947953
\(146\) 0 0
\(147\) −1.29203 −0.106565
\(148\) 0 0
\(149\) 16.3438 1.33894 0.669470 0.742839i \(-0.266521\pi\)
0.669470 + 0.742839i \(0.266521\pi\)
\(150\) 0 0
\(151\) −8.89783 −0.724095 −0.362047 0.932160i \(-0.617922\pi\)
−0.362047 + 0.932160i \(0.617922\pi\)
\(152\) 0 0
\(153\) −2.37655 −0.192132
\(154\) 0 0
\(155\) 13.3609 1.07317
\(156\) 0 0
\(157\) 16.1817 1.29144 0.645719 0.763575i \(-0.276558\pi\)
0.645719 + 0.763575i \(0.276558\pi\)
\(158\) 0 0
\(159\) 2.29120 0.181704
\(160\) 0 0
\(161\) 3.13773 0.247288
\(162\) 0 0
\(163\) −15.3690 −1.20379 −0.601896 0.798575i \(-0.705588\pi\)
−0.601896 + 0.798575i \(0.705588\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −21.2424 −1.64379 −0.821894 0.569640i \(-0.807083\pi\)
−0.821894 + 0.569640i \(0.807083\pi\)
\(168\) 0 0
\(169\) −9.34290 −0.718685
\(170\) 0 0
\(171\) −2.92117 −0.223388
\(172\) 0 0
\(173\) −10.8900 −0.827949 −0.413974 0.910289i \(-0.635860\pi\)
−0.413974 + 0.910289i \(0.635860\pi\)
\(174\) 0 0
\(175\) −4.72291 −0.357018
\(176\) 0 0
\(177\) −1.90686 −0.143329
\(178\) 0 0
\(179\) 21.9372 1.63966 0.819832 0.572604i \(-0.194067\pi\)
0.819832 + 0.572604i \(0.194067\pi\)
\(180\) 0 0
\(181\) 16.1819 1.20279 0.601394 0.798952i \(-0.294612\pi\)
0.601394 + 0.798952i \(0.294612\pi\)
\(182\) 0 0
\(183\) −0.0885378 −0.00654490
\(184\) 0 0
\(185\) −15.0145 −1.10388
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2.57440 −0.187260
\(190\) 0 0
\(191\) −6.36343 −0.460442 −0.230221 0.973138i \(-0.573945\pi\)
−0.230221 + 0.973138i \(0.573945\pi\)
\(192\) 0 0
\(193\) −6.13627 −0.441698 −0.220849 0.975308i \(-0.570883\pi\)
−0.220849 + 0.975308i \(0.570883\pi\)
\(194\) 0 0
\(195\) −0.749789 −0.0536935
\(196\) 0 0
\(197\) −17.3529 −1.23634 −0.618172 0.786043i \(-0.712126\pi\)
−0.618172 + 0.786043i \(0.712126\pi\)
\(198\) 0 0
\(199\) 10.0901 0.715271 0.357636 0.933861i \(-0.383583\pi\)
0.357636 + 0.933861i \(0.383583\pi\)
\(200\) 0 0
\(201\) 1.04907 0.0739955
\(202\) 0 0
\(203\) −12.6581 −0.888424
\(204\) 0 0
\(205\) 1.84286 0.128711
\(206\) 0 0
\(207\) −5.91889 −0.411391
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −13.7559 −0.946995 −0.473497 0.880795i \(-0.657009\pi\)
−0.473497 + 0.880795i \(0.657009\pi\)
\(212\) 0 0
\(213\) −3.83496 −0.262767
\(214\) 0 0
\(215\) −2.59854 −0.177219
\(216\) 0 0
\(217\) 14.8161 1.00578
\(218\) 0 0
\(219\) −4.32747 −0.292423
\(220\) 0 0
\(221\) −1.55581 −0.104655
\(222\) 0 0
\(223\) 17.3651 1.16285 0.581425 0.813600i \(-0.302495\pi\)
0.581425 + 0.813600i \(0.302495\pi\)
\(224\) 0 0
\(225\) 8.90909 0.593939
\(226\) 0 0
\(227\) 9.42256 0.625398 0.312699 0.949852i \(-0.398767\pi\)
0.312699 + 0.949852i \(0.398767\pi\)
\(228\) 0 0
\(229\) −1.12627 −0.0744262 −0.0372131 0.999307i \(-0.511848\pi\)
−0.0372131 + 0.999307i \(0.511848\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.06620 −0.462922 −0.231461 0.972844i \(-0.574351\pi\)
−0.231461 + 0.972844i \(0.574351\pi\)
\(234\) 0 0
\(235\) 5.13855 0.335202
\(236\) 0 0
\(237\) 1.48582 0.0965143
\(238\) 0 0
\(239\) −5.99198 −0.387589 −0.193794 0.981042i \(-0.562079\pi\)
−0.193794 + 0.981042i \(0.562079\pi\)
\(240\) 0 0
\(241\) 8.55077 0.550803 0.275402 0.961329i \(-0.411189\pi\)
0.275402 + 0.961329i \(0.411189\pi\)
\(242\) 0 0
\(243\) 7.31668 0.469366
\(244\) 0 0
\(245\) −6.42649 −0.410573
\(246\) 0 0
\(247\) −1.91235 −0.121680
\(248\) 0 0
\(249\) 2.48403 0.157419
\(250\) 0 0
\(251\) 16.1775 1.02111 0.510557 0.859844i \(-0.329439\pi\)
0.510557 + 0.859844i \(0.329439\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0.318977 0.0199751
\(256\) 0 0
\(257\) −7.89892 −0.492721 −0.246361 0.969178i \(-0.579235\pi\)
−0.246361 + 0.969178i \(0.579235\pi\)
\(258\) 0 0
\(259\) −16.6497 −1.03456
\(260\) 0 0
\(261\) 23.8777 1.47799
\(262\) 0 0
\(263\) −27.1918 −1.67672 −0.838359 0.545119i \(-0.816485\pi\)
−0.838359 + 0.545119i \(0.816485\pi\)
\(264\) 0 0
\(265\) 11.3963 0.700069
\(266\) 0 0
\(267\) 2.08763 0.127761
\(268\) 0 0
\(269\) −13.4995 −0.823077 −0.411539 0.911392i \(-0.635008\pi\)
−0.411539 + 0.911392i \(0.635008\pi\)
\(270\) 0 0
\(271\) −30.0892 −1.82779 −0.913895 0.405952i \(-0.866940\pi\)
−0.913895 + 0.405952i \(0.866940\pi\)
\(272\) 0 0
\(273\) −0.831450 −0.0503217
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 22.5348 1.35399 0.676993 0.735990i \(-0.263283\pi\)
0.676993 + 0.735990i \(0.263283\pi\)
\(278\) 0 0
\(279\) −27.9484 −1.67323
\(280\) 0 0
\(281\) −8.55599 −0.510408 −0.255204 0.966887i \(-0.582143\pi\)
−0.255204 + 0.966887i \(0.582143\pi\)
\(282\) 0 0
\(283\) −24.5265 −1.45795 −0.728974 0.684541i \(-0.760002\pi\)
−0.728974 + 0.684541i \(0.760002\pi\)
\(284\) 0 0
\(285\) 0.392077 0.0232246
\(286\) 0 0
\(287\) 2.04357 0.120628
\(288\) 0 0
\(289\) −16.3381 −0.961066
\(290\) 0 0
\(291\) −1.40900 −0.0825973
\(292\) 0 0
\(293\) −13.0556 −0.762719 −0.381359 0.924427i \(-0.624544\pi\)
−0.381359 + 0.924427i \(0.624544\pi\)
\(294\) 0 0
\(295\) −9.48463 −0.552216
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.87482 −0.224086
\(300\) 0 0
\(301\) −2.88155 −0.166090
\(302\) 0 0
\(303\) −5.48734 −0.315240
\(304\) 0 0
\(305\) −0.440382 −0.0252162
\(306\) 0 0
\(307\) −7.02305 −0.400827 −0.200413 0.979711i \(-0.564229\pi\)
−0.200413 + 0.979711i \(0.564229\pi\)
\(308\) 0 0
\(309\) 2.44409 0.139040
\(310\) 0 0
\(311\) 13.8113 0.783169 0.391585 0.920142i \(-0.371927\pi\)
0.391585 + 0.920142i \(0.371927\pi\)
\(312\) 0 0
\(313\) −19.8394 −1.12139 −0.560696 0.828022i \(-0.689466\pi\)
−0.560696 + 0.828022i \(0.689466\pi\)
\(314\) 0 0
\(315\) −6.31723 −0.355936
\(316\) 0 0
\(317\) −3.38250 −0.189980 −0.0949901 0.995478i \(-0.530282\pi\)
−0.0949901 + 0.995478i \(0.530282\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 3.24648 0.181201
\(322\) 0 0
\(323\) 0.813559 0.0452676
\(324\) 0 0
\(325\) 5.83236 0.323521
\(326\) 0 0
\(327\) −1.11565 −0.0616954
\(328\) 0 0
\(329\) 5.69820 0.314152
\(330\) 0 0
\(331\) 17.8084 0.978836 0.489418 0.872049i \(-0.337209\pi\)
0.489418 + 0.872049i \(0.337209\pi\)
\(332\) 0 0
\(333\) 31.4073 1.72111
\(334\) 0 0
\(335\) 5.21800 0.285090
\(336\) 0 0
\(337\) 28.1729 1.53468 0.767338 0.641243i \(-0.221581\pi\)
0.767338 + 0.641243i \(0.221581\pi\)
\(338\) 0 0
\(339\) −3.97493 −0.215888
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −17.9665 −0.970098
\(344\) 0 0
\(345\) 0.794427 0.0427705
\(346\) 0 0
\(347\) 26.3141 1.41261 0.706307 0.707905i \(-0.250360\pi\)
0.706307 + 0.707905i \(0.250360\pi\)
\(348\) 0 0
\(349\) 5.26265 0.281703 0.140852 0.990031i \(-0.455016\pi\)
0.140852 + 0.990031i \(0.455016\pi\)
\(350\) 0 0
\(351\) 3.17915 0.169690
\(352\) 0 0
\(353\) 14.7064 0.782742 0.391371 0.920233i \(-0.372001\pi\)
0.391371 + 0.920233i \(0.372001\pi\)
\(354\) 0 0
\(355\) −19.0749 −1.01239
\(356\) 0 0
\(357\) 0.353718 0.0187207
\(358\) 0 0
\(359\) 13.4174 0.708143 0.354072 0.935218i \(-0.384797\pi\)
0.354072 + 0.935218i \(0.384797\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −21.5246 −1.12665
\(366\) 0 0
\(367\) −4.65868 −0.243181 −0.121591 0.992580i \(-0.538799\pi\)
−0.121591 + 0.992580i \(0.538799\pi\)
\(368\) 0 0
\(369\) −3.85491 −0.200678
\(370\) 0 0
\(371\) 12.6375 0.656106
\(372\) 0 0
\(373\) −6.59506 −0.341479 −0.170740 0.985316i \(-0.554616\pi\)
−0.170740 + 0.985316i \(0.554616\pi\)
\(374\) 0 0
\(375\) −3.15615 −0.162983
\(376\) 0 0
\(377\) 15.6316 0.805068
\(378\) 0 0
\(379\) −23.5367 −1.20900 −0.604501 0.796605i \(-0.706627\pi\)
−0.604501 + 0.796605i \(0.706627\pi\)
\(380\) 0 0
\(381\) −4.80424 −0.246129
\(382\) 0 0
\(383\) −21.7688 −1.11234 −0.556168 0.831070i \(-0.687729\pi\)
−0.556168 + 0.831070i \(0.687729\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.43564 0.276309
\(388\) 0 0
\(389\) 9.18188 0.465540 0.232770 0.972532i \(-0.425221\pi\)
0.232770 + 0.972532i \(0.425221\pi\)
\(390\) 0 0
\(391\) 1.64844 0.0833650
\(392\) 0 0
\(393\) −1.76891 −0.0892298
\(394\) 0 0
\(395\) 7.39038 0.371850
\(396\) 0 0
\(397\) 26.2997 1.31994 0.659972 0.751290i \(-0.270568\pi\)
0.659972 + 0.751290i \(0.270568\pi\)
\(398\) 0 0
\(399\) 0.434779 0.0217662
\(400\) 0 0
\(401\) 29.8018 1.48823 0.744115 0.668052i \(-0.232872\pi\)
0.744115 + 0.668052i \(0.232872\pi\)
\(402\) 0 0
\(403\) −18.2965 −0.911413
\(404\) 0 0
\(405\) 11.5863 0.575729
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −3.57964 −0.177002 −0.0885009 0.996076i \(-0.528208\pi\)
−0.0885009 + 0.996076i \(0.528208\pi\)
\(410\) 0 0
\(411\) 0.460067 0.0226934
\(412\) 0 0
\(413\) −10.5176 −0.517538
\(414\) 0 0
\(415\) 12.3554 0.606504
\(416\) 0 0
\(417\) −2.31956 −0.113590
\(418\) 0 0
\(419\) −2.47979 −0.121146 −0.0605728 0.998164i \(-0.519293\pi\)
−0.0605728 + 0.998164i \(0.519293\pi\)
\(420\) 0 0
\(421\) 29.9072 1.45759 0.728795 0.684732i \(-0.240081\pi\)
0.728795 + 0.684732i \(0.240081\pi\)
\(422\) 0 0
\(423\) −10.7489 −0.522627
\(424\) 0 0
\(425\) −2.48122 −0.120357
\(426\) 0 0
\(427\) −0.488345 −0.0236327
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.05631 0.339890 0.169945 0.985454i \(-0.445641\pi\)
0.169945 + 0.985454i \(0.445641\pi\)
\(432\) 0 0
\(433\) −30.9744 −1.48854 −0.744268 0.667881i \(-0.767201\pi\)
−0.744268 + 0.667881i \(0.767201\pi\)
\(434\) 0 0
\(435\) −3.20484 −0.153660
\(436\) 0 0
\(437\) 2.02620 0.0969264
\(438\) 0 0
\(439\) 3.40633 0.162575 0.0812876 0.996691i \(-0.474097\pi\)
0.0812876 + 0.996691i \(0.474097\pi\)
\(440\) 0 0
\(441\) 13.4430 0.640141
\(442\) 0 0
\(443\) −4.06793 −0.193273 −0.0966365 0.995320i \(-0.530808\pi\)
−0.0966365 + 0.995320i \(0.530808\pi\)
\(444\) 0 0
\(445\) 10.3837 0.492236
\(446\) 0 0
\(447\) 4.58869 0.217038
\(448\) 0 0
\(449\) −15.8124 −0.746234 −0.373117 0.927784i \(-0.621711\pi\)
−0.373117 + 0.927784i \(0.621711\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −2.49815 −0.117373
\(454\) 0 0
\(455\) −4.13559 −0.193879
\(456\) 0 0
\(457\) 26.9233 1.25942 0.629710 0.776830i \(-0.283174\pi\)
0.629710 + 0.776830i \(0.283174\pi\)
\(458\) 0 0
\(459\) −1.35248 −0.0631285
\(460\) 0 0
\(461\) −30.8729 −1.43789 −0.718947 0.695065i \(-0.755375\pi\)
−0.718947 + 0.695065i \(0.755375\pi\)
\(462\) 0 0
\(463\) 30.4823 1.41663 0.708316 0.705895i \(-0.249455\pi\)
0.708316 + 0.705895i \(0.249455\pi\)
\(464\) 0 0
\(465\) 3.75120 0.173958
\(466\) 0 0
\(467\) 16.6342 0.769738 0.384869 0.922971i \(-0.374247\pi\)
0.384869 + 0.922971i \(0.374247\pi\)
\(468\) 0 0
\(469\) 5.78631 0.267187
\(470\) 0 0
\(471\) 4.54316 0.209338
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −3.04983 −0.139936
\(476\) 0 0
\(477\) −23.8388 −1.09151
\(478\) 0 0
\(479\) −28.6404 −1.30861 −0.654306 0.756230i \(-0.727039\pi\)
−0.654306 + 0.756230i \(0.727039\pi\)
\(480\) 0 0
\(481\) 20.5609 0.937496
\(482\) 0 0
\(483\) 0.880950 0.0400846
\(484\) 0 0
\(485\) −7.00831 −0.318231
\(486\) 0 0
\(487\) 28.1115 1.27385 0.636926 0.770925i \(-0.280206\pi\)
0.636926 + 0.770925i \(0.280206\pi\)
\(488\) 0 0
\(489\) −4.31499 −0.195131
\(490\) 0 0
\(491\) −13.7752 −0.621667 −0.310833 0.950464i \(-0.600608\pi\)
−0.310833 + 0.950464i \(0.600608\pi\)
\(492\) 0 0
\(493\) −6.65004 −0.299503
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −21.1524 −0.948813
\(498\) 0 0
\(499\) 18.9349 0.847644 0.423822 0.905745i \(-0.360688\pi\)
0.423822 + 0.905745i \(0.360688\pi\)
\(500\) 0 0
\(501\) −5.96402 −0.266453
\(502\) 0 0
\(503\) −17.8005 −0.793686 −0.396843 0.917886i \(-0.629894\pi\)
−0.396843 + 0.917886i \(0.629894\pi\)
\(504\) 0 0
\(505\) −27.2937 −1.21456
\(506\) 0 0
\(507\) −2.62311 −0.116496
\(508\) 0 0
\(509\) −9.20783 −0.408130 −0.204065 0.978957i \(-0.565415\pi\)
−0.204065 + 0.978957i \(0.565415\pi\)
\(510\) 0 0
\(511\) −23.8689 −1.05590
\(512\) 0 0
\(513\) −1.66243 −0.0733980
\(514\) 0 0
\(515\) 12.1568 0.535692
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −3.05746 −0.134208
\(520\) 0 0
\(521\) −17.5391 −0.768404 −0.384202 0.923249i \(-0.625523\pi\)
−0.384202 + 0.923249i \(0.625523\pi\)
\(522\) 0 0
\(523\) 17.0616 0.746053 0.373027 0.927821i \(-0.378320\pi\)
0.373027 + 0.927821i \(0.378320\pi\)
\(524\) 0 0
\(525\) −1.32600 −0.0578715
\(526\) 0 0
\(527\) 7.78374 0.339065
\(528\) 0 0
\(529\) −18.8945 −0.821500
\(530\) 0 0
\(531\) 19.8400 0.860983
\(532\) 0 0
\(533\) −2.52362 −0.109310
\(534\) 0 0
\(535\) 16.1478 0.698132
\(536\) 0 0
\(537\) 6.15909 0.265784
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −29.1641 −1.25386 −0.626932 0.779074i \(-0.715690\pi\)
−0.626932 + 0.779074i \(0.715690\pi\)
\(542\) 0 0
\(543\) 4.54322 0.194968
\(544\) 0 0
\(545\) −5.54917 −0.237700
\(546\) 0 0
\(547\) 5.77207 0.246796 0.123398 0.992357i \(-0.460621\pi\)
0.123398 + 0.992357i \(0.460621\pi\)
\(548\) 0 0
\(549\) 0.921194 0.0393156
\(550\) 0 0
\(551\) −8.17401 −0.348224
\(552\) 0 0
\(553\) 8.19528 0.348499
\(554\) 0 0
\(555\) −4.21546 −0.178936
\(556\) 0 0
\(557\) −24.3211 −1.03052 −0.515259 0.857034i \(-0.672304\pi\)
−0.515259 + 0.857034i \(0.672304\pi\)
\(558\) 0 0
\(559\) 3.55845 0.150507
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 34.1863 1.44078 0.720390 0.693569i \(-0.243963\pi\)
0.720390 + 0.693569i \(0.243963\pi\)
\(564\) 0 0
\(565\) −19.7711 −0.831775
\(566\) 0 0
\(567\) 12.8482 0.539574
\(568\) 0 0
\(569\) 21.2140 0.889339 0.444669 0.895695i \(-0.353321\pi\)
0.444669 + 0.895695i \(0.353321\pi\)
\(570\) 0 0
\(571\) 0.929659 0.0389050 0.0194525 0.999811i \(-0.493808\pi\)
0.0194525 + 0.999811i \(0.493808\pi\)
\(572\) 0 0
\(573\) −1.78660 −0.0746361
\(574\) 0 0
\(575\) −6.17958 −0.257706
\(576\) 0 0
\(577\) −22.9321 −0.954676 −0.477338 0.878720i \(-0.658398\pi\)
−0.477338 + 0.878720i \(0.658398\pi\)
\(578\) 0 0
\(579\) −1.72282 −0.0715979
\(580\) 0 0
\(581\) 13.7011 0.568417
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 7.80120 0.322540
\(586\) 0 0
\(587\) −16.1694 −0.667383 −0.333692 0.942682i \(-0.608294\pi\)
−0.333692 + 0.942682i \(0.608294\pi\)
\(588\) 0 0
\(589\) 9.56752 0.394223
\(590\) 0 0
\(591\) −4.87200 −0.200407
\(592\) 0 0
\(593\) −5.39959 −0.221734 −0.110867 0.993835i \(-0.535363\pi\)
−0.110867 + 0.993835i \(0.535363\pi\)
\(594\) 0 0
\(595\) 1.75937 0.0721273
\(596\) 0 0
\(597\) 2.83291 0.115943
\(598\) 0 0
\(599\) −27.7206 −1.13263 −0.566316 0.824188i \(-0.691632\pi\)
−0.566316 + 0.824188i \(0.691632\pi\)
\(600\) 0 0
\(601\) 25.2903 1.03161 0.515807 0.856705i \(-0.327492\pi\)
0.515807 + 0.856705i \(0.327492\pi\)
\(602\) 0 0
\(603\) −10.9151 −0.444495
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0.454023 0.0184282 0.00921412 0.999958i \(-0.497067\pi\)
0.00921412 + 0.999958i \(0.497067\pi\)
\(608\) 0 0
\(609\) −3.55388 −0.144011
\(610\) 0 0
\(611\) −7.03676 −0.284677
\(612\) 0 0
\(613\) −9.41112 −0.380111 −0.190056 0.981773i \(-0.560867\pi\)
−0.190056 + 0.981773i \(0.560867\pi\)
\(614\) 0 0
\(615\) 0.517401 0.0208636
\(616\) 0 0
\(617\) −3.03058 −0.122006 −0.0610032 0.998138i \(-0.519430\pi\)
−0.0610032 + 0.998138i \(0.519430\pi\)
\(618\) 0 0
\(619\) 30.5630 1.22843 0.614215 0.789139i \(-0.289473\pi\)
0.614215 + 0.789139i \(0.289473\pi\)
\(620\) 0 0
\(621\) −3.36842 −0.135170
\(622\) 0 0
\(623\) 11.5147 0.461325
\(624\) 0 0
\(625\) −0.449359 −0.0179744
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8.74707 −0.348769
\(630\) 0 0
\(631\) −28.7212 −1.14337 −0.571686 0.820473i \(-0.693710\pi\)
−0.571686 + 0.820473i \(0.693710\pi\)
\(632\) 0 0
\(633\) −3.86210 −0.153505
\(634\) 0 0
\(635\) −23.8960 −0.948286
\(636\) 0 0
\(637\) 8.80047 0.348687
\(638\) 0 0
\(639\) 39.9009 1.57846
\(640\) 0 0
\(641\) −13.4178 −0.529973 −0.264986 0.964252i \(-0.585367\pi\)
−0.264986 + 0.964252i \(0.585367\pi\)
\(642\) 0 0
\(643\) −28.0617 −1.10664 −0.553322 0.832967i \(-0.686640\pi\)
−0.553322 + 0.832967i \(0.686640\pi\)
\(644\) 0 0
\(645\) −0.729565 −0.0287266
\(646\) 0 0
\(647\) 25.8426 1.01598 0.507988 0.861364i \(-0.330389\pi\)
0.507988 + 0.861364i \(0.330389\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 4.15975 0.163034
\(652\) 0 0
\(653\) −26.1957 −1.02512 −0.512558 0.858653i \(-0.671302\pi\)
−0.512558 + 0.858653i \(0.671302\pi\)
\(654\) 0 0
\(655\) −8.79847 −0.343785
\(656\) 0 0
\(657\) 45.0253 1.75660
\(658\) 0 0
\(659\) −14.1081 −0.549573 −0.274787 0.961505i \(-0.588607\pi\)
−0.274787 + 0.961505i \(0.588607\pi\)
\(660\) 0 0
\(661\) −9.37691 −0.364719 −0.182360 0.983232i \(-0.558374\pi\)
−0.182360 + 0.983232i \(0.558374\pi\)
\(662\) 0 0
\(663\) −0.436810 −0.0169643
\(664\) 0 0
\(665\) 2.16257 0.0838607
\(666\) 0 0
\(667\) −16.5622 −0.641291
\(668\) 0 0
\(669\) 4.87541 0.188494
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 29.3059 1.12966 0.564830 0.825208i \(-0.308942\pi\)
0.564830 + 0.825208i \(0.308942\pi\)
\(674\) 0 0
\(675\) 5.07013 0.195149
\(676\) 0 0
\(677\) 41.3932 1.59087 0.795435 0.606039i \(-0.207242\pi\)
0.795435 + 0.606039i \(0.207242\pi\)
\(678\) 0 0
\(679\) −7.77160 −0.298247
\(680\) 0 0
\(681\) 2.64548 0.101375
\(682\) 0 0
\(683\) −5.71863 −0.218817 −0.109409 0.993997i \(-0.534896\pi\)
−0.109409 + 0.993997i \(0.534896\pi\)
\(684\) 0 0
\(685\) 2.28835 0.0874333
\(686\) 0 0
\(687\) −0.316212 −0.0120642
\(688\) 0 0
\(689\) −15.6062 −0.594547
\(690\) 0 0
\(691\) 4.60103 0.175032 0.0875158 0.996163i \(-0.472107\pi\)
0.0875158 + 0.996163i \(0.472107\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.5374 −0.437638
\(696\) 0 0
\(697\) 1.07361 0.0406658
\(698\) 0 0
\(699\) −1.98391 −0.0750382
\(700\) 0 0
\(701\) 32.1896 1.21578 0.607892 0.794020i \(-0.292015\pi\)
0.607892 + 0.794020i \(0.292015\pi\)
\(702\) 0 0
\(703\) −10.7516 −0.405505
\(704\) 0 0
\(705\) 1.44270 0.0543352
\(706\) 0 0
\(707\) −30.2664 −1.13828
\(708\) 0 0
\(709\) −2.40894 −0.0904698 −0.0452349 0.998976i \(-0.514404\pi\)
−0.0452349 + 0.998976i \(0.514404\pi\)
\(710\) 0 0
\(711\) −15.4592 −0.579767
\(712\) 0 0
\(713\) 19.3857 0.726001
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.68231 −0.0628269
\(718\) 0 0
\(719\) 21.8792 0.815958 0.407979 0.912991i \(-0.366234\pi\)
0.407979 + 0.912991i \(0.366234\pi\)
\(720\) 0 0
\(721\) 13.4808 0.502052
\(722\) 0 0
\(723\) 2.40071 0.0892834
\(724\) 0 0
\(725\) 24.9294 0.925853
\(726\) 0 0
\(727\) 8.08443 0.299835 0.149917 0.988699i \(-0.452099\pi\)
0.149917 + 0.988699i \(0.452099\pi\)
\(728\) 0 0
\(729\) −22.8361 −0.845782
\(730\) 0 0
\(731\) −1.51385 −0.0559917
\(732\) 0 0
\(733\) −26.9676 −0.996073 −0.498036 0.867156i \(-0.665945\pi\)
−0.498036 + 0.867156i \(0.665945\pi\)
\(734\) 0 0
\(735\) −1.80430 −0.0665526
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −51.8537 −1.90747 −0.953735 0.300650i \(-0.902797\pi\)
−0.953735 + 0.300650i \(0.902797\pi\)
\(740\) 0 0
\(741\) −0.536912 −0.0197240
\(742\) 0 0
\(743\) 17.8998 0.656681 0.328340 0.944559i \(-0.393511\pi\)
0.328340 + 0.944559i \(0.393511\pi\)
\(744\) 0 0
\(745\) 22.8239 0.836203
\(746\) 0 0
\(747\) −25.8451 −0.945624
\(748\) 0 0
\(749\) 17.9065 0.654291
\(750\) 0 0
\(751\) −38.2873 −1.39712 −0.698562 0.715550i \(-0.746176\pi\)
−0.698562 + 0.715550i \(0.746176\pi\)
\(752\) 0 0
\(753\) 4.54199 0.165519
\(754\) 0 0
\(755\) −12.4257 −0.452216
\(756\) 0 0
\(757\) −8.08613 −0.293896 −0.146948 0.989144i \(-0.546945\pi\)
−0.146948 + 0.989144i \(0.546945\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −32.4610 −1.17671 −0.588354 0.808603i \(-0.700224\pi\)
−0.588354 + 0.808603i \(0.700224\pi\)
\(762\) 0 0
\(763\) −6.15354 −0.222773
\(764\) 0 0
\(765\) −3.31881 −0.119992
\(766\) 0 0
\(767\) 12.9883 0.468981
\(768\) 0 0
\(769\) −23.3940 −0.843610 −0.421805 0.906687i \(-0.638603\pi\)
−0.421805 + 0.906687i \(0.638603\pi\)
\(770\) 0 0
\(771\) −2.21770 −0.0798685
\(772\) 0 0
\(773\) −21.1569 −0.760962 −0.380481 0.924789i \(-0.624242\pi\)
−0.380481 + 0.924789i \(0.624242\pi\)
\(774\) 0 0
\(775\) −29.1793 −1.04815
\(776\) 0 0
\(777\) −4.67457 −0.167699
\(778\) 0 0
\(779\) 1.31964 0.0472811
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 13.5887 0.485620
\(784\) 0 0
\(785\) 22.5974 0.806537
\(786\) 0 0
\(787\) −4.51618 −0.160985 −0.0804923 0.996755i \(-0.525649\pi\)
−0.0804923 + 0.996755i \(0.525649\pi\)
\(788\) 0 0
\(789\) −7.63436 −0.271790
\(790\) 0 0
\(791\) −21.9244 −0.779542
\(792\) 0 0
\(793\) 0.603062 0.0214154
\(794\) 0 0
\(795\) 3.19962 0.113479
\(796\) 0 0
\(797\) 9.76784 0.345995 0.172997 0.984922i \(-0.444655\pi\)
0.172997 + 0.984922i \(0.444655\pi\)
\(798\) 0 0
\(799\) 2.99360 0.105906
\(800\) 0 0
\(801\) −21.7208 −0.767465
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 4.38180 0.154438
\(806\) 0 0
\(807\) −3.79011 −0.133418
\(808\) 0 0
\(809\) −1.22447 −0.0430499 −0.0215250 0.999768i \(-0.506852\pi\)
−0.0215250 + 0.999768i \(0.506852\pi\)
\(810\) 0 0
\(811\) −3.21197 −0.112787 −0.0563937 0.998409i \(-0.517960\pi\)
−0.0563937 + 0.998409i \(0.517960\pi\)
\(812\) 0 0
\(813\) −8.44784 −0.296279
\(814\) 0 0
\(815\) −21.4625 −0.751800
\(816\) 0 0
\(817\) −1.86077 −0.0651002
\(818\) 0 0
\(819\) 8.65085 0.302285
\(820\) 0 0
\(821\) 50.7554 1.77138 0.885689 0.464280i \(-0.153687\pi\)
0.885689 + 0.464280i \(0.153687\pi\)
\(822\) 0 0
\(823\) −29.7434 −1.03679 −0.518394 0.855142i \(-0.673470\pi\)
−0.518394 + 0.855142i \(0.673470\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.6503 −0.648534 −0.324267 0.945966i \(-0.605118\pi\)
−0.324267 + 0.945966i \(0.605118\pi\)
\(828\) 0 0
\(829\) −9.35960 −0.325072 −0.162536 0.986703i \(-0.551967\pi\)
−0.162536 + 0.986703i \(0.551967\pi\)
\(830\) 0 0
\(831\) 6.32687 0.219477
\(832\) 0 0
\(833\) −3.74392 −0.129719
\(834\) 0 0
\(835\) −29.6647 −1.02659
\(836\) 0 0
\(837\) −15.9053 −0.549768
\(838\) 0 0
\(839\) −23.1854 −0.800449 −0.400225 0.916417i \(-0.631068\pi\)
−0.400225 + 0.916417i \(0.631068\pi\)
\(840\) 0 0
\(841\) 37.8144 1.30394
\(842\) 0 0
\(843\) −2.40218 −0.0827354
\(844\) 0 0
\(845\) −13.0472 −0.448838
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −6.88605 −0.236329
\(850\) 0 0
\(851\) −21.7849 −0.746778
\(852\) 0 0
\(853\) −39.2780 −1.34485 −0.672427 0.740164i \(-0.734748\pi\)
−0.672427 + 0.740164i \(0.734748\pi\)
\(854\) 0 0
\(855\) −4.07937 −0.139512
\(856\) 0 0
\(857\) −2.60116 −0.0888538 −0.0444269 0.999013i \(-0.514146\pi\)
−0.0444269 + 0.999013i \(0.514146\pi\)
\(858\) 0 0
\(859\) −7.87368 −0.268647 −0.134323 0.990938i \(-0.542886\pi\)
−0.134323 + 0.990938i \(0.542886\pi\)
\(860\) 0 0
\(861\) 0.573752 0.0195534
\(862\) 0 0
\(863\) 52.0501 1.77181 0.885903 0.463871i \(-0.153540\pi\)
0.885903 + 0.463871i \(0.153540\pi\)
\(864\) 0 0
\(865\) −15.2077 −0.517076
\(866\) 0 0
\(867\) −4.58709 −0.155786
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −7.14557 −0.242118
\(872\) 0 0
\(873\) 14.6600 0.496167
\(874\) 0 0
\(875\) −17.4083 −0.588508
\(876\) 0 0
\(877\) −35.3885 −1.19499 −0.597493 0.801874i \(-0.703836\pi\)
−0.597493 + 0.801874i \(0.703836\pi\)
\(878\) 0 0
\(879\) −3.66550 −0.123634
\(880\) 0 0
\(881\) −54.2450 −1.82756 −0.913780 0.406210i \(-0.866850\pi\)
−0.913780 + 0.406210i \(0.866850\pi\)
\(882\) 0 0
\(883\) 23.6535 0.796005 0.398003 0.917384i \(-0.369704\pi\)
0.398003 + 0.917384i \(0.369704\pi\)
\(884\) 0 0
\(885\) −2.66290 −0.0895125
\(886\) 0 0
\(887\) −58.4570 −1.96279 −0.981397 0.191990i \(-0.938506\pi\)
−0.981397 + 0.191990i \(0.938506\pi\)
\(888\) 0 0
\(889\) −26.4986 −0.888735
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.67963 0.123134
\(894\) 0 0
\(895\) 30.6350 1.02401
\(896\) 0 0
\(897\) −1.08789 −0.0363237
\(898\) 0 0
\(899\) −78.2050 −2.60828
\(900\) 0 0
\(901\) 6.63921 0.221184
\(902\) 0 0
\(903\) −0.809024 −0.0269226
\(904\) 0 0
\(905\) 22.5977 0.751173
\(906\) 0 0
\(907\) −0.0872244 −0.00289624 −0.00144812 0.999999i \(-0.500461\pi\)
−0.00144812 + 0.999999i \(0.500461\pi\)
\(908\) 0 0
\(909\) 57.0932 1.89366
\(910\) 0 0
\(911\) 13.5146 0.447759 0.223880 0.974617i \(-0.428128\pi\)
0.223880 + 0.974617i \(0.428128\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −0.123642 −0.00408746
\(916\) 0 0
\(917\) −9.75674 −0.322196
\(918\) 0 0
\(919\) −18.4582 −0.608879 −0.304440 0.952532i \(-0.598469\pi\)
−0.304440 + 0.952532i \(0.598469\pi\)
\(920\) 0 0
\(921\) −1.97179 −0.0649727
\(922\) 0 0
\(923\) 26.1212 0.859791
\(924\) 0 0
\(925\) 32.7906 1.07815
\(926\) 0 0
\(927\) −25.4296 −0.835219
\(928\) 0 0
\(929\) 51.8030 1.69960 0.849801 0.527103i \(-0.176722\pi\)
0.849801 + 0.527103i \(0.176722\pi\)
\(930\) 0 0
\(931\) −4.60190 −0.150821
\(932\) 0 0
\(933\) 3.87767 0.126949
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 11.5185 0.376295 0.188147 0.982141i \(-0.439752\pi\)
0.188147 + 0.982141i \(0.439752\pi\)
\(938\) 0 0
\(939\) −5.57012 −0.181774
\(940\) 0 0
\(941\) −40.2273 −1.31137 −0.655687 0.755033i \(-0.727621\pi\)
−0.655687 + 0.755033i \(0.727621\pi\)
\(942\) 0 0
\(943\) 2.67386 0.0870730
\(944\) 0 0
\(945\) −3.59511 −0.116949
\(946\) 0 0
\(947\) 15.1209 0.491362 0.245681 0.969351i \(-0.420988\pi\)
0.245681 + 0.969351i \(0.420988\pi\)
\(948\) 0 0
\(949\) 29.4759 0.956829
\(950\) 0 0
\(951\) −0.949670 −0.0307952
\(952\) 0 0
\(953\) 37.9503 1.22933 0.614666 0.788787i \(-0.289291\pi\)
0.614666 + 0.788787i \(0.289291\pi\)
\(954\) 0 0
\(955\) −8.88644 −0.287558
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.53758 0.0819427
\(960\) 0 0
\(961\) 60.5374 1.95282
\(962\) 0 0
\(963\) −33.7781 −1.08849
\(964\) 0 0
\(965\) −8.56920 −0.275852
\(966\) 0 0
\(967\) 51.8117 1.66615 0.833076 0.553159i \(-0.186578\pi\)
0.833076 + 0.553159i \(0.186578\pi\)
\(968\) 0 0
\(969\) 0.228415 0.00733774
\(970\) 0 0
\(971\) 54.4061 1.74597 0.872987 0.487744i \(-0.162180\pi\)
0.872987 + 0.487744i \(0.162180\pi\)
\(972\) 0 0
\(973\) −12.7939 −0.410155
\(974\) 0 0
\(975\) 1.63749 0.0524417
\(976\) 0 0
\(977\) 15.4380 0.493906 0.246953 0.969027i \(-0.420571\pi\)
0.246953 + 0.969027i \(0.420571\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 11.6078 0.370608
\(982\) 0 0
\(983\) 2.96466 0.0945580 0.0472790 0.998882i \(-0.484945\pi\)
0.0472790 + 0.998882i \(0.484945\pi\)
\(984\) 0 0
\(985\) −24.2331 −0.772130
\(986\) 0 0
\(987\) 1.59983 0.0509230
\(988\) 0 0
\(989\) −3.77030 −0.119889
\(990\) 0 0
\(991\) 30.0556 0.954747 0.477374 0.878700i \(-0.341589\pi\)
0.477374 + 0.878700i \(0.341589\pi\)
\(992\) 0 0
\(993\) 4.99987 0.158666
\(994\) 0 0
\(995\) 14.0907 0.446706
\(996\) 0 0
\(997\) 21.9787 0.696074 0.348037 0.937481i \(-0.386848\pi\)
0.348037 + 0.937481i \(0.386848\pi\)
\(998\) 0 0
\(999\) 17.8738 0.565501
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.u.1.9 14
11.10 odd 2 9196.2.a.v.1.9 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9196.2.a.u.1.9 14 1.1 even 1 trivial
9196.2.a.v.1.9 yes 14 11.10 odd 2