Properties

Label 9196.2.a.u.1.7
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9196,2,Mod(1,9196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9196.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,-2,0,-6,0,-4,0,12,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} - 25 x^{12} + 52 x^{11} + 222 x^{10} - 492 x^{9} - 800 x^{8} + 1984 x^{7} + 854 x^{6} + \cdots + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(0.317193\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.317193 q^{3} -0.877997 q^{5} +2.82891 q^{7} -2.89939 q^{9} -2.34917 q^{13} +0.278495 q^{15} +2.83540 q^{17} +1.00000 q^{19} -0.897311 q^{21} -2.35099 q^{23} -4.22912 q^{25} +1.87125 q^{27} -2.13112 q^{29} +6.84533 q^{31} -2.48378 q^{35} +0.900818 q^{37} +0.745139 q^{39} +0.541889 q^{41} +11.2750 q^{43} +2.54566 q^{45} -10.2520 q^{47} +1.00273 q^{49} -0.899369 q^{51} -5.45175 q^{53} -0.317193 q^{57} +4.66778 q^{59} +5.60226 q^{61} -8.20211 q^{63} +2.06256 q^{65} -8.36602 q^{67} +0.745719 q^{69} +5.63271 q^{71} +3.87935 q^{73} +1.34145 q^{75} +2.29580 q^{79} +8.10462 q^{81} -4.51212 q^{83} -2.48947 q^{85} +0.675978 q^{87} -17.2031 q^{89} -6.64558 q^{91} -2.17129 q^{93} -0.877997 q^{95} -3.48740 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{3} - 6 q^{5} - 4 q^{7} + 12 q^{9} - 4 q^{13} + 2 q^{15} - 8 q^{17} + 14 q^{19} - 18 q^{21} - 2 q^{23} + 8 q^{25} + 10 q^{27} + 4 q^{29} - 2 q^{31} - 24 q^{35} - 10 q^{37} - 24 q^{39} - 4 q^{41}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.317193 −0.183132 −0.0915658 0.995799i \(-0.529187\pi\)
−0.0915658 + 0.995799i \(0.529187\pi\)
\(4\) 0 0
\(5\) −0.877997 −0.392652 −0.196326 0.980539i \(-0.562901\pi\)
−0.196326 + 0.980539i \(0.562901\pi\)
\(6\) 0 0
\(7\) 2.82891 1.06923 0.534614 0.845097i \(-0.320457\pi\)
0.534614 + 0.845097i \(0.320457\pi\)
\(8\) 0 0
\(9\) −2.89939 −0.966463
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −2.34917 −0.651541 −0.325771 0.945449i \(-0.605624\pi\)
−0.325771 + 0.945449i \(0.605624\pi\)
\(14\) 0 0
\(15\) 0.278495 0.0719071
\(16\) 0 0
\(17\) 2.83540 0.687685 0.343843 0.939027i \(-0.388271\pi\)
0.343843 + 0.939027i \(0.388271\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −0.897311 −0.195809
\(22\) 0 0
\(23\) −2.35099 −0.490216 −0.245108 0.969496i \(-0.578823\pi\)
−0.245108 + 0.969496i \(0.578823\pi\)
\(24\) 0 0
\(25\) −4.22912 −0.845824
\(26\) 0 0
\(27\) 1.87125 0.360122
\(28\) 0 0
\(29\) −2.13112 −0.395739 −0.197870 0.980228i \(-0.563402\pi\)
−0.197870 + 0.980228i \(0.563402\pi\)
\(30\) 0 0
\(31\) 6.84533 1.22946 0.614729 0.788738i \(-0.289265\pi\)
0.614729 + 0.788738i \(0.289265\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.48378 −0.419835
\(36\) 0 0
\(37\) 0.900818 0.148093 0.0740467 0.997255i \(-0.476409\pi\)
0.0740467 + 0.997255i \(0.476409\pi\)
\(38\) 0 0
\(39\) 0.745139 0.119318
\(40\) 0 0
\(41\) 0.541889 0.0846288 0.0423144 0.999104i \(-0.486527\pi\)
0.0423144 + 0.999104i \(0.486527\pi\)
\(42\) 0 0
\(43\) 11.2750 1.71941 0.859707 0.510787i \(-0.170646\pi\)
0.859707 + 0.510787i \(0.170646\pi\)
\(44\) 0 0
\(45\) 2.54566 0.379484
\(46\) 0 0
\(47\) −10.2520 −1.49541 −0.747704 0.664032i \(-0.768844\pi\)
−0.747704 + 0.664032i \(0.768844\pi\)
\(48\) 0 0
\(49\) 1.00273 0.143248
\(50\) 0 0
\(51\) −0.899369 −0.125937
\(52\) 0 0
\(53\) −5.45175 −0.748855 −0.374428 0.927256i \(-0.622161\pi\)
−0.374428 + 0.927256i \(0.622161\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.317193 −0.0420133
\(58\) 0 0
\(59\) 4.66778 0.607693 0.303846 0.952721i \(-0.401729\pi\)
0.303846 + 0.952721i \(0.401729\pi\)
\(60\) 0 0
\(61\) 5.60226 0.717296 0.358648 0.933473i \(-0.383238\pi\)
0.358648 + 0.933473i \(0.383238\pi\)
\(62\) 0 0
\(63\) −8.20211 −1.03337
\(64\) 0 0
\(65\) 2.06256 0.255829
\(66\) 0 0
\(67\) −8.36602 −1.02207 −0.511036 0.859559i \(-0.670738\pi\)
−0.511036 + 0.859559i \(0.670738\pi\)
\(68\) 0 0
\(69\) 0.745719 0.0897740
\(70\) 0 0
\(71\) 5.63271 0.668479 0.334240 0.942488i \(-0.391520\pi\)
0.334240 + 0.942488i \(0.391520\pi\)
\(72\) 0 0
\(73\) 3.87935 0.454044 0.227022 0.973890i \(-0.427101\pi\)
0.227022 + 0.973890i \(0.427101\pi\)
\(74\) 0 0
\(75\) 1.34145 0.154897
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.29580 0.258298 0.129149 0.991625i \(-0.458775\pi\)
0.129149 + 0.991625i \(0.458775\pi\)
\(80\) 0 0
\(81\) 8.10462 0.900513
\(82\) 0 0
\(83\) −4.51212 −0.495269 −0.247635 0.968853i \(-0.579653\pi\)
−0.247635 + 0.968853i \(0.579653\pi\)
\(84\) 0 0
\(85\) −2.48947 −0.270021
\(86\) 0 0
\(87\) 0.675978 0.0724724
\(88\) 0 0
\(89\) −17.2031 −1.82353 −0.911765 0.410713i \(-0.865280\pi\)
−0.911765 + 0.410713i \(0.865280\pi\)
\(90\) 0 0
\(91\) −6.64558 −0.696646
\(92\) 0 0
\(93\) −2.17129 −0.225153
\(94\) 0 0
\(95\) −0.877997 −0.0900806
\(96\) 0 0
\(97\) −3.48740 −0.354092 −0.177046 0.984203i \(-0.556654\pi\)
−0.177046 + 0.984203i \(0.556654\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.1658 −1.11104 −0.555521 0.831502i \(-0.687481\pi\)
−0.555521 + 0.831502i \(0.687481\pi\)
\(102\) 0 0
\(103\) 5.59731 0.551519 0.275760 0.961227i \(-0.411071\pi\)
0.275760 + 0.961227i \(0.411071\pi\)
\(104\) 0 0
\(105\) 0.787837 0.0768850
\(106\) 0 0
\(107\) 12.3542 1.19432 0.597162 0.802120i \(-0.296295\pi\)
0.597162 + 0.802120i \(0.296295\pi\)
\(108\) 0 0
\(109\) −18.2381 −1.74689 −0.873446 0.486921i \(-0.838120\pi\)
−0.873446 + 0.486921i \(0.838120\pi\)
\(110\) 0 0
\(111\) −0.285733 −0.0271206
\(112\) 0 0
\(113\) −8.76910 −0.824927 −0.412464 0.910974i \(-0.635332\pi\)
−0.412464 + 0.910974i \(0.635332\pi\)
\(114\) 0 0
\(115\) 2.06416 0.192484
\(116\) 0 0
\(117\) 6.81114 0.629690
\(118\) 0 0
\(119\) 8.02109 0.735292
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −0.171884 −0.0154982
\(124\) 0 0
\(125\) 8.10314 0.724767
\(126\) 0 0
\(127\) 12.2389 1.08602 0.543012 0.839725i \(-0.317284\pi\)
0.543012 + 0.839725i \(0.317284\pi\)
\(128\) 0 0
\(129\) −3.57634 −0.314879
\(130\) 0 0
\(131\) −7.89245 −0.689567 −0.344783 0.938682i \(-0.612048\pi\)
−0.344783 + 0.938682i \(0.612048\pi\)
\(132\) 0 0
\(133\) 2.82891 0.245298
\(134\) 0 0
\(135\) −1.64295 −0.141403
\(136\) 0 0
\(137\) −14.1177 −1.20615 −0.603077 0.797683i \(-0.706059\pi\)
−0.603077 + 0.797683i \(0.706059\pi\)
\(138\) 0 0
\(139\) −5.80757 −0.492592 −0.246296 0.969195i \(-0.579214\pi\)
−0.246296 + 0.969195i \(0.579214\pi\)
\(140\) 0 0
\(141\) 3.25187 0.273857
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.87112 0.155388
\(146\) 0 0
\(147\) −0.318060 −0.0262332
\(148\) 0 0
\(149\) −16.4524 −1.34783 −0.673917 0.738807i \(-0.735389\pi\)
−0.673917 + 0.738807i \(0.735389\pi\)
\(150\) 0 0
\(151\) −0.505516 −0.0411383 −0.0205692 0.999788i \(-0.506548\pi\)
−0.0205692 + 0.999788i \(0.506548\pi\)
\(152\) 0 0
\(153\) −8.22092 −0.664622
\(154\) 0 0
\(155\) −6.01018 −0.482750
\(156\) 0 0
\(157\) 7.58210 0.605117 0.302559 0.953131i \(-0.402159\pi\)
0.302559 + 0.953131i \(0.402159\pi\)
\(158\) 0 0
\(159\) 1.72926 0.137139
\(160\) 0 0
\(161\) −6.65075 −0.524152
\(162\) 0 0
\(163\) 13.9486 1.09254 0.546269 0.837610i \(-0.316048\pi\)
0.546269 + 0.837610i \(0.316048\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.42273 −0.419623 −0.209812 0.977742i \(-0.567285\pi\)
−0.209812 + 0.977742i \(0.567285\pi\)
\(168\) 0 0
\(169\) −7.48142 −0.575494
\(170\) 0 0
\(171\) −2.89939 −0.221722
\(172\) 0 0
\(173\) 6.35089 0.482849 0.241425 0.970420i \(-0.422385\pi\)
0.241425 + 0.970420i \(0.422385\pi\)
\(174\) 0 0
\(175\) −11.9638 −0.904378
\(176\) 0 0
\(177\) −1.48059 −0.111288
\(178\) 0 0
\(179\) 12.5833 0.940519 0.470260 0.882528i \(-0.344160\pi\)
0.470260 + 0.882528i \(0.344160\pi\)
\(180\) 0 0
\(181\) −1.44772 −0.107608 −0.0538039 0.998552i \(-0.517135\pi\)
−0.0538039 + 0.998552i \(0.517135\pi\)
\(182\) 0 0
\(183\) −1.77700 −0.131360
\(184\) 0 0
\(185\) −0.790915 −0.0581493
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 5.29359 0.385052
\(190\) 0 0
\(191\) 14.7977 1.07072 0.535360 0.844624i \(-0.320176\pi\)
0.535360 + 0.844624i \(0.320176\pi\)
\(192\) 0 0
\(193\) −13.1943 −0.949745 −0.474873 0.880054i \(-0.657506\pi\)
−0.474873 + 0.880054i \(0.657506\pi\)
\(194\) 0 0
\(195\) −0.654231 −0.0468504
\(196\) 0 0
\(197\) 2.08986 0.148896 0.0744480 0.997225i \(-0.476281\pi\)
0.0744480 + 0.997225i \(0.476281\pi\)
\(198\) 0 0
\(199\) 8.60211 0.609787 0.304894 0.952386i \(-0.401379\pi\)
0.304894 + 0.952386i \(0.401379\pi\)
\(200\) 0 0
\(201\) 2.65365 0.187174
\(202\) 0 0
\(203\) −6.02875 −0.423135
\(204\) 0 0
\(205\) −0.475777 −0.0332297
\(206\) 0 0
\(207\) 6.81644 0.473775
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −10.4197 −0.717322 −0.358661 0.933468i \(-0.616767\pi\)
−0.358661 + 0.933468i \(0.616767\pi\)
\(212\) 0 0
\(213\) −1.78666 −0.122420
\(214\) 0 0
\(215\) −9.89938 −0.675132
\(216\) 0 0
\(217\) 19.3648 1.31457
\(218\) 0 0
\(219\) −1.23051 −0.0831498
\(220\) 0 0
\(221\) −6.66082 −0.448055
\(222\) 0 0
\(223\) −20.0287 −1.34122 −0.670610 0.741811i \(-0.733967\pi\)
−0.670610 + 0.741811i \(0.733967\pi\)
\(224\) 0 0
\(225\) 12.2619 0.817458
\(226\) 0 0
\(227\) −17.0996 −1.13494 −0.567470 0.823394i \(-0.692078\pi\)
−0.567470 + 0.823394i \(0.692078\pi\)
\(228\) 0 0
\(229\) −16.0695 −1.06190 −0.530952 0.847402i \(-0.678166\pi\)
−0.530952 + 0.847402i \(0.678166\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −22.4881 −1.47324 −0.736622 0.676305i \(-0.763580\pi\)
−0.736622 + 0.676305i \(0.763580\pi\)
\(234\) 0 0
\(235\) 9.00123 0.587175
\(236\) 0 0
\(237\) −0.728213 −0.0473025
\(238\) 0 0
\(239\) 9.96162 0.644364 0.322182 0.946678i \(-0.395584\pi\)
0.322182 + 0.946678i \(0.395584\pi\)
\(240\) 0 0
\(241\) −21.1466 −1.36217 −0.681085 0.732205i \(-0.738491\pi\)
−0.681085 + 0.732205i \(0.738491\pi\)
\(242\) 0 0
\(243\) −8.18447 −0.525034
\(244\) 0 0
\(245\) −0.880397 −0.0562465
\(246\) 0 0
\(247\) −2.34917 −0.149474
\(248\) 0 0
\(249\) 1.43121 0.0906995
\(250\) 0 0
\(251\) 1.30438 0.0823315 0.0411658 0.999152i \(-0.486893\pi\)
0.0411658 + 0.999152i \(0.486893\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0.789644 0.0494494
\(256\) 0 0
\(257\) 14.5417 0.907088 0.453544 0.891234i \(-0.350159\pi\)
0.453544 + 0.891234i \(0.350159\pi\)
\(258\) 0 0
\(259\) 2.54833 0.158346
\(260\) 0 0
\(261\) 6.17895 0.382467
\(262\) 0 0
\(263\) −3.67772 −0.226778 −0.113389 0.993551i \(-0.536171\pi\)
−0.113389 + 0.993551i \(0.536171\pi\)
\(264\) 0 0
\(265\) 4.78662 0.294040
\(266\) 0 0
\(267\) 5.45672 0.333946
\(268\) 0 0
\(269\) 16.4799 1.00480 0.502398 0.864636i \(-0.332451\pi\)
0.502398 + 0.864636i \(0.332451\pi\)
\(270\) 0 0
\(271\) −3.23598 −0.196572 −0.0982860 0.995158i \(-0.531336\pi\)
−0.0982860 + 0.995158i \(0.531336\pi\)
\(272\) 0 0
\(273\) 2.10793 0.127578
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4.47856 −0.269091 −0.134545 0.990907i \(-0.542957\pi\)
−0.134545 + 0.990907i \(0.542957\pi\)
\(278\) 0 0
\(279\) −19.8473 −1.18823
\(280\) 0 0
\(281\) 22.4665 1.34024 0.670120 0.742252i \(-0.266242\pi\)
0.670120 + 0.742252i \(0.266242\pi\)
\(282\) 0 0
\(283\) 8.74896 0.520071 0.260036 0.965599i \(-0.416266\pi\)
0.260036 + 0.965599i \(0.416266\pi\)
\(284\) 0 0
\(285\) 0.278495 0.0164966
\(286\) 0 0
\(287\) 1.53295 0.0904875
\(288\) 0 0
\(289\) −8.96052 −0.527089
\(290\) 0 0
\(291\) 1.10618 0.0648454
\(292\) 0 0
\(293\) −9.01052 −0.526400 −0.263200 0.964741i \(-0.584778\pi\)
−0.263200 + 0.964741i \(0.584778\pi\)
\(294\) 0 0
\(295\) −4.09830 −0.238612
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.52287 0.319396
\(300\) 0 0
\(301\) 31.8958 1.83845
\(302\) 0 0
\(303\) 3.54173 0.203467
\(304\) 0 0
\(305\) −4.91877 −0.281648
\(306\) 0 0
\(307\) −25.1681 −1.43642 −0.718209 0.695828i \(-0.755038\pi\)
−0.718209 + 0.695828i \(0.755038\pi\)
\(308\) 0 0
\(309\) −1.77543 −0.101001
\(310\) 0 0
\(311\) 2.66921 0.151357 0.0756784 0.997132i \(-0.475888\pi\)
0.0756784 + 0.997132i \(0.475888\pi\)
\(312\) 0 0
\(313\) 13.5639 0.766675 0.383338 0.923608i \(-0.374775\pi\)
0.383338 + 0.923608i \(0.374775\pi\)
\(314\) 0 0
\(315\) 7.20143 0.405755
\(316\) 0 0
\(317\) −13.3402 −0.749262 −0.374631 0.927174i \(-0.622231\pi\)
−0.374631 + 0.927174i \(0.622231\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −3.91867 −0.218719
\(322\) 0 0
\(323\) 2.83540 0.157766
\(324\) 0 0
\(325\) 9.93490 0.551089
\(326\) 0 0
\(327\) 5.78500 0.319911
\(328\) 0 0
\(329\) −29.0020 −1.59893
\(330\) 0 0
\(331\) −27.3697 −1.50438 −0.752189 0.658948i \(-0.771002\pi\)
−0.752189 + 0.658948i \(0.771002\pi\)
\(332\) 0 0
\(333\) −2.61182 −0.143127
\(334\) 0 0
\(335\) 7.34535 0.401319
\(336\) 0 0
\(337\) 25.8029 1.40557 0.702787 0.711401i \(-0.251939\pi\)
0.702787 + 0.711401i \(0.251939\pi\)
\(338\) 0 0
\(339\) 2.78150 0.151070
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −16.9657 −0.916063
\(344\) 0 0
\(345\) −0.654739 −0.0352500
\(346\) 0 0
\(347\) −27.6620 −1.48498 −0.742488 0.669859i \(-0.766355\pi\)
−0.742488 + 0.669859i \(0.766355\pi\)
\(348\) 0 0
\(349\) −8.88316 −0.475505 −0.237752 0.971326i \(-0.576411\pi\)
−0.237752 + 0.971326i \(0.576411\pi\)
\(350\) 0 0
\(351\) −4.39587 −0.234634
\(352\) 0 0
\(353\) −20.4136 −1.08650 −0.543252 0.839570i \(-0.682807\pi\)
−0.543252 + 0.839570i \(0.682807\pi\)
\(354\) 0 0
\(355\) −4.94550 −0.262480
\(356\) 0 0
\(357\) −2.54424 −0.134655
\(358\) 0 0
\(359\) −37.8649 −1.99843 −0.999215 0.0396106i \(-0.987388\pi\)
−0.999215 + 0.0396106i \(0.987388\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.40606 −0.178281
\(366\) 0 0
\(367\) −6.55003 −0.341909 −0.170955 0.985279i \(-0.554685\pi\)
−0.170955 + 0.985279i \(0.554685\pi\)
\(368\) 0 0
\(369\) −1.57115 −0.0817906
\(370\) 0 0
\(371\) −15.4225 −0.800697
\(372\) 0 0
\(373\) 0.901613 0.0466838 0.0233419 0.999728i \(-0.492569\pi\)
0.0233419 + 0.999728i \(0.492569\pi\)
\(374\) 0 0
\(375\) −2.57026 −0.132728
\(376\) 0 0
\(377\) 5.00636 0.257840
\(378\) 0 0
\(379\) 21.4714 1.10291 0.551455 0.834204i \(-0.314073\pi\)
0.551455 + 0.834204i \(0.314073\pi\)
\(380\) 0 0
\(381\) −3.88209 −0.198885
\(382\) 0 0
\(383\) 14.7379 0.753072 0.376536 0.926402i \(-0.377115\pi\)
0.376536 + 0.926402i \(0.377115\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −32.6905 −1.66175
\(388\) 0 0
\(389\) 8.43484 0.427664 0.213832 0.976871i \(-0.431406\pi\)
0.213832 + 0.976871i \(0.431406\pi\)
\(390\) 0 0
\(391\) −6.66600 −0.337114
\(392\) 0 0
\(393\) 2.50343 0.126281
\(394\) 0 0
\(395\) −2.01571 −0.101421
\(396\) 0 0
\(397\) 14.2657 0.715975 0.357988 0.933726i \(-0.383463\pi\)
0.357988 + 0.933726i \(0.383463\pi\)
\(398\) 0 0
\(399\) −0.897311 −0.0449218
\(400\) 0 0
\(401\) −21.7936 −1.08832 −0.544159 0.838982i \(-0.683151\pi\)
−0.544159 + 0.838982i \(0.683151\pi\)
\(402\) 0 0
\(403\) −16.0808 −0.801042
\(404\) 0 0
\(405\) −7.11583 −0.353589
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −25.0553 −1.23890 −0.619451 0.785035i \(-0.712645\pi\)
−0.619451 + 0.785035i \(0.712645\pi\)
\(410\) 0 0
\(411\) 4.47803 0.220885
\(412\) 0 0
\(413\) 13.2047 0.649762
\(414\) 0 0
\(415\) 3.96163 0.194469
\(416\) 0 0
\(417\) 1.84212 0.0902092
\(418\) 0 0
\(419\) 9.17365 0.448162 0.224081 0.974571i \(-0.428062\pi\)
0.224081 + 0.974571i \(0.428062\pi\)
\(420\) 0 0
\(421\) −23.7192 −1.15600 −0.578001 0.816036i \(-0.696167\pi\)
−0.578001 + 0.816036i \(0.696167\pi\)
\(422\) 0 0
\(423\) 29.7245 1.44526
\(424\) 0 0
\(425\) −11.9912 −0.581661
\(426\) 0 0
\(427\) 15.8483 0.766953
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.74001 0.228318 0.114159 0.993462i \(-0.463583\pi\)
0.114159 + 0.993462i \(0.463583\pi\)
\(432\) 0 0
\(433\) 4.28966 0.206148 0.103074 0.994674i \(-0.467132\pi\)
0.103074 + 0.994674i \(0.467132\pi\)
\(434\) 0 0
\(435\) −0.593506 −0.0284565
\(436\) 0 0
\(437\) −2.35099 −0.112463
\(438\) 0 0
\(439\) −14.5044 −0.692257 −0.346129 0.938187i \(-0.612504\pi\)
−0.346129 + 0.938187i \(0.612504\pi\)
\(440\) 0 0
\(441\) −2.90731 −0.138443
\(442\) 0 0
\(443\) 40.3396 1.91659 0.958297 0.285773i \(-0.0922504\pi\)
0.958297 + 0.285773i \(0.0922504\pi\)
\(444\) 0 0
\(445\) 15.1043 0.716013
\(446\) 0 0
\(447\) 5.21859 0.246831
\(448\) 0 0
\(449\) 7.55299 0.356448 0.178224 0.983990i \(-0.442965\pi\)
0.178224 + 0.983990i \(0.442965\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0.160346 0.00753373
\(454\) 0 0
\(455\) 5.83480 0.273540
\(456\) 0 0
\(457\) 14.9425 0.698979 0.349489 0.936940i \(-0.386355\pi\)
0.349489 + 0.936940i \(0.386355\pi\)
\(458\) 0 0
\(459\) 5.30573 0.247650
\(460\) 0 0
\(461\) 2.32084 0.108092 0.0540461 0.998538i \(-0.482788\pi\)
0.0540461 + 0.998538i \(0.482788\pi\)
\(462\) 0 0
\(463\) −21.5839 −1.00309 −0.501544 0.865132i \(-0.667235\pi\)
−0.501544 + 0.865132i \(0.667235\pi\)
\(464\) 0 0
\(465\) 1.90639 0.0884067
\(466\) 0 0
\(467\) −4.03378 −0.186661 −0.0933306 0.995635i \(-0.529751\pi\)
−0.0933306 + 0.995635i \(0.529751\pi\)
\(468\) 0 0
\(469\) −23.6667 −1.09283
\(470\) 0 0
\(471\) −2.40499 −0.110816
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.22912 −0.194045
\(476\) 0 0
\(477\) 15.8067 0.723741
\(478\) 0 0
\(479\) −5.18610 −0.236959 −0.118479 0.992957i \(-0.537802\pi\)
−0.118479 + 0.992957i \(0.537802\pi\)
\(480\) 0 0
\(481\) −2.11617 −0.0964890
\(482\) 0 0
\(483\) 2.10957 0.0959889
\(484\) 0 0
\(485\) 3.06193 0.139035
\(486\) 0 0
\(487\) −17.0907 −0.774455 −0.387228 0.921984i \(-0.626567\pi\)
−0.387228 + 0.921984i \(0.626567\pi\)
\(488\) 0 0
\(489\) −4.42440 −0.200078
\(490\) 0 0
\(491\) 25.9792 1.17243 0.586213 0.810157i \(-0.300618\pi\)
0.586213 + 0.810157i \(0.300618\pi\)
\(492\) 0 0
\(493\) −6.04258 −0.272144
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15.9344 0.714757
\(498\) 0 0
\(499\) 24.7696 1.10884 0.554420 0.832237i \(-0.312940\pi\)
0.554420 + 0.832237i \(0.312940\pi\)
\(500\) 0 0
\(501\) 1.72005 0.0768463
\(502\) 0 0
\(503\) −11.7214 −0.522630 −0.261315 0.965254i \(-0.584156\pi\)
−0.261315 + 0.965254i \(0.584156\pi\)
\(504\) 0 0
\(505\) 9.80357 0.436253
\(506\) 0 0
\(507\) 2.37306 0.105391
\(508\) 0 0
\(509\) −24.1144 −1.06885 −0.534426 0.845215i \(-0.679472\pi\)
−0.534426 + 0.845215i \(0.679472\pi\)
\(510\) 0 0
\(511\) 10.9743 0.485476
\(512\) 0 0
\(513\) 1.87125 0.0826176
\(514\) 0 0
\(515\) −4.91442 −0.216555
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −2.01446 −0.0884250
\(520\) 0 0
\(521\) 27.3411 1.19783 0.598917 0.800811i \(-0.295598\pi\)
0.598917 + 0.800811i \(0.295598\pi\)
\(522\) 0 0
\(523\) −16.0181 −0.700421 −0.350211 0.936671i \(-0.613890\pi\)
−0.350211 + 0.936671i \(0.613890\pi\)
\(524\) 0 0
\(525\) 3.79484 0.165620
\(526\) 0 0
\(527\) 19.4092 0.845480
\(528\) 0 0
\(529\) −17.4728 −0.759689
\(530\) 0 0
\(531\) −13.5337 −0.587312
\(532\) 0 0
\(533\) −1.27299 −0.0551391
\(534\) 0 0
\(535\) −10.8469 −0.468954
\(536\) 0 0
\(537\) −3.99134 −0.172239
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.120066 −0.00516206 −0.00258103 0.999997i \(-0.500822\pi\)
−0.00258103 + 0.999997i \(0.500822\pi\)
\(542\) 0 0
\(543\) 0.459206 0.0197064
\(544\) 0 0
\(545\) 16.0130 0.685921
\(546\) 0 0
\(547\) 13.3381 0.570295 0.285148 0.958484i \(-0.407957\pi\)
0.285148 + 0.958484i \(0.407957\pi\)
\(548\) 0 0
\(549\) −16.2431 −0.693240
\(550\) 0 0
\(551\) −2.13112 −0.0907888
\(552\) 0 0
\(553\) 6.49462 0.276179
\(554\) 0 0
\(555\) 0.250873 0.0106490
\(556\) 0 0
\(557\) −20.2841 −0.859464 −0.429732 0.902956i \(-0.641392\pi\)
−0.429732 + 0.902956i \(0.641392\pi\)
\(558\) 0 0
\(559\) −26.4867 −1.12027
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.67872 −0.155039 −0.0775197 0.996991i \(-0.524700\pi\)
−0.0775197 + 0.996991i \(0.524700\pi\)
\(564\) 0 0
\(565\) 7.69924 0.323910
\(566\) 0 0
\(567\) 22.9272 0.962853
\(568\) 0 0
\(569\) 4.37233 0.183298 0.0916488 0.995791i \(-0.470786\pi\)
0.0916488 + 0.995791i \(0.470786\pi\)
\(570\) 0 0
\(571\) −3.98335 −0.166698 −0.0833490 0.996520i \(-0.526562\pi\)
−0.0833490 + 0.996520i \(0.526562\pi\)
\(572\) 0 0
\(573\) −4.69372 −0.196083
\(574\) 0 0
\(575\) 9.94263 0.414636
\(576\) 0 0
\(577\) −40.1538 −1.67162 −0.835812 0.549016i \(-0.815003\pi\)
−0.835812 + 0.549016i \(0.815003\pi\)
\(578\) 0 0
\(579\) 4.18514 0.173928
\(580\) 0 0
\(581\) −12.7644 −0.529556
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −5.98016 −0.247249
\(586\) 0 0
\(587\) 17.4130 0.718710 0.359355 0.933201i \(-0.382997\pi\)
0.359355 + 0.933201i \(0.382997\pi\)
\(588\) 0 0
\(589\) 6.84533 0.282057
\(590\) 0 0
\(591\) −0.662888 −0.0272676
\(592\) 0 0
\(593\) 3.18264 0.130696 0.0653478 0.997863i \(-0.479184\pi\)
0.0653478 + 0.997863i \(0.479184\pi\)
\(594\) 0 0
\(595\) −7.04249 −0.288714
\(596\) 0 0
\(597\) −2.72853 −0.111671
\(598\) 0 0
\(599\) −33.0196 −1.34914 −0.674571 0.738210i \(-0.735671\pi\)
−0.674571 + 0.738210i \(0.735671\pi\)
\(600\) 0 0
\(601\) 32.1352 1.31082 0.655411 0.755272i \(-0.272495\pi\)
0.655411 + 0.755272i \(0.272495\pi\)
\(602\) 0 0
\(603\) 24.2563 0.987795
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −12.8889 −0.523142 −0.261571 0.965184i \(-0.584241\pi\)
−0.261571 + 0.965184i \(0.584241\pi\)
\(608\) 0 0
\(609\) 1.91228 0.0774895
\(610\) 0 0
\(611\) 24.0836 0.974320
\(612\) 0 0
\(613\) −19.2889 −0.779071 −0.389535 0.921011i \(-0.627364\pi\)
−0.389535 + 0.921011i \(0.627364\pi\)
\(614\) 0 0
\(615\) 0.150913 0.00608541
\(616\) 0 0
\(617\) −43.9564 −1.76962 −0.884809 0.465954i \(-0.845711\pi\)
−0.884809 + 0.465954i \(0.845711\pi\)
\(618\) 0 0
\(619\) −41.4171 −1.66469 −0.832347 0.554255i \(-0.813003\pi\)
−0.832347 + 0.554255i \(0.813003\pi\)
\(620\) 0 0
\(621\) −4.39929 −0.176537
\(622\) 0 0
\(623\) −48.6661 −1.94977
\(624\) 0 0
\(625\) 14.0311 0.561243
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.55418 0.101842
\(630\) 0 0
\(631\) 5.15798 0.205336 0.102668 0.994716i \(-0.467262\pi\)
0.102668 + 0.994716i \(0.467262\pi\)
\(632\) 0 0
\(633\) 3.30506 0.131364
\(634\) 0 0
\(635\) −10.7457 −0.426430
\(636\) 0 0
\(637\) −2.35559 −0.0933317
\(638\) 0 0
\(639\) −16.3314 −0.646061
\(640\) 0 0
\(641\) −19.5232 −0.771119 −0.385560 0.922683i \(-0.625992\pi\)
−0.385560 + 0.922683i \(0.625992\pi\)
\(642\) 0 0
\(643\) 29.2197 1.15231 0.576156 0.817340i \(-0.304552\pi\)
0.576156 + 0.817340i \(0.304552\pi\)
\(644\) 0 0
\(645\) 3.14002 0.123638
\(646\) 0 0
\(647\) −31.3809 −1.23371 −0.616855 0.787076i \(-0.711594\pi\)
−0.616855 + 0.787076i \(0.711594\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −6.14240 −0.240739
\(652\) 0 0
\(653\) 5.41554 0.211926 0.105963 0.994370i \(-0.466207\pi\)
0.105963 + 0.994370i \(0.466207\pi\)
\(654\) 0 0
\(655\) 6.92955 0.270760
\(656\) 0 0
\(657\) −11.2478 −0.438817
\(658\) 0 0
\(659\) 22.0425 0.858654 0.429327 0.903149i \(-0.358751\pi\)
0.429327 + 0.903149i \(0.358751\pi\)
\(660\) 0 0
\(661\) 24.2761 0.944230 0.472115 0.881537i \(-0.343491\pi\)
0.472115 + 0.881537i \(0.343491\pi\)
\(662\) 0 0
\(663\) 2.11277 0.0820531
\(664\) 0 0
\(665\) −2.48378 −0.0963167
\(666\) 0 0
\(667\) 5.01025 0.193998
\(668\) 0 0
\(669\) 6.35296 0.245620
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 8.64827 0.333366 0.166683 0.986010i \(-0.446694\pi\)
0.166683 + 0.986010i \(0.446694\pi\)
\(674\) 0 0
\(675\) −7.91373 −0.304600
\(676\) 0 0
\(677\) −44.8883 −1.72520 −0.862599 0.505888i \(-0.831165\pi\)
−0.862599 + 0.505888i \(0.831165\pi\)
\(678\) 0 0
\(679\) −9.86554 −0.378605
\(680\) 0 0
\(681\) 5.42388 0.207844
\(682\) 0 0
\(683\) −26.1230 −0.999569 −0.499785 0.866150i \(-0.666588\pi\)
−0.499785 + 0.866150i \(0.666588\pi\)
\(684\) 0 0
\(685\) 12.3953 0.473599
\(686\) 0 0
\(687\) 5.09715 0.194468
\(688\) 0 0
\(689\) 12.8071 0.487910
\(690\) 0 0
\(691\) 9.26699 0.352533 0.176266 0.984343i \(-0.443598\pi\)
0.176266 + 0.984343i \(0.443598\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.09903 0.193417
\(696\) 0 0
\(697\) 1.53647 0.0581980
\(698\) 0 0
\(699\) 7.13307 0.269798
\(700\) 0 0
\(701\) 7.11234 0.268630 0.134315 0.990939i \(-0.457117\pi\)
0.134315 + 0.990939i \(0.457117\pi\)
\(702\) 0 0
\(703\) 0.900818 0.0339750
\(704\) 0 0
\(705\) −2.85513 −0.107530
\(706\) 0 0
\(707\) −31.5871 −1.18796
\(708\) 0 0
\(709\) 13.0058 0.488443 0.244222 0.969719i \(-0.421468\pi\)
0.244222 + 0.969719i \(0.421468\pi\)
\(710\) 0 0
\(711\) −6.65642 −0.249635
\(712\) 0 0
\(713\) −16.0933 −0.602700
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −3.15976 −0.118003
\(718\) 0 0
\(719\) −27.1251 −1.01160 −0.505798 0.862652i \(-0.668802\pi\)
−0.505798 + 0.862652i \(0.668802\pi\)
\(720\) 0 0
\(721\) 15.8343 0.589700
\(722\) 0 0
\(723\) 6.70755 0.249456
\(724\) 0 0
\(725\) 9.01277 0.334726
\(726\) 0 0
\(727\) −39.9376 −1.48120 −0.740602 0.671944i \(-0.765460\pi\)
−0.740602 + 0.671944i \(0.765460\pi\)
\(728\) 0 0
\(729\) −21.7178 −0.804363
\(730\) 0 0
\(731\) 31.9690 1.18242
\(732\) 0 0
\(733\) 29.8601 1.10291 0.551454 0.834205i \(-0.314073\pi\)
0.551454 + 0.834205i \(0.314073\pi\)
\(734\) 0 0
\(735\) 0.279256 0.0103005
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −23.1977 −0.853340 −0.426670 0.904407i \(-0.640313\pi\)
−0.426670 + 0.904407i \(0.640313\pi\)
\(740\) 0 0
\(741\) 0.745139 0.0273734
\(742\) 0 0
\(743\) −22.3718 −0.820740 −0.410370 0.911919i \(-0.634601\pi\)
−0.410370 + 0.911919i \(0.634601\pi\)
\(744\) 0 0
\(745\) 14.4452 0.529230
\(746\) 0 0
\(747\) 13.0824 0.478659
\(748\) 0 0
\(749\) 34.9489 1.27701
\(750\) 0 0
\(751\) 43.4017 1.58375 0.791875 0.610684i \(-0.209105\pi\)
0.791875 + 0.610684i \(0.209105\pi\)
\(752\) 0 0
\(753\) −0.413740 −0.0150775
\(754\) 0 0
\(755\) 0.443842 0.0161531
\(756\) 0 0
\(757\) 10.3956 0.377833 0.188916 0.981993i \(-0.439502\pi\)
0.188916 + 0.981993i \(0.439502\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18.6502 −0.676069 −0.338034 0.941134i \(-0.609762\pi\)
−0.338034 + 0.941134i \(0.609762\pi\)
\(762\) 0 0
\(763\) −51.5939 −1.86782
\(764\) 0 0
\(765\) 7.21795 0.260965
\(766\) 0 0
\(767\) −10.9654 −0.395937
\(768\) 0 0
\(769\) 18.4248 0.664414 0.332207 0.943207i \(-0.392207\pi\)
0.332207 + 0.943207i \(0.392207\pi\)
\(770\) 0 0
\(771\) −4.61254 −0.166117
\(772\) 0 0
\(773\) −32.0028 −1.15106 −0.575530 0.817781i \(-0.695204\pi\)
−0.575530 + 0.817781i \(0.695204\pi\)
\(774\) 0 0
\(775\) −28.9497 −1.03991
\(776\) 0 0
\(777\) −0.808314 −0.0289981
\(778\) 0 0
\(779\) 0.541889 0.0194152
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −3.98785 −0.142514
\(784\) 0 0
\(785\) −6.65706 −0.237601
\(786\) 0 0
\(787\) −41.4204 −1.47648 −0.738239 0.674539i \(-0.764342\pi\)
−0.738239 + 0.674539i \(0.764342\pi\)
\(788\) 0 0
\(789\) 1.16655 0.0415302
\(790\) 0 0
\(791\) −24.8070 −0.882035
\(792\) 0 0
\(793\) −13.1606 −0.467348
\(794\) 0 0
\(795\) −1.51828 −0.0538480
\(796\) 0 0
\(797\) −4.03532 −0.142938 −0.0714691 0.997443i \(-0.522769\pi\)
−0.0714691 + 0.997443i \(0.522769\pi\)
\(798\) 0 0
\(799\) −29.0685 −1.02837
\(800\) 0 0
\(801\) 49.8786 1.76237
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 5.83934 0.205810
\(806\) 0 0
\(807\) −5.22731 −0.184010
\(808\) 0 0
\(809\) −51.6820 −1.81704 −0.908521 0.417838i \(-0.862788\pi\)
−0.908521 + 0.417838i \(0.862788\pi\)
\(810\) 0 0
\(811\) −45.8234 −1.60908 −0.804539 0.593900i \(-0.797587\pi\)
−0.804539 + 0.593900i \(0.797587\pi\)
\(812\) 0 0
\(813\) 1.02643 0.0359985
\(814\) 0 0
\(815\) −12.2468 −0.428987
\(816\) 0 0
\(817\) 11.2750 0.394461
\(818\) 0 0
\(819\) 19.2681 0.673282
\(820\) 0 0
\(821\) −0.804568 −0.0280796 −0.0140398 0.999901i \(-0.504469\pi\)
−0.0140398 + 0.999901i \(0.504469\pi\)
\(822\) 0 0
\(823\) 3.97536 0.138572 0.0692861 0.997597i \(-0.477928\pi\)
0.0692861 + 0.997597i \(0.477928\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −8.02261 −0.278974 −0.139487 0.990224i \(-0.544545\pi\)
−0.139487 + 0.990224i \(0.544545\pi\)
\(828\) 0 0
\(829\) 49.4246 1.71659 0.858293 0.513160i \(-0.171525\pi\)
0.858293 + 0.513160i \(0.171525\pi\)
\(830\) 0 0
\(831\) 1.42057 0.0492790
\(832\) 0 0
\(833\) 2.84315 0.0985093
\(834\) 0 0
\(835\) 4.76114 0.164766
\(836\) 0 0
\(837\) 12.8093 0.442754
\(838\) 0 0
\(839\) −41.9061 −1.44676 −0.723379 0.690451i \(-0.757412\pi\)
−0.723379 + 0.690451i \(0.757412\pi\)
\(840\) 0 0
\(841\) −24.4583 −0.843390
\(842\) 0 0
\(843\) −7.12623 −0.245440
\(844\) 0 0
\(845\) 6.56867 0.225969
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −2.77511 −0.0952415
\(850\) 0 0
\(851\) −2.11781 −0.0725978
\(852\) 0 0
\(853\) −3.57735 −0.122486 −0.0612431 0.998123i \(-0.519506\pi\)
−0.0612431 + 0.998123i \(0.519506\pi\)
\(854\) 0 0
\(855\) 2.54566 0.0870596
\(856\) 0 0
\(857\) −36.2460 −1.23814 −0.619070 0.785336i \(-0.712490\pi\)
−0.619070 + 0.785336i \(0.712490\pi\)
\(858\) 0 0
\(859\) 9.66571 0.329790 0.164895 0.986311i \(-0.447272\pi\)
0.164895 + 0.986311i \(0.447272\pi\)
\(860\) 0 0
\(861\) −0.486243 −0.0165711
\(862\) 0 0
\(863\) 5.72843 0.194998 0.0974990 0.995236i \(-0.468916\pi\)
0.0974990 + 0.995236i \(0.468916\pi\)
\(864\) 0 0
\(865\) −5.57606 −0.189592
\(866\) 0 0
\(867\) 2.84222 0.0965267
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 19.6532 0.665922
\(872\) 0 0
\(873\) 10.1113 0.342216
\(874\) 0 0
\(875\) 22.9231 0.774941
\(876\) 0 0
\(877\) 52.2622 1.76477 0.882384 0.470530i \(-0.155937\pi\)
0.882384 + 0.470530i \(0.155937\pi\)
\(878\) 0 0
\(879\) 2.85808 0.0964005
\(880\) 0 0
\(881\) 27.5956 0.929719 0.464859 0.885385i \(-0.346105\pi\)
0.464859 + 0.885385i \(0.346105\pi\)
\(882\) 0 0
\(883\) 10.7870 0.363012 0.181506 0.983390i \(-0.441903\pi\)
0.181506 + 0.983390i \(0.441903\pi\)
\(884\) 0 0
\(885\) 1.29995 0.0436974
\(886\) 0 0
\(887\) −36.0127 −1.20919 −0.604593 0.796534i \(-0.706664\pi\)
−0.604593 + 0.796534i \(0.706664\pi\)
\(888\) 0 0
\(889\) 34.6227 1.16121
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −10.2520 −0.343070
\(894\) 0 0
\(895\) −11.0481 −0.369297
\(896\) 0 0
\(897\) −1.75182 −0.0584915
\(898\) 0 0
\(899\) −14.5882 −0.486545
\(900\) 0 0
\(901\) −15.4579 −0.514977
\(902\) 0 0
\(903\) −10.1171 −0.336678
\(904\) 0 0
\(905\) 1.27109 0.0422525
\(906\) 0 0
\(907\) 3.65075 0.121221 0.0606106 0.998161i \(-0.480695\pi\)
0.0606106 + 0.998161i \(0.480695\pi\)
\(908\) 0 0
\(909\) 32.3741 1.07378
\(910\) 0 0
\(911\) 18.0769 0.598914 0.299457 0.954110i \(-0.403194\pi\)
0.299457 + 0.954110i \(0.403194\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 1.56020 0.0515787
\(916\) 0 0
\(917\) −22.3270 −0.737304
\(918\) 0 0
\(919\) 35.3625 1.16650 0.583250 0.812293i \(-0.301781\pi\)
0.583250 + 0.812293i \(0.301781\pi\)
\(920\) 0 0
\(921\) 7.98314 0.263054
\(922\) 0 0
\(923\) −13.2322 −0.435542
\(924\) 0 0
\(925\) −3.80967 −0.125261
\(926\) 0 0
\(927\) −16.2288 −0.533023
\(928\) 0 0
\(929\) −11.7918 −0.386877 −0.193439 0.981112i \(-0.561964\pi\)
−0.193439 + 0.981112i \(0.561964\pi\)
\(930\) 0 0
\(931\) 1.00273 0.0328633
\(932\) 0 0
\(933\) −0.846655 −0.0277182
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −41.6450 −1.36048 −0.680242 0.732987i \(-0.738125\pi\)
−0.680242 + 0.732987i \(0.738125\pi\)
\(938\) 0 0
\(939\) −4.30237 −0.140402
\(940\) 0 0
\(941\) 10.3339 0.336875 0.168437 0.985712i \(-0.446128\pi\)
0.168437 + 0.985712i \(0.446128\pi\)
\(942\) 0 0
\(943\) −1.27398 −0.0414864
\(944\) 0 0
\(945\) −4.64776 −0.151192
\(946\) 0 0
\(947\) −9.49384 −0.308508 −0.154254 0.988031i \(-0.549297\pi\)
−0.154254 + 0.988031i \(0.549297\pi\)
\(948\) 0 0
\(949\) −9.11324 −0.295828
\(950\) 0 0
\(951\) 4.23143 0.137214
\(952\) 0 0
\(953\) −15.6512 −0.506991 −0.253495 0.967337i \(-0.581580\pi\)
−0.253495 + 0.967337i \(0.581580\pi\)
\(954\) 0 0
\(955\) −12.9923 −0.420421
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −39.9376 −1.28965
\(960\) 0 0
\(961\) 15.8586 0.511567
\(962\) 0 0
\(963\) −35.8196 −1.15427
\(964\) 0 0
\(965\) 11.5845 0.372920
\(966\) 0 0
\(967\) −15.1075 −0.485826 −0.242913 0.970048i \(-0.578103\pi\)
−0.242913 + 0.970048i \(0.578103\pi\)
\(968\) 0 0
\(969\) −0.899369 −0.0288919
\(970\) 0 0
\(971\) 59.8099 1.91939 0.959696 0.281039i \(-0.0906791\pi\)
0.959696 + 0.281039i \(0.0906791\pi\)
\(972\) 0 0
\(973\) −16.4291 −0.526693
\(974\) 0 0
\(975\) −3.15128 −0.100922
\(976\) 0 0
\(977\) −21.1265 −0.675898 −0.337949 0.941164i \(-0.609733\pi\)
−0.337949 + 0.941164i \(0.609733\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 52.8793 1.68831
\(982\) 0 0
\(983\) −19.4586 −0.620634 −0.310317 0.950633i \(-0.600435\pi\)
−0.310317 + 0.950633i \(0.600435\pi\)
\(984\) 0 0
\(985\) −1.83489 −0.0584644
\(986\) 0 0
\(987\) 9.19924 0.292815
\(988\) 0 0
\(989\) −26.5073 −0.842884
\(990\) 0 0
\(991\) 17.5327 0.556945 0.278473 0.960444i \(-0.410172\pi\)
0.278473 + 0.960444i \(0.410172\pi\)
\(992\) 0 0
\(993\) 8.68150 0.275499
\(994\) 0 0
\(995\) −7.55263 −0.239434
\(996\) 0 0
\(997\) 62.3254 1.97387 0.986933 0.161130i \(-0.0515140\pi\)
0.986933 + 0.161130i \(0.0515140\pi\)
\(998\) 0 0
\(999\) 1.68565 0.0533317
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.u.1.7 14
11.10 odd 2 9196.2.a.v.1.7 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9196.2.a.u.1.7 14 1.1 even 1 trivial
9196.2.a.v.1.7 yes 14 11.10 odd 2