Properties

Label 9196.2.a.s.1.9
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9196,2,Mod(1,9196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9196.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,8,0,-5,0,2,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 16x^{8} - 3x^{7} + 84x^{6} + 16x^{5} - 174x^{4} - 16x^{3} + 122x^{2} - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 836)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-2.16122\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.16122 q^{3} +0.343496 q^{5} -0.282327 q^{7} +1.67087 q^{9} -2.09639 q^{13} +0.742372 q^{15} +4.01817 q^{17} +1.00000 q^{19} -0.610170 q^{21} -3.47332 q^{23} -4.88201 q^{25} -2.87254 q^{27} -2.22445 q^{29} -8.57304 q^{31} -0.0969782 q^{35} -4.79841 q^{37} -4.53077 q^{39} +9.22214 q^{41} -11.3823 q^{43} +0.573939 q^{45} +6.93022 q^{47} -6.92029 q^{49} +8.68415 q^{51} -2.14066 q^{53} +2.16122 q^{57} +2.04262 q^{59} +6.72000 q^{61} -0.471732 q^{63} -0.720104 q^{65} -14.4421 q^{67} -7.50661 q^{69} +0.318506 q^{71} -11.9824 q^{73} -10.5511 q^{75} +1.22714 q^{79} -11.2208 q^{81} -4.24900 q^{83} +1.38023 q^{85} -4.80754 q^{87} +5.72713 q^{89} +0.591867 q^{91} -18.5282 q^{93} +0.343496 q^{95} -10.0256 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 8 q^{5} - 5 q^{7} + 2 q^{9} + 2 q^{13} - 10 q^{15} - 4 q^{17} + 10 q^{19} - 6 q^{21} - 8 q^{23} - 10 q^{25} - 9 q^{27} + 3 q^{29} - 12 q^{31} - 9 q^{35} - 23 q^{37} + 18 q^{39} + 5 q^{41} + 14 q^{43}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.16122 1.24778 0.623891 0.781512i \(-0.285551\pi\)
0.623891 + 0.781512i \(0.285551\pi\)
\(4\) 0 0
\(5\) 0.343496 0.153616 0.0768082 0.997046i \(-0.475527\pi\)
0.0768082 + 0.997046i \(0.475527\pi\)
\(6\) 0 0
\(7\) −0.282327 −0.106709 −0.0533547 0.998576i \(-0.516991\pi\)
−0.0533547 + 0.998576i \(0.516991\pi\)
\(8\) 0 0
\(9\) 1.67087 0.556957
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −2.09639 −0.581435 −0.290717 0.956809i \(-0.593894\pi\)
−0.290717 + 0.956809i \(0.593894\pi\)
\(14\) 0 0
\(15\) 0.742372 0.191680
\(16\) 0 0
\(17\) 4.01817 0.974550 0.487275 0.873249i \(-0.337991\pi\)
0.487275 + 0.873249i \(0.337991\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −0.610170 −0.133150
\(22\) 0 0
\(23\) −3.47332 −0.724238 −0.362119 0.932132i \(-0.617947\pi\)
−0.362119 + 0.932132i \(0.617947\pi\)
\(24\) 0 0
\(25\) −4.88201 −0.976402
\(26\) 0 0
\(27\) −2.87254 −0.552820
\(28\) 0 0
\(29\) −2.22445 −0.413071 −0.206535 0.978439i \(-0.566219\pi\)
−0.206535 + 0.978439i \(0.566219\pi\)
\(30\) 0 0
\(31\) −8.57304 −1.53976 −0.769881 0.638187i \(-0.779685\pi\)
−0.769881 + 0.638187i \(0.779685\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.0969782 −0.0163923
\(36\) 0 0
\(37\) −4.79841 −0.788853 −0.394427 0.918927i \(-0.629057\pi\)
−0.394427 + 0.918927i \(0.629057\pi\)
\(38\) 0 0
\(39\) −4.53077 −0.725504
\(40\) 0 0
\(41\) 9.22214 1.44026 0.720129 0.693841i \(-0.244083\pi\)
0.720129 + 0.693841i \(0.244083\pi\)
\(42\) 0 0
\(43\) −11.3823 −1.73578 −0.867889 0.496758i \(-0.834524\pi\)
−0.867889 + 0.496758i \(0.834524\pi\)
\(44\) 0 0
\(45\) 0.573939 0.0855577
\(46\) 0 0
\(47\) 6.93022 1.01088 0.505438 0.862863i \(-0.331331\pi\)
0.505438 + 0.862863i \(0.331331\pi\)
\(48\) 0 0
\(49\) −6.92029 −0.988613
\(50\) 0 0
\(51\) 8.68415 1.21602
\(52\) 0 0
\(53\) −2.14066 −0.294043 −0.147021 0.989133i \(-0.546969\pi\)
−0.147021 + 0.989133i \(0.546969\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.16122 0.286261
\(58\) 0 0
\(59\) 2.04262 0.265927 0.132963 0.991121i \(-0.457551\pi\)
0.132963 + 0.991121i \(0.457551\pi\)
\(60\) 0 0
\(61\) 6.72000 0.860408 0.430204 0.902732i \(-0.358442\pi\)
0.430204 + 0.902732i \(0.358442\pi\)
\(62\) 0 0
\(63\) −0.471732 −0.0594326
\(64\) 0 0
\(65\) −0.720104 −0.0893179
\(66\) 0 0
\(67\) −14.4421 −1.76438 −0.882191 0.470893i \(-0.843932\pi\)
−0.882191 + 0.470893i \(0.843932\pi\)
\(68\) 0 0
\(69\) −7.50661 −0.903690
\(70\) 0 0
\(71\) 0.318506 0.0377997 0.0188999 0.999821i \(-0.493984\pi\)
0.0188999 + 0.999821i \(0.493984\pi\)
\(72\) 0 0
\(73\) −11.9824 −1.40243 −0.701215 0.712950i \(-0.747359\pi\)
−0.701215 + 0.712950i \(0.747359\pi\)
\(74\) 0 0
\(75\) −10.5511 −1.21834
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.22714 0.138064 0.0690320 0.997614i \(-0.478009\pi\)
0.0690320 + 0.997614i \(0.478009\pi\)
\(80\) 0 0
\(81\) −11.2208 −1.24676
\(82\) 0 0
\(83\) −4.24900 −0.466388 −0.233194 0.972430i \(-0.574918\pi\)
−0.233194 + 0.972430i \(0.574918\pi\)
\(84\) 0 0
\(85\) 1.38023 0.149707
\(86\) 0 0
\(87\) −4.80754 −0.515422
\(88\) 0 0
\(89\) 5.72713 0.607075 0.303537 0.952820i \(-0.401832\pi\)
0.303537 + 0.952820i \(0.401832\pi\)
\(90\) 0 0
\(91\) 0.591867 0.0620446
\(92\) 0 0
\(93\) −18.5282 −1.92129
\(94\) 0 0
\(95\) 0.343496 0.0352420
\(96\) 0 0
\(97\) −10.0256 −1.01795 −0.508974 0.860782i \(-0.669975\pi\)
−0.508974 + 0.860782i \(0.669975\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.7952 1.57168 0.785840 0.618430i \(-0.212231\pi\)
0.785840 + 0.618430i \(0.212231\pi\)
\(102\) 0 0
\(103\) −17.0641 −1.68138 −0.840688 0.541520i \(-0.817849\pi\)
−0.840688 + 0.541520i \(0.817849\pi\)
\(104\) 0 0
\(105\) −0.209591 −0.0204540
\(106\) 0 0
\(107\) 1.06155 0.102624 0.0513120 0.998683i \(-0.483660\pi\)
0.0513120 + 0.998683i \(0.483660\pi\)
\(108\) 0 0
\(109\) 1.34834 0.129147 0.0645736 0.997913i \(-0.479431\pi\)
0.0645736 + 0.997913i \(0.479431\pi\)
\(110\) 0 0
\(111\) −10.3704 −0.984316
\(112\) 0 0
\(113\) 13.1339 1.23553 0.617766 0.786362i \(-0.288038\pi\)
0.617766 + 0.786362i \(0.288038\pi\)
\(114\) 0 0
\(115\) −1.19307 −0.111255
\(116\) 0 0
\(117\) −3.50281 −0.323835
\(118\) 0 0
\(119\) −1.13444 −0.103994
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 19.9311 1.79713
\(124\) 0 0
\(125\) −3.39444 −0.303608
\(126\) 0 0
\(127\) 10.5842 0.939193 0.469597 0.882881i \(-0.344399\pi\)
0.469597 + 0.882881i \(0.344399\pi\)
\(128\) 0 0
\(129\) −24.5996 −2.16587
\(130\) 0 0
\(131\) 1.79175 0.156546 0.0782729 0.996932i \(-0.475059\pi\)
0.0782729 + 0.996932i \(0.475059\pi\)
\(132\) 0 0
\(133\) −0.282327 −0.0244808
\(134\) 0 0
\(135\) −0.986707 −0.0849222
\(136\) 0 0
\(137\) −1.15047 −0.0982915 −0.0491457 0.998792i \(-0.515650\pi\)
−0.0491457 + 0.998792i \(0.515650\pi\)
\(138\) 0 0
\(139\) −12.3731 −1.04947 −0.524735 0.851266i \(-0.675836\pi\)
−0.524735 + 0.851266i \(0.675836\pi\)
\(140\) 0 0
\(141\) 14.9777 1.26135
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −0.764092 −0.0634544
\(146\) 0 0
\(147\) −14.9563 −1.23357
\(148\) 0 0
\(149\) −13.6634 −1.11935 −0.559674 0.828713i \(-0.689074\pi\)
−0.559674 + 0.828713i \(0.689074\pi\)
\(150\) 0 0
\(151\) −4.73390 −0.385239 −0.192620 0.981274i \(-0.561698\pi\)
−0.192620 + 0.981274i \(0.561698\pi\)
\(152\) 0 0
\(153\) 6.71385 0.542783
\(154\) 0 0
\(155\) −2.94481 −0.236533
\(156\) 0 0
\(157\) 18.0696 1.44211 0.721055 0.692878i \(-0.243657\pi\)
0.721055 + 0.692878i \(0.243657\pi\)
\(158\) 0 0
\(159\) −4.62645 −0.366901
\(160\) 0 0
\(161\) 0.980611 0.0772830
\(162\) 0 0
\(163\) 19.6426 1.53853 0.769264 0.638931i \(-0.220623\pi\)
0.769264 + 0.638931i \(0.220623\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 25.0630 1.93943 0.969716 0.244234i \(-0.0785365\pi\)
0.969716 + 0.244234i \(0.0785365\pi\)
\(168\) 0 0
\(169\) −8.60513 −0.661933
\(170\) 0 0
\(171\) 1.67087 0.127775
\(172\) 0 0
\(173\) −6.22867 −0.473557 −0.236778 0.971564i \(-0.576092\pi\)
−0.236778 + 0.971564i \(0.576092\pi\)
\(174\) 0 0
\(175\) 1.37832 0.104191
\(176\) 0 0
\(177\) 4.41456 0.331819
\(178\) 0 0
\(179\) −13.3782 −0.999934 −0.499967 0.866044i \(-0.666655\pi\)
−0.499967 + 0.866044i \(0.666655\pi\)
\(180\) 0 0
\(181\) 5.76994 0.428876 0.214438 0.976738i \(-0.431208\pi\)
0.214438 + 0.976738i \(0.431208\pi\)
\(182\) 0 0
\(183\) 14.5234 1.07360
\(184\) 0 0
\(185\) −1.64824 −0.121181
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.810993 0.0589911
\(190\) 0 0
\(191\) −0.131397 −0.00950757 −0.00475379 0.999989i \(-0.501513\pi\)
−0.00475379 + 0.999989i \(0.501513\pi\)
\(192\) 0 0
\(193\) 8.34437 0.600641 0.300320 0.953838i \(-0.402906\pi\)
0.300320 + 0.953838i \(0.402906\pi\)
\(194\) 0 0
\(195\) −1.55630 −0.111449
\(196\) 0 0
\(197\) 14.3089 1.01947 0.509735 0.860332i \(-0.329744\pi\)
0.509735 + 0.860332i \(0.329744\pi\)
\(198\) 0 0
\(199\) 17.3174 1.22759 0.613797 0.789464i \(-0.289641\pi\)
0.613797 + 0.789464i \(0.289641\pi\)
\(200\) 0 0
\(201\) −31.2125 −2.20156
\(202\) 0 0
\(203\) 0.628023 0.0440785
\(204\) 0 0
\(205\) 3.16777 0.221247
\(206\) 0 0
\(207\) −5.80348 −0.403370
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −11.5272 −0.793567 −0.396783 0.917912i \(-0.629874\pi\)
−0.396783 + 0.917912i \(0.629874\pi\)
\(212\) 0 0
\(213\) 0.688362 0.0471658
\(214\) 0 0
\(215\) −3.90977 −0.266644
\(216\) 0 0
\(217\) 2.42040 0.164307
\(218\) 0 0
\(219\) −25.8965 −1.74993
\(220\) 0 0
\(221\) −8.42367 −0.566637
\(222\) 0 0
\(223\) 11.2165 0.751115 0.375557 0.926799i \(-0.377451\pi\)
0.375557 + 0.926799i \(0.377451\pi\)
\(224\) 0 0
\(225\) −8.15722 −0.543814
\(226\) 0 0
\(227\) 14.9270 0.990739 0.495370 0.868682i \(-0.335033\pi\)
0.495370 + 0.868682i \(0.335033\pi\)
\(228\) 0 0
\(229\) 5.58402 0.369003 0.184501 0.982832i \(-0.440933\pi\)
0.184501 + 0.982832i \(0.440933\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.0587 −1.37960 −0.689801 0.723999i \(-0.742302\pi\)
−0.689801 + 0.723999i \(0.742302\pi\)
\(234\) 0 0
\(235\) 2.38051 0.155287
\(236\) 0 0
\(237\) 2.65212 0.172274
\(238\) 0 0
\(239\) −29.1025 −1.88248 −0.941241 0.337737i \(-0.890339\pi\)
−0.941241 + 0.337737i \(0.890339\pi\)
\(240\) 0 0
\(241\) −25.4808 −1.64136 −0.820682 0.571385i \(-0.806406\pi\)
−0.820682 + 0.571385i \(0.806406\pi\)
\(242\) 0 0
\(243\) −15.6330 −1.00286
\(244\) 0 0
\(245\) −2.37710 −0.151867
\(246\) 0 0
\(247\) −2.09639 −0.133390
\(248\) 0 0
\(249\) −9.18302 −0.581951
\(250\) 0 0
\(251\) −23.7627 −1.49989 −0.749945 0.661500i \(-0.769920\pi\)
−0.749945 + 0.661500i \(0.769920\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 2.98298 0.186801
\(256\) 0 0
\(257\) −2.30352 −0.143689 −0.0718447 0.997416i \(-0.522889\pi\)
−0.0718447 + 0.997416i \(0.522889\pi\)
\(258\) 0 0
\(259\) 1.35472 0.0841780
\(260\) 0 0
\(261\) −3.71678 −0.230063
\(262\) 0 0
\(263\) −10.1003 −0.622813 −0.311406 0.950277i \(-0.600800\pi\)
−0.311406 + 0.950277i \(0.600800\pi\)
\(264\) 0 0
\(265\) −0.735311 −0.0451698
\(266\) 0 0
\(267\) 12.3776 0.757496
\(268\) 0 0
\(269\) −31.2688 −1.90649 −0.953246 0.302196i \(-0.902280\pi\)
−0.953246 + 0.302196i \(0.902280\pi\)
\(270\) 0 0
\(271\) −27.7601 −1.68630 −0.843152 0.537675i \(-0.819303\pi\)
−0.843152 + 0.537675i \(0.819303\pi\)
\(272\) 0 0
\(273\) 1.27916 0.0774180
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 23.3367 1.40217 0.701084 0.713079i \(-0.252700\pi\)
0.701084 + 0.713079i \(0.252700\pi\)
\(278\) 0 0
\(279\) −14.3244 −0.857582
\(280\) 0 0
\(281\) 5.04071 0.300704 0.150352 0.988633i \(-0.451959\pi\)
0.150352 + 0.988633i \(0.451959\pi\)
\(282\) 0 0
\(283\) 5.16600 0.307087 0.153543 0.988142i \(-0.450932\pi\)
0.153543 + 0.988142i \(0.450932\pi\)
\(284\) 0 0
\(285\) 0.742372 0.0439743
\(286\) 0 0
\(287\) −2.60366 −0.153689
\(288\) 0 0
\(289\) −0.854304 −0.0502532
\(290\) 0 0
\(291\) −21.6676 −1.27018
\(292\) 0 0
\(293\) −2.31169 −0.135050 −0.0675252 0.997718i \(-0.521510\pi\)
−0.0675252 + 0.997718i \(0.521510\pi\)
\(294\) 0 0
\(295\) 0.701634 0.0408507
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.28145 0.421097
\(300\) 0 0
\(301\) 3.21351 0.185224
\(302\) 0 0
\(303\) 34.1369 1.96111
\(304\) 0 0
\(305\) 2.30830 0.132173
\(306\) 0 0
\(307\) −0.556178 −0.0317427 −0.0158714 0.999874i \(-0.505052\pi\)
−0.0158714 + 0.999874i \(0.505052\pi\)
\(308\) 0 0
\(309\) −36.8793 −2.09799
\(310\) 0 0
\(311\) 22.6961 1.28698 0.643489 0.765455i \(-0.277486\pi\)
0.643489 + 0.765455i \(0.277486\pi\)
\(312\) 0 0
\(313\) −10.1132 −0.571633 −0.285816 0.958284i \(-0.592265\pi\)
−0.285816 + 0.958284i \(0.592265\pi\)
\(314\) 0 0
\(315\) −0.162038 −0.00912981
\(316\) 0 0
\(317\) −16.2584 −0.913163 −0.456581 0.889682i \(-0.650926\pi\)
−0.456581 + 0.889682i \(0.650926\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 2.29424 0.128052
\(322\) 0 0
\(323\) 4.01817 0.223577
\(324\) 0 0
\(325\) 10.2346 0.567714
\(326\) 0 0
\(327\) 2.91405 0.161148
\(328\) 0 0
\(329\) −1.95658 −0.107870
\(330\) 0 0
\(331\) −19.6622 −1.08073 −0.540365 0.841431i \(-0.681714\pi\)
−0.540365 + 0.841431i \(0.681714\pi\)
\(332\) 0 0
\(333\) −8.01752 −0.439358
\(334\) 0 0
\(335\) −4.96080 −0.271038
\(336\) 0 0
\(337\) −22.7452 −1.23901 −0.619505 0.784993i \(-0.712667\pi\)
−0.619505 + 0.784993i \(0.712667\pi\)
\(338\) 0 0
\(339\) 28.3852 1.54167
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 3.93007 0.212204
\(344\) 0 0
\(345\) −2.57850 −0.138822
\(346\) 0 0
\(347\) 6.50158 0.349023 0.174512 0.984655i \(-0.444165\pi\)
0.174512 + 0.984655i \(0.444165\pi\)
\(348\) 0 0
\(349\) −12.7889 −0.684572 −0.342286 0.939596i \(-0.611201\pi\)
−0.342286 + 0.939596i \(0.611201\pi\)
\(350\) 0 0
\(351\) 6.02197 0.321429
\(352\) 0 0
\(353\) −1.79369 −0.0954683 −0.0477341 0.998860i \(-0.515200\pi\)
−0.0477341 + 0.998860i \(0.515200\pi\)
\(354\) 0 0
\(355\) 0.109406 0.00580666
\(356\) 0 0
\(357\) −2.45177 −0.129761
\(358\) 0 0
\(359\) 6.87402 0.362797 0.181398 0.983410i \(-0.441938\pi\)
0.181398 + 0.983410i \(0.441938\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.11590 −0.215436
\(366\) 0 0
\(367\) −29.3242 −1.53071 −0.765354 0.643609i \(-0.777436\pi\)
−0.765354 + 0.643609i \(0.777436\pi\)
\(368\) 0 0
\(369\) 15.4090 0.802162
\(370\) 0 0
\(371\) 0.604366 0.0313771
\(372\) 0 0
\(373\) 31.8947 1.65145 0.825723 0.564076i \(-0.190767\pi\)
0.825723 + 0.564076i \(0.190767\pi\)
\(374\) 0 0
\(375\) −7.33612 −0.378836
\(376\) 0 0
\(377\) 4.66333 0.240174
\(378\) 0 0
\(379\) 19.0456 0.978307 0.489153 0.872198i \(-0.337306\pi\)
0.489153 + 0.872198i \(0.337306\pi\)
\(380\) 0 0
\(381\) 22.8747 1.17191
\(382\) 0 0
\(383\) −10.0891 −0.515531 −0.257765 0.966208i \(-0.582986\pi\)
−0.257765 + 0.966208i \(0.582986\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −19.0183 −0.966755
\(388\) 0 0
\(389\) 24.2773 1.23091 0.615455 0.788172i \(-0.288972\pi\)
0.615455 + 0.788172i \(0.288972\pi\)
\(390\) 0 0
\(391\) −13.9564 −0.705806
\(392\) 0 0
\(393\) 3.87236 0.195335
\(394\) 0 0
\(395\) 0.421518 0.0212089
\(396\) 0 0
\(397\) 5.36816 0.269420 0.134710 0.990885i \(-0.456990\pi\)
0.134710 + 0.990885i \(0.456990\pi\)
\(398\) 0 0
\(399\) −0.610170 −0.0305467
\(400\) 0 0
\(401\) 0.481544 0.0240472 0.0120236 0.999928i \(-0.496173\pi\)
0.0120236 + 0.999928i \(0.496173\pi\)
\(402\) 0 0
\(403\) 17.9725 0.895272
\(404\) 0 0
\(405\) −3.85431 −0.191522
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −3.55105 −0.175588 −0.0877940 0.996139i \(-0.527982\pi\)
−0.0877940 + 0.996139i \(0.527982\pi\)
\(410\) 0 0
\(411\) −2.48642 −0.122646
\(412\) 0 0
\(413\) −0.576687 −0.0283769
\(414\) 0 0
\(415\) −1.45952 −0.0716449
\(416\) 0 0
\(417\) −26.7409 −1.30951
\(418\) 0 0
\(419\) −8.56948 −0.418647 −0.209323 0.977846i \(-0.567126\pi\)
−0.209323 + 0.977846i \(0.567126\pi\)
\(420\) 0 0
\(421\) 3.55252 0.173139 0.0865696 0.996246i \(-0.472410\pi\)
0.0865696 + 0.996246i \(0.472410\pi\)
\(422\) 0 0
\(423\) 11.5795 0.563015
\(424\) 0 0
\(425\) −19.6168 −0.951552
\(426\) 0 0
\(427\) −1.89724 −0.0918136
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 26.6587 1.28411 0.642053 0.766661i \(-0.278083\pi\)
0.642053 + 0.766661i \(0.278083\pi\)
\(432\) 0 0
\(433\) 0.385551 0.0185284 0.00926421 0.999957i \(-0.497051\pi\)
0.00926421 + 0.999957i \(0.497051\pi\)
\(434\) 0 0
\(435\) −1.65137 −0.0791772
\(436\) 0 0
\(437\) −3.47332 −0.166152
\(438\) 0 0
\(439\) 8.14358 0.388672 0.194336 0.980935i \(-0.437745\pi\)
0.194336 + 0.980935i \(0.437745\pi\)
\(440\) 0 0
\(441\) −11.5629 −0.550615
\(442\) 0 0
\(443\) −15.9326 −0.756978 −0.378489 0.925606i \(-0.623556\pi\)
−0.378489 + 0.925606i \(0.623556\pi\)
\(444\) 0 0
\(445\) 1.96725 0.0932566
\(446\) 0 0
\(447\) −29.5296 −1.39670
\(448\) 0 0
\(449\) 26.4276 1.24720 0.623598 0.781745i \(-0.285670\pi\)
0.623598 + 0.781745i \(0.285670\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −10.2310 −0.480694
\(454\) 0 0
\(455\) 0.203304 0.00953106
\(456\) 0 0
\(457\) 13.0798 0.611845 0.305923 0.952056i \(-0.401035\pi\)
0.305923 + 0.952056i \(0.401035\pi\)
\(458\) 0 0
\(459\) −11.5423 −0.538751
\(460\) 0 0
\(461\) 5.64540 0.262932 0.131466 0.991321i \(-0.458032\pi\)
0.131466 + 0.991321i \(0.458032\pi\)
\(462\) 0 0
\(463\) 5.30598 0.246590 0.123295 0.992370i \(-0.460654\pi\)
0.123295 + 0.992370i \(0.460654\pi\)
\(464\) 0 0
\(465\) −6.36438 −0.295141
\(466\) 0 0
\(467\) −19.0238 −0.880317 −0.440158 0.897920i \(-0.645078\pi\)
−0.440158 + 0.897920i \(0.645078\pi\)
\(468\) 0 0
\(469\) 4.07738 0.188276
\(470\) 0 0
\(471\) 39.0524 1.79944
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.88201 −0.224002
\(476\) 0 0
\(477\) −3.57678 −0.163769
\(478\) 0 0
\(479\) 18.0959 0.826823 0.413411 0.910544i \(-0.364337\pi\)
0.413411 + 0.910544i \(0.364337\pi\)
\(480\) 0 0
\(481\) 10.0593 0.458667
\(482\) 0 0
\(483\) 2.11932 0.0964322
\(484\) 0 0
\(485\) −3.44377 −0.156373
\(486\) 0 0
\(487\) 29.1164 1.31939 0.659695 0.751533i \(-0.270685\pi\)
0.659695 + 0.751533i \(0.270685\pi\)
\(488\) 0 0
\(489\) 42.4520 1.91975
\(490\) 0 0
\(491\) 14.5832 0.658128 0.329064 0.944308i \(-0.393267\pi\)
0.329064 + 0.944308i \(0.393267\pi\)
\(492\) 0 0
\(493\) −8.93824 −0.402558
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.0899228 −0.00403359
\(498\) 0 0
\(499\) −1.01335 −0.0453639 −0.0226820 0.999743i \(-0.507221\pi\)
−0.0226820 + 0.999743i \(0.507221\pi\)
\(500\) 0 0
\(501\) 54.1666 2.41999
\(502\) 0 0
\(503\) −44.0282 −1.96312 −0.981560 0.191156i \(-0.938776\pi\)
−0.981560 + 0.191156i \(0.938776\pi\)
\(504\) 0 0
\(505\) 5.42559 0.241436
\(506\) 0 0
\(507\) −18.5976 −0.825948
\(508\) 0 0
\(509\) −26.7147 −1.18411 −0.592053 0.805899i \(-0.701682\pi\)
−0.592053 + 0.805899i \(0.701682\pi\)
\(510\) 0 0
\(511\) 3.38294 0.149652
\(512\) 0 0
\(513\) −2.87254 −0.126826
\(514\) 0 0
\(515\) −5.86146 −0.258287
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −13.4615 −0.590895
\(520\) 0 0
\(521\) 14.8432 0.650292 0.325146 0.945664i \(-0.394587\pi\)
0.325146 + 0.945664i \(0.394587\pi\)
\(522\) 0 0
\(523\) 6.13837 0.268412 0.134206 0.990953i \(-0.457152\pi\)
0.134206 + 0.990953i \(0.457152\pi\)
\(524\) 0 0
\(525\) 2.97885 0.130008
\(526\) 0 0
\(527\) −34.4479 −1.50058
\(528\) 0 0
\(529\) −10.9360 −0.475480
\(530\) 0 0
\(531\) 3.41296 0.148110
\(532\) 0 0
\(533\) −19.3332 −0.837416
\(534\) 0 0
\(535\) 0.364639 0.0157647
\(536\) 0 0
\(537\) −28.9132 −1.24770
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0.173931 0.00747786 0.00373893 0.999993i \(-0.498810\pi\)
0.00373893 + 0.999993i \(0.498810\pi\)
\(542\) 0 0
\(543\) 12.4701 0.535143
\(544\) 0 0
\(545\) 0.463149 0.0198391
\(546\) 0 0
\(547\) −15.0048 −0.641558 −0.320779 0.947154i \(-0.603945\pi\)
−0.320779 + 0.947154i \(0.603945\pi\)
\(548\) 0 0
\(549\) 11.2283 0.479211
\(550\) 0 0
\(551\) −2.22445 −0.0947650
\(552\) 0 0
\(553\) −0.346454 −0.0147327
\(554\) 0 0
\(555\) −3.56220 −0.151207
\(556\) 0 0
\(557\) −8.31914 −0.352493 −0.176247 0.984346i \(-0.556396\pi\)
−0.176247 + 0.984346i \(0.556396\pi\)
\(558\) 0 0
\(559\) 23.8617 1.00924
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.49149 −0.231439 −0.115719 0.993282i \(-0.536917\pi\)
−0.115719 + 0.993282i \(0.536917\pi\)
\(564\) 0 0
\(565\) 4.51144 0.189798
\(566\) 0 0
\(567\) 3.16793 0.133041
\(568\) 0 0
\(569\) 10.1783 0.426695 0.213348 0.976976i \(-0.431563\pi\)
0.213348 + 0.976976i \(0.431563\pi\)
\(570\) 0 0
\(571\) 9.23522 0.386482 0.193241 0.981151i \(-0.438100\pi\)
0.193241 + 0.981151i \(0.438100\pi\)
\(572\) 0 0
\(573\) −0.283978 −0.0118634
\(574\) 0 0
\(575\) 16.9568 0.707147
\(576\) 0 0
\(577\) −22.4835 −0.936002 −0.468001 0.883728i \(-0.655026\pi\)
−0.468001 + 0.883728i \(0.655026\pi\)
\(578\) 0 0
\(579\) 18.0340 0.749468
\(580\) 0 0
\(581\) 1.19961 0.0497680
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1.20320 −0.0497463
\(586\) 0 0
\(587\) −6.15496 −0.254043 −0.127021 0.991900i \(-0.540542\pi\)
−0.127021 + 0.991900i \(0.540542\pi\)
\(588\) 0 0
\(589\) −8.57304 −0.353246
\(590\) 0 0
\(591\) 30.9248 1.27207
\(592\) 0 0
\(593\) 34.4716 1.41558 0.707790 0.706423i \(-0.249692\pi\)
0.707790 + 0.706423i \(0.249692\pi\)
\(594\) 0 0
\(595\) −0.389675 −0.0159751
\(596\) 0 0
\(597\) 37.4266 1.53177
\(598\) 0 0
\(599\) −10.0985 −0.412613 −0.206306 0.978487i \(-0.566144\pi\)
−0.206306 + 0.978487i \(0.566144\pi\)
\(600\) 0 0
\(601\) −23.8750 −0.973881 −0.486941 0.873435i \(-0.661887\pi\)
−0.486941 + 0.873435i \(0.661887\pi\)
\(602\) 0 0
\(603\) −24.1309 −0.982685
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −10.4581 −0.424481 −0.212241 0.977217i \(-0.568076\pi\)
−0.212241 + 0.977217i \(0.568076\pi\)
\(608\) 0 0
\(609\) 1.35730 0.0550004
\(610\) 0 0
\(611\) −14.5285 −0.587759
\(612\) 0 0
\(613\) 11.8593 0.478994 0.239497 0.970897i \(-0.423018\pi\)
0.239497 + 0.970897i \(0.423018\pi\)
\(614\) 0 0
\(615\) 6.84626 0.276068
\(616\) 0 0
\(617\) −47.9792 −1.93157 −0.965785 0.259344i \(-0.916494\pi\)
−0.965785 + 0.259344i \(0.916494\pi\)
\(618\) 0 0
\(619\) 1.17365 0.0471730 0.0235865 0.999722i \(-0.492491\pi\)
0.0235865 + 0.999722i \(0.492491\pi\)
\(620\) 0 0
\(621\) 9.97725 0.400373
\(622\) 0 0
\(623\) −1.61692 −0.0647806
\(624\) 0 0
\(625\) 23.2441 0.929763
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −19.2808 −0.768776
\(630\) 0 0
\(631\) 1.87488 0.0746377 0.0373188 0.999303i \(-0.488118\pi\)
0.0373188 + 0.999303i \(0.488118\pi\)
\(632\) 0 0
\(633\) −24.9129 −0.990198
\(634\) 0 0
\(635\) 3.63562 0.144275
\(636\) 0 0
\(637\) 14.5077 0.574814
\(638\) 0 0
\(639\) 0.532183 0.0210528
\(640\) 0 0
\(641\) −25.5646 −1.00974 −0.504871 0.863195i \(-0.668460\pi\)
−0.504871 + 0.863195i \(0.668460\pi\)
\(642\) 0 0
\(643\) −7.44931 −0.293772 −0.146886 0.989153i \(-0.546925\pi\)
−0.146886 + 0.989153i \(0.546925\pi\)
\(644\) 0 0
\(645\) −8.44987 −0.332713
\(646\) 0 0
\(647\) 46.2066 1.81657 0.908285 0.418352i \(-0.137392\pi\)
0.908285 + 0.418352i \(0.137392\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 5.23101 0.205019
\(652\) 0 0
\(653\) 25.2244 0.987105 0.493553 0.869716i \(-0.335698\pi\)
0.493553 + 0.869716i \(0.335698\pi\)
\(654\) 0 0
\(655\) 0.615460 0.0240480
\(656\) 0 0
\(657\) −20.0210 −0.781094
\(658\) 0 0
\(659\) 32.0888 1.25000 0.625000 0.780625i \(-0.285099\pi\)
0.625000 + 0.780625i \(0.285099\pi\)
\(660\) 0 0
\(661\) 31.5125 1.22570 0.612848 0.790201i \(-0.290024\pi\)
0.612848 + 0.790201i \(0.290024\pi\)
\(662\) 0 0
\(663\) −18.2054 −0.707039
\(664\) 0 0
\(665\) −0.0969782 −0.00376065
\(666\) 0 0
\(667\) 7.72625 0.299162
\(668\) 0 0
\(669\) 24.2414 0.937227
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.524385 0.0202136 0.0101068 0.999949i \(-0.496783\pi\)
0.0101068 + 0.999949i \(0.496783\pi\)
\(674\) 0 0
\(675\) 14.0238 0.539775
\(676\) 0 0
\(677\) 30.6943 1.17968 0.589840 0.807520i \(-0.299191\pi\)
0.589840 + 0.807520i \(0.299191\pi\)
\(678\) 0 0
\(679\) 2.83050 0.108625
\(680\) 0 0
\(681\) 32.2605 1.23623
\(682\) 0 0
\(683\) −5.94316 −0.227409 −0.113704 0.993515i \(-0.536272\pi\)
−0.113704 + 0.993515i \(0.536272\pi\)
\(684\) 0 0
\(685\) −0.395183 −0.0150992
\(686\) 0 0
\(687\) 12.0683 0.460435
\(688\) 0 0
\(689\) 4.48767 0.170967
\(690\) 0 0
\(691\) −43.9944 −1.67362 −0.836812 0.547490i \(-0.815584\pi\)
−0.836812 + 0.547490i \(0.815584\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.25011 −0.161216
\(696\) 0 0
\(697\) 37.0562 1.40360
\(698\) 0 0
\(699\) −45.5125 −1.72144
\(700\) 0 0
\(701\) −14.1305 −0.533701 −0.266851 0.963738i \(-0.585983\pi\)
−0.266851 + 0.963738i \(0.585983\pi\)
\(702\) 0 0
\(703\) −4.79841 −0.180975
\(704\) 0 0
\(705\) 5.14480 0.193764
\(706\) 0 0
\(707\) −4.45940 −0.167713
\(708\) 0 0
\(709\) 2.02185 0.0759321 0.0379660 0.999279i \(-0.487912\pi\)
0.0379660 + 0.999279i \(0.487912\pi\)
\(710\) 0 0
\(711\) 2.05039 0.0768957
\(712\) 0 0
\(713\) 29.7769 1.11515
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −62.8968 −2.34892
\(718\) 0 0
\(719\) −27.9954 −1.04405 −0.522026 0.852930i \(-0.674824\pi\)
−0.522026 + 0.852930i \(0.674824\pi\)
\(720\) 0 0
\(721\) 4.81765 0.179419
\(722\) 0 0
\(723\) −55.0697 −2.04806
\(724\) 0 0
\(725\) 10.8598 0.403323
\(726\) 0 0
\(727\) 18.8375 0.698643 0.349322 0.937003i \(-0.386412\pi\)
0.349322 + 0.937003i \(0.386412\pi\)
\(728\) 0 0
\(729\) −0.123972 −0.00459157
\(730\) 0 0
\(731\) −45.7359 −1.69160
\(732\) 0 0
\(733\) −17.7717 −0.656414 −0.328207 0.944606i \(-0.606444\pi\)
−0.328207 + 0.944606i \(0.606444\pi\)
\(734\) 0 0
\(735\) −5.13743 −0.189497
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 36.6947 1.34984 0.674918 0.737893i \(-0.264179\pi\)
0.674918 + 0.737893i \(0.264179\pi\)
\(740\) 0 0
\(741\) −4.53077 −0.166442
\(742\) 0 0
\(743\) 38.9915 1.43046 0.715230 0.698889i \(-0.246322\pi\)
0.715230 + 0.698889i \(0.246322\pi\)
\(744\) 0 0
\(745\) −4.69333 −0.171950
\(746\) 0 0
\(747\) −7.09954 −0.259758
\(748\) 0 0
\(749\) −0.299704 −0.0109509
\(750\) 0 0
\(751\) −25.7396 −0.939250 −0.469625 0.882866i \(-0.655611\pi\)
−0.469625 + 0.882866i \(0.655611\pi\)
\(752\) 0 0
\(753\) −51.3565 −1.87153
\(754\) 0 0
\(755\) −1.62608 −0.0591790
\(756\) 0 0
\(757\) 6.60603 0.240100 0.120050 0.992768i \(-0.461694\pi\)
0.120050 + 0.992768i \(0.461694\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.57948 −0.0935059 −0.0467530 0.998906i \(-0.514887\pi\)
−0.0467530 + 0.998906i \(0.514887\pi\)
\(762\) 0 0
\(763\) −0.380671 −0.0137812
\(764\) 0 0
\(765\) 2.30618 0.0833803
\(766\) 0 0
\(767\) −4.28214 −0.154619
\(768\) 0 0
\(769\) 19.6295 0.707859 0.353930 0.935272i \(-0.384845\pi\)
0.353930 + 0.935272i \(0.384845\pi\)
\(770\) 0 0
\(771\) −4.97841 −0.179293
\(772\) 0 0
\(773\) 2.86174 0.102930 0.0514648 0.998675i \(-0.483611\pi\)
0.0514648 + 0.998675i \(0.483611\pi\)
\(774\) 0 0
\(775\) 41.8536 1.50343
\(776\) 0 0
\(777\) 2.92784 0.105036
\(778\) 0 0
\(779\) 9.22214 0.330418
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 6.38983 0.228354
\(784\) 0 0
\(785\) 6.20684 0.221532
\(786\) 0 0
\(787\) −23.3121 −0.830986 −0.415493 0.909596i \(-0.636391\pi\)
−0.415493 + 0.909596i \(0.636391\pi\)
\(788\) 0 0
\(789\) −21.8290 −0.777134
\(790\) 0 0
\(791\) −3.70805 −0.131843
\(792\) 0 0
\(793\) −14.0878 −0.500271
\(794\) 0 0
\(795\) −1.58917 −0.0563620
\(796\) 0 0
\(797\) 31.5637 1.11804 0.559022 0.829153i \(-0.311177\pi\)
0.559022 + 0.829153i \(0.311177\pi\)
\(798\) 0 0
\(799\) 27.8468 0.985149
\(800\) 0 0
\(801\) 9.56931 0.338115
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0.336836 0.0118719
\(806\) 0 0
\(807\) −67.5787 −2.37888
\(808\) 0 0
\(809\) −32.8575 −1.15521 −0.577605 0.816317i \(-0.696012\pi\)
−0.577605 + 0.816317i \(0.696012\pi\)
\(810\) 0 0
\(811\) −55.3275 −1.94281 −0.971405 0.237428i \(-0.923696\pi\)
−0.971405 + 0.237428i \(0.923696\pi\)
\(812\) 0 0
\(813\) −59.9956 −2.10414
\(814\) 0 0
\(815\) 6.74717 0.236343
\(816\) 0 0
\(817\) −11.3823 −0.398215
\(818\) 0 0
\(819\) 0.988935 0.0345562
\(820\) 0 0
\(821\) −46.4218 −1.62013 −0.810066 0.586339i \(-0.800569\pi\)
−0.810066 + 0.586339i \(0.800569\pi\)
\(822\) 0 0
\(823\) 13.1444 0.458184 0.229092 0.973405i \(-0.426424\pi\)
0.229092 + 0.973405i \(0.426424\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 30.6733 1.06661 0.533307 0.845922i \(-0.320949\pi\)
0.533307 + 0.845922i \(0.320949\pi\)
\(828\) 0 0
\(829\) 26.8231 0.931603 0.465802 0.884889i \(-0.345766\pi\)
0.465802 + 0.884889i \(0.345766\pi\)
\(830\) 0 0
\(831\) 50.4358 1.74960
\(832\) 0 0
\(833\) −27.8069 −0.963452
\(834\) 0 0
\(835\) 8.60905 0.297928
\(836\) 0 0
\(837\) 24.6264 0.851212
\(838\) 0 0
\(839\) −46.7254 −1.61314 −0.806570 0.591139i \(-0.798679\pi\)
−0.806570 + 0.591139i \(0.798679\pi\)
\(840\) 0 0
\(841\) −24.0518 −0.829372
\(842\) 0 0
\(843\) 10.8941 0.375212
\(844\) 0 0
\(845\) −2.95583 −0.101684
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 11.1649 0.383177
\(850\) 0 0
\(851\) 16.6664 0.571317
\(852\) 0 0
\(853\) −15.5638 −0.532893 −0.266447 0.963850i \(-0.585850\pi\)
−0.266447 + 0.963850i \(0.585850\pi\)
\(854\) 0 0
\(855\) 0.573939 0.0196283
\(856\) 0 0
\(857\) 39.6061 1.35292 0.676459 0.736481i \(-0.263514\pi\)
0.676459 + 0.736481i \(0.263514\pi\)
\(858\) 0 0
\(859\) 11.2278 0.383087 0.191544 0.981484i \(-0.438651\pi\)
0.191544 + 0.981484i \(0.438651\pi\)
\(860\) 0 0
\(861\) −5.62707 −0.191770
\(862\) 0 0
\(863\) 38.5644 1.31275 0.656373 0.754436i \(-0.272090\pi\)
0.656373 + 0.754436i \(0.272090\pi\)
\(864\) 0 0
\(865\) −2.13952 −0.0727460
\(866\) 0 0
\(867\) −1.84634 −0.0627049
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 30.2763 1.02587
\(872\) 0 0
\(873\) −16.7515 −0.566954
\(874\) 0 0
\(875\) 0.958339 0.0323978
\(876\) 0 0
\(877\) −1.91490 −0.0646616 −0.0323308 0.999477i \(-0.510293\pi\)
−0.0323308 + 0.999477i \(0.510293\pi\)
\(878\) 0 0
\(879\) −4.99607 −0.168513
\(880\) 0 0
\(881\) −41.5986 −1.40149 −0.700747 0.713410i \(-0.747150\pi\)
−0.700747 + 0.713410i \(0.747150\pi\)
\(882\) 0 0
\(883\) 27.2729 0.917806 0.458903 0.888486i \(-0.348242\pi\)
0.458903 + 0.888486i \(0.348242\pi\)
\(884\) 0 0
\(885\) 1.51639 0.0509727
\(886\) 0 0
\(887\) −19.3828 −0.650809 −0.325405 0.945575i \(-0.605501\pi\)
−0.325405 + 0.945575i \(0.605501\pi\)
\(888\) 0 0
\(889\) −2.98819 −0.100221
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.93022 0.231911
\(894\) 0 0
\(895\) −4.59537 −0.153606
\(896\) 0 0
\(897\) 15.7368 0.525437
\(898\) 0 0
\(899\) 19.0703 0.636031
\(900\) 0 0
\(901\) −8.60155 −0.286559
\(902\) 0 0
\(903\) 6.94511 0.231119
\(904\) 0 0
\(905\) 1.98195 0.0658823
\(906\) 0 0
\(907\) 29.4808 0.978894 0.489447 0.872033i \(-0.337199\pi\)
0.489447 + 0.872033i \(0.337199\pi\)
\(908\) 0 0
\(909\) 26.3917 0.875359
\(910\) 0 0
\(911\) 16.8987 0.559879 0.279939 0.960018i \(-0.409686\pi\)
0.279939 + 0.960018i \(0.409686\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 4.98874 0.164923
\(916\) 0 0
\(917\) −0.505858 −0.0167049
\(918\) 0 0
\(919\) 50.1383 1.65391 0.826955 0.562268i \(-0.190071\pi\)
0.826955 + 0.562268i \(0.190071\pi\)
\(920\) 0 0
\(921\) −1.20202 −0.0396080
\(922\) 0 0
\(923\) −0.667714 −0.0219781
\(924\) 0 0
\(925\) 23.4259 0.770238
\(926\) 0 0
\(927\) −28.5119 −0.936455
\(928\) 0 0
\(929\) 19.0065 0.623583 0.311791 0.950151i \(-0.399071\pi\)
0.311791 + 0.950151i \(0.399071\pi\)
\(930\) 0 0
\(931\) −6.92029 −0.226803
\(932\) 0 0
\(933\) 49.0513 1.60587
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −28.9969 −0.947288 −0.473644 0.880717i \(-0.657062\pi\)
−0.473644 + 0.880717i \(0.657062\pi\)
\(938\) 0 0
\(939\) −21.8569 −0.713273
\(940\) 0 0
\(941\) −55.2715 −1.80180 −0.900900 0.434027i \(-0.857092\pi\)
−0.900900 + 0.434027i \(0.857092\pi\)
\(942\) 0 0
\(943\) −32.0315 −1.04309
\(944\) 0 0
\(945\) 0.278573 0.00906199
\(946\) 0 0
\(947\) 15.0687 0.489667 0.244834 0.969565i \(-0.421267\pi\)
0.244834 + 0.969565i \(0.421267\pi\)
\(948\) 0 0
\(949\) 25.1198 0.815422
\(950\) 0 0
\(951\) −35.1380 −1.13943
\(952\) 0 0
\(953\) 53.9429 1.74738 0.873691 0.486482i \(-0.161720\pi\)
0.873691 + 0.486482i \(0.161720\pi\)
\(954\) 0 0
\(955\) −0.0451345 −0.00146052
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.324809 0.0104886
\(960\) 0 0
\(961\) 42.4970 1.37087
\(962\) 0 0
\(963\) 1.77371 0.0571571
\(964\) 0 0
\(965\) 2.86626 0.0922682
\(966\) 0 0
\(967\) −40.1935 −1.29253 −0.646267 0.763111i \(-0.723671\pi\)
−0.646267 + 0.763111i \(0.723671\pi\)
\(968\) 0 0
\(969\) 8.68415 0.278975
\(970\) 0 0
\(971\) 57.3812 1.84145 0.920726 0.390211i \(-0.127598\pi\)
0.920726 + 0.390211i \(0.127598\pi\)
\(972\) 0 0
\(973\) 3.49325 0.111988
\(974\) 0 0
\(975\) 22.1193 0.708383
\(976\) 0 0
\(977\) −25.7585 −0.824087 −0.412044 0.911164i \(-0.635185\pi\)
−0.412044 + 0.911164i \(0.635185\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 2.25290 0.0719295
\(982\) 0 0
\(983\) 15.3546 0.489736 0.244868 0.969556i \(-0.421255\pi\)
0.244868 + 0.969556i \(0.421255\pi\)
\(984\) 0 0
\(985\) 4.91507 0.156607
\(986\) 0 0
\(987\) −4.22861 −0.134598
\(988\) 0 0
\(989\) 39.5343 1.25712
\(990\) 0 0
\(991\) 17.7796 0.564787 0.282394 0.959299i \(-0.408872\pi\)
0.282394 + 0.959299i \(0.408872\pi\)
\(992\) 0 0
\(993\) −42.4943 −1.34852
\(994\) 0 0
\(995\) 5.94845 0.188579
\(996\) 0 0
\(997\) 34.6667 1.09791 0.548953 0.835854i \(-0.315027\pi\)
0.548953 + 0.835854i \(0.315027\pi\)
\(998\) 0 0
\(999\) 13.7836 0.436094
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.s.1.9 10
11.3 even 5 836.2.j.b.229.2 20
11.4 even 5 836.2.j.b.533.2 yes 20
11.10 odd 2 9196.2.a.t.1.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
836.2.j.b.229.2 20 11.3 even 5
836.2.j.b.533.2 yes 20 11.4 even 5
9196.2.a.s.1.9 10 1.1 even 1 trivial
9196.2.a.t.1.9 10 11.10 odd 2