Properties

Label 9196.2.a.q.1.6
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9196,2,Mod(1,9196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9196.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-1,0,0,0,-2,0,9,0,0,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 16x^{6} + 14x^{5} + 80x^{4} - 64x^{3} - 140x^{2} + 81x + 72 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.42458\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.42458 q^{3} -2.11046 q^{5} +3.55881 q^{7} -0.970558 q^{9} +4.05605 q^{13} -3.00652 q^{15} +4.39668 q^{17} -1.00000 q^{19} +5.06982 q^{21} -8.50071 q^{23} -0.545973 q^{25} -5.65640 q^{27} -8.32874 q^{29} -0.583258 q^{31} -7.51070 q^{35} -2.92957 q^{37} +5.77818 q^{39} -0.892281 q^{41} -8.63194 q^{43} +2.04832 q^{45} -0.756169 q^{47} +5.66510 q^{49} +6.26344 q^{51} +1.53431 q^{53} -1.42458 q^{57} -13.9436 q^{59} +14.9005 q^{61} -3.45403 q^{63} -8.56011 q^{65} +1.09562 q^{67} -12.1100 q^{69} -4.46831 q^{71} +11.4022 q^{73} -0.777785 q^{75} -14.7613 q^{79} -5.14634 q^{81} -5.34261 q^{83} -9.27900 q^{85} -11.8650 q^{87} +1.99012 q^{89} +14.4347 q^{91} -0.830900 q^{93} +2.11046 q^{95} +2.89451 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{3} - 2 q^{7} + 9 q^{9} + 5 q^{13} - 9 q^{15} - 3 q^{17} - 8 q^{19} - 5 q^{21} + q^{23} - q^{27} - q^{29} + 3 q^{31} - 8 q^{35} - 23 q^{37} - 9 q^{39} - 10 q^{41} - 2 q^{43} + 9 q^{45} - 8 q^{47}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.42458 0.822484 0.411242 0.911526i \(-0.365095\pi\)
0.411242 + 0.911526i \(0.365095\pi\)
\(4\) 0 0
\(5\) −2.11046 −0.943825 −0.471912 0.881645i \(-0.656436\pi\)
−0.471912 + 0.881645i \(0.656436\pi\)
\(6\) 0 0
\(7\) 3.55881 1.34510 0.672551 0.740051i \(-0.265199\pi\)
0.672551 + 0.740051i \(0.265199\pi\)
\(8\) 0 0
\(9\) −0.970558 −0.323519
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 4.05605 1.12495 0.562473 0.826816i \(-0.309850\pi\)
0.562473 + 0.826816i \(0.309850\pi\)
\(14\) 0 0
\(15\) −3.00652 −0.776281
\(16\) 0 0
\(17\) 4.39668 1.06635 0.533175 0.846005i \(-0.320999\pi\)
0.533175 + 0.846005i \(0.320999\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 5.06982 1.10633
\(22\) 0 0
\(23\) −8.50071 −1.77252 −0.886261 0.463187i \(-0.846706\pi\)
−0.886261 + 0.463187i \(0.846706\pi\)
\(24\) 0 0
\(25\) −0.545973 −0.109195
\(26\) 0 0
\(27\) −5.65640 −1.08857
\(28\) 0 0
\(29\) −8.32874 −1.54661 −0.773304 0.634036i \(-0.781397\pi\)
−0.773304 + 0.634036i \(0.781397\pi\)
\(30\) 0 0
\(31\) −0.583258 −0.104756 −0.0523781 0.998627i \(-0.516680\pi\)
−0.0523781 + 0.998627i \(0.516680\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −7.51070 −1.26954
\(36\) 0 0
\(37\) −2.92957 −0.481618 −0.240809 0.970573i \(-0.577413\pi\)
−0.240809 + 0.970573i \(0.577413\pi\)
\(38\) 0 0
\(39\) 5.77818 0.925250
\(40\) 0 0
\(41\) −0.892281 −0.139351 −0.0696754 0.997570i \(-0.522196\pi\)
−0.0696754 + 0.997570i \(0.522196\pi\)
\(42\) 0 0
\(43\) −8.63194 −1.31636 −0.658180 0.752861i \(-0.728673\pi\)
−0.658180 + 0.752861i \(0.728673\pi\)
\(44\) 0 0
\(45\) 2.04832 0.305346
\(46\) 0 0
\(47\) −0.756169 −0.110299 −0.0551493 0.998478i \(-0.517563\pi\)
−0.0551493 + 0.998478i \(0.517563\pi\)
\(48\) 0 0
\(49\) 5.66510 0.809300
\(50\) 0 0
\(51\) 6.26344 0.877057
\(52\) 0 0
\(53\) 1.53431 0.210754 0.105377 0.994432i \(-0.466395\pi\)
0.105377 + 0.994432i \(0.466395\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.42458 −0.188691
\(58\) 0 0
\(59\) −13.9436 −1.81531 −0.907653 0.419722i \(-0.862127\pi\)
−0.907653 + 0.419722i \(0.862127\pi\)
\(60\) 0 0
\(61\) 14.9005 1.90781 0.953907 0.300101i \(-0.0970203\pi\)
0.953907 + 0.300101i \(0.0970203\pi\)
\(62\) 0 0
\(63\) −3.45403 −0.435166
\(64\) 0 0
\(65\) −8.56011 −1.06175
\(66\) 0 0
\(67\) 1.09562 0.133851 0.0669255 0.997758i \(-0.478681\pi\)
0.0669255 + 0.997758i \(0.478681\pi\)
\(68\) 0 0
\(69\) −12.1100 −1.45787
\(70\) 0 0
\(71\) −4.46831 −0.530291 −0.265146 0.964208i \(-0.585420\pi\)
−0.265146 + 0.964208i \(0.585420\pi\)
\(72\) 0 0
\(73\) 11.4022 1.33452 0.667261 0.744824i \(-0.267467\pi\)
0.667261 + 0.744824i \(0.267467\pi\)
\(74\) 0 0
\(75\) −0.777785 −0.0898109
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −14.7613 −1.66077 −0.830387 0.557187i \(-0.811881\pi\)
−0.830387 + 0.557187i \(0.811881\pi\)
\(80\) 0 0
\(81\) −5.14634 −0.571816
\(82\) 0 0
\(83\) −5.34261 −0.586427 −0.293214 0.956047i \(-0.594725\pi\)
−0.293214 + 0.956047i \(0.594725\pi\)
\(84\) 0 0
\(85\) −9.27900 −1.00645
\(86\) 0 0
\(87\) −11.8650 −1.27206
\(88\) 0 0
\(89\) 1.99012 0.210953 0.105476 0.994422i \(-0.466363\pi\)
0.105476 + 0.994422i \(0.466363\pi\)
\(90\) 0 0
\(91\) 14.4347 1.51317
\(92\) 0 0
\(93\) −0.830900 −0.0861603
\(94\) 0 0
\(95\) 2.11046 0.216528
\(96\) 0 0
\(97\) 2.89451 0.293893 0.146946 0.989144i \(-0.453056\pi\)
0.146946 + 0.989144i \(0.453056\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.93765 −0.789826 −0.394913 0.918719i \(-0.629225\pi\)
−0.394913 + 0.918719i \(0.629225\pi\)
\(102\) 0 0
\(103\) −10.6950 −1.05381 −0.526905 0.849924i \(-0.676648\pi\)
−0.526905 + 0.849924i \(0.676648\pi\)
\(104\) 0 0
\(105\) −10.6996 −1.04418
\(106\) 0 0
\(107\) −1.53788 −0.148672 −0.0743361 0.997233i \(-0.523684\pi\)
−0.0743361 + 0.997233i \(0.523684\pi\)
\(108\) 0 0
\(109\) −5.73300 −0.549122 −0.274561 0.961570i \(-0.588533\pi\)
−0.274561 + 0.961570i \(0.588533\pi\)
\(110\) 0 0
\(111\) −4.17341 −0.396123
\(112\) 0 0
\(113\) −9.55906 −0.899241 −0.449620 0.893220i \(-0.648441\pi\)
−0.449620 + 0.893220i \(0.648441\pi\)
\(114\) 0 0
\(115\) 17.9404 1.67295
\(116\) 0 0
\(117\) −3.93663 −0.363941
\(118\) 0 0
\(119\) 15.6469 1.43435
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −1.27113 −0.114614
\(124\) 0 0
\(125\) 11.7045 1.04689
\(126\) 0 0
\(127\) 3.07566 0.272921 0.136460 0.990646i \(-0.456427\pi\)
0.136460 + 0.990646i \(0.456427\pi\)
\(128\) 0 0
\(129\) −12.2969 −1.08268
\(130\) 0 0
\(131\) −17.0055 −1.48578 −0.742891 0.669413i \(-0.766546\pi\)
−0.742891 + 0.669413i \(0.766546\pi\)
\(132\) 0 0
\(133\) −3.55881 −0.308588
\(134\) 0 0
\(135\) 11.9376 1.02742
\(136\) 0 0
\(137\) 13.0582 1.11564 0.557818 0.829964i \(-0.311639\pi\)
0.557818 + 0.829964i \(0.311639\pi\)
\(138\) 0 0
\(139\) 7.45893 0.632658 0.316329 0.948650i \(-0.397550\pi\)
0.316329 + 0.948650i \(0.397550\pi\)
\(140\) 0 0
\(141\) −1.07723 −0.0907189
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 17.5774 1.45973
\(146\) 0 0
\(147\) 8.07041 0.665636
\(148\) 0 0
\(149\) 12.9688 1.06245 0.531224 0.847231i \(-0.321732\pi\)
0.531224 + 0.847231i \(0.321732\pi\)
\(150\) 0 0
\(151\) −4.28916 −0.349047 −0.174524 0.984653i \(-0.555839\pi\)
−0.174524 + 0.984653i \(0.555839\pi\)
\(152\) 0 0
\(153\) −4.26723 −0.344985
\(154\) 0 0
\(155\) 1.23094 0.0988715
\(156\) 0 0
\(157\) 19.5094 1.55702 0.778508 0.627634i \(-0.215977\pi\)
0.778508 + 0.627634i \(0.215977\pi\)
\(158\) 0 0
\(159\) 2.18576 0.173342
\(160\) 0 0
\(161\) −30.2524 −2.38422
\(162\) 0 0
\(163\) 12.2011 0.955664 0.477832 0.878451i \(-0.341423\pi\)
0.477832 + 0.878451i \(0.341423\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.8148 1.14641 0.573203 0.819413i \(-0.305701\pi\)
0.573203 + 0.819413i \(0.305701\pi\)
\(168\) 0 0
\(169\) 3.45152 0.265502
\(170\) 0 0
\(171\) 0.970558 0.0742204
\(172\) 0 0
\(173\) −12.7016 −0.965683 −0.482841 0.875708i \(-0.660395\pi\)
−0.482841 + 0.875708i \(0.660395\pi\)
\(174\) 0 0
\(175\) −1.94301 −0.146878
\(176\) 0 0
\(177\) −19.8639 −1.49306
\(178\) 0 0
\(179\) −0.870507 −0.0650647 −0.0325324 0.999471i \(-0.510357\pi\)
−0.0325324 + 0.999471i \(0.510357\pi\)
\(180\) 0 0
\(181\) 23.0942 1.71658 0.858290 0.513165i \(-0.171527\pi\)
0.858290 + 0.513165i \(0.171527\pi\)
\(182\) 0 0
\(183\) 21.2270 1.56915
\(184\) 0 0
\(185\) 6.18272 0.454563
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −20.1300 −1.46424
\(190\) 0 0
\(191\) −6.44949 −0.466669 −0.233334 0.972397i \(-0.574964\pi\)
−0.233334 + 0.972397i \(0.574964\pi\)
\(192\) 0 0
\(193\) −21.7914 −1.56858 −0.784289 0.620396i \(-0.786972\pi\)
−0.784289 + 0.620396i \(0.786972\pi\)
\(194\) 0 0
\(195\) −12.1946 −0.873274
\(196\) 0 0
\(197\) 19.7491 1.40706 0.703532 0.710663i \(-0.251605\pi\)
0.703532 + 0.710663i \(0.251605\pi\)
\(198\) 0 0
\(199\) −11.6279 −0.824281 −0.412140 0.911120i \(-0.635219\pi\)
−0.412140 + 0.911120i \(0.635219\pi\)
\(200\) 0 0
\(201\) 1.56080 0.110090
\(202\) 0 0
\(203\) −29.6404 −2.08034
\(204\) 0 0
\(205\) 1.88312 0.131523
\(206\) 0 0
\(207\) 8.25043 0.573445
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 23.6405 1.62748 0.813740 0.581230i \(-0.197428\pi\)
0.813740 + 0.581230i \(0.197428\pi\)
\(212\) 0 0
\(213\) −6.36549 −0.436156
\(214\) 0 0
\(215\) 18.2173 1.24241
\(216\) 0 0
\(217\) −2.07570 −0.140908
\(218\) 0 0
\(219\) 16.2433 1.09762
\(220\) 0 0
\(221\) 17.8331 1.19959
\(222\) 0 0
\(223\) −19.1096 −1.27967 −0.639837 0.768511i \(-0.720998\pi\)
−0.639837 + 0.768511i \(0.720998\pi\)
\(224\) 0 0
\(225\) 0.529898 0.0353266
\(226\) 0 0
\(227\) −20.0447 −1.33041 −0.665206 0.746660i \(-0.731656\pi\)
−0.665206 + 0.746660i \(0.731656\pi\)
\(228\) 0 0
\(229\) −25.3615 −1.67593 −0.837967 0.545721i \(-0.816256\pi\)
−0.837967 + 0.545721i \(0.816256\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.7132 0.898380 0.449190 0.893436i \(-0.351713\pi\)
0.449190 + 0.893436i \(0.351713\pi\)
\(234\) 0 0
\(235\) 1.59586 0.104103
\(236\) 0 0
\(237\) −21.0287 −1.36596
\(238\) 0 0
\(239\) −7.53415 −0.487344 −0.243672 0.969858i \(-0.578352\pi\)
−0.243672 + 0.969858i \(0.578352\pi\)
\(240\) 0 0
\(241\) −21.0167 −1.35380 −0.676902 0.736073i \(-0.736678\pi\)
−0.676902 + 0.736073i \(0.736678\pi\)
\(242\) 0 0
\(243\) 9.63779 0.618264
\(244\) 0 0
\(245\) −11.9559 −0.763837
\(246\) 0 0
\(247\) −4.05605 −0.258080
\(248\) 0 0
\(249\) −7.61100 −0.482327
\(250\) 0 0
\(251\) 19.6975 1.24329 0.621646 0.783298i \(-0.286464\pi\)
0.621646 + 0.783298i \(0.286464\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −13.2187 −0.827788
\(256\) 0 0
\(257\) −3.52523 −0.219898 −0.109949 0.993937i \(-0.535069\pi\)
−0.109949 + 0.993937i \(0.535069\pi\)
\(258\) 0 0
\(259\) −10.4258 −0.647825
\(260\) 0 0
\(261\) 8.08352 0.500357
\(262\) 0 0
\(263\) −5.91794 −0.364916 −0.182458 0.983214i \(-0.558405\pi\)
−0.182458 + 0.983214i \(0.558405\pi\)
\(264\) 0 0
\(265\) −3.23810 −0.198915
\(266\) 0 0
\(267\) 2.83510 0.173505
\(268\) 0 0
\(269\) −29.6651 −1.80871 −0.904356 0.426778i \(-0.859649\pi\)
−0.904356 + 0.426778i \(0.859649\pi\)
\(270\) 0 0
\(271\) −0.413676 −0.0251290 −0.0125645 0.999921i \(-0.504000\pi\)
−0.0125645 + 0.999921i \(0.504000\pi\)
\(272\) 0 0
\(273\) 20.5634 1.24456
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.205501 0.0123474 0.00617369 0.999981i \(-0.498035\pi\)
0.00617369 + 0.999981i \(0.498035\pi\)
\(278\) 0 0
\(279\) 0.566085 0.0338906
\(280\) 0 0
\(281\) −22.2026 −1.32449 −0.662247 0.749285i \(-0.730397\pi\)
−0.662247 + 0.749285i \(0.730397\pi\)
\(282\) 0 0
\(283\) −1.33796 −0.0795335 −0.0397668 0.999209i \(-0.512661\pi\)
−0.0397668 + 0.999209i \(0.512661\pi\)
\(284\) 0 0
\(285\) 3.00652 0.178091
\(286\) 0 0
\(287\) −3.17545 −0.187441
\(288\) 0 0
\(289\) 2.33077 0.137104
\(290\) 0 0
\(291\) 4.12347 0.241722
\(292\) 0 0
\(293\) −3.20807 −0.187417 −0.0937087 0.995600i \(-0.529872\pi\)
−0.0937087 + 0.995600i \(0.529872\pi\)
\(294\) 0 0
\(295\) 29.4274 1.71333
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −34.4793 −1.99399
\(300\) 0 0
\(301\) −30.7194 −1.77064
\(302\) 0 0
\(303\) −11.3079 −0.649619
\(304\) 0 0
\(305\) −31.4469 −1.80064
\(306\) 0 0
\(307\) −10.5284 −0.600887 −0.300443 0.953800i \(-0.597135\pi\)
−0.300443 + 0.953800i \(0.597135\pi\)
\(308\) 0 0
\(309\) −15.2359 −0.866742
\(310\) 0 0
\(311\) −32.8032 −1.86010 −0.930050 0.367433i \(-0.880237\pi\)
−0.930050 + 0.367433i \(0.880237\pi\)
\(312\) 0 0
\(313\) −5.75883 −0.325508 −0.162754 0.986667i \(-0.552038\pi\)
−0.162754 + 0.986667i \(0.552038\pi\)
\(314\) 0 0
\(315\) 7.28957 0.410721
\(316\) 0 0
\(317\) 24.8593 1.39624 0.698118 0.715983i \(-0.254021\pi\)
0.698118 + 0.715983i \(0.254021\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −2.19084 −0.122281
\(322\) 0 0
\(323\) −4.39668 −0.244638
\(324\) 0 0
\(325\) −2.21449 −0.122838
\(326\) 0 0
\(327\) −8.16715 −0.451644
\(328\) 0 0
\(329\) −2.69106 −0.148363
\(330\) 0 0
\(331\) 31.9606 1.75671 0.878357 0.478006i \(-0.158640\pi\)
0.878357 + 0.478006i \(0.158640\pi\)
\(332\) 0 0
\(333\) 2.84331 0.155813
\(334\) 0 0
\(335\) −2.31225 −0.126332
\(336\) 0 0
\(337\) −1.49742 −0.0815696 −0.0407848 0.999168i \(-0.512986\pi\)
−0.0407848 + 0.999168i \(0.512986\pi\)
\(338\) 0 0
\(339\) −13.6177 −0.739611
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −4.75066 −0.256512
\(344\) 0 0
\(345\) 25.5576 1.37598
\(346\) 0 0
\(347\) −13.9215 −0.747346 −0.373673 0.927561i \(-0.621902\pi\)
−0.373673 + 0.927561i \(0.621902\pi\)
\(348\) 0 0
\(349\) −0.0849581 −0.00454770 −0.00227385 0.999997i \(-0.500724\pi\)
−0.00227385 + 0.999997i \(0.500724\pi\)
\(350\) 0 0
\(351\) −22.9426 −1.22459
\(352\) 0 0
\(353\) −4.96951 −0.264500 −0.132250 0.991216i \(-0.542220\pi\)
−0.132250 + 0.991216i \(0.542220\pi\)
\(354\) 0 0
\(355\) 9.43018 0.500502
\(356\) 0 0
\(357\) 22.2904 1.17973
\(358\) 0 0
\(359\) 30.7695 1.62395 0.811975 0.583692i \(-0.198393\pi\)
0.811975 + 0.583692i \(0.198393\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −24.0638 −1.25956
\(366\) 0 0
\(367\) −27.4654 −1.43368 −0.716841 0.697236i \(-0.754413\pi\)
−0.716841 + 0.697236i \(0.754413\pi\)
\(368\) 0 0
\(369\) 0.866010 0.0450827
\(370\) 0 0
\(371\) 5.46031 0.283485
\(372\) 0 0
\(373\) −8.92750 −0.462248 −0.231124 0.972924i \(-0.574240\pi\)
−0.231124 + 0.972924i \(0.574240\pi\)
\(374\) 0 0
\(375\) 16.6741 0.861047
\(376\) 0 0
\(377\) −33.7818 −1.73985
\(378\) 0 0
\(379\) 11.5337 0.592448 0.296224 0.955118i \(-0.404273\pi\)
0.296224 + 0.955118i \(0.404273\pi\)
\(380\) 0 0
\(381\) 4.38154 0.224473
\(382\) 0 0
\(383\) 15.7010 0.802283 0.401142 0.916016i \(-0.368614\pi\)
0.401142 + 0.916016i \(0.368614\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.37780 0.425868
\(388\) 0 0
\(389\) −0.994188 −0.0504073 −0.0252037 0.999682i \(-0.508023\pi\)
−0.0252037 + 0.999682i \(0.508023\pi\)
\(390\) 0 0
\(391\) −37.3749 −1.89013
\(392\) 0 0
\(393\) −24.2258 −1.22203
\(394\) 0 0
\(395\) 31.1530 1.56748
\(396\) 0 0
\(397\) 24.4782 1.22852 0.614262 0.789102i \(-0.289454\pi\)
0.614262 + 0.789102i \(0.289454\pi\)
\(398\) 0 0
\(399\) −5.06982 −0.253808
\(400\) 0 0
\(401\) 17.0301 0.850441 0.425221 0.905090i \(-0.360196\pi\)
0.425221 + 0.905090i \(0.360196\pi\)
\(402\) 0 0
\(403\) −2.36572 −0.117845
\(404\) 0 0
\(405\) 10.8611 0.539694
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 12.1977 0.603138 0.301569 0.953444i \(-0.402490\pi\)
0.301569 + 0.953444i \(0.402490\pi\)
\(410\) 0 0
\(411\) 18.6025 0.917593
\(412\) 0 0
\(413\) −49.6226 −2.44177
\(414\) 0 0
\(415\) 11.2753 0.553485
\(416\) 0 0
\(417\) 10.6259 0.520351
\(418\) 0 0
\(419\) −6.93005 −0.338555 −0.169278 0.985568i \(-0.554143\pi\)
−0.169278 + 0.985568i \(0.554143\pi\)
\(420\) 0 0
\(421\) −38.3418 −1.86866 −0.934332 0.356403i \(-0.884003\pi\)
−0.934332 + 0.356403i \(0.884003\pi\)
\(422\) 0 0
\(423\) 0.733906 0.0356837
\(424\) 0 0
\(425\) −2.40047 −0.116440
\(426\) 0 0
\(427\) 53.0280 2.56621
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 24.5731 1.18364 0.591822 0.806068i \(-0.298409\pi\)
0.591822 + 0.806068i \(0.298409\pi\)
\(432\) 0 0
\(433\) −34.6709 −1.66618 −0.833088 0.553140i \(-0.813430\pi\)
−0.833088 + 0.553140i \(0.813430\pi\)
\(434\) 0 0
\(435\) 25.0406 1.20060
\(436\) 0 0
\(437\) 8.50071 0.406644
\(438\) 0 0
\(439\) 22.5238 1.07500 0.537502 0.843263i \(-0.319368\pi\)
0.537502 + 0.843263i \(0.319368\pi\)
\(440\) 0 0
\(441\) −5.49830 −0.261824
\(442\) 0 0
\(443\) 22.7214 1.07953 0.539763 0.841817i \(-0.318514\pi\)
0.539763 + 0.841817i \(0.318514\pi\)
\(444\) 0 0
\(445\) −4.20007 −0.199102
\(446\) 0 0
\(447\) 18.4752 0.873847
\(448\) 0 0
\(449\) −12.1007 −0.571068 −0.285534 0.958369i \(-0.592171\pi\)
−0.285534 + 0.958369i \(0.592171\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −6.11027 −0.287086
\(454\) 0 0
\(455\) −30.4638 −1.42816
\(456\) 0 0
\(457\) 9.84939 0.460735 0.230367 0.973104i \(-0.426007\pi\)
0.230367 + 0.973104i \(0.426007\pi\)
\(458\) 0 0
\(459\) −24.8694 −1.16080
\(460\) 0 0
\(461\) −15.9844 −0.744468 −0.372234 0.928139i \(-0.621408\pi\)
−0.372234 + 0.928139i \(0.621408\pi\)
\(462\) 0 0
\(463\) −28.9974 −1.34763 −0.673813 0.738902i \(-0.735345\pi\)
−0.673813 + 0.738902i \(0.735345\pi\)
\(464\) 0 0
\(465\) 1.75358 0.0813203
\(466\) 0 0
\(467\) −17.9635 −0.831253 −0.415627 0.909535i \(-0.636438\pi\)
−0.415627 + 0.909535i \(0.636438\pi\)
\(468\) 0 0
\(469\) 3.89909 0.180043
\(470\) 0 0
\(471\) 27.7927 1.28062
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.545973 0.0250510
\(476\) 0 0
\(477\) −1.48914 −0.0681829
\(478\) 0 0
\(479\) −1.72715 −0.0789157 −0.0394578 0.999221i \(-0.512563\pi\)
−0.0394578 + 0.999221i \(0.512563\pi\)
\(480\) 0 0
\(481\) −11.8825 −0.541793
\(482\) 0 0
\(483\) −43.0971 −1.96099
\(484\) 0 0
\(485\) −6.10873 −0.277383
\(486\) 0 0
\(487\) −25.2254 −1.14307 −0.571536 0.820577i \(-0.693652\pi\)
−0.571536 + 0.820577i \(0.693652\pi\)
\(488\) 0 0
\(489\) 17.3815 0.786019
\(490\) 0 0
\(491\) −37.2934 −1.68303 −0.841515 0.540234i \(-0.818336\pi\)
−0.841515 + 0.540234i \(0.818336\pi\)
\(492\) 0 0
\(493\) −36.6188 −1.64923
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15.9019 −0.713296
\(498\) 0 0
\(499\) 34.4064 1.54024 0.770121 0.637898i \(-0.220196\pi\)
0.770121 + 0.637898i \(0.220196\pi\)
\(500\) 0 0
\(501\) 21.1050 0.942901
\(502\) 0 0
\(503\) 30.8729 1.37655 0.688277 0.725448i \(-0.258367\pi\)
0.688277 + 0.725448i \(0.258367\pi\)
\(504\) 0 0
\(505\) 16.7521 0.745457
\(506\) 0 0
\(507\) 4.91699 0.218371
\(508\) 0 0
\(509\) −1.07504 −0.0476505 −0.0238253 0.999716i \(-0.507585\pi\)
−0.0238253 + 0.999716i \(0.507585\pi\)
\(510\) 0 0
\(511\) 40.5781 1.79507
\(512\) 0 0
\(513\) 5.65640 0.249736
\(514\) 0 0
\(515\) 22.5713 0.994612
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −18.0945 −0.794259
\(520\) 0 0
\(521\) −7.68815 −0.336824 −0.168412 0.985717i \(-0.553864\pi\)
−0.168412 + 0.985717i \(0.553864\pi\)
\(522\) 0 0
\(523\) 3.26038 0.142567 0.0712833 0.997456i \(-0.477291\pi\)
0.0712833 + 0.997456i \(0.477291\pi\)
\(524\) 0 0
\(525\) −2.76799 −0.120805
\(526\) 0 0
\(527\) −2.56440 −0.111707
\(528\) 0 0
\(529\) 49.2621 2.14183
\(530\) 0 0
\(531\) 13.5331 0.587286
\(532\) 0 0
\(533\) −3.61913 −0.156762
\(534\) 0 0
\(535\) 3.24562 0.140321
\(536\) 0 0
\(537\) −1.24011 −0.0535147
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −22.6124 −0.972183 −0.486092 0.873908i \(-0.661578\pi\)
−0.486092 + 0.873908i \(0.661578\pi\)
\(542\) 0 0
\(543\) 32.8997 1.41186
\(544\) 0 0
\(545\) 12.0993 0.518275
\(546\) 0 0
\(547\) 3.18772 0.136297 0.0681485 0.997675i \(-0.478291\pi\)
0.0681485 + 0.997675i \(0.478291\pi\)
\(548\) 0 0
\(549\) −14.4618 −0.617215
\(550\) 0 0
\(551\) 8.32874 0.354816
\(552\) 0 0
\(553\) −52.5325 −2.23391
\(554\) 0 0
\(555\) 8.80781 0.373871
\(556\) 0 0
\(557\) 18.5279 0.785054 0.392527 0.919741i \(-0.371601\pi\)
0.392527 + 0.919741i \(0.371601\pi\)
\(558\) 0 0
\(559\) −35.0116 −1.48083
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.91255 −0.291329 −0.145665 0.989334i \(-0.546532\pi\)
−0.145665 + 0.989334i \(0.546532\pi\)
\(564\) 0 0
\(565\) 20.1740 0.848726
\(566\) 0 0
\(567\) −18.3148 −0.769151
\(568\) 0 0
\(569\) −18.8169 −0.788844 −0.394422 0.918929i \(-0.629055\pi\)
−0.394422 + 0.918929i \(0.629055\pi\)
\(570\) 0 0
\(571\) 7.93105 0.331904 0.165952 0.986134i \(-0.446930\pi\)
0.165952 + 0.986134i \(0.446930\pi\)
\(572\) 0 0
\(573\) −9.18785 −0.383828
\(574\) 0 0
\(575\) 4.64116 0.193550
\(576\) 0 0
\(577\) 1.48485 0.0618152 0.0309076 0.999522i \(-0.490160\pi\)
0.0309076 + 0.999522i \(0.490160\pi\)
\(578\) 0 0
\(579\) −31.0437 −1.29013
\(580\) 0 0
\(581\) −19.0133 −0.788805
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 8.30808 0.343497
\(586\) 0 0
\(587\) −16.5713 −0.683971 −0.341986 0.939705i \(-0.611099\pi\)
−0.341986 + 0.939705i \(0.611099\pi\)
\(588\) 0 0
\(589\) 0.583258 0.0240327
\(590\) 0 0
\(591\) 28.1343 1.15729
\(592\) 0 0
\(593\) 12.1402 0.498540 0.249270 0.968434i \(-0.419809\pi\)
0.249270 + 0.968434i \(0.419809\pi\)
\(594\) 0 0
\(595\) −33.0221 −1.35378
\(596\) 0 0
\(597\) −16.5649 −0.677958
\(598\) 0 0
\(599\) 29.0057 1.18514 0.592570 0.805519i \(-0.298113\pi\)
0.592570 + 0.805519i \(0.298113\pi\)
\(600\) 0 0
\(601\) −4.43059 −0.180728 −0.0903638 0.995909i \(-0.528803\pi\)
−0.0903638 + 0.995909i \(0.528803\pi\)
\(602\) 0 0
\(603\) −1.06336 −0.0433034
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 5.86365 0.237998 0.118999 0.992894i \(-0.462031\pi\)
0.118999 + 0.992894i \(0.462031\pi\)
\(608\) 0 0
\(609\) −42.2252 −1.71105
\(610\) 0 0
\(611\) −3.06706 −0.124080
\(612\) 0 0
\(613\) −16.6576 −0.672794 −0.336397 0.941720i \(-0.609208\pi\)
−0.336397 + 0.941720i \(0.609208\pi\)
\(614\) 0 0
\(615\) 2.68266 0.108175
\(616\) 0 0
\(617\) 7.81920 0.314789 0.157395 0.987536i \(-0.449691\pi\)
0.157395 + 0.987536i \(0.449691\pi\)
\(618\) 0 0
\(619\) −27.8786 −1.12054 −0.560268 0.828311i \(-0.689302\pi\)
−0.560268 + 0.828311i \(0.689302\pi\)
\(620\) 0 0
\(621\) 48.0834 1.92952
\(622\) 0 0
\(623\) 7.08247 0.283753
\(624\) 0 0
\(625\) −21.9720 −0.878882
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.8804 −0.513573
\(630\) 0 0
\(631\) 31.0238 1.23504 0.617518 0.786557i \(-0.288138\pi\)
0.617518 + 0.786557i \(0.288138\pi\)
\(632\) 0 0
\(633\) 33.6779 1.33858
\(634\) 0 0
\(635\) −6.49105 −0.257589
\(636\) 0 0
\(637\) 22.9779 0.910418
\(638\) 0 0
\(639\) 4.33676 0.171559
\(640\) 0 0
\(641\) −24.5560 −0.969905 −0.484952 0.874541i \(-0.661163\pi\)
−0.484952 + 0.874541i \(0.661163\pi\)
\(642\) 0 0
\(643\) −23.7262 −0.935669 −0.467834 0.883816i \(-0.654966\pi\)
−0.467834 + 0.883816i \(0.654966\pi\)
\(644\) 0 0
\(645\) 25.9522 1.02187
\(646\) 0 0
\(647\) −43.1207 −1.69525 −0.847625 0.530596i \(-0.821968\pi\)
−0.847625 + 0.530596i \(0.821968\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −2.95701 −0.115894
\(652\) 0 0
\(653\) −14.3592 −0.561917 −0.280959 0.959720i \(-0.590652\pi\)
−0.280959 + 0.959720i \(0.590652\pi\)
\(654\) 0 0
\(655\) 35.8895 1.40232
\(656\) 0 0
\(657\) −11.0665 −0.431744
\(658\) 0 0
\(659\) −34.4316 −1.34126 −0.670632 0.741790i \(-0.733977\pi\)
−0.670632 + 0.741790i \(0.733977\pi\)
\(660\) 0 0
\(661\) 39.5074 1.53666 0.768330 0.640054i \(-0.221088\pi\)
0.768330 + 0.640054i \(0.221088\pi\)
\(662\) 0 0
\(663\) 25.4048 0.986641
\(664\) 0 0
\(665\) 7.51070 0.291253
\(666\) 0 0
\(667\) 70.8002 2.74139
\(668\) 0 0
\(669\) −27.2233 −1.05251
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 28.4691 1.09740 0.548701 0.836019i \(-0.315123\pi\)
0.548701 + 0.836019i \(0.315123\pi\)
\(674\) 0 0
\(675\) 3.08824 0.118866
\(676\) 0 0
\(677\) −18.5874 −0.714370 −0.357185 0.934034i \(-0.616263\pi\)
−0.357185 + 0.934034i \(0.616263\pi\)
\(678\) 0 0
\(679\) 10.3010 0.395316
\(680\) 0 0
\(681\) −28.5553 −1.09424
\(682\) 0 0
\(683\) 30.1245 1.15268 0.576340 0.817210i \(-0.304480\pi\)
0.576340 + 0.817210i \(0.304480\pi\)
\(684\) 0 0
\(685\) −27.5587 −1.05296
\(686\) 0 0
\(687\) −36.1296 −1.37843
\(688\) 0 0
\(689\) 6.22324 0.237086
\(690\) 0 0
\(691\) −0.959889 −0.0365159 −0.0182579 0.999833i \(-0.505812\pi\)
−0.0182579 + 0.999833i \(0.505812\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −15.7417 −0.597118
\(696\) 0 0
\(697\) −3.92307 −0.148597
\(698\) 0 0
\(699\) 19.5356 0.738904
\(700\) 0 0
\(701\) 18.0325 0.681079 0.340539 0.940230i \(-0.389390\pi\)
0.340539 + 0.940230i \(0.389390\pi\)
\(702\) 0 0
\(703\) 2.92957 0.110491
\(704\) 0 0
\(705\) 2.27344 0.0856228
\(706\) 0 0
\(707\) −28.2486 −1.06240
\(708\) 0 0
\(709\) −2.59735 −0.0975455 −0.0487727 0.998810i \(-0.515531\pi\)
−0.0487727 + 0.998810i \(0.515531\pi\)
\(710\) 0 0
\(711\) 14.3267 0.537292
\(712\) 0 0
\(713\) 4.95811 0.185683
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −10.7330 −0.400833
\(718\) 0 0
\(719\) 8.62999 0.321844 0.160922 0.986967i \(-0.448553\pi\)
0.160922 + 0.986967i \(0.448553\pi\)
\(720\) 0 0
\(721\) −38.0614 −1.41748
\(722\) 0 0
\(723\) −29.9401 −1.11348
\(724\) 0 0
\(725\) 4.54727 0.168881
\(726\) 0 0
\(727\) −37.2249 −1.38059 −0.690297 0.723526i \(-0.742520\pi\)
−0.690297 + 0.723526i \(0.742520\pi\)
\(728\) 0 0
\(729\) 29.1689 1.08033
\(730\) 0 0
\(731\) −37.9519 −1.40370
\(732\) 0 0
\(733\) 29.5022 1.08969 0.544845 0.838537i \(-0.316589\pi\)
0.544845 + 0.838537i \(0.316589\pi\)
\(734\) 0 0
\(735\) −17.0323 −0.628244
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −40.7293 −1.49825 −0.749125 0.662429i \(-0.769526\pi\)
−0.749125 + 0.662429i \(0.769526\pi\)
\(740\) 0 0
\(741\) −5.77818 −0.212267
\(742\) 0 0
\(743\) 4.26188 0.156353 0.0781766 0.996940i \(-0.475090\pi\)
0.0781766 + 0.996940i \(0.475090\pi\)
\(744\) 0 0
\(745\) −27.3702 −1.00277
\(746\) 0 0
\(747\) 5.18531 0.189721
\(748\) 0 0
\(749\) −5.47301 −0.199979
\(750\) 0 0
\(751\) 12.2072 0.445446 0.222723 0.974882i \(-0.428505\pi\)
0.222723 + 0.974882i \(0.428505\pi\)
\(752\) 0 0
\(753\) 28.0607 1.02259
\(754\) 0 0
\(755\) 9.05209 0.329439
\(756\) 0 0
\(757\) 30.2463 1.09932 0.549659 0.835389i \(-0.314758\pi\)
0.549659 + 0.835389i \(0.314758\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 19.8327 0.718934 0.359467 0.933158i \(-0.382959\pi\)
0.359467 + 0.933158i \(0.382959\pi\)
\(762\) 0 0
\(763\) −20.4026 −0.738625
\(764\) 0 0
\(765\) 9.00580 0.325606
\(766\) 0 0
\(767\) −56.5560 −2.04212
\(768\) 0 0
\(769\) 33.2319 1.19837 0.599186 0.800610i \(-0.295491\pi\)
0.599186 + 0.800610i \(0.295491\pi\)
\(770\) 0 0
\(771\) −5.02199 −0.180862
\(772\) 0 0
\(773\) 20.1676 0.725378 0.362689 0.931910i \(-0.381859\pi\)
0.362689 + 0.931910i \(0.381859\pi\)
\(774\) 0 0
\(775\) 0.318443 0.0114388
\(776\) 0 0
\(777\) −14.8524 −0.532826
\(778\) 0 0
\(779\) 0.892281 0.0319693
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 47.1106 1.68360
\(784\) 0 0
\(785\) −41.1737 −1.46955
\(786\) 0 0
\(787\) 13.3980 0.477587 0.238794 0.971070i \(-0.423248\pi\)
0.238794 + 0.971070i \(0.423248\pi\)
\(788\) 0 0
\(789\) −8.43061 −0.300138
\(790\) 0 0
\(791\) −34.0188 −1.20957
\(792\) 0 0
\(793\) 60.4372 2.14619
\(794\) 0 0
\(795\) −4.61294 −0.163604
\(796\) 0 0
\(797\) −46.1047 −1.63311 −0.816556 0.577266i \(-0.804119\pi\)
−0.816556 + 0.577266i \(0.804119\pi\)
\(798\) 0 0
\(799\) −3.32463 −0.117617
\(800\) 0 0
\(801\) −1.93153 −0.0682473
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 63.8463 2.25029
\(806\) 0 0
\(807\) −42.2605 −1.48764
\(808\) 0 0
\(809\) −55.2692 −1.94316 −0.971581 0.236709i \(-0.923931\pi\)
−0.971581 + 0.236709i \(0.923931\pi\)
\(810\) 0 0
\(811\) −28.4936 −1.00055 −0.500273 0.865868i \(-0.666767\pi\)
−0.500273 + 0.865868i \(0.666767\pi\)
\(812\) 0 0
\(813\) −0.589317 −0.0206682
\(814\) 0 0
\(815\) −25.7499 −0.901979
\(816\) 0 0
\(817\) 8.63194 0.301994
\(818\) 0 0
\(819\) −14.0097 −0.489538
\(820\) 0 0
\(821\) 33.6192 1.17332 0.586659 0.809834i \(-0.300443\pi\)
0.586659 + 0.809834i \(0.300443\pi\)
\(822\) 0 0
\(823\) 6.71808 0.234178 0.117089 0.993121i \(-0.462644\pi\)
0.117089 + 0.993121i \(0.462644\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −12.2762 −0.426885 −0.213443 0.976956i \(-0.568468\pi\)
−0.213443 + 0.976956i \(0.568468\pi\)
\(828\) 0 0
\(829\) 47.6507 1.65498 0.827488 0.561483i \(-0.189769\pi\)
0.827488 + 0.561483i \(0.189769\pi\)
\(830\) 0 0
\(831\) 0.292754 0.0101555
\(832\) 0 0
\(833\) 24.9076 0.862997
\(834\) 0 0
\(835\) −31.2661 −1.08201
\(836\) 0 0
\(837\) 3.29914 0.114035
\(838\) 0 0
\(839\) −5.93886 −0.205032 −0.102516 0.994731i \(-0.532689\pi\)
−0.102516 + 0.994731i \(0.532689\pi\)
\(840\) 0 0
\(841\) 40.3678 1.39199
\(842\) 0 0
\(843\) −31.6294 −1.08938
\(844\) 0 0
\(845\) −7.28429 −0.250587
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.90604 −0.0654151
\(850\) 0 0
\(851\) 24.9034 0.853677
\(852\) 0 0
\(853\) 37.6031 1.28751 0.643754 0.765233i \(-0.277376\pi\)
0.643754 + 0.765233i \(0.277376\pi\)
\(854\) 0 0
\(855\) −2.04832 −0.0700511
\(856\) 0 0
\(857\) 3.66558 0.125214 0.0626069 0.998038i \(-0.480059\pi\)
0.0626069 + 0.998038i \(0.480059\pi\)
\(858\) 0 0
\(859\) 27.5818 0.941077 0.470539 0.882379i \(-0.344060\pi\)
0.470539 + 0.882379i \(0.344060\pi\)
\(860\) 0 0
\(861\) −4.52370 −0.154167
\(862\) 0 0
\(863\) 50.2521 1.71060 0.855301 0.518131i \(-0.173372\pi\)
0.855301 + 0.518131i \(0.173372\pi\)
\(864\) 0 0
\(865\) 26.8061 0.911436
\(866\) 0 0
\(867\) 3.32038 0.112766
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 4.44388 0.150575
\(872\) 0 0
\(873\) −2.80929 −0.0950799
\(874\) 0 0
\(875\) 41.6542 1.40817
\(876\) 0 0
\(877\) 28.5790 0.965044 0.482522 0.875884i \(-0.339721\pi\)
0.482522 + 0.875884i \(0.339721\pi\)
\(878\) 0 0
\(879\) −4.57017 −0.154148
\(880\) 0 0
\(881\) 16.9395 0.570706 0.285353 0.958422i \(-0.407889\pi\)
0.285353 + 0.958422i \(0.407889\pi\)
\(882\) 0 0
\(883\) −55.0730 −1.85335 −0.926677 0.375860i \(-0.877347\pi\)
−0.926677 + 0.375860i \(0.877347\pi\)
\(884\) 0 0
\(885\) 41.9218 1.40919
\(886\) 0 0
\(887\) −17.2072 −0.577761 −0.288881 0.957365i \(-0.593283\pi\)
−0.288881 + 0.957365i \(0.593283\pi\)
\(888\) 0 0
\(889\) 10.9457 0.367106
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.756169 0.0253042
\(894\) 0 0
\(895\) 1.83717 0.0614097
\(896\) 0 0
\(897\) −49.1187 −1.64003
\(898\) 0 0
\(899\) 4.85780 0.162017
\(900\) 0 0
\(901\) 6.74587 0.224737
\(902\) 0 0
\(903\) −43.7624 −1.45632
\(904\) 0 0
\(905\) −48.7393 −1.62015
\(906\) 0 0
\(907\) −29.3310 −0.973918 −0.486959 0.873425i \(-0.661894\pi\)
−0.486959 + 0.873425i \(0.661894\pi\)
\(908\) 0 0
\(909\) 7.70395 0.255524
\(910\) 0 0
\(911\) 47.1223 1.56123 0.780616 0.625011i \(-0.214906\pi\)
0.780616 + 0.625011i \(0.214906\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −44.7988 −1.48100
\(916\) 0 0
\(917\) −60.5194 −1.99853
\(918\) 0 0
\(919\) 17.1897 0.567036 0.283518 0.958967i \(-0.408498\pi\)
0.283518 + 0.958967i \(0.408498\pi\)
\(920\) 0 0
\(921\) −14.9986 −0.494220
\(922\) 0 0
\(923\) −18.1237 −0.596549
\(924\) 0 0
\(925\) 1.59946 0.0525900
\(926\) 0 0
\(927\) 10.3801 0.340928
\(928\) 0 0
\(929\) −23.4132 −0.768161 −0.384081 0.923300i \(-0.625482\pi\)
−0.384081 + 0.923300i \(0.625482\pi\)
\(930\) 0 0
\(931\) −5.66510 −0.185666
\(932\) 0 0
\(933\) −46.7310 −1.52990
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.96478 0.0641864 0.0320932 0.999485i \(-0.489783\pi\)
0.0320932 + 0.999485i \(0.489783\pi\)
\(938\) 0 0
\(939\) −8.20394 −0.267726
\(940\) 0 0
\(941\) 39.3081 1.28141 0.640704 0.767788i \(-0.278642\pi\)
0.640704 + 0.767788i \(0.278642\pi\)
\(942\) 0 0
\(943\) 7.58502 0.247002
\(944\) 0 0
\(945\) 42.4835 1.38199
\(946\) 0 0
\(947\) −9.10650 −0.295922 −0.147961 0.988993i \(-0.547271\pi\)
−0.147961 + 0.988993i \(0.547271\pi\)
\(948\) 0 0
\(949\) 46.2477 1.50126
\(950\) 0 0
\(951\) 35.4141 1.14838
\(952\) 0 0
\(953\) 13.9088 0.450550 0.225275 0.974295i \(-0.427672\pi\)
0.225275 + 0.974295i \(0.427672\pi\)
\(954\) 0 0
\(955\) 13.6114 0.440454
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 46.4715 1.50064
\(960\) 0 0
\(961\) −30.6598 −0.989026
\(962\) 0 0
\(963\) 1.49260 0.0480984
\(964\) 0 0
\(965\) 45.9898 1.48046
\(966\) 0 0
\(967\) 15.3620 0.494009 0.247004 0.969014i \(-0.420554\pi\)
0.247004 + 0.969014i \(0.420554\pi\)
\(968\) 0 0
\(969\) −6.26344 −0.201211
\(970\) 0 0
\(971\) −8.30207 −0.266426 −0.133213 0.991087i \(-0.542529\pi\)
−0.133213 + 0.991087i \(0.542529\pi\)
\(972\) 0 0
\(973\) 26.5449 0.850990
\(974\) 0 0
\(975\) −3.15473 −0.101032
\(976\) 0 0
\(977\) −15.1961 −0.486165 −0.243082 0.970006i \(-0.578159\pi\)
−0.243082 + 0.970006i \(0.578159\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 5.56421 0.177652
\(982\) 0 0
\(983\) −37.2279 −1.18739 −0.593693 0.804692i \(-0.702331\pi\)
−0.593693 + 0.804692i \(0.702331\pi\)
\(984\) 0 0
\(985\) −41.6796 −1.32802
\(986\) 0 0
\(987\) −3.83364 −0.122026
\(988\) 0 0
\(989\) 73.3777 2.33327
\(990\) 0 0
\(991\) 0.913096 0.0290055 0.0145027 0.999895i \(-0.495383\pi\)
0.0145027 + 0.999895i \(0.495383\pi\)
\(992\) 0 0
\(993\) 45.5306 1.44487
\(994\) 0 0
\(995\) 24.5402 0.777976
\(996\) 0 0
\(997\) −26.2337 −0.830829 −0.415414 0.909632i \(-0.636363\pi\)
−0.415414 + 0.909632i \(0.636363\pi\)
\(998\) 0 0
\(999\) 16.5708 0.524276
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.q.1.6 8
11.10 odd 2 9196.2.a.r.1.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9196.2.a.q.1.6 8 1.1 even 1 trivial
9196.2.a.r.1.6 yes 8 11.10 odd 2