Properties

Label 9196.2.a.q.1.4
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9196,2,Mod(1,9196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9196.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-1,0,0,0,-2,0,9,0,0,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 16x^{6} + 14x^{5} + 80x^{4} - 64x^{3} - 140x^{2} + 81x + 72 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.51360\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.51360 q^{3} +1.33319 q^{5} +1.09646 q^{7} -0.709002 q^{9} -1.74738 q^{13} -2.01792 q^{15} -5.01936 q^{17} -1.00000 q^{19} -1.65961 q^{21} +5.31728 q^{23} -3.22261 q^{25} +5.61396 q^{27} -4.08844 q^{29} +6.84522 q^{31} +1.46179 q^{35} +11.7695 q^{37} +2.64484 q^{39} +3.70163 q^{41} -2.32772 q^{43} -0.945234 q^{45} -6.39330 q^{47} -5.79777 q^{49} +7.59732 q^{51} -2.97469 q^{53} +1.51360 q^{57} -11.9409 q^{59} +11.6153 q^{61} -0.777394 q^{63} -2.32959 q^{65} +8.95568 q^{67} -8.04826 q^{69} +4.16892 q^{71} +14.8230 q^{73} +4.87775 q^{75} -1.75830 q^{79} -6.37031 q^{81} -14.5404 q^{83} -6.69175 q^{85} +6.18828 q^{87} +1.68679 q^{89} -1.91593 q^{91} -10.3609 q^{93} -1.33319 q^{95} -17.3678 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{3} - 2 q^{7} + 9 q^{9} + 5 q^{13} - 9 q^{15} - 3 q^{17} - 8 q^{19} - 5 q^{21} + q^{23} - q^{27} - q^{29} + 3 q^{31} - 8 q^{35} - 23 q^{37} - 9 q^{39} - 10 q^{41} - 2 q^{43} + 9 q^{45} - 8 q^{47}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.51360 −0.873880 −0.436940 0.899491i \(-0.643938\pi\)
−0.436940 + 0.899491i \(0.643938\pi\)
\(4\) 0 0
\(5\) 1.33319 0.596220 0.298110 0.954531i \(-0.403644\pi\)
0.298110 + 0.954531i \(0.403644\pi\)
\(6\) 0 0
\(7\) 1.09646 0.414424 0.207212 0.978296i \(-0.433561\pi\)
0.207212 + 0.978296i \(0.433561\pi\)
\(8\) 0 0
\(9\) −0.709002 −0.236334
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −1.74738 −0.484635 −0.242318 0.970197i \(-0.577908\pi\)
−0.242318 + 0.970197i \(0.577908\pi\)
\(14\) 0 0
\(15\) −2.01792 −0.521025
\(16\) 0 0
\(17\) −5.01936 −1.21737 −0.608687 0.793411i \(-0.708303\pi\)
−0.608687 + 0.793411i \(0.708303\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −1.65961 −0.362157
\(22\) 0 0
\(23\) 5.31728 1.10873 0.554365 0.832274i \(-0.312961\pi\)
0.554365 + 0.832274i \(0.312961\pi\)
\(24\) 0 0
\(25\) −3.22261 −0.644521
\(26\) 0 0
\(27\) 5.61396 1.08041
\(28\) 0 0
\(29\) −4.08844 −0.759205 −0.379602 0.925150i \(-0.623939\pi\)
−0.379602 + 0.925150i \(0.623939\pi\)
\(30\) 0 0
\(31\) 6.84522 1.22944 0.614719 0.788747i \(-0.289270\pi\)
0.614719 + 0.788747i \(0.289270\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.46179 0.247088
\(36\) 0 0
\(37\) 11.7695 1.93489 0.967443 0.253088i \(-0.0814464\pi\)
0.967443 + 0.253088i \(0.0814464\pi\)
\(38\) 0 0
\(39\) 2.64484 0.423513
\(40\) 0 0
\(41\) 3.70163 0.578098 0.289049 0.957314i \(-0.406661\pi\)
0.289049 + 0.957314i \(0.406661\pi\)
\(42\) 0 0
\(43\) −2.32772 −0.354974 −0.177487 0.984123i \(-0.556797\pi\)
−0.177487 + 0.984123i \(0.556797\pi\)
\(44\) 0 0
\(45\) −0.945234 −0.140907
\(46\) 0 0
\(47\) −6.39330 −0.932559 −0.466279 0.884637i \(-0.654406\pi\)
−0.466279 + 0.884637i \(0.654406\pi\)
\(48\) 0 0
\(49\) −5.79777 −0.828253
\(50\) 0 0
\(51\) 7.59732 1.06384
\(52\) 0 0
\(53\) −2.97469 −0.408606 −0.204303 0.978908i \(-0.565493\pi\)
−0.204303 + 0.978908i \(0.565493\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.51360 0.200482
\(58\) 0 0
\(59\) −11.9409 −1.55457 −0.777287 0.629147i \(-0.783404\pi\)
−0.777287 + 0.629147i \(0.783404\pi\)
\(60\) 0 0
\(61\) 11.6153 1.48719 0.743595 0.668630i \(-0.233119\pi\)
0.743595 + 0.668630i \(0.233119\pi\)
\(62\) 0 0
\(63\) −0.777394 −0.0979424
\(64\) 0 0
\(65\) −2.32959 −0.288950
\(66\) 0 0
\(67\) 8.95568 1.09411 0.547055 0.837097i \(-0.315749\pi\)
0.547055 + 0.837097i \(0.315749\pi\)
\(68\) 0 0
\(69\) −8.04826 −0.968896
\(70\) 0 0
\(71\) 4.16892 0.494760 0.247380 0.968918i \(-0.420430\pi\)
0.247380 + 0.968918i \(0.420430\pi\)
\(72\) 0 0
\(73\) 14.8230 1.73490 0.867448 0.497527i \(-0.165758\pi\)
0.867448 + 0.497527i \(0.165758\pi\)
\(74\) 0 0
\(75\) 4.87775 0.563234
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.75830 −0.197824 −0.0989119 0.995096i \(-0.531536\pi\)
−0.0989119 + 0.995096i \(0.531536\pi\)
\(80\) 0 0
\(81\) −6.37031 −0.707812
\(82\) 0 0
\(83\) −14.5404 −1.59602 −0.798008 0.602646i \(-0.794113\pi\)
−0.798008 + 0.602646i \(0.794113\pi\)
\(84\) 0 0
\(85\) −6.69175 −0.725823
\(86\) 0 0
\(87\) 6.18828 0.663454
\(88\) 0 0
\(89\) 1.68679 0.178800 0.0893998 0.995996i \(-0.471505\pi\)
0.0893998 + 0.995996i \(0.471505\pi\)
\(90\) 0 0
\(91\) −1.91593 −0.200844
\(92\) 0 0
\(93\) −10.3609 −1.07438
\(94\) 0 0
\(95\) −1.33319 −0.136782
\(96\) 0 0
\(97\) −17.3678 −1.76344 −0.881718 0.471776i \(-0.843613\pi\)
−0.881718 + 0.471776i \(0.843613\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.58044 −0.157259 −0.0786297 0.996904i \(-0.525054\pi\)
−0.0786297 + 0.996904i \(0.525054\pi\)
\(102\) 0 0
\(103\) 7.95957 0.784280 0.392140 0.919906i \(-0.371735\pi\)
0.392140 + 0.919906i \(0.371735\pi\)
\(104\) 0 0
\(105\) −2.21257 −0.215925
\(106\) 0 0
\(107\) −1.48258 −0.143326 −0.0716632 0.997429i \(-0.522831\pi\)
−0.0716632 + 0.997429i \(0.522831\pi\)
\(108\) 0 0
\(109\) 3.54514 0.339563 0.169781 0.985482i \(-0.445694\pi\)
0.169781 + 0.985482i \(0.445694\pi\)
\(110\) 0 0
\(111\) −17.8143 −1.69086
\(112\) 0 0
\(113\) −8.09635 −0.761641 −0.380820 0.924649i \(-0.624358\pi\)
−0.380820 + 0.924649i \(0.624358\pi\)
\(114\) 0 0
\(115\) 7.08894 0.661047
\(116\) 0 0
\(117\) 1.23889 0.114536
\(118\) 0 0
\(119\) −5.50354 −0.504508
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −5.60281 −0.505188
\(124\) 0 0
\(125\) −10.9623 −0.980497
\(126\) 0 0
\(127\) −11.9656 −1.06177 −0.530886 0.847444i \(-0.678141\pi\)
−0.530886 + 0.847444i \(0.678141\pi\)
\(128\) 0 0
\(129\) 3.52324 0.310204
\(130\) 0 0
\(131\) 11.5198 1.00649 0.503246 0.864143i \(-0.332139\pi\)
0.503246 + 0.864143i \(0.332139\pi\)
\(132\) 0 0
\(133\) −1.09646 −0.0950753
\(134\) 0 0
\(135\) 7.48447 0.644161
\(136\) 0 0
\(137\) 19.3662 1.65456 0.827282 0.561787i \(-0.189886\pi\)
0.827282 + 0.561787i \(0.189886\pi\)
\(138\) 0 0
\(139\) −9.96399 −0.845135 −0.422567 0.906332i \(-0.638871\pi\)
−0.422567 + 0.906332i \(0.638871\pi\)
\(140\) 0 0
\(141\) 9.67693 0.814944
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −5.45067 −0.452653
\(146\) 0 0
\(147\) 8.77553 0.723794
\(148\) 0 0
\(149\) −15.3359 −1.25637 −0.628183 0.778066i \(-0.716201\pi\)
−0.628183 + 0.778066i \(0.716201\pi\)
\(150\) 0 0
\(151\) −14.7954 −1.20403 −0.602014 0.798485i \(-0.705635\pi\)
−0.602014 + 0.798485i \(0.705635\pi\)
\(152\) 0 0
\(153\) 3.55873 0.287707
\(154\) 0 0
\(155\) 9.12597 0.733015
\(156\) 0 0
\(157\) −18.9984 −1.51624 −0.758118 0.652117i \(-0.773881\pi\)
−0.758118 + 0.652117i \(0.773881\pi\)
\(158\) 0 0
\(159\) 4.50251 0.357072
\(160\) 0 0
\(161\) 5.83020 0.459484
\(162\) 0 0
\(163\) 3.78942 0.296810 0.148405 0.988927i \(-0.452586\pi\)
0.148405 + 0.988927i \(0.452586\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.20831 −0.557796 −0.278898 0.960321i \(-0.589969\pi\)
−0.278898 + 0.960321i \(0.589969\pi\)
\(168\) 0 0
\(169\) −9.94667 −0.765128
\(170\) 0 0
\(171\) 0.709002 0.0542187
\(172\) 0 0
\(173\) −25.4398 −1.93415 −0.967077 0.254484i \(-0.918094\pi\)
−0.967077 + 0.254484i \(0.918094\pi\)
\(174\) 0 0
\(175\) −3.53347 −0.267105
\(176\) 0 0
\(177\) 18.0738 1.35851
\(178\) 0 0
\(179\) −11.6566 −0.871254 −0.435627 0.900127i \(-0.643473\pi\)
−0.435627 + 0.900127i \(0.643473\pi\)
\(180\) 0 0
\(181\) 4.04735 0.300837 0.150419 0.988622i \(-0.451938\pi\)
0.150419 + 0.988622i \(0.451938\pi\)
\(182\) 0 0
\(183\) −17.5810 −1.29963
\(184\) 0 0
\(185\) 15.6909 1.15362
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 6.15550 0.447746
\(190\) 0 0
\(191\) −14.5692 −1.05419 −0.527096 0.849806i \(-0.676719\pi\)
−0.527096 + 0.849806i \(0.676719\pi\)
\(192\) 0 0
\(193\) −21.7467 −1.56536 −0.782681 0.622423i \(-0.786148\pi\)
−0.782681 + 0.622423i \(0.786148\pi\)
\(194\) 0 0
\(195\) 3.52607 0.252507
\(196\) 0 0
\(197\) −9.96172 −0.709743 −0.354872 0.934915i \(-0.615475\pi\)
−0.354872 + 0.934915i \(0.615475\pi\)
\(198\) 0 0
\(199\) 15.3904 1.09100 0.545498 0.838112i \(-0.316341\pi\)
0.545498 + 0.838112i \(0.316341\pi\)
\(200\) 0 0
\(201\) −13.5553 −0.956121
\(202\) 0 0
\(203\) −4.48282 −0.314632
\(204\) 0 0
\(205\) 4.93498 0.344674
\(206\) 0 0
\(207\) −3.76996 −0.262030
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.42952 0.0984124 0.0492062 0.998789i \(-0.484331\pi\)
0.0492062 + 0.998789i \(0.484331\pi\)
\(212\) 0 0
\(213\) −6.31010 −0.432361
\(214\) 0 0
\(215\) −3.10329 −0.211642
\(216\) 0 0
\(217\) 7.50552 0.509508
\(218\) 0 0
\(219\) −22.4361 −1.51609
\(220\) 0 0
\(221\) 8.77071 0.589982
\(222\) 0 0
\(223\) −0.795468 −0.0532685 −0.0266342 0.999645i \(-0.508479\pi\)
−0.0266342 + 0.999645i \(0.508479\pi\)
\(224\) 0 0
\(225\) 2.28483 0.152322
\(226\) 0 0
\(227\) 23.1211 1.53460 0.767299 0.641289i \(-0.221600\pi\)
0.767299 + 0.641289i \(0.221600\pi\)
\(228\) 0 0
\(229\) 30.2298 1.99764 0.998821 0.0485484i \(-0.0154595\pi\)
0.998821 + 0.0485484i \(0.0154595\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.29900 0.412661 0.206331 0.978482i \(-0.433848\pi\)
0.206331 + 0.978482i \(0.433848\pi\)
\(234\) 0 0
\(235\) −8.52348 −0.556011
\(236\) 0 0
\(237\) 2.66136 0.172874
\(238\) 0 0
\(239\) −7.67899 −0.496713 −0.248356 0.968669i \(-0.579890\pi\)
−0.248356 + 0.968669i \(0.579890\pi\)
\(240\) 0 0
\(241\) 23.6984 1.52655 0.763274 0.646075i \(-0.223591\pi\)
0.763274 + 0.646075i \(0.223591\pi\)
\(242\) 0 0
\(243\) −7.19975 −0.461864
\(244\) 0 0
\(245\) −7.72953 −0.493821
\(246\) 0 0
\(247\) 1.74738 0.111183
\(248\) 0 0
\(249\) 22.0084 1.39473
\(250\) 0 0
\(251\) 17.2336 1.08777 0.543887 0.839158i \(-0.316952\pi\)
0.543887 + 0.839158i \(0.316952\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 10.1287 0.634282
\(256\) 0 0
\(257\) −6.95359 −0.433753 −0.216876 0.976199i \(-0.569587\pi\)
−0.216876 + 0.976199i \(0.569587\pi\)
\(258\) 0 0
\(259\) 12.9048 0.801863
\(260\) 0 0
\(261\) 2.89871 0.179426
\(262\) 0 0
\(263\) 6.02989 0.371819 0.185910 0.982567i \(-0.440477\pi\)
0.185910 + 0.982567i \(0.440477\pi\)
\(264\) 0 0
\(265\) −3.96583 −0.243619
\(266\) 0 0
\(267\) −2.55313 −0.156249
\(268\) 0 0
\(269\) 8.53764 0.520549 0.260274 0.965535i \(-0.416187\pi\)
0.260274 + 0.965535i \(0.416187\pi\)
\(270\) 0 0
\(271\) −5.95424 −0.361694 −0.180847 0.983511i \(-0.557884\pi\)
−0.180847 + 0.983511i \(0.557884\pi\)
\(272\) 0 0
\(273\) 2.89997 0.175514
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.40742 0.144648 0.0723239 0.997381i \(-0.476958\pi\)
0.0723239 + 0.997381i \(0.476958\pi\)
\(278\) 0 0
\(279\) −4.85327 −0.290558
\(280\) 0 0
\(281\) 31.2959 1.86696 0.933478 0.358634i \(-0.116757\pi\)
0.933478 + 0.358634i \(0.116757\pi\)
\(282\) 0 0
\(283\) −26.2031 −1.55761 −0.778806 0.627265i \(-0.784174\pi\)
−0.778806 + 0.627265i \(0.784174\pi\)
\(284\) 0 0
\(285\) 2.01792 0.119531
\(286\) 0 0
\(287\) 4.05870 0.239577
\(288\) 0 0
\(289\) 8.19395 0.481997
\(290\) 0 0
\(291\) 26.2880 1.54103
\(292\) 0 0
\(293\) 6.04507 0.353157 0.176578 0.984287i \(-0.443497\pi\)
0.176578 + 0.984287i \(0.443497\pi\)
\(294\) 0 0
\(295\) −15.9195 −0.926868
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.29130 −0.537330
\(300\) 0 0
\(301\) −2.55225 −0.147109
\(302\) 0 0
\(303\) 2.39216 0.137426
\(304\) 0 0
\(305\) 15.4854 0.886693
\(306\) 0 0
\(307\) −26.0572 −1.48716 −0.743581 0.668645i \(-0.766874\pi\)
−0.743581 + 0.668645i \(0.766874\pi\)
\(308\) 0 0
\(309\) −12.0476 −0.685366
\(310\) 0 0
\(311\) 3.48226 0.197461 0.0987303 0.995114i \(-0.468522\pi\)
0.0987303 + 0.995114i \(0.468522\pi\)
\(312\) 0 0
\(313\) 19.6569 1.11107 0.555537 0.831492i \(-0.312513\pi\)
0.555537 + 0.831492i \(0.312513\pi\)
\(314\) 0 0
\(315\) −1.03641 −0.0583953
\(316\) 0 0
\(317\) 24.7033 1.38747 0.693737 0.720228i \(-0.255963\pi\)
0.693737 + 0.720228i \(0.255963\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 2.24404 0.125250
\(322\) 0 0
\(323\) 5.01936 0.279285
\(324\) 0 0
\(325\) 5.63111 0.312358
\(326\) 0 0
\(327\) −5.36594 −0.296737
\(328\) 0 0
\(329\) −7.01001 −0.386475
\(330\) 0 0
\(331\) −14.3024 −0.786130 −0.393065 0.919511i \(-0.628585\pi\)
−0.393065 + 0.919511i \(0.628585\pi\)
\(332\) 0 0
\(333\) −8.34457 −0.457279
\(334\) 0 0
\(335\) 11.9396 0.652331
\(336\) 0 0
\(337\) −14.2921 −0.778539 −0.389270 0.921124i \(-0.627273\pi\)
−0.389270 + 0.921124i \(0.627273\pi\)
\(338\) 0 0
\(339\) 12.2547 0.665583
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −14.0323 −0.757671
\(344\) 0 0
\(345\) −10.7299 −0.577676
\(346\) 0 0
\(347\) −2.21533 −0.118925 −0.0594626 0.998231i \(-0.518939\pi\)
−0.0594626 + 0.998231i \(0.518939\pi\)
\(348\) 0 0
\(349\) −15.0859 −0.807528 −0.403764 0.914863i \(-0.632298\pi\)
−0.403764 + 0.914863i \(0.632298\pi\)
\(350\) 0 0
\(351\) −9.80971 −0.523604
\(352\) 0 0
\(353\) −5.26372 −0.280159 −0.140080 0.990140i \(-0.544736\pi\)
−0.140080 + 0.990140i \(0.544736\pi\)
\(354\) 0 0
\(355\) 5.55797 0.294986
\(356\) 0 0
\(357\) 8.33018 0.440880
\(358\) 0 0
\(359\) −24.4717 −1.29157 −0.645783 0.763521i \(-0.723469\pi\)
−0.645783 + 0.763521i \(0.723469\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 19.7618 1.03438
\(366\) 0 0
\(367\) −14.9723 −0.781545 −0.390773 0.920487i \(-0.627792\pi\)
−0.390773 + 0.920487i \(0.627792\pi\)
\(368\) 0 0
\(369\) −2.62446 −0.136624
\(370\) 0 0
\(371\) −3.26164 −0.169336
\(372\) 0 0
\(373\) −8.06489 −0.417584 −0.208792 0.977960i \(-0.566953\pi\)
−0.208792 + 0.977960i \(0.566953\pi\)
\(374\) 0 0
\(375\) 16.5926 0.856837
\(376\) 0 0
\(377\) 7.14405 0.367937
\(378\) 0 0
\(379\) −16.5659 −0.850931 −0.425465 0.904975i \(-0.639890\pi\)
−0.425465 + 0.904975i \(0.639890\pi\)
\(380\) 0 0
\(381\) 18.1111 0.927860
\(382\) 0 0
\(383\) −24.6298 −1.25852 −0.629262 0.777193i \(-0.716643\pi\)
−0.629262 + 0.777193i \(0.716643\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.65036 0.0838923
\(388\) 0 0
\(389\) 21.7681 1.10369 0.551844 0.833948i \(-0.313925\pi\)
0.551844 + 0.833948i \(0.313925\pi\)
\(390\) 0 0
\(391\) −26.6893 −1.34974
\(392\) 0 0
\(393\) −17.4365 −0.879553
\(394\) 0 0
\(395\) −2.34414 −0.117947
\(396\) 0 0
\(397\) 7.03872 0.353263 0.176632 0.984277i \(-0.443480\pi\)
0.176632 + 0.984277i \(0.443480\pi\)
\(398\) 0 0
\(399\) 1.65961 0.0830844
\(400\) 0 0
\(401\) −11.6108 −0.579814 −0.289907 0.957055i \(-0.593624\pi\)
−0.289907 + 0.957055i \(0.593624\pi\)
\(402\) 0 0
\(403\) −11.9612 −0.595829
\(404\) 0 0
\(405\) −8.49283 −0.422012
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −2.80727 −0.138811 −0.0694053 0.997589i \(-0.522110\pi\)
−0.0694053 + 0.997589i \(0.522110\pi\)
\(410\) 0 0
\(411\) −29.3127 −1.44589
\(412\) 0 0
\(413\) −13.0927 −0.644252
\(414\) 0 0
\(415\) −19.3851 −0.951578
\(416\) 0 0
\(417\) 15.0815 0.738546
\(418\) 0 0
\(419\) −30.3695 −1.48365 −0.741823 0.670596i \(-0.766039\pi\)
−0.741823 + 0.670596i \(0.766039\pi\)
\(420\) 0 0
\(421\) −9.40058 −0.458156 −0.229078 0.973408i \(-0.573571\pi\)
−0.229078 + 0.973408i \(0.573571\pi\)
\(422\) 0 0
\(423\) 4.53286 0.220395
\(424\) 0 0
\(425\) 16.1754 0.784623
\(426\) 0 0
\(427\) 12.7358 0.616327
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −38.8161 −1.86971 −0.934854 0.355033i \(-0.884470\pi\)
−0.934854 + 0.355033i \(0.884470\pi\)
\(432\) 0 0
\(433\) 2.19839 0.105648 0.0528239 0.998604i \(-0.483178\pi\)
0.0528239 + 0.998604i \(0.483178\pi\)
\(434\) 0 0
\(435\) 8.25015 0.395565
\(436\) 0 0
\(437\) −5.31728 −0.254360
\(438\) 0 0
\(439\) −23.1097 −1.10297 −0.551483 0.834186i \(-0.685938\pi\)
−0.551483 + 0.834186i \(0.685938\pi\)
\(440\) 0 0
\(441\) 4.11063 0.195744
\(442\) 0 0
\(443\) 24.2163 1.15055 0.575277 0.817959i \(-0.304894\pi\)
0.575277 + 0.817959i \(0.304894\pi\)
\(444\) 0 0
\(445\) 2.24881 0.106604
\(446\) 0 0
\(447\) 23.2125 1.09791
\(448\) 0 0
\(449\) 9.27826 0.437868 0.218934 0.975740i \(-0.429742\pi\)
0.218934 + 0.975740i \(0.429742\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 22.3943 1.05218
\(454\) 0 0
\(455\) −2.55430 −0.119748
\(456\) 0 0
\(457\) 0.155557 0.00727666 0.00363833 0.999993i \(-0.498842\pi\)
0.00363833 + 0.999993i \(0.498842\pi\)
\(458\) 0 0
\(459\) −28.1785 −1.31526
\(460\) 0 0
\(461\) 19.0078 0.885280 0.442640 0.896699i \(-0.354042\pi\)
0.442640 + 0.896699i \(0.354042\pi\)
\(462\) 0 0
\(463\) −12.5796 −0.584623 −0.292311 0.956323i \(-0.594424\pi\)
−0.292311 + 0.956323i \(0.594424\pi\)
\(464\) 0 0
\(465\) −13.8131 −0.640567
\(466\) 0 0
\(467\) −28.1224 −1.30135 −0.650676 0.759356i \(-0.725514\pi\)
−0.650676 + 0.759356i \(0.725514\pi\)
\(468\) 0 0
\(469\) 9.81956 0.453425
\(470\) 0 0
\(471\) 28.7560 1.32501
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 3.22261 0.147863
\(476\) 0 0
\(477\) 2.10906 0.0965674
\(478\) 0 0
\(479\) −40.9983 −1.87326 −0.936631 0.350317i \(-0.886074\pi\)
−0.936631 + 0.350317i \(0.886074\pi\)
\(480\) 0 0
\(481\) −20.5657 −0.937714
\(482\) 0 0
\(483\) −8.82461 −0.401534
\(484\) 0 0
\(485\) −23.1546 −1.05140
\(486\) 0 0
\(487\) 20.9160 0.947793 0.473896 0.880581i \(-0.342847\pi\)
0.473896 + 0.880581i \(0.342847\pi\)
\(488\) 0 0
\(489\) −5.73569 −0.259377
\(490\) 0 0
\(491\) −28.6659 −1.29367 −0.646837 0.762628i \(-0.723909\pi\)
−0.646837 + 0.762628i \(0.723909\pi\)
\(492\) 0 0
\(493\) 20.5213 0.924235
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.57107 0.205040
\(498\) 0 0
\(499\) −21.8290 −0.977202 −0.488601 0.872507i \(-0.662493\pi\)
−0.488601 + 0.872507i \(0.662493\pi\)
\(500\) 0 0
\(501\) 10.9105 0.487447
\(502\) 0 0
\(503\) 13.3778 0.596487 0.298244 0.954490i \(-0.403599\pi\)
0.298244 + 0.954490i \(0.403599\pi\)
\(504\) 0 0
\(505\) −2.10702 −0.0937612
\(506\) 0 0
\(507\) 15.0553 0.668630
\(508\) 0 0
\(509\) −36.5833 −1.62153 −0.810763 0.585374i \(-0.800948\pi\)
−0.810763 + 0.585374i \(0.800948\pi\)
\(510\) 0 0
\(511\) 16.2528 0.718982
\(512\) 0 0
\(513\) −5.61396 −0.247862
\(514\) 0 0
\(515\) 10.6116 0.467604
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 38.5058 1.69022
\(520\) 0 0
\(521\) −6.67114 −0.292268 −0.146134 0.989265i \(-0.546683\pi\)
−0.146134 + 0.989265i \(0.546683\pi\)
\(522\) 0 0
\(523\) 40.4462 1.76859 0.884295 0.466929i \(-0.154640\pi\)
0.884295 + 0.466929i \(0.154640\pi\)
\(524\) 0 0
\(525\) 5.34827 0.233418
\(526\) 0 0
\(527\) −34.3586 −1.49668
\(528\) 0 0
\(529\) 5.27346 0.229281
\(530\) 0 0
\(531\) 8.46612 0.367398
\(532\) 0 0
\(533\) −6.46815 −0.280167
\(534\) 0 0
\(535\) −1.97656 −0.0854542
\(536\) 0 0
\(537\) 17.6435 0.761372
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −22.2525 −0.956711 −0.478355 0.878166i \(-0.658767\pi\)
−0.478355 + 0.878166i \(0.658767\pi\)
\(542\) 0 0
\(543\) −6.12609 −0.262896
\(544\) 0 0
\(545\) 4.72634 0.202454
\(546\) 0 0
\(547\) −32.3814 −1.38453 −0.692265 0.721643i \(-0.743387\pi\)
−0.692265 + 0.721643i \(0.743387\pi\)
\(548\) 0 0
\(549\) −8.23529 −0.351474
\(550\) 0 0
\(551\) 4.08844 0.174173
\(552\) 0 0
\(553\) −1.92790 −0.0819829
\(554\) 0 0
\(555\) −23.7498 −1.00812
\(556\) 0 0
\(557\) 19.0577 0.807499 0.403750 0.914870i \(-0.367707\pi\)
0.403750 + 0.914870i \(0.367707\pi\)
\(558\) 0 0
\(559\) 4.06740 0.172033
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −34.5958 −1.45804 −0.729020 0.684492i \(-0.760024\pi\)
−0.729020 + 0.684492i \(0.760024\pi\)
\(564\) 0 0
\(565\) −10.7940 −0.454106
\(566\) 0 0
\(567\) −6.98480 −0.293334
\(568\) 0 0
\(569\) −5.80870 −0.243514 −0.121757 0.992560i \(-0.538853\pi\)
−0.121757 + 0.992560i \(0.538853\pi\)
\(570\) 0 0
\(571\) −10.7114 −0.448259 −0.224129 0.974559i \(-0.571954\pi\)
−0.224129 + 0.974559i \(0.571954\pi\)
\(572\) 0 0
\(573\) 22.0521 0.921238
\(574\) 0 0
\(575\) −17.1355 −0.714600
\(576\) 0 0
\(577\) 10.6984 0.445381 0.222690 0.974889i \(-0.428516\pi\)
0.222690 + 0.974889i \(0.428516\pi\)
\(578\) 0 0
\(579\) 32.9159 1.36794
\(580\) 0 0
\(581\) −15.9430 −0.661427
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1.65168 0.0682886
\(586\) 0 0
\(587\) −4.80938 −0.198504 −0.0992521 0.995062i \(-0.531645\pi\)
−0.0992521 + 0.995062i \(0.531645\pi\)
\(588\) 0 0
\(589\) −6.84522 −0.282052
\(590\) 0 0
\(591\) 15.0781 0.620230
\(592\) 0 0
\(593\) −3.60379 −0.147990 −0.0739949 0.997259i \(-0.523575\pi\)
−0.0739949 + 0.997259i \(0.523575\pi\)
\(594\) 0 0
\(595\) −7.33726 −0.300798
\(596\) 0 0
\(597\) −23.2950 −0.953399
\(598\) 0 0
\(599\) −1.95864 −0.0800279 −0.0400139 0.999199i \(-0.512740\pi\)
−0.0400139 + 0.999199i \(0.512740\pi\)
\(600\) 0 0
\(601\) 0.795699 0.0324573 0.0162286 0.999868i \(-0.494834\pi\)
0.0162286 + 0.999868i \(0.494834\pi\)
\(602\) 0 0
\(603\) −6.34959 −0.258575
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 6.28887 0.255257 0.127629 0.991822i \(-0.459263\pi\)
0.127629 + 0.991822i \(0.459263\pi\)
\(608\) 0 0
\(609\) 6.78522 0.274951
\(610\) 0 0
\(611\) 11.1715 0.451951
\(612\) 0 0
\(613\) 10.1880 0.411489 0.205745 0.978606i \(-0.434038\pi\)
0.205745 + 0.978606i \(0.434038\pi\)
\(614\) 0 0
\(615\) −7.46960 −0.301203
\(616\) 0 0
\(617\) −0.686744 −0.0276473 −0.0138236 0.999904i \(-0.504400\pi\)
−0.0138236 + 0.999904i \(0.504400\pi\)
\(618\) 0 0
\(619\) 25.4815 1.02419 0.512095 0.858929i \(-0.328870\pi\)
0.512095 + 0.858929i \(0.328870\pi\)
\(620\) 0 0
\(621\) 29.8510 1.19788
\(622\) 0 0
\(623\) 1.84950 0.0740988
\(624\) 0 0
\(625\) 1.49822 0.0599289
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −59.0751 −2.35548
\(630\) 0 0
\(631\) −6.38938 −0.254357 −0.127179 0.991880i \(-0.540592\pi\)
−0.127179 + 0.991880i \(0.540592\pi\)
\(632\) 0 0
\(633\) −2.16373 −0.0860007
\(634\) 0 0
\(635\) −15.9523 −0.633050
\(636\) 0 0
\(637\) 10.1309 0.401401
\(638\) 0 0
\(639\) −2.95578 −0.116929
\(640\) 0 0
\(641\) −26.3450 −1.04056 −0.520282 0.853994i \(-0.674173\pi\)
−0.520282 + 0.853994i \(0.674173\pi\)
\(642\) 0 0
\(643\) 36.7133 1.44783 0.723915 0.689889i \(-0.242341\pi\)
0.723915 + 0.689889i \(0.242341\pi\)
\(644\) 0 0
\(645\) 4.69715 0.184950
\(646\) 0 0
\(647\) −18.5628 −0.729780 −0.364890 0.931051i \(-0.618893\pi\)
−0.364890 + 0.931051i \(0.618893\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −11.3604 −0.445249
\(652\) 0 0
\(653\) 0.551004 0.0215625 0.0107812 0.999942i \(-0.496568\pi\)
0.0107812 + 0.999942i \(0.496568\pi\)
\(654\) 0 0
\(655\) 15.3581 0.600091
\(656\) 0 0
\(657\) −10.5095 −0.410015
\(658\) 0 0
\(659\) −1.55990 −0.0607651 −0.0303826 0.999538i \(-0.509673\pi\)
−0.0303826 + 0.999538i \(0.509673\pi\)
\(660\) 0 0
\(661\) −45.5441 −1.77146 −0.885730 0.464201i \(-0.846341\pi\)
−0.885730 + 0.464201i \(0.846341\pi\)
\(662\) 0 0
\(663\) −13.2754 −0.515574
\(664\) 0 0
\(665\) −1.46179 −0.0566858
\(666\) 0 0
\(667\) −21.7394 −0.841752
\(668\) 0 0
\(669\) 1.20402 0.0465502
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −32.5268 −1.25382 −0.626909 0.779093i \(-0.715680\pi\)
−0.626909 + 0.779093i \(0.715680\pi\)
\(674\) 0 0
\(675\) −18.0916 −0.696346
\(676\) 0 0
\(677\) −46.9276 −1.80357 −0.901787 0.432180i \(-0.857745\pi\)
−0.901787 + 0.432180i \(0.857745\pi\)
\(678\) 0 0
\(679\) −19.0432 −0.730810
\(680\) 0 0
\(681\) −34.9961 −1.34105
\(682\) 0 0
\(683\) −22.6833 −0.867952 −0.433976 0.900925i \(-0.642890\pi\)
−0.433976 + 0.900925i \(0.642890\pi\)
\(684\) 0 0
\(685\) 25.8188 0.986485
\(686\) 0 0
\(687\) −45.7560 −1.74570
\(688\) 0 0
\(689\) 5.19791 0.198025
\(690\) 0 0
\(691\) 22.9500 0.873059 0.436530 0.899690i \(-0.356207\pi\)
0.436530 + 0.899690i \(0.356207\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −13.2839 −0.503886
\(696\) 0 0
\(697\) −18.5798 −0.703761
\(698\) 0 0
\(699\) −9.53419 −0.360616
\(700\) 0 0
\(701\) 7.98081 0.301431 0.150715 0.988577i \(-0.451842\pi\)
0.150715 + 0.988577i \(0.451842\pi\)
\(702\) 0 0
\(703\) −11.7695 −0.443893
\(704\) 0 0
\(705\) 12.9012 0.485886
\(706\) 0 0
\(707\) −1.73289 −0.0651720
\(708\) 0 0
\(709\) −1.22258 −0.0459149 −0.0229575 0.999736i \(-0.507308\pi\)
−0.0229575 + 0.999736i \(0.507308\pi\)
\(710\) 0 0
\(711\) 1.24664 0.0467525
\(712\) 0 0
\(713\) 36.3979 1.36311
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 11.6230 0.434067
\(718\) 0 0
\(719\) 31.4841 1.17416 0.587079 0.809530i \(-0.300278\pi\)
0.587079 + 0.809530i \(0.300278\pi\)
\(720\) 0 0
\(721\) 8.72737 0.325024
\(722\) 0 0
\(723\) −35.8700 −1.33402
\(724\) 0 0
\(725\) 13.1754 0.489323
\(726\) 0 0
\(727\) −23.3533 −0.866127 −0.433064 0.901363i \(-0.642567\pi\)
−0.433064 + 0.901363i \(0.642567\pi\)
\(728\) 0 0
\(729\) 30.0085 1.11143
\(730\) 0 0
\(731\) 11.6836 0.432135
\(732\) 0 0
\(733\) 4.64897 0.171714 0.0858568 0.996307i \(-0.472637\pi\)
0.0858568 + 0.996307i \(0.472637\pi\)
\(734\) 0 0
\(735\) 11.6994 0.431540
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 10.3820 0.381908 0.190954 0.981599i \(-0.438842\pi\)
0.190954 + 0.981599i \(0.438842\pi\)
\(740\) 0 0
\(741\) −2.64484 −0.0971606
\(742\) 0 0
\(743\) 20.8312 0.764221 0.382110 0.924117i \(-0.375197\pi\)
0.382110 + 0.924117i \(0.375197\pi\)
\(744\) 0 0
\(745\) −20.4457 −0.749071
\(746\) 0 0
\(747\) 10.3092 0.377193
\(748\) 0 0
\(749\) −1.62559 −0.0593979
\(750\) 0 0
\(751\) −6.96440 −0.254135 −0.127067 0.991894i \(-0.540556\pi\)
−0.127067 + 0.991894i \(0.540556\pi\)
\(752\) 0 0
\(753\) −26.0848 −0.950585
\(754\) 0 0
\(755\) −19.7250 −0.717866
\(756\) 0 0
\(757\) 14.2001 0.516110 0.258055 0.966130i \(-0.416918\pi\)
0.258055 + 0.966130i \(0.416918\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.12777 0.0408817 0.0204409 0.999791i \(-0.493493\pi\)
0.0204409 + 0.999791i \(0.493493\pi\)
\(762\) 0 0
\(763\) 3.88711 0.140723
\(764\) 0 0
\(765\) 4.74447 0.171537
\(766\) 0 0
\(767\) 20.8653 0.753401
\(768\) 0 0
\(769\) −42.8668 −1.54582 −0.772908 0.634518i \(-0.781199\pi\)
−0.772908 + 0.634518i \(0.781199\pi\)
\(770\) 0 0
\(771\) 10.5250 0.379048
\(772\) 0 0
\(773\) 12.4787 0.448827 0.224413 0.974494i \(-0.427953\pi\)
0.224413 + 0.974494i \(0.427953\pi\)
\(774\) 0 0
\(775\) −22.0594 −0.792398
\(776\) 0 0
\(777\) −19.5327 −0.700732
\(778\) 0 0
\(779\) −3.70163 −0.132625
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −22.9524 −0.820250
\(784\) 0 0
\(785\) −25.3285 −0.904011
\(786\) 0 0
\(787\) 31.7045 1.13014 0.565072 0.825042i \(-0.308848\pi\)
0.565072 + 0.825042i \(0.308848\pi\)
\(788\) 0 0
\(789\) −9.12687 −0.324925
\(790\) 0 0
\(791\) −8.87734 −0.315642
\(792\) 0 0
\(793\) −20.2964 −0.720745
\(794\) 0 0
\(795\) 6.00270 0.212894
\(796\) 0 0
\(797\) 24.7478 0.876610 0.438305 0.898826i \(-0.355579\pi\)
0.438305 + 0.898826i \(0.355579\pi\)
\(798\) 0 0
\(799\) 32.0903 1.13527
\(800\) 0 0
\(801\) −1.19594 −0.0422564
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 7.77275 0.273954
\(806\) 0 0
\(807\) −12.9226 −0.454897
\(808\) 0 0
\(809\) 8.16399 0.287031 0.143515 0.989648i \(-0.454159\pi\)
0.143515 + 0.989648i \(0.454159\pi\)
\(810\) 0 0
\(811\) 47.9887 1.68511 0.842555 0.538610i \(-0.181050\pi\)
0.842555 + 0.538610i \(0.181050\pi\)
\(812\) 0 0
\(813\) 9.01237 0.316078
\(814\) 0 0
\(815\) 5.05202 0.176964
\(816\) 0 0
\(817\) 2.32772 0.0814365
\(818\) 0 0
\(819\) 1.35840 0.0474664
\(820\) 0 0
\(821\) −35.5472 −1.24061 −0.620304 0.784362i \(-0.712991\pi\)
−0.620304 + 0.784362i \(0.712991\pi\)
\(822\) 0 0
\(823\) 0.615346 0.0214496 0.0107248 0.999942i \(-0.496586\pi\)
0.0107248 + 0.999942i \(0.496586\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.89005 0.309137 0.154569 0.987982i \(-0.450601\pi\)
0.154569 + 0.987982i \(0.450601\pi\)
\(828\) 0 0
\(829\) 6.39629 0.222152 0.111076 0.993812i \(-0.464570\pi\)
0.111076 + 0.993812i \(0.464570\pi\)
\(830\) 0 0
\(831\) −3.64388 −0.126405
\(832\) 0 0
\(833\) 29.1011 1.00829
\(834\) 0 0
\(835\) −9.61005 −0.332569
\(836\) 0 0
\(837\) 38.4288 1.32829
\(838\) 0 0
\(839\) −23.3227 −0.805189 −0.402594 0.915378i \(-0.631891\pi\)
−0.402594 + 0.915378i \(0.631891\pi\)
\(840\) 0 0
\(841\) −12.2846 −0.423609
\(842\) 0 0
\(843\) −47.3696 −1.63150
\(844\) 0 0
\(845\) −13.2608 −0.456185
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 39.6611 1.36117
\(850\) 0 0
\(851\) 62.5815 2.14527
\(852\) 0 0
\(853\) 36.9318 1.26452 0.632260 0.774756i \(-0.282127\pi\)
0.632260 + 0.774756i \(0.282127\pi\)
\(854\) 0 0
\(855\) 0.945234 0.0323263
\(856\) 0 0
\(857\) −24.3510 −0.831814 −0.415907 0.909407i \(-0.636536\pi\)
−0.415907 + 0.909407i \(0.636536\pi\)
\(858\) 0 0
\(859\) 16.7328 0.570917 0.285459 0.958391i \(-0.407854\pi\)
0.285459 + 0.958391i \(0.407854\pi\)
\(860\) 0 0
\(861\) −6.14326 −0.209362
\(862\) 0 0
\(863\) −26.9920 −0.918818 −0.459409 0.888225i \(-0.651939\pi\)
−0.459409 + 0.888225i \(0.651939\pi\)
\(864\) 0 0
\(865\) −33.9161 −1.15318
\(866\) 0 0
\(867\) −12.4024 −0.421208
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −15.6489 −0.530244
\(872\) 0 0
\(873\) 12.3138 0.416760
\(874\) 0 0
\(875\) −12.0197 −0.406341
\(876\) 0 0
\(877\) −8.75009 −0.295470 −0.147735 0.989027i \(-0.547198\pi\)
−0.147735 + 0.989027i \(0.547198\pi\)
\(878\) 0 0
\(879\) −9.14984 −0.308616
\(880\) 0 0
\(881\) 49.2795 1.66027 0.830134 0.557564i \(-0.188264\pi\)
0.830134 + 0.557564i \(0.188264\pi\)
\(882\) 0 0
\(883\) 43.1865 1.45334 0.726670 0.686987i \(-0.241067\pi\)
0.726670 + 0.686987i \(0.241067\pi\)
\(884\) 0 0
\(885\) 24.0958 0.809972
\(886\) 0 0
\(887\) −42.4943 −1.42682 −0.713409 0.700748i \(-0.752850\pi\)
−0.713409 + 0.700748i \(0.752850\pi\)
\(888\) 0 0
\(889\) −13.1198 −0.440023
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.39330 0.213944
\(894\) 0 0
\(895\) −15.5404 −0.519460
\(896\) 0 0
\(897\) 14.0633 0.469561
\(898\) 0 0
\(899\) −27.9863 −0.933394
\(900\) 0 0
\(901\) 14.9310 0.497425
\(902\) 0 0
\(903\) 3.86310 0.128556
\(904\) 0 0
\(905\) 5.39588 0.179365
\(906\) 0 0
\(907\) −21.8256 −0.724706 −0.362353 0.932041i \(-0.618027\pi\)
−0.362353 + 0.932041i \(0.618027\pi\)
\(908\) 0 0
\(909\) 1.12053 0.0371657
\(910\) 0 0
\(911\) 10.1765 0.337161 0.168581 0.985688i \(-0.446082\pi\)
0.168581 + 0.985688i \(0.446082\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −23.4388 −0.774863
\(916\) 0 0
\(917\) 12.6311 0.417114
\(918\) 0 0
\(919\) −36.3424 −1.19882 −0.599412 0.800441i \(-0.704599\pi\)
−0.599412 + 0.800441i \(0.704599\pi\)
\(920\) 0 0
\(921\) 39.4403 1.29960
\(922\) 0 0
\(923\) −7.28469 −0.239778
\(924\) 0 0
\(925\) −37.9283 −1.24708
\(926\) 0 0
\(927\) −5.64335 −0.185352
\(928\) 0 0
\(929\) 27.3907 0.898658 0.449329 0.893366i \(-0.351663\pi\)
0.449329 + 0.893366i \(0.351663\pi\)
\(930\) 0 0
\(931\) 5.79777 0.190014
\(932\) 0 0
\(933\) −5.27076 −0.172557
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −9.34995 −0.305450 −0.152725 0.988269i \(-0.548805\pi\)
−0.152725 + 0.988269i \(0.548805\pi\)
\(938\) 0 0
\(939\) −29.7528 −0.970945
\(940\) 0 0
\(941\) −39.4676 −1.28661 −0.643303 0.765611i \(-0.722437\pi\)
−0.643303 + 0.765611i \(0.722437\pi\)
\(942\) 0 0
\(943\) 19.6826 0.640954
\(944\) 0 0
\(945\) 8.20644 0.266956
\(946\) 0 0
\(947\) 33.7506 1.09675 0.548374 0.836233i \(-0.315247\pi\)
0.548374 + 0.836233i \(0.315247\pi\)
\(948\) 0 0
\(949\) −25.9013 −0.840793
\(950\) 0 0
\(951\) −37.3910 −1.21249
\(952\) 0 0
\(953\) 36.6455 1.18706 0.593531 0.804811i \(-0.297733\pi\)
0.593531 + 0.804811i \(0.297733\pi\)
\(954\) 0 0
\(955\) −19.4235 −0.628531
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 21.2343 0.685691
\(960\) 0 0
\(961\) 15.8570 0.511516
\(962\) 0 0
\(963\) 1.05115 0.0338729
\(964\) 0 0
\(965\) −28.9925 −0.933301
\(966\) 0 0
\(967\) −46.7639 −1.50383 −0.751913 0.659262i \(-0.770869\pi\)
−0.751913 + 0.659262i \(0.770869\pi\)
\(968\) 0 0
\(969\) −7.59732 −0.244061
\(970\) 0 0
\(971\) −20.7415 −0.665626 −0.332813 0.942993i \(-0.607998\pi\)
−0.332813 + 0.942993i \(0.607998\pi\)
\(972\) 0 0
\(973\) −10.9251 −0.350244
\(974\) 0 0
\(975\) −8.52327 −0.272963
\(976\) 0 0
\(977\) −25.7757 −0.824637 −0.412319 0.911040i \(-0.635281\pi\)
−0.412319 + 0.911040i \(0.635281\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −2.51351 −0.0802502
\(982\) 0 0
\(983\) 35.9982 1.14816 0.574082 0.818798i \(-0.305359\pi\)
0.574082 + 0.818798i \(0.305359\pi\)
\(984\) 0 0
\(985\) −13.2809 −0.423163
\(986\) 0 0
\(987\) 10.6104 0.337732
\(988\) 0 0
\(989\) −12.3771 −0.393570
\(990\) 0 0
\(991\) −3.65666 −0.116158 −0.0580788 0.998312i \(-0.518497\pi\)
−0.0580788 + 0.998312i \(0.518497\pi\)
\(992\) 0 0
\(993\) 21.6482 0.686984
\(994\) 0 0
\(995\) 20.5183 0.650474
\(996\) 0 0
\(997\) 51.1900 1.62121 0.810603 0.585597i \(-0.199140\pi\)
0.810603 + 0.585597i \(0.199140\pi\)
\(998\) 0 0
\(999\) 66.0733 2.09047
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.q.1.4 8
11.10 odd 2 9196.2.a.r.1.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9196.2.a.q.1.4 8 1.1 even 1 trivial
9196.2.a.r.1.4 yes 8 11.10 odd 2