Properties

Label 9196.2.a.q.1.3
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9196,2,Mod(1,9196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9196.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-1,0,0,0,-2,0,9,0,0,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 16x^{6} + 14x^{5} + 80x^{4} - 64x^{3} - 140x^{2} + 81x + 72 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.66154\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.66154 q^{3} -1.44886 q^{5} +4.59395 q^{7} -0.239269 q^{9} -2.58959 q^{13} +2.40734 q^{15} +1.76666 q^{17} -1.00000 q^{19} -7.63305 q^{21} +3.19412 q^{23} -2.90081 q^{25} +5.38219 q^{27} +9.13043 q^{29} -8.95096 q^{31} -6.65597 q^{35} -11.2613 q^{37} +4.30272 q^{39} -3.21116 q^{41} +9.73920 q^{43} +0.346666 q^{45} +4.06579 q^{47} +14.1043 q^{49} -2.93539 q^{51} -7.05310 q^{53} +1.66154 q^{57} -3.60579 q^{59} -3.92847 q^{61} -1.09919 q^{63} +3.75195 q^{65} +4.93611 q^{67} -5.30717 q^{69} -10.4040 q^{71} -3.59116 q^{73} +4.81983 q^{75} +6.70441 q^{79} -8.22495 q^{81} +11.7228 q^{83} -2.55964 q^{85} -15.1706 q^{87} -15.0519 q^{89} -11.8964 q^{91} +14.8724 q^{93} +1.44886 q^{95} -1.56053 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{3} - 2 q^{7} + 9 q^{9} + 5 q^{13} - 9 q^{15} - 3 q^{17} - 8 q^{19} - 5 q^{21} + q^{23} - q^{27} - q^{29} + 3 q^{31} - 8 q^{35} - 23 q^{37} - 9 q^{39} - 10 q^{41} - 2 q^{43} + 9 q^{45} - 8 q^{47}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.66154 −0.959293 −0.479647 0.877462i \(-0.659235\pi\)
−0.479647 + 0.877462i \(0.659235\pi\)
\(4\) 0 0
\(5\) −1.44886 −0.647949 −0.323974 0.946066i \(-0.605019\pi\)
−0.323974 + 0.946066i \(0.605019\pi\)
\(6\) 0 0
\(7\) 4.59395 1.73635 0.868174 0.496260i \(-0.165294\pi\)
0.868174 + 0.496260i \(0.165294\pi\)
\(8\) 0 0
\(9\) −0.239269 −0.0797562
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −2.58959 −0.718224 −0.359112 0.933295i \(-0.616920\pi\)
−0.359112 + 0.933295i \(0.616920\pi\)
\(14\) 0 0
\(15\) 2.40734 0.621573
\(16\) 0 0
\(17\) 1.76666 0.428478 0.214239 0.976781i \(-0.431273\pi\)
0.214239 + 0.976781i \(0.431273\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −7.63305 −1.66567
\(22\) 0 0
\(23\) 3.19412 0.666020 0.333010 0.942923i \(-0.391936\pi\)
0.333010 + 0.942923i \(0.391936\pi\)
\(24\) 0 0
\(25\) −2.90081 −0.580163
\(26\) 0 0
\(27\) 5.38219 1.03580
\(28\) 0 0
\(29\) 9.13043 1.69548 0.847739 0.530414i \(-0.177963\pi\)
0.847739 + 0.530414i \(0.177963\pi\)
\(30\) 0 0
\(31\) −8.95096 −1.60764 −0.803820 0.594873i \(-0.797202\pi\)
−0.803820 + 0.594873i \(0.797202\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.65597 −1.12506
\(36\) 0 0
\(37\) −11.2613 −1.85135 −0.925674 0.378323i \(-0.876501\pi\)
−0.925674 + 0.378323i \(0.876501\pi\)
\(38\) 0 0
\(39\) 4.30272 0.688987
\(40\) 0 0
\(41\) −3.21116 −0.501499 −0.250750 0.968052i \(-0.580677\pi\)
−0.250750 + 0.968052i \(0.580677\pi\)
\(42\) 0 0
\(43\) 9.73920 1.48521 0.742607 0.669727i \(-0.233589\pi\)
0.742607 + 0.669727i \(0.233589\pi\)
\(44\) 0 0
\(45\) 0.346666 0.0516779
\(46\) 0 0
\(47\) 4.06579 0.593056 0.296528 0.955024i \(-0.404171\pi\)
0.296528 + 0.955024i \(0.404171\pi\)
\(48\) 0 0
\(49\) 14.1043 2.01491
\(50\) 0 0
\(51\) −2.93539 −0.411036
\(52\) 0 0
\(53\) −7.05310 −0.968817 −0.484409 0.874842i \(-0.660965\pi\)
−0.484409 + 0.874842i \(0.660965\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.66154 0.220077
\(58\) 0 0
\(59\) −3.60579 −0.469434 −0.234717 0.972064i \(-0.575416\pi\)
−0.234717 + 0.972064i \(0.575416\pi\)
\(60\) 0 0
\(61\) −3.92847 −0.502988 −0.251494 0.967859i \(-0.580922\pi\)
−0.251494 + 0.967859i \(0.580922\pi\)
\(62\) 0 0
\(63\) −1.09919 −0.138484
\(64\) 0 0
\(65\) 3.75195 0.465372
\(66\) 0 0
\(67\) 4.93611 0.603042 0.301521 0.953460i \(-0.402506\pi\)
0.301521 + 0.953460i \(0.402506\pi\)
\(68\) 0 0
\(69\) −5.30717 −0.638908
\(70\) 0 0
\(71\) −10.4040 −1.23472 −0.617361 0.786680i \(-0.711798\pi\)
−0.617361 + 0.786680i \(0.711798\pi\)
\(72\) 0 0
\(73\) −3.59116 −0.420314 −0.210157 0.977668i \(-0.567397\pi\)
−0.210157 + 0.977668i \(0.567397\pi\)
\(74\) 0 0
\(75\) 4.81983 0.556546
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 6.70441 0.754305 0.377152 0.926151i \(-0.376903\pi\)
0.377152 + 0.926151i \(0.376903\pi\)
\(80\) 0 0
\(81\) −8.22495 −0.913883
\(82\) 0 0
\(83\) 11.7228 1.28675 0.643375 0.765551i \(-0.277534\pi\)
0.643375 + 0.765551i \(0.277534\pi\)
\(84\) 0 0
\(85\) −2.55964 −0.277632
\(86\) 0 0
\(87\) −15.1706 −1.62646
\(88\) 0 0
\(89\) −15.0519 −1.59550 −0.797751 0.602987i \(-0.793977\pi\)
−0.797751 + 0.602987i \(0.793977\pi\)
\(90\) 0 0
\(91\) −11.8964 −1.24709
\(92\) 0 0
\(93\) 14.8724 1.54220
\(94\) 0 0
\(95\) 1.44886 0.148650
\(96\) 0 0
\(97\) −1.56053 −0.158448 −0.0792241 0.996857i \(-0.525244\pi\)
−0.0792241 + 0.996857i \(0.525244\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.77889 0.973036 0.486518 0.873670i \(-0.338267\pi\)
0.486518 + 0.873670i \(0.338267\pi\)
\(102\) 0 0
\(103\) 0.0628117 0.00618902 0.00309451 0.999995i \(-0.499015\pi\)
0.00309451 + 0.999995i \(0.499015\pi\)
\(104\) 0 0
\(105\) 11.0592 1.07927
\(106\) 0 0
\(107\) −5.89837 −0.570217 −0.285108 0.958495i \(-0.592030\pi\)
−0.285108 + 0.958495i \(0.592030\pi\)
\(108\) 0 0
\(109\) 8.45790 0.810120 0.405060 0.914290i \(-0.367251\pi\)
0.405060 + 0.914290i \(0.367251\pi\)
\(110\) 0 0
\(111\) 18.7112 1.77599
\(112\) 0 0
\(113\) −19.7345 −1.85647 −0.928233 0.372000i \(-0.878672\pi\)
−0.928233 + 0.372000i \(0.878672\pi\)
\(114\) 0 0
\(115\) −4.62782 −0.431547
\(116\) 0 0
\(117\) 0.619608 0.0572828
\(118\) 0 0
\(119\) 8.11594 0.743987
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 5.33549 0.481085
\(124\) 0 0
\(125\) 11.4471 1.02386
\(126\) 0 0
\(127\) −5.16531 −0.458347 −0.229174 0.973386i \(-0.573602\pi\)
−0.229174 + 0.973386i \(0.573602\pi\)
\(128\) 0 0
\(129\) −16.1821 −1.42476
\(130\) 0 0
\(131\) 6.22880 0.544213 0.272106 0.962267i \(-0.412280\pi\)
0.272106 + 0.962267i \(0.412280\pi\)
\(132\) 0 0
\(133\) −4.59395 −0.398346
\(134\) 0 0
\(135\) −7.79802 −0.671147
\(136\) 0 0
\(137\) −17.8957 −1.52893 −0.764466 0.644665i \(-0.776997\pi\)
−0.764466 + 0.644665i \(0.776997\pi\)
\(138\) 0 0
\(139\) 16.0945 1.36512 0.682560 0.730830i \(-0.260867\pi\)
0.682560 + 0.730830i \(0.260867\pi\)
\(140\) 0 0
\(141\) −6.75549 −0.568915
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −13.2287 −1.09858
\(146\) 0 0
\(147\) −23.4350 −1.93289
\(148\) 0 0
\(149\) −14.0357 −1.14985 −0.574923 0.818207i \(-0.694968\pi\)
−0.574923 + 0.818207i \(0.694968\pi\)
\(150\) 0 0
\(151\) 19.8156 1.61257 0.806287 0.591525i \(-0.201474\pi\)
0.806287 + 0.591525i \(0.201474\pi\)
\(152\) 0 0
\(153\) −0.422706 −0.0341738
\(154\) 0 0
\(155\) 12.9687 1.04167
\(156\) 0 0
\(157\) −8.61314 −0.687403 −0.343702 0.939079i \(-0.611681\pi\)
−0.343702 + 0.939079i \(0.611681\pi\)
\(158\) 0 0
\(159\) 11.7190 0.929380
\(160\) 0 0
\(161\) 14.6736 1.15644
\(162\) 0 0
\(163\) 7.53736 0.590371 0.295186 0.955440i \(-0.404618\pi\)
0.295186 + 0.955440i \(0.404618\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.12864 −0.396866 −0.198433 0.980114i \(-0.563585\pi\)
−0.198433 + 0.980114i \(0.563585\pi\)
\(168\) 0 0
\(169\) −6.29401 −0.484155
\(170\) 0 0
\(171\) 0.239269 0.0182973
\(172\) 0 0
\(173\) 10.3490 0.786822 0.393411 0.919363i \(-0.371295\pi\)
0.393411 + 0.919363i \(0.371295\pi\)
\(174\) 0 0
\(175\) −13.3262 −1.00736
\(176\) 0 0
\(177\) 5.99118 0.450325
\(178\) 0 0
\(179\) 15.0594 1.12560 0.562798 0.826595i \(-0.309725\pi\)
0.562798 + 0.826595i \(0.309725\pi\)
\(180\) 0 0
\(181\) 13.5630 1.00813 0.504063 0.863667i \(-0.331838\pi\)
0.504063 + 0.863667i \(0.331838\pi\)
\(182\) 0 0
\(183\) 6.52732 0.482513
\(184\) 0 0
\(185\) 16.3160 1.19958
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 24.7255 1.79851
\(190\) 0 0
\(191\) −24.7232 −1.78891 −0.894453 0.447161i \(-0.852435\pi\)
−0.894453 + 0.447161i \(0.852435\pi\)
\(192\) 0 0
\(193\) 2.03890 0.146763 0.0733817 0.997304i \(-0.476621\pi\)
0.0733817 + 0.997304i \(0.476621\pi\)
\(194\) 0 0
\(195\) −6.23403 −0.446428
\(196\) 0 0
\(197\) 22.0345 1.56989 0.784946 0.619564i \(-0.212691\pi\)
0.784946 + 0.619564i \(0.212691\pi\)
\(198\) 0 0
\(199\) 2.89588 0.205284 0.102642 0.994718i \(-0.467270\pi\)
0.102642 + 0.994718i \(0.467270\pi\)
\(200\) 0 0
\(201\) −8.20157 −0.578494
\(202\) 0 0
\(203\) 41.9447 2.94394
\(204\) 0 0
\(205\) 4.65252 0.324946
\(206\) 0 0
\(207\) −0.764252 −0.0531192
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −24.9872 −1.72019 −0.860093 0.510136i \(-0.829595\pi\)
−0.860093 + 0.510136i \(0.829595\pi\)
\(212\) 0 0
\(213\) 17.2866 1.18446
\(214\) 0 0
\(215\) −14.1107 −0.962342
\(216\) 0 0
\(217\) −41.1202 −2.79142
\(218\) 0 0
\(219\) 5.96687 0.403204
\(220\) 0 0
\(221\) −4.57493 −0.307743
\(222\) 0 0
\(223\) −3.54435 −0.237347 −0.118673 0.992933i \(-0.537864\pi\)
−0.118673 + 0.992933i \(0.537864\pi\)
\(224\) 0 0
\(225\) 0.694073 0.0462716
\(226\) 0 0
\(227\) −13.2298 −0.878093 −0.439047 0.898464i \(-0.644684\pi\)
−0.439047 + 0.898464i \(0.644684\pi\)
\(228\) 0 0
\(229\) 18.9951 1.25523 0.627615 0.778524i \(-0.284031\pi\)
0.627615 + 0.778524i \(0.284031\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −26.0699 −1.70790 −0.853948 0.520358i \(-0.825798\pi\)
−0.853948 + 0.520358i \(0.825798\pi\)
\(234\) 0 0
\(235\) −5.89074 −0.384270
\(236\) 0 0
\(237\) −11.1397 −0.723600
\(238\) 0 0
\(239\) 9.56674 0.618821 0.309410 0.950929i \(-0.399868\pi\)
0.309410 + 0.950929i \(0.399868\pi\)
\(240\) 0 0
\(241\) 9.46361 0.609605 0.304802 0.952416i \(-0.401410\pi\)
0.304802 + 0.952416i \(0.401410\pi\)
\(242\) 0 0
\(243\) −2.48045 −0.159121
\(244\) 0 0
\(245\) −20.4352 −1.30556
\(246\) 0 0
\(247\) 2.58959 0.164772
\(248\) 0 0
\(249\) −19.4780 −1.23437
\(250\) 0 0
\(251\) 21.9956 1.38835 0.694174 0.719807i \(-0.255770\pi\)
0.694174 + 0.719807i \(0.255770\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 4.25295 0.266330
\(256\) 0 0
\(257\) −14.8922 −0.928948 −0.464474 0.885587i \(-0.653757\pi\)
−0.464474 + 0.885587i \(0.653757\pi\)
\(258\) 0 0
\(259\) −51.7338 −3.21458
\(260\) 0 0
\(261\) −2.18462 −0.135225
\(262\) 0 0
\(263\) −5.52825 −0.340886 −0.170443 0.985368i \(-0.554520\pi\)
−0.170443 + 0.985368i \(0.554520\pi\)
\(264\) 0 0
\(265\) 10.2189 0.627744
\(266\) 0 0
\(267\) 25.0095 1.53055
\(268\) 0 0
\(269\) −2.34695 −0.143096 −0.0715481 0.997437i \(-0.522794\pi\)
−0.0715481 + 0.997437i \(0.522794\pi\)
\(270\) 0 0
\(271\) −7.88969 −0.479265 −0.239632 0.970864i \(-0.577027\pi\)
−0.239632 + 0.970864i \(0.577027\pi\)
\(272\) 0 0
\(273\) 19.7665 1.19632
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 17.5692 1.05563 0.527816 0.849359i \(-0.323011\pi\)
0.527816 + 0.849359i \(0.323011\pi\)
\(278\) 0 0
\(279\) 2.14168 0.128219
\(280\) 0 0
\(281\) −17.9900 −1.07320 −0.536598 0.843838i \(-0.680291\pi\)
−0.536598 + 0.843838i \(0.680291\pi\)
\(282\) 0 0
\(283\) −18.6489 −1.10856 −0.554282 0.832329i \(-0.687007\pi\)
−0.554282 + 0.832329i \(0.687007\pi\)
\(284\) 0 0
\(285\) −2.40734 −0.142599
\(286\) 0 0
\(287\) −14.7519 −0.870778
\(288\) 0 0
\(289\) −13.8789 −0.816407
\(290\) 0 0
\(291\) 2.59290 0.151998
\(292\) 0 0
\(293\) 12.3540 0.721727 0.360863 0.932619i \(-0.382482\pi\)
0.360863 + 0.932619i \(0.382482\pi\)
\(294\) 0 0
\(295\) 5.22427 0.304169
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8.27146 −0.478351
\(300\) 0 0
\(301\) 44.7414 2.57885
\(302\) 0 0
\(303\) −16.2481 −0.933427
\(304\) 0 0
\(305\) 5.69178 0.325911
\(306\) 0 0
\(307\) −8.11292 −0.463029 −0.231514 0.972831i \(-0.574368\pi\)
−0.231514 + 0.972831i \(0.574368\pi\)
\(308\) 0 0
\(309\) −0.104364 −0.00593709
\(310\) 0 0
\(311\) 17.8515 1.01227 0.506134 0.862455i \(-0.331074\pi\)
0.506134 + 0.862455i \(0.331074\pi\)
\(312\) 0 0
\(313\) −7.17643 −0.405636 −0.202818 0.979216i \(-0.565010\pi\)
−0.202818 + 0.979216i \(0.565010\pi\)
\(314\) 0 0
\(315\) 1.59256 0.0897308
\(316\) 0 0
\(317\) −17.0526 −0.957771 −0.478885 0.877877i \(-0.658959\pi\)
−0.478885 + 0.877877i \(0.658959\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 9.80040 0.547005
\(322\) 0 0
\(323\) −1.76666 −0.0982996
\(324\) 0 0
\(325\) 7.51192 0.416686
\(326\) 0 0
\(327\) −14.0532 −0.777143
\(328\) 0 0
\(329\) 18.6780 1.02975
\(330\) 0 0
\(331\) 3.96498 0.217935 0.108968 0.994045i \(-0.465246\pi\)
0.108968 + 0.994045i \(0.465246\pi\)
\(332\) 0 0
\(333\) 2.69448 0.147656
\(334\) 0 0
\(335\) −7.15172 −0.390740
\(336\) 0 0
\(337\) −5.53239 −0.301368 −0.150684 0.988582i \(-0.548148\pi\)
−0.150684 + 0.988582i \(0.548148\pi\)
\(338\) 0 0
\(339\) 32.7898 1.78089
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 32.6370 1.76223
\(344\) 0 0
\(345\) 7.68933 0.413980
\(346\) 0 0
\(347\) 10.2158 0.548414 0.274207 0.961671i \(-0.411585\pi\)
0.274207 + 0.961671i \(0.411585\pi\)
\(348\) 0 0
\(349\) −20.4024 −1.09212 −0.546058 0.837747i \(-0.683872\pi\)
−0.546058 + 0.837747i \(0.683872\pi\)
\(350\) 0 0
\(351\) −13.9377 −0.743938
\(352\) 0 0
\(353\) 9.96981 0.530640 0.265320 0.964160i \(-0.414522\pi\)
0.265320 + 0.964160i \(0.414522\pi\)
\(354\) 0 0
\(355\) 15.0738 0.800036
\(356\) 0 0
\(357\) −13.4850 −0.713702
\(358\) 0 0
\(359\) −27.0934 −1.42993 −0.714966 0.699159i \(-0.753558\pi\)
−0.714966 + 0.699159i \(0.753558\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5.20308 0.272342
\(366\) 0 0
\(367\) −33.7848 −1.76355 −0.881776 0.471669i \(-0.843652\pi\)
−0.881776 + 0.471669i \(0.843652\pi\)
\(368\) 0 0
\(369\) 0.768330 0.0399977
\(370\) 0 0
\(371\) −32.4015 −1.68220
\(372\) 0 0
\(373\) 0.216005 0.0111843 0.00559217 0.999984i \(-0.498220\pi\)
0.00559217 + 0.999984i \(0.498220\pi\)
\(374\) 0 0
\(375\) −19.0200 −0.982186
\(376\) 0 0
\(377\) −23.6441 −1.21773
\(378\) 0 0
\(379\) 17.2235 0.884713 0.442357 0.896839i \(-0.354143\pi\)
0.442357 + 0.896839i \(0.354143\pi\)
\(380\) 0 0
\(381\) 8.58240 0.439689
\(382\) 0 0
\(383\) 12.0944 0.617997 0.308999 0.951063i \(-0.400006\pi\)
0.308999 + 0.951063i \(0.400006\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.33028 −0.118455
\(388\) 0 0
\(389\) −30.8585 −1.56459 −0.782294 0.622910i \(-0.785950\pi\)
−0.782294 + 0.622910i \(0.785950\pi\)
\(390\) 0 0
\(391\) 5.64292 0.285375
\(392\) 0 0
\(393\) −10.3494 −0.522060
\(394\) 0 0
\(395\) −9.71373 −0.488751
\(396\) 0 0
\(397\) −26.0141 −1.30561 −0.652806 0.757525i \(-0.726408\pi\)
−0.652806 + 0.757525i \(0.726408\pi\)
\(398\) 0 0
\(399\) 7.63305 0.382130
\(400\) 0 0
\(401\) 22.0666 1.10195 0.550977 0.834520i \(-0.314255\pi\)
0.550977 + 0.834520i \(0.314255\pi\)
\(402\) 0 0
\(403\) 23.1793 1.15464
\(404\) 0 0
\(405\) 11.9168 0.592149
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 36.2610 1.79299 0.896495 0.443054i \(-0.146105\pi\)
0.896495 + 0.443054i \(0.146105\pi\)
\(410\) 0 0
\(411\) 29.7345 1.46669
\(412\) 0 0
\(413\) −16.5648 −0.815100
\(414\) 0 0
\(415\) −16.9847 −0.833748
\(416\) 0 0
\(417\) −26.7418 −1.30955
\(418\) 0 0
\(419\) 21.1442 1.03296 0.516481 0.856299i \(-0.327242\pi\)
0.516481 + 0.856299i \(0.327242\pi\)
\(420\) 0 0
\(421\) −34.1410 −1.66393 −0.831966 0.554827i \(-0.812784\pi\)
−0.831966 + 0.554827i \(0.812784\pi\)
\(422\) 0 0
\(423\) −0.972815 −0.0472999
\(424\) 0 0
\(425\) −5.12475 −0.248587
\(426\) 0 0
\(427\) −18.0472 −0.873363
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −19.5709 −0.942697 −0.471348 0.881947i \(-0.656233\pi\)
−0.471348 + 0.881947i \(0.656233\pi\)
\(432\) 0 0
\(433\) 5.46838 0.262794 0.131397 0.991330i \(-0.458054\pi\)
0.131397 + 0.991330i \(0.458054\pi\)
\(434\) 0 0
\(435\) 21.9801 1.05386
\(436\) 0 0
\(437\) −3.19412 −0.152795
\(438\) 0 0
\(439\) −33.0797 −1.57881 −0.789404 0.613875i \(-0.789610\pi\)
−0.789404 + 0.613875i \(0.789610\pi\)
\(440\) 0 0
\(441\) −3.37472 −0.160701
\(442\) 0 0
\(443\) −23.7656 −1.12914 −0.564570 0.825385i \(-0.690958\pi\)
−0.564570 + 0.825385i \(0.690958\pi\)
\(444\) 0 0
\(445\) 21.8081 1.03380
\(446\) 0 0
\(447\) 23.3209 1.10304
\(448\) 0 0
\(449\) 12.3197 0.581403 0.290701 0.956814i \(-0.406111\pi\)
0.290701 + 0.956814i \(0.406111\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −32.9246 −1.54693
\(454\) 0 0
\(455\) 17.2362 0.808048
\(456\) 0 0
\(457\) 28.0122 1.31036 0.655178 0.755474i \(-0.272594\pi\)
0.655178 + 0.755474i \(0.272594\pi\)
\(458\) 0 0
\(459\) 9.50850 0.443819
\(460\) 0 0
\(461\) 3.06738 0.142862 0.0714311 0.997446i \(-0.477243\pi\)
0.0714311 + 0.997446i \(0.477243\pi\)
\(462\) 0 0
\(463\) −5.14378 −0.239052 −0.119526 0.992831i \(-0.538137\pi\)
−0.119526 + 0.992831i \(0.538137\pi\)
\(464\) 0 0
\(465\) −21.5480 −0.999265
\(466\) 0 0
\(467\) −37.7978 −1.74908 −0.874538 0.484957i \(-0.838835\pi\)
−0.874538 + 0.484957i \(0.838835\pi\)
\(468\) 0 0
\(469\) 22.6762 1.04709
\(470\) 0 0
\(471\) 14.3111 0.659421
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 2.90081 0.133098
\(476\) 0 0
\(477\) 1.68758 0.0772692
\(478\) 0 0
\(479\) −34.7304 −1.58687 −0.793436 0.608654i \(-0.791710\pi\)
−0.793436 + 0.608654i \(0.791710\pi\)
\(480\) 0 0
\(481\) 29.1622 1.32968
\(482\) 0 0
\(483\) −24.3809 −1.10937
\(484\) 0 0
\(485\) 2.26099 0.102666
\(486\) 0 0
\(487\) −8.23272 −0.373060 −0.186530 0.982449i \(-0.559724\pi\)
−0.186530 + 0.982449i \(0.559724\pi\)
\(488\) 0 0
\(489\) −12.5237 −0.566339
\(490\) 0 0
\(491\) −29.1977 −1.31767 −0.658836 0.752287i \(-0.728951\pi\)
−0.658836 + 0.752287i \(0.728951\pi\)
\(492\) 0 0
\(493\) 16.1304 0.726475
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −47.7952 −2.14391
\(498\) 0 0
\(499\) −1.92969 −0.0863848 −0.0431924 0.999067i \(-0.513753\pi\)
−0.0431924 + 0.999067i \(0.513753\pi\)
\(500\) 0 0
\(501\) 8.52147 0.380711
\(502\) 0 0
\(503\) 14.1733 0.631957 0.315979 0.948766i \(-0.397667\pi\)
0.315979 + 0.948766i \(0.397667\pi\)
\(504\) 0 0
\(505\) −14.1682 −0.630477
\(506\) 0 0
\(507\) 10.4578 0.464447
\(508\) 0 0
\(509\) −9.19561 −0.407588 −0.203794 0.979014i \(-0.565327\pi\)
−0.203794 + 0.979014i \(0.565327\pi\)
\(510\) 0 0
\(511\) −16.4976 −0.729811
\(512\) 0 0
\(513\) −5.38219 −0.237629
\(514\) 0 0
\(515\) −0.0910052 −0.00401017
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −17.1954 −0.754794
\(520\) 0 0
\(521\) −0.941850 −0.0412632 −0.0206316 0.999787i \(-0.506568\pi\)
−0.0206316 + 0.999787i \(0.506568\pi\)
\(522\) 0 0
\(523\) 13.1301 0.574140 0.287070 0.957910i \(-0.407319\pi\)
0.287070 + 0.957910i \(0.407319\pi\)
\(524\) 0 0
\(525\) 22.1420 0.966358
\(526\) 0 0
\(527\) −15.8133 −0.688838
\(528\) 0 0
\(529\) −12.7976 −0.556418
\(530\) 0 0
\(531\) 0.862751 0.0374402
\(532\) 0 0
\(533\) 8.31560 0.360189
\(534\) 0 0
\(535\) 8.54589 0.369471
\(536\) 0 0
\(537\) −25.0219 −1.07978
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −31.4618 −1.35265 −0.676324 0.736604i \(-0.736428\pi\)
−0.676324 + 0.736604i \(0.736428\pi\)
\(542\) 0 0
\(543\) −22.5355 −0.967089
\(544\) 0 0
\(545\) −12.2543 −0.524916
\(546\) 0 0
\(547\) −12.6219 −0.539674 −0.269837 0.962906i \(-0.586970\pi\)
−0.269837 + 0.962906i \(0.586970\pi\)
\(548\) 0 0
\(549\) 0.939958 0.0401164
\(550\) 0 0
\(551\) −9.13043 −0.388969
\(552\) 0 0
\(553\) 30.7997 1.30974
\(554\) 0 0
\(555\) −27.1098 −1.15075
\(556\) 0 0
\(557\) −4.11613 −0.174406 −0.0872030 0.996191i \(-0.527793\pi\)
−0.0872030 + 0.996191i \(0.527793\pi\)
\(558\) 0 0
\(559\) −25.2206 −1.06672
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −28.4128 −1.19746 −0.598729 0.800952i \(-0.704327\pi\)
−0.598729 + 0.800952i \(0.704327\pi\)
\(564\) 0 0
\(565\) 28.5925 1.20289
\(566\) 0 0
\(567\) −37.7850 −1.58682
\(568\) 0 0
\(569\) −22.9359 −0.961523 −0.480761 0.876851i \(-0.659640\pi\)
−0.480761 + 0.876851i \(0.659640\pi\)
\(570\) 0 0
\(571\) −5.63667 −0.235888 −0.117944 0.993020i \(-0.537630\pi\)
−0.117944 + 0.993020i \(0.537630\pi\)
\(572\) 0 0
\(573\) 41.0787 1.71609
\(574\) 0 0
\(575\) −9.26554 −0.386400
\(576\) 0 0
\(577\) 36.0204 1.49955 0.749774 0.661694i \(-0.230162\pi\)
0.749774 + 0.661694i \(0.230162\pi\)
\(578\) 0 0
\(579\) −3.38773 −0.140789
\(580\) 0 0
\(581\) 53.8541 2.23425
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.897723 −0.0371163
\(586\) 0 0
\(587\) −25.4878 −1.05199 −0.525997 0.850487i \(-0.676308\pi\)
−0.525997 + 0.850487i \(0.676308\pi\)
\(588\) 0 0
\(589\) 8.95096 0.368818
\(590\) 0 0
\(591\) −36.6113 −1.50599
\(592\) 0 0
\(593\) −12.0275 −0.493908 −0.246954 0.969027i \(-0.579430\pi\)
−0.246954 + 0.969027i \(0.579430\pi\)
\(594\) 0 0
\(595\) −11.7588 −0.482065
\(596\) 0 0
\(597\) −4.81164 −0.196927
\(598\) 0 0
\(599\) −21.3143 −0.870879 −0.435439 0.900218i \(-0.643407\pi\)
−0.435439 + 0.900218i \(0.643407\pi\)
\(600\) 0 0
\(601\) 10.2895 0.419719 0.209860 0.977731i \(-0.432699\pi\)
0.209860 + 0.977731i \(0.432699\pi\)
\(602\) 0 0
\(603\) −1.18106 −0.0480963
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −15.1270 −0.613984 −0.306992 0.951712i \(-0.599323\pi\)
−0.306992 + 0.951712i \(0.599323\pi\)
\(608\) 0 0
\(609\) −69.6930 −2.82410
\(610\) 0 0
\(611\) −10.5287 −0.425947
\(612\) 0 0
\(613\) −34.8184 −1.40630 −0.703151 0.711040i \(-0.748224\pi\)
−0.703151 + 0.711040i \(0.748224\pi\)
\(614\) 0 0
\(615\) −7.73037 −0.311718
\(616\) 0 0
\(617\) 3.70286 0.149072 0.0745358 0.997218i \(-0.476252\pi\)
0.0745358 + 0.997218i \(0.476252\pi\)
\(618\) 0 0
\(619\) −20.4316 −0.821216 −0.410608 0.911812i \(-0.634684\pi\)
−0.410608 + 0.911812i \(0.634684\pi\)
\(620\) 0 0
\(621\) 17.1914 0.689865
\(622\) 0 0
\(623\) −69.1478 −2.77035
\(624\) 0 0
\(625\) −2.08121 −0.0832486
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −19.8949 −0.793262
\(630\) 0 0
\(631\) −10.5535 −0.420129 −0.210064 0.977688i \(-0.567367\pi\)
−0.210064 + 0.977688i \(0.567367\pi\)
\(632\) 0 0
\(633\) 41.5173 1.65016
\(634\) 0 0
\(635\) 7.48380 0.296985
\(636\) 0 0
\(637\) −36.5245 −1.44715
\(638\) 0 0
\(639\) 2.48934 0.0984767
\(640\) 0 0
\(641\) −27.4572 −1.08450 −0.542248 0.840219i \(-0.682427\pi\)
−0.542248 + 0.840219i \(0.682427\pi\)
\(642\) 0 0
\(643\) −25.0333 −0.987215 −0.493608 0.869685i \(-0.664322\pi\)
−0.493608 + 0.869685i \(0.664322\pi\)
\(644\) 0 0
\(645\) 23.4456 0.923169
\(646\) 0 0
\(647\) 19.0899 0.750503 0.375252 0.926923i \(-0.377556\pi\)
0.375252 + 0.926923i \(0.377556\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 68.3231 2.67779
\(652\) 0 0
\(653\) −29.7809 −1.16542 −0.582708 0.812682i \(-0.698007\pi\)
−0.582708 + 0.812682i \(0.698007\pi\)
\(654\) 0 0
\(655\) −9.02464 −0.352622
\(656\) 0 0
\(657\) 0.859252 0.0335226
\(658\) 0 0
\(659\) −21.0160 −0.818666 −0.409333 0.912385i \(-0.634238\pi\)
−0.409333 + 0.912385i \(0.634238\pi\)
\(660\) 0 0
\(661\) −14.8988 −0.579497 −0.289748 0.957103i \(-0.593572\pi\)
−0.289748 + 0.957103i \(0.593572\pi\)
\(662\) 0 0
\(663\) 7.60145 0.295216
\(664\) 0 0
\(665\) 6.65597 0.258107
\(666\) 0 0
\(667\) 29.1637 1.12922
\(668\) 0 0
\(669\) 5.88909 0.227685
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 23.4358 0.903384 0.451692 0.892174i \(-0.350821\pi\)
0.451692 + 0.892174i \(0.350821\pi\)
\(674\) 0 0
\(675\) −15.6127 −0.600934
\(676\) 0 0
\(677\) 11.9827 0.460532 0.230266 0.973128i \(-0.426040\pi\)
0.230266 + 0.973128i \(0.426040\pi\)
\(678\) 0 0
\(679\) −7.16901 −0.275121
\(680\) 0 0
\(681\) 21.9819 0.842349
\(682\) 0 0
\(683\) 1.59889 0.0611797 0.0305899 0.999532i \(-0.490261\pi\)
0.0305899 + 0.999532i \(0.490261\pi\)
\(684\) 0 0
\(685\) 25.9283 0.990669
\(686\) 0 0
\(687\) −31.5612 −1.20413
\(688\) 0 0
\(689\) 18.2646 0.695827
\(690\) 0 0
\(691\) −9.25201 −0.351963 −0.175981 0.984393i \(-0.556310\pi\)
−0.175981 + 0.984393i \(0.556310\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −23.3187 −0.884527
\(696\) 0 0
\(697\) −5.67304 −0.214882
\(698\) 0 0
\(699\) 43.3163 1.63837
\(700\) 0 0
\(701\) −13.3459 −0.504066 −0.252033 0.967719i \(-0.581099\pi\)
−0.252033 + 0.967719i \(0.581099\pi\)
\(702\) 0 0
\(703\) 11.2613 0.424728
\(704\) 0 0
\(705\) 9.78773 0.368627
\(706\) 0 0
\(707\) 44.9237 1.68953
\(708\) 0 0
\(709\) 26.7172 1.00339 0.501694 0.865045i \(-0.332710\pi\)
0.501694 + 0.865045i \(0.332710\pi\)
\(710\) 0 0
\(711\) −1.60415 −0.0601605
\(712\) 0 0
\(713\) −28.5904 −1.07072
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −15.8956 −0.593631
\(718\) 0 0
\(719\) −25.3343 −0.944809 −0.472404 0.881382i \(-0.656614\pi\)
−0.472404 + 0.881382i \(0.656614\pi\)
\(720\) 0 0
\(721\) 0.288554 0.0107463
\(722\) 0 0
\(723\) −15.7242 −0.584790
\(724\) 0 0
\(725\) −26.4857 −0.983653
\(726\) 0 0
\(727\) 11.6846 0.433358 0.216679 0.976243i \(-0.430477\pi\)
0.216679 + 0.976243i \(0.430477\pi\)
\(728\) 0 0
\(729\) 28.7962 1.06653
\(730\) 0 0
\(731\) 17.2059 0.636382
\(732\) 0 0
\(733\) −20.5372 −0.758559 −0.379279 0.925282i \(-0.623828\pi\)
−0.379279 + 0.925282i \(0.623828\pi\)
\(734\) 0 0
\(735\) 33.9540 1.25241
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −11.7218 −0.431193 −0.215597 0.976483i \(-0.569170\pi\)
−0.215597 + 0.976483i \(0.569170\pi\)
\(740\) 0 0
\(741\) −4.30272 −0.158064
\(742\) 0 0
\(743\) 26.8400 0.984666 0.492333 0.870407i \(-0.336144\pi\)
0.492333 + 0.870407i \(0.336144\pi\)
\(744\) 0 0
\(745\) 20.3357 0.745041
\(746\) 0 0
\(747\) −2.80491 −0.102626
\(748\) 0 0
\(749\) −27.0968 −0.990095
\(750\) 0 0
\(751\) 26.5399 0.968456 0.484228 0.874942i \(-0.339101\pi\)
0.484228 + 0.874942i \(0.339101\pi\)
\(752\) 0 0
\(753\) −36.5466 −1.33183
\(754\) 0 0
\(755\) −28.7100 −1.04486
\(756\) 0 0
\(757\) −29.8915 −1.08642 −0.543212 0.839596i \(-0.682792\pi\)
−0.543212 + 0.839596i \(0.682792\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −51.1360 −1.85368 −0.926840 0.375457i \(-0.877486\pi\)
−0.926840 + 0.375457i \(0.877486\pi\)
\(762\) 0 0
\(763\) 38.8552 1.40665
\(764\) 0 0
\(765\) 0.612441 0.0221428
\(766\) 0 0
\(767\) 9.33752 0.337158
\(768\) 0 0
\(769\) 45.7305 1.64909 0.824543 0.565800i \(-0.191433\pi\)
0.824543 + 0.565800i \(0.191433\pi\)
\(770\) 0 0
\(771\) 24.7440 0.891134
\(772\) 0 0
\(773\) 17.9908 0.647085 0.323543 0.946214i \(-0.395126\pi\)
0.323543 + 0.946214i \(0.395126\pi\)
\(774\) 0 0
\(775\) 25.9651 0.932692
\(776\) 0 0
\(777\) 85.9581 3.08373
\(778\) 0 0
\(779\) 3.21116 0.115052
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 49.1417 1.75618
\(784\) 0 0
\(785\) 12.4792 0.445402
\(786\) 0 0
\(787\) 44.9337 1.60171 0.800857 0.598856i \(-0.204378\pi\)
0.800857 + 0.598856i \(0.204378\pi\)
\(788\) 0 0
\(789\) 9.18543 0.327010
\(790\) 0 0
\(791\) −90.6592 −3.22347
\(792\) 0 0
\(793\) 10.1731 0.361258
\(794\) 0 0
\(795\) −16.9792 −0.602190
\(796\) 0 0
\(797\) −48.4413 −1.71588 −0.857940 0.513750i \(-0.828256\pi\)
−0.857940 + 0.513750i \(0.828256\pi\)
\(798\) 0 0
\(799\) 7.18286 0.254111
\(800\) 0 0
\(801\) 3.60145 0.127251
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −21.2600 −0.749315
\(806\) 0 0
\(807\) 3.89957 0.137271
\(808\) 0 0
\(809\) −38.2139 −1.34353 −0.671765 0.740765i \(-0.734463\pi\)
−0.671765 + 0.740765i \(0.734463\pi\)
\(810\) 0 0
\(811\) −10.4246 −0.366058 −0.183029 0.983107i \(-0.558590\pi\)
−0.183029 + 0.983107i \(0.558590\pi\)
\(812\) 0 0
\(813\) 13.1091 0.459756
\(814\) 0 0
\(815\) −10.9206 −0.382530
\(816\) 0 0
\(817\) −9.73920 −0.340731
\(818\) 0 0
\(819\) 2.84644 0.0994628
\(820\) 0 0
\(821\) −5.42933 −0.189485 −0.0947424 0.995502i \(-0.530203\pi\)
−0.0947424 + 0.995502i \(0.530203\pi\)
\(822\) 0 0
\(823\) −6.09596 −0.212492 −0.106246 0.994340i \(-0.533883\pi\)
−0.106246 + 0.994340i \(0.533883\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.47854 −0.0861874 −0.0430937 0.999071i \(-0.513721\pi\)
−0.0430937 + 0.999071i \(0.513721\pi\)
\(828\) 0 0
\(829\) −1.82226 −0.0632897 −0.0316448 0.999499i \(-0.510075\pi\)
−0.0316448 + 0.999499i \(0.510075\pi\)
\(830\) 0 0
\(831\) −29.1920 −1.01266
\(832\) 0 0
\(833\) 24.9176 0.863343
\(834\) 0 0
\(835\) 7.43067 0.257149
\(836\) 0 0
\(837\) −48.1757 −1.66520
\(838\) 0 0
\(839\) −44.5711 −1.53877 −0.769383 0.638788i \(-0.779436\pi\)
−0.769383 + 0.638788i \(0.779436\pi\)
\(840\) 0 0
\(841\) 54.3647 1.87464
\(842\) 0 0
\(843\) 29.8913 1.02951
\(844\) 0 0
\(845\) 9.11913 0.313708
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 30.9861 1.06344
\(850\) 0 0
\(851\) −35.9699 −1.23303
\(852\) 0 0
\(853\) 1.56811 0.0536911 0.0268455 0.999640i \(-0.491454\pi\)
0.0268455 + 0.999640i \(0.491454\pi\)
\(854\) 0 0
\(855\) −0.346666 −0.0118557
\(856\) 0 0
\(857\) 5.77727 0.197348 0.0986740 0.995120i \(-0.468540\pi\)
0.0986740 + 0.995120i \(0.468540\pi\)
\(858\) 0 0
\(859\) 14.9131 0.508827 0.254414 0.967095i \(-0.418118\pi\)
0.254414 + 0.967095i \(0.418118\pi\)
\(860\) 0 0
\(861\) 24.5110 0.835331
\(862\) 0 0
\(863\) −26.4882 −0.901668 −0.450834 0.892608i \(-0.648873\pi\)
−0.450834 + 0.892608i \(0.648873\pi\)
\(864\) 0 0
\(865\) −14.9943 −0.509820
\(866\) 0 0
\(867\) 23.0604 0.783173
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −12.7825 −0.433119
\(872\) 0 0
\(873\) 0.373387 0.0126372
\(874\) 0 0
\(875\) 52.5876 1.77778
\(876\) 0 0
\(877\) 20.5045 0.692388 0.346194 0.938163i \(-0.387474\pi\)
0.346194 + 0.938163i \(0.387474\pi\)
\(878\) 0 0
\(879\) −20.5267 −0.692348
\(880\) 0 0
\(881\) −24.2668 −0.817570 −0.408785 0.912631i \(-0.634047\pi\)
−0.408785 + 0.912631i \(0.634047\pi\)
\(882\) 0 0
\(883\) 11.5929 0.390133 0.195067 0.980790i \(-0.437508\pi\)
0.195067 + 0.980790i \(0.437508\pi\)
\(884\) 0 0
\(885\) −8.68036 −0.291787
\(886\) 0 0
\(887\) 5.95973 0.200108 0.100054 0.994982i \(-0.468098\pi\)
0.100054 + 0.994982i \(0.468098\pi\)
\(888\) 0 0
\(889\) −23.7292 −0.795850
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4.06579 −0.136056
\(894\) 0 0
\(895\) −21.8190 −0.729328
\(896\) 0 0
\(897\) 13.7434 0.458879
\(898\) 0 0
\(899\) −81.7260 −2.72572
\(900\) 0 0
\(901\) −12.4604 −0.415117
\(902\) 0 0
\(903\) −74.3398 −2.47387
\(904\) 0 0
\(905\) −19.6508 −0.653214
\(906\) 0 0
\(907\) −49.2797 −1.63630 −0.818152 0.575002i \(-0.805001\pi\)
−0.818152 + 0.575002i \(0.805001\pi\)
\(908\) 0 0
\(909\) −2.33978 −0.0776056
\(910\) 0 0
\(911\) −21.2880 −0.705304 −0.352652 0.935755i \(-0.614720\pi\)
−0.352652 + 0.935755i \(0.614720\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −9.45716 −0.312644
\(916\) 0 0
\(917\) 28.6148 0.944943
\(918\) 0 0
\(919\) −7.49120 −0.247112 −0.123556 0.992338i \(-0.539430\pi\)
−0.123556 + 0.992338i \(0.539430\pi\)
\(920\) 0 0
\(921\) 13.4800 0.444180
\(922\) 0 0
\(923\) 26.9420 0.886806
\(924\) 0 0
\(925\) 32.6669 1.07408
\(926\) 0 0
\(927\) −0.0150289 −0.000493613 0
\(928\) 0 0
\(929\) −7.42600 −0.243639 −0.121820 0.992552i \(-0.538873\pi\)
−0.121820 + 0.992552i \(0.538873\pi\)
\(930\) 0 0
\(931\) −14.1043 −0.462251
\(932\) 0 0
\(933\) −29.6611 −0.971062
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 34.0952 1.11384 0.556921 0.830566i \(-0.311983\pi\)
0.556921 + 0.830566i \(0.311983\pi\)
\(938\) 0 0
\(939\) 11.9240 0.389124
\(940\) 0 0
\(941\) 43.5658 1.42020 0.710102 0.704099i \(-0.248649\pi\)
0.710102 + 0.704099i \(0.248649\pi\)
\(942\) 0 0
\(943\) −10.2568 −0.334009
\(944\) 0 0
\(945\) −35.8237 −1.16535
\(946\) 0 0
\(947\) −30.0314 −0.975890 −0.487945 0.872874i \(-0.662253\pi\)
−0.487945 + 0.872874i \(0.662253\pi\)
\(948\) 0 0
\(949\) 9.29964 0.301879
\(950\) 0 0
\(951\) 28.3337 0.918783
\(952\) 0 0
\(953\) −27.1162 −0.878380 −0.439190 0.898394i \(-0.644735\pi\)
−0.439190 + 0.898394i \(0.644735\pi\)
\(954\) 0 0
\(955\) 35.8204 1.15912
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −82.2118 −2.65476
\(960\) 0 0
\(961\) 49.1196 1.58450
\(962\) 0 0
\(963\) 1.41129 0.0454783
\(964\) 0 0
\(965\) −2.95408 −0.0950952
\(966\) 0 0
\(967\) 13.3979 0.430846 0.215423 0.976521i \(-0.430887\pi\)
0.215423 + 0.976521i \(0.430887\pi\)
\(968\) 0 0
\(969\) 2.93539 0.0942982
\(970\) 0 0
\(971\) −2.02489 −0.0649818 −0.0324909 0.999472i \(-0.510344\pi\)
−0.0324909 + 0.999472i \(0.510344\pi\)
\(972\) 0 0
\(973\) 73.9374 2.37032
\(974\) 0 0
\(975\) −12.4814 −0.399725
\(976\) 0 0
\(977\) 14.0785 0.450413 0.225206 0.974311i \(-0.427694\pi\)
0.225206 + 0.974311i \(0.427694\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −2.02371 −0.0646121
\(982\) 0 0
\(983\) 60.3551 1.92503 0.962514 0.271232i \(-0.0874311\pi\)
0.962514 + 0.271232i \(0.0874311\pi\)
\(984\) 0 0
\(985\) −31.9248 −1.01721
\(986\) 0 0
\(987\) −31.0343 −0.987834
\(988\) 0 0
\(989\) 31.1082 0.989182
\(990\) 0 0
\(991\) −22.2644 −0.707252 −0.353626 0.935387i \(-0.615052\pi\)
−0.353626 + 0.935387i \(0.615052\pi\)
\(992\) 0 0
\(993\) −6.58800 −0.209064
\(994\) 0 0
\(995\) −4.19572 −0.133013
\(996\) 0 0
\(997\) −15.3521 −0.486207 −0.243103 0.970000i \(-0.578165\pi\)
−0.243103 + 0.970000i \(0.578165\pi\)
\(998\) 0 0
\(999\) −60.6105 −1.91763
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.q.1.3 8
11.10 odd 2 9196.2.a.r.1.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9196.2.a.q.1.3 8 1.1 even 1 trivial
9196.2.a.r.1.3 yes 8 11.10 odd 2