Properties

Label 9196.2.a.o.1.6
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9196,2,Mod(1,9196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9196.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,-1,0,3,0,-2,0,8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 14x^{5} + 8x^{4} + 46x^{3} - 2x^{2} - 48x - 21 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.26735\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.26735 q^{3} +3.95060 q^{5} -4.74040 q^{7} -1.39382 q^{9} -3.37193 q^{13} +5.00680 q^{15} +1.77379 q^{17} -1.00000 q^{19} -6.00775 q^{21} +6.66797 q^{23} +10.6073 q^{25} -5.56851 q^{27} +2.49494 q^{29} +3.70606 q^{31} -18.7274 q^{35} -4.97929 q^{37} -4.27342 q^{39} -8.19238 q^{41} -6.63677 q^{43} -5.50644 q^{45} -5.30576 q^{47} +15.4714 q^{49} +2.24801 q^{51} -2.97697 q^{53} -1.26735 q^{57} -11.0538 q^{59} +7.58735 q^{61} +6.60727 q^{63} -13.3212 q^{65} -12.7655 q^{67} +8.45066 q^{69} -7.43497 q^{71} +8.29154 q^{73} +13.4431 q^{75} +3.05245 q^{79} -2.87580 q^{81} -5.54077 q^{83} +7.00753 q^{85} +3.16196 q^{87} -4.63855 q^{89} +15.9843 q^{91} +4.69688 q^{93} -3.95060 q^{95} -8.56613 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{3} + 3 q^{5} - 2 q^{7} + 8 q^{9} + 11 q^{15} - 12 q^{17} - 7 q^{19} - q^{21} - 5 q^{23} + 4 q^{25} - 13 q^{27} + 2 q^{29} + 5 q^{31} - 16 q^{35} + 8 q^{37} - 15 q^{39} - 31 q^{41} - 12 q^{43}+ \cdots - 25 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.26735 0.731705 0.365853 0.930673i \(-0.380777\pi\)
0.365853 + 0.930673i \(0.380777\pi\)
\(4\) 0 0
\(5\) 3.95060 1.76676 0.883382 0.468654i \(-0.155261\pi\)
0.883382 + 0.468654i \(0.155261\pi\)
\(6\) 0 0
\(7\) −4.74040 −1.79170 −0.895852 0.444353i \(-0.853433\pi\)
−0.895852 + 0.444353i \(0.853433\pi\)
\(8\) 0 0
\(9\) −1.39382 −0.464607
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −3.37193 −0.935206 −0.467603 0.883939i \(-0.654882\pi\)
−0.467603 + 0.883939i \(0.654882\pi\)
\(14\) 0 0
\(15\) 5.00680 1.29275
\(16\) 0 0
\(17\) 1.77379 0.430207 0.215103 0.976591i \(-0.430991\pi\)
0.215103 + 0.976591i \(0.430991\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −6.00775 −1.31100
\(22\) 0 0
\(23\) 6.66797 1.39037 0.695184 0.718831i \(-0.255323\pi\)
0.695184 + 0.718831i \(0.255323\pi\)
\(24\) 0 0
\(25\) 10.6073 2.12145
\(26\) 0 0
\(27\) −5.56851 −1.07166
\(28\) 0 0
\(29\) 2.49494 0.463299 0.231649 0.972799i \(-0.425588\pi\)
0.231649 + 0.972799i \(0.425588\pi\)
\(30\) 0 0
\(31\) 3.70606 0.665629 0.332814 0.942992i \(-0.392002\pi\)
0.332814 + 0.942992i \(0.392002\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −18.7274 −3.16552
\(36\) 0 0
\(37\) −4.97929 −0.818591 −0.409296 0.912402i \(-0.634225\pi\)
−0.409296 + 0.912402i \(0.634225\pi\)
\(38\) 0 0
\(39\) −4.27342 −0.684295
\(40\) 0 0
\(41\) −8.19238 −1.27944 −0.639718 0.768610i \(-0.720949\pi\)
−0.639718 + 0.768610i \(0.720949\pi\)
\(42\) 0 0
\(43\) −6.63677 −1.01210 −0.506049 0.862505i \(-0.668894\pi\)
−0.506049 + 0.862505i \(0.668894\pi\)
\(44\) 0 0
\(45\) −5.50644 −0.820851
\(46\) 0 0
\(47\) −5.30576 −0.773924 −0.386962 0.922096i \(-0.626476\pi\)
−0.386962 + 0.922096i \(0.626476\pi\)
\(48\) 0 0
\(49\) 15.4714 2.21020
\(50\) 0 0
\(51\) 2.24801 0.314785
\(52\) 0 0
\(53\) −2.97697 −0.408918 −0.204459 0.978875i \(-0.565544\pi\)
−0.204459 + 0.978875i \(0.565544\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.26735 −0.167865
\(58\) 0 0
\(59\) −11.0538 −1.43908 −0.719542 0.694449i \(-0.755648\pi\)
−0.719542 + 0.694449i \(0.755648\pi\)
\(60\) 0 0
\(61\) 7.58735 0.971460 0.485730 0.874109i \(-0.338554\pi\)
0.485730 + 0.874109i \(0.338554\pi\)
\(62\) 0 0
\(63\) 6.60727 0.832438
\(64\) 0 0
\(65\) −13.3212 −1.65229
\(66\) 0 0
\(67\) −12.7655 −1.55956 −0.779779 0.626054i \(-0.784669\pi\)
−0.779779 + 0.626054i \(0.784669\pi\)
\(68\) 0 0
\(69\) 8.45066 1.01734
\(70\) 0 0
\(71\) −7.43497 −0.882368 −0.441184 0.897417i \(-0.645441\pi\)
−0.441184 + 0.897417i \(0.645441\pi\)
\(72\) 0 0
\(73\) 8.29154 0.970451 0.485226 0.874389i \(-0.338737\pi\)
0.485226 + 0.874389i \(0.338737\pi\)
\(74\) 0 0
\(75\) 13.4431 1.55228
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.05245 0.343428 0.171714 0.985147i \(-0.445070\pi\)
0.171714 + 0.985147i \(0.445070\pi\)
\(80\) 0 0
\(81\) −2.87580 −0.319533
\(82\) 0 0
\(83\) −5.54077 −0.608179 −0.304089 0.952643i \(-0.598352\pi\)
−0.304089 + 0.952643i \(0.598352\pi\)
\(84\) 0 0
\(85\) 7.00753 0.760074
\(86\) 0 0
\(87\) 3.16196 0.338998
\(88\) 0 0
\(89\) −4.63855 −0.491686 −0.245843 0.969310i \(-0.579065\pi\)
−0.245843 + 0.969310i \(0.579065\pi\)
\(90\) 0 0
\(91\) 15.9843 1.67561
\(92\) 0 0
\(93\) 4.69688 0.487044
\(94\) 0 0
\(95\) −3.95060 −0.405323
\(96\) 0 0
\(97\) −8.56613 −0.869758 −0.434879 0.900489i \(-0.643209\pi\)
−0.434879 + 0.900489i \(0.643209\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.4199 −1.13632 −0.568162 0.822917i \(-0.692345\pi\)
−0.568162 + 0.822917i \(0.692345\pi\)
\(102\) 0 0
\(103\) −11.6580 −1.14870 −0.574350 0.818610i \(-0.694745\pi\)
−0.574350 + 0.818610i \(0.694745\pi\)
\(104\) 0 0
\(105\) −23.7343 −2.31623
\(106\) 0 0
\(107\) 11.6641 1.12761 0.563804 0.825909i \(-0.309337\pi\)
0.563804 + 0.825909i \(0.309337\pi\)
\(108\) 0 0
\(109\) −12.6240 −1.20916 −0.604580 0.796544i \(-0.706659\pi\)
−0.604580 + 0.796544i \(0.706659\pi\)
\(110\) 0 0
\(111\) −6.31051 −0.598968
\(112\) 0 0
\(113\) 16.3065 1.53399 0.766995 0.641653i \(-0.221751\pi\)
0.766995 + 0.641653i \(0.221751\pi\)
\(114\) 0 0
\(115\) 26.3425 2.45645
\(116\) 0 0
\(117\) 4.69987 0.434503
\(118\) 0 0
\(119\) −8.40847 −0.770803
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −10.3826 −0.936170
\(124\) 0 0
\(125\) 22.1521 1.98135
\(126\) 0 0
\(127\) −9.77625 −0.867502 −0.433751 0.901033i \(-0.642810\pi\)
−0.433751 + 0.901033i \(0.642810\pi\)
\(128\) 0 0
\(129\) −8.41112 −0.740558
\(130\) 0 0
\(131\) 3.27480 0.286120 0.143060 0.989714i \(-0.454306\pi\)
0.143060 + 0.989714i \(0.454306\pi\)
\(132\) 0 0
\(133\) 4.74040 0.411045
\(134\) 0 0
\(135\) −21.9990 −1.89337
\(136\) 0 0
\(137\) 12.5617 1.07322 0.536611 0.843830i \(-0.319704\pi\)
0.536611 + 0.843830i \(0.319704\pi\)
\(138\) 0 0
\(139\) 14.7161 1.24820 0.624102 0.781343i \(-0.285465\pi\)
0.624102 + 0.781343i \(0.285465\pi\)
\(140\) 0 0
\(141\) −6.72426 −0.566284
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 9.85652 0.818539
\(146\) 0 0
\(147\) 19.6077 1.61722
\(148\) 0 0
\(149\) 14.9914 1.22815 0.614073 0.789249i \(-0.289530\pi\)
0.614073 + 0.789249i \(0.289530\pi\)
\(150\) 0 0
\(151\) −18.1159 −1.47425 −0.737125 0.675756i \(-0.763817\pi\)
−0.737125 + 0.675756i \(0.763817\pi\)
\(152\) 0 0
\(153\) −2.47234 −0.199877
\(154\) 0 0
\(155\) 14.6412 1.17601
\(156\) 0 0
\(157\) −5.10143 −0.407139 −0.203569 0.979061i \(-0.565254\pi\)
−0.203569 + 0.979061i \(0.565254\pi\)
\(158\) 0 0
\(159\) −3.77286 −0.299208
\(160\) 0 0
\(161\) −31.6089 −2.49113
\(162\) 0 0
\(163\) −13.8051 −1.08130 −0.540650 0.841248i \(-0.681822\pi\)
−0.540650 + 0.841248i \(0.681822\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.53772 −0.196375 −0.0981875 0.995168i \(-0.531304\pi\)
−0.0981875 + 0.995168i \(0.531304\pi\)
\(168\) 0 0
\(169\) −1.63007 −0.125390
\(170\) 0 0
\(171\) 1.39382 0.106588
\(172\) 0 0
\(173\) −21.0192 −1.59806 −0.799030 0.601291i \(-0.794653\pi\)
−0.799030 + 0.601291i \(0.794653\pi\)
\(174\) 0 0
\(175\) −50.2827 −3.80102
\(176\) 0 0
\(177\) −14.0091 −1.05299
\(178\) 0 0
\(179\) −6.06440 −0.453275 −0.226637 0.973979i \(-0.572773\pi\)
−0.226637 + 0.973979i \(0.572773\pi\)
\(180\) 0 0
\(181\) −26.2273 −1.94946 −0.974730 0.223388i \(-0.928288\pi\)
−0.974730 + 0.223388i \(0.928288\pi\)
\(182\) 0 0
\(183\) 9.61583 0.710823
\(184\) 0 0
\(185\) −19.6712 −1.44626
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 26.3970 1.92010
\(190\) 0 0
\(191\) 16.8085 1.21622 0.608110 0.793853i \(-0.291928\pi\)
0.608110 + 0.793853i \(0.291928\pi\)
\(192\) 0 0
\(193\) 7.85730 0.565581 0.282791 0.959182i \(-0.408740\pi\)
0.282791 + 0.959182i \(0.408740\pi\)
\(194\) 0 0
\(195\) −16.8826 −1.20899
\(196\) 0 0
\(197\) 16.2833 1.16014 0.580068 0.814568i \(-0.303026\pi\)
0.580068 + 0.814568i \(0.303026\pi\)
\(198\) 0 0
\(199\) 18.9502 1.34334 0.671672 0.740849i \(-0.265576\pi\)
0.671672 + 0.740849i \(0.265576\pi\)
\(200\) 0 0
\(201\) −16.1784 −1.14114
\(202\) 0 0
\(203\) −11.8270 −0.830093
\(204\) 0 0
\(205\) −32.3649 −2.26046
\(206\) 0 0
\(207\) −9.29397 −0.645975
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −11.5161 −0.792800 −0.396400 0.918078i \(-0.629741\pi\)
−0.396400 + 0.918078i \(0.629741\pi\)
\(212\) 0 0
\(213\) −9.42271 −0.645634
\(214\) 0 0
\(215\) −26.2192 −1.78814
\(216\) 0 0
\(217\) −17.5682 −1.19261
\(218\) 0 0
\(219\) 10.5083 0.710084
\(220\) 0 0
\(221\) −5.98109 −0.402332
\(222\) 0 0
\(223\) −22.4362 −1.50244 −0.751219 0.660053i \(-0.770534\pi\)
−0.751219 + 0.660053i \(0.770534\pi\)
\(224\) 0 0
\(225\) −14.7846 −0.985643
\(226\) 0 0
\(227\) 25.1061 1.66635 0.833174 0.553011i \(-0.186521\pi\)
0.833174 + 0.553011i \(0.186521\pi\)
\(228\) 0 0
\(229\) −24.8026 −1.63900 −0.819501 0.573077i \(-0.805749\pi\)
−0.819501 + 0.573077i \(0.805749\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.93408 0.519779 0.259889 0.965638i \(-0.416314\pi\)
0.259889 + 0.965638i \(0.416314\pi\)
\(234\) 0 0
\(235\) −20.9609 −1.36734
\(236\) 0 0
\(237\) 3.86853 0.251288
\(238\) 0 0
\(239\) −22.8546 −1.47834 −0.739169 0.673520i \(-0.764782\pi\)
−0.739169 + 0.673520i \(0.764782\pi\)
\(240\) 0 0
\(241\) −23.7712 −1.53124 −0.765618 0.643296i \(-0.777567\pi\)
−0.765618 + 0.643296i \(0.777567\pi\)
\(242\) 0 0
\(243\) 13.0609 0.837857
\(244\) 0 0
\(245\) 61.1214 3.90490
\(246\) 0 0
\(247\) 3.37193 0.214551
\(248\) 0 0
\(249\) −7.02210 −0.445008
\(250\) 0 0
\(251\) −9.14370 −0.577145 −0.288573 0.957458i \(-0.593181\pi\)
−0.288573 + 0.957458i \(0.593181\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 8.88100 0.556150
\(256\) 0 0
\(257\) −4.60674 −0.287361 −0.143680 0.989624i \(-0.545894\pi\)
−0.143680 + 0.989624i \(0.545894\pi\)
\(258\) 0 0
\(259\) 23.6039 1.46667
\(260\) 0 0
\(261\) −3.47750 −0.215252
\(262\) 0 0
\(263\) −0.916322 −0.0565028 −0.0282514 0.999601i \(-0.508994\pi\)
−0.0282514 + 0.999601i \(0.508994\pi\)
\(264\) 0 0
\(265\) −11.7608 −0.722462
\(266\) 0 0
\(267\) −5.87867 −0.359769
\(268\) 0 0
\(269\) 3.05438 0.186229 0.0931144 0.995655i \(-0.470318\pi\)
0.0931144 + 0.995655i \(0.470318\pi\)
\(270\) 0 0
\(271\) −15.5757 −0.946155 −0.473078 0.881021i \(-0.656857\pi\)
−0.473078 + 0.881021i \(0.656857\pi\)
\(272\) 0 0
\(273\) 20.2577 1.22605
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 10.4770 0.629504 0.314752 0.949174i \(-0.398079\pi\)
0.314752 + 0.949174i \(0.398079\pi\)
\(278\) 0 0
\(279\) −5.16559 −0.309256
\(280\) 0 0
\(281\) −21.7029 −1.29469 −0.647343 0.762199i \(-0.724120\pi\)
−0.647343 + 0.762199i \(0.724120\pi\)
\(282\) 0 0
\(283\) −10.7991 −0.641941 −0.320971 0.947089i \(-0.604009\pi\)
−0.320971 + 0.947089i \(0.604009\pi\)
\(284\) 0 0
\(285\) −5.00680 −0.296577
\(286\) 0 0
\(287\) 38.8352 2.29237
\(288\) 0 0
\(289\) −13.8537 −0.814922
\(290\) 0 0
\(291\) −10.8563 −0.636407
\(292\) 0 0
\(293\) 16.5069 0.964343 0.482171 0.876077i \(-0.339848\pi\)
0.482171 + 0.876077i \(0.339848\pi\)
\(294\) 0 0
\(295\) −43.6693 −2.54252
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −22.4840 −1.30028
\(300\) 0 0
\(301\) 31.4610 1.81338
\(302\) 0 0
\(303\) −14.4730 −0.831454
\(304\) 0 0
\(305\) 29.9746 1.71634
\(306\) 0 0
\(307\) 31.1644 1.77865 0.889324 0.457277i \(-0.151175\pi\)
0.889324 + 0.457277i \(0.151175\pi\)
\(308\) 0 0
\(309\) −14.7748 −0.840510
\(310\) 0 0
\(311\) 21.8797 1.24068 0.620342 0.784332i \(-0.286994\pi\)
0.620342 + 0.784332i \(0.286994\pi\)
\(312\) 0 0
\(313\) −25.6800 −1.45152 −0.725758 0.687950i \(-0.758511\pi\)
−0.725758 + 0.687950i \(0.758511\pi\)
\(314\) 0 0
\(315\) 26.1027 1.47072
\(316\) 0 0
\(317\) 12.6850 0.712463 0.356231 0.934398i \(-0.384061\pi\)
0.356231 + 0.934398i \(0.384061\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 14.7825 0.825077
\(322\) 0 0
\(323\) −1.77379 −0.0986962
\(324\) 0 0
\(325\) −35.7670 −1.98400
\(326\) 0 0
\(327\) −15.9990 −0.884749
\(328\) 0 0
\(329\) 25.1514 1.38664
\(330\) 0 0
\(331\) −9.06997 −0.498531 −0.249265 0.968435i \(-0.580189\pi\)
−0.249265 + 0.968435i \(0.580189\pi\)
\(332\) 0 0
\(333\) 6.94025 0.380323
\(334\) 0 0
\(335\) −50.4316 −2.75537
\(336\) 0 0
\(337\) 6.72107 0.366120 0.183060 0.983102i \(-0.441400\pi\)
0.183060 + 0.983102i \(0.441400\pi\)
\(338\) 0 0
\(339\) 20.6661 1.12243
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −40.1578 −2.16832
\(344\) 0 0
\(345\) 33.3852 1.79740
\(346\) 0 0
\(347\) −4.49308 −0.241201 −0.120601 0.992701i \(-0.538482\pi\)
−0.120601 + 0.992701i \(0.538482\pi\)
\(348\) 0 0
\(349\) −14.2906 −0.764960 −0.382480 0.923964i \(-0.624930\pi\)
−0.382480 + 0.923964i \(0.624930\pi\)
\(350\) 0 0
\(351\) 18.7767 1.00222
\(352\) 0 0
\(353\) 1.61433 0.0859221 0.0429610 0.999077i \(-0.486321\pi\)
0.0429610 + 0.999077i \(0.486321\pi\)
\(354\) 0 0
\(355\) −29.3726 −1.55894
\(356\) 0 0
\(357\) −10.6565 −0.564001
\(358\) 0 0
\(359\) −36.9969 −1.95262 −0.976310 0.216375i \(-0.930577\pi\)
−0.976310 + 0.216375i \(0.930577\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 32.7566 1.71456
\(366\) 0 0
\(367\) 12.2236 0.638067 0.319034 0.947743i \(-0.396642\pi\)
0.319034 + 0.947743i \(0.396642\pi\)
\(368\) 0 0
\(369\) 11.4187 0.594435
\(370\) 0 0
\(371\) 14.1120 0.732660
\(372\) 0 0
\(373\) 20.4230 1.05746 0.528732 0.848789i \(-0.322668\pi\)
0.528732 + 0.848789i \(0.322668\pi\)
\(374\) 0 0
\(375\) 28.0745 1.44976
\(376\) 0 0
\(377\) −8.41277 −0.433279
\(378\) 0 0
\(379\) 5.03991 0.258883 0.129441 0.991587i \(-0.458682\pi\)
0.129441 + 0.991587i \(0.458682\pi\)
\(380\) 0 0
\(381\) −12.3899 −0.634756
\(382\) 0 0
\(383\) −8.35130 −0.426732 −0.213366 0.976972i \(-0.568443\pi\)
−0.213366 + 0.976972i \(0.568443\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 9.25047 0.470228
\(388\) 0 0
\(389\) 34.6403 1.75633 0.878167 0.478355i \(-0.158767\pi\)
0.878167 + 0.478355i \(0.158767\pi\)
\(390\) 0 0
\(391\) 11.8276 0.598146
\(392\) 0 0
\(393\) 4.15032 0.209356
\(394\) 0 0
\(395\) 12.0590 0.606756
\(396\) 0 0
\(397\) 33.9984 1.70633 0.853167 0.521639i \(-0.174679\pi\)
0.853167 + 0.521639i \(0.174679\pi\)
\(398\) 0 0
\(399\) 6.00775 0.300764
\(400\) 0 0
\(401\) 28.8161 1.43901 0.719505 0.694488i \(-0.244369\pi\)
0.719505 + 0.694488i \(0.244369\pi\)
\(402\) 0 0
\(403\) −12.4966 −0.622500
\(404\) 0 0
\(405\) −11.3611 −0.564539
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 21.5764 1.06688 0.533442 0.845837i \(-0.320898\pi\)
0.533442 + 0.845837i \(0.320898\pi\)
\(410\) 0 0
\(411\) 15.9201 0.785282
\(412\) 0 0
\(413\) 52.3995 2.57841
\(414\) 0 0
\(415\) −21.8894 −1.07451
\(416\) 0 0
\(417\) 18.6505 0.913318
\(418\) 0 0
\(419\) −24.5709 −1.20037 −0.600184 0.799862i \(-0.704906\pi\)
−0.600184 + 0.799862i \(0.704906\pi\)
\(420\) 0 0
\(421\) −21.5957 −1.05251 −0.526255 0.850327i \(-0.676404\pi\)
−0.526255 + 0.850327i \(0.676404\pi\)
\(422\) 0 0
\(423\) 7.39528 0.359571
\(424\) 0 0
\(425\) 18.8150 0.912664
\(426\) 0 0
\(427\) −35.9671 −1.74057
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.4339 −1.17694 −0.588469 0.808520i \(-0.700269\pi\)
−0.588469 + 0.808520i \(0.700269\pi\)
\(432\) 0 0
\(433\) 8.73113 0.419591 0.209796 0.977745i \(-0.432720\pi\)
0.209796 + 0.977745i \(0.432720\pi\)
\(434\) 0 0
\(435\) 12.4917 0.598930
\(436\) 0 0
\(437\) −6.66797 −0.318972
\(438\) 0 0
\(439\) −8.38421 −0.400156 −0.200078 0.979780i \(-0.564120\pi\)
−0.200078 + 0.979780i \(0.564120\pi\)
\(440\) 0 0
\(441\) −21.5644 −1.02687
\(442\) 0 0
\(443\) 16.6717 0.792097 0.396048 0.918230i \(-0.370381\pi\)
0.396048 + 0.918230i \(0.370381\pi\)
\(444\) 0 0
\(445\) −18.3251 −0.868692
\(446\) 0 0
\(447\) 18.9994 0.898641
\(448\) 0 0
\(449\) −0.650289 −0.0306890 −0.0153445 0.999882i \(-0.504885\pi\)
−0.0153445 + 0.999882i \(0.504885\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −22.9592 −1.07872
\(454\) 0 0
\(455\) 63.1477 2.96041
\(456\) 0 0
\(457\) −14.6265 −0.684198 −0.342099 0.939664i \(-0.611138\pi\)
−0.342099 + 0.939664i \(0.611138\pi\)
\(458\) 0 0
\(459\) −9.87736 −0.461036
\(460\) 0 0
\(461\) 29.0733 1.35408 0.677039 0.735947i \(-0.263263\pi\)
0.677039 + 0.735947i \(0.263263\pi\)
\(462\) 0 0
\(463\) 7.08958 0.329481 0.164740 0.986337i \(-0.447321\pi\)
0.164740 + 0.986337i \(0.447321\pi\)
\(464\) 0 0
\(465\) 18.5555 0.860492
\(466\) 0 0
\(467\) −16.7081 −0.773160 −0.386580 0.922256i \(-0.626344\pi\)
−0.386580 + 0.922256i \(0.626344\pi\)
\(468\) 0 0
\(469\) 60.5138 2.79427
\(470\) 0 0
\(471\) −6.46531 −0.297906
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −10.6073 −0.486695
\(476\) 0 0
\(477\) 4.14936 0.189986
\(478\) 0 0
\(479\) 29.4687 1.34646 0.673230 0.739433i \(-0.264906\pi\)
0.673230 + 0.739433i \(0.264906\pi\)
\(480\) 0 0
\(481\) 16.7898 0.765551
\(482\) 0 0
\(483\) −40.0595 −1.82277
\(484\) 0 0
\(485\) −33.8414 −1.53666
\(486\) 0 0
\(487\) −32.1707 −1.45779 −0.728897 0.684624i \(-0.759967\pi\)
−0.728897 + 0.684624i \(0.759967\pi\)
\(488\) 0 0
\(489\) −17.4959 −0.791193
\(490\) 0 0
\(491\) −23.2604 −1.04973 −0.524865 0.851186i \(-0.675884\pi\)
−0.524865 + 0.851186i \(0.675884\pi\)
\(492\) 0 0
\(493\) 4.42549 0.199314
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 35.2447 1.58094
\(498\) 0 0
\(499\) −9.30468 −0.416535 −0.208267 0.978072i \(-0.566782\pi\)
−0.208267 + 0.978072i \(0.566782\pi\)
\(500\) 0 0
\(501\) −3.21619 −0.143689
\(502\) 0 0
\(503\) 6.43825 0.287067 0.143534 0.989645i \(-0.454153\pi\)
0.143534 + 0.989645i \(0.454153\pi\)
\(504\) 0 0
\(505\) −45.1155 −2.00762
\(506\) 0 0
\(507\) −2.06587 −0.0917485
\(508\) 0 0
\(509\) −3.63925 −0.161307 −0.0806534 0.996742i \(-0.525701\pi\)
−0.0806534 + 0.996742i \(0.525701\pi\)
\(510\) 0 0
\(511\) −39.3052 −1.73876
\(512\) 0 0
\(513\) 5.56851 0.245856
\(514\) 0 0
\(515\) −46.0563 −2.02948
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −26.6387 −1.16931
\(520\) 0 0
\(521\) −42.0264 −1.84121 −0.920605 0.390495i \(-0.872304\pi\)
−0.920605 + 0.390495i \(0.872304\pi\)
\(522\) 0 0
\(523\) 20.5021 0.896492 0.448246 0.893910i \(-0.352049\pi\)
0.448246 + 0.893910i \(0.352049\pi\)
\(524\) 0 0
\(525\) −63.7259 −2.78122
\(526\) 0 0
\(527\) 6.57377 0.286358
\(528\) 0 0
\(529\) 21.4619 0.933125
\(530\) 0 0
\(531\) 15.4071 0.668609
\(532\) 0 0
\(533\) 27.6242 1.19654
\(534\) 0 0
\(535\) 46.0801 1.99222
\(536\) 0 0
\(537\) −7.68573 −0.331664
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.15919 0.178817 0.0894087 0.995995i \(-0.471502\pi\)
0.0894087 + 0.995995i \(0.471502\pi\)
\(542\) 0 0
\(543\) −33.2392 −1.42643
\(544\) 0 0
\(545\) −49.8724 −2.13630
\(546\) 0 0
\(547\) −29.1955 −1.24831 −0.624155 0.781300i \(-0.714557\pi\)
−0.624155 + 0.781300i \(0.714557\pi\)
\(548\) 0 0
\(549\) −10.5754 −0.451347
\(550\) 0 0
\(551\) −2.49494 −0.106288
\(552\) 0 0
\(553\) −14.4698 −0.615321
\(554\) 0 0
\(555\) −24.9303 −1.05823
\(556\) 0 0
\(557\) 8.04380 0.340827 0.170413 0.985373i \(-0.445490\pi\)
0.170413 + 0.985373i \(0.445490\pi\)
\(558\) 0 0
\(559\) 22.3787 0.946520
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.16644 0.344174 0.172087 0.985082i \(-0.444949\pi\)
0.172087 + 0.985082i \(0.444949\pi\)
\(564\) 0 0
\(565\) 64.4207 2.71020
\(566\) 0 0
\(567\) 13.6324 0.572508
\(568\) 0 0
\(569\) 5.47550 0.229545 0.114772 0.993392i \(-0.463386\pi\)
0.114772 + 0.993392i \(0.463386\pi\)
\(570\) 0 0
\(571\) −20.3843 −0.853055 −0.426527 0.904475i \(-0.640263\pi\)
−0.426527 + 0.904475i \(0.640263\pi\)
\(572\) 0 0
\(573\) 21.3023 0.889915
\(574\) 0 0
\(575\) 70.7290 2.94960
\(576\) 0 0
\(577\) 13.3538 0.555928 0.277964 0.960591i \(-0.410340\pi\)
0.277964 + 0.960591i \(0.410340\pi\)
\(578\) 0 0
\(579\) 9.95796 0.413839
\(580\) 0 0
\(581\) 26.2655 1.08968
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 18.5673 0.767665
\(586\) 0 0
\(587\) −11.7290 −0.484109 −0.242055 0.970263i \(-0.577821\pi\)
−0.242055 + 0.970263i \(0.577821\pi\)
\(588\) 0 0
\(589\) −3.70606 −0.152706
\(590\) 0 0
\(591\) 20.6366 0.848878
\(592\) 0 0
\(593\) −6.42487 −0.263838 −0.131919 0.991261i \(-0.542114\pi\)
−0.131919 + 0.991261i \(0.542114\pi\)
\(594\) 0 0
\(595\) −33.2185 −1.36183
\(596\) 0 0
\(597\) 24.0166 0.982932
\(598\) 0 0
\(599\) 38.8562 1.58762 0.793812 0.608164i \(-0.208094\pi\)
0.793812 + 0.608164i \(0.208094\pi\)
\(600\) 0 0
\(601\) 19.3623 0.789806 0.394903 0.918723i \(-0.370778\pi\)
0.394903 + 0.918723i \(0.370778\pi\)
\(602\) 0 0
\(603\) 17.7929 0.724582
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 9.86272 0.400315 0.200158 0.979764i \(-0.435855\pi\)
0.200158 + 0.979764i \(0.435855\pi\)
\(608\) 0 0
\(609\) −14.9890 −0.607384
\(610\) 0 0
\(611\) 17.8907 0.723778
\(612\) 0 0
\(613\) −29.7988 −1.20356 −0.601782 0.798660i \(-0.705542\pi\)
−0.601782 + 0.798660i \(0.705542\pi\)
\(614\) 0 0
\(615\) −41.0176 −1.65399
\(616\) 0 0
\(617\) −40.6885 −1.63806 −0.819029 0.573753i \(-0.805487\pi\)
−0.819029 + 0.573753i \(0.805487\pi\)
\(618\) 0 0
\(619\) −11.7274 −0.471365 −0.235682 0.971830i \(-0.575732\pi\)
−0.235682 + 0.971830i \(0.575732\pi\)
\(620\) 0 0
\(621\) −37.1307 −1.49000
\(622\) 0 0
\(623\) 21.9886 0.880955
\(624\) 0 0
\(625\) 34.4779 1.37911
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8.83221 −0.352163
\(630\) 0 0
\(631\) −5.78803 −0.230418 −0.115209 0.993341i \(-0.536754\pi\)
−0.115209 + 0.993341i \(0.536754\pi\)
\(632\) 0 0
\(633\) −14.5949 −0.580096
\(634\) 0 0
\(635\) −38.6221 −1.53267
\(636\) 0 0
\(637\) −52.1685 −2.06699
\(638\) 0 0
\(639\) 10.3630 0.409955
\(640\) 0 0
\(641\) 19.1158 0.755030 0.377515 0.926003i \(-0.376779\pi\)
0.377515 + 0.926003i \(0.376779\pi\)
\(642\) 0 0
\(643\) 8.18171 0.322655 0.161328 0.986901i \(-0.448422\pi\)
0.161328 + 0.986901i \(0.448422\pi\)
\(644\) 0 0
\(645\) −33.2290 −1.30839
\(646\) 0 0
\(647\) 12.7159 0.499915 0.249958 0.968257i \(-0.419583\pi\)
0.249958 + 0.968257i \(0.419583\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −22.2651 −0.872639
\(652\) 0 0
\(653\) 49.2651 1.92789 0.963946 0.266099i \(-0.0857348\pi\)
0.963946 + 0.266099i \(0.0857348\pi\)
\(654\) 0 0
\(655\) 12.9374 0.505507
\(656\) 0 0
\(657\) −11.5569 −0.450879
\(658\) 0 0
\(659\) −0.546884 −0.0213036 −0.0106518 0.999943i \(-0.503391\pi\)
−0.0106518 + 0.999943i \(0.503391\pi\)
\(660\) 0 0
\(661\) 26.1784 1.01822 0.509111 0.860701i \(-0.329974\pi\)
0.509111 + 0.860701i \(0.329974\pi\)
\(662\) 0 0
\(663\) −7.58014 −0.294388
\(664\) 0 0
\(665\) 18.7274 0.726219
\(666\) 0 0
\(667\) 16.6362 0.644156
\(668\) 0 0
\(669\) −28.4345 −1.09934
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 37.3458 1.43957 0.719787 0.694195i \(-0.244239\pi\)
0.719787 + 0.694195i \(0.244239\pi\)
\(674\) 0 0
\(675\) −59.0667 −2.27348
\(676\) 0 0
\(677\) 5.87665 0.225858 0.112929 0.993603i \(-0.463977\pi\)
0.112929 + 0.993603i \(0.463977\pi\)
\(678\) 0 0
\(679\) 40.6069 1.55835
\(680\) 0 0
\(681\) 31.8182 1.21928
\(682\) 0 0
\(683\) 15.6552 0.599031 0.299516 0.954091i \(-0.403175\pi\)
0.299516 + 0.954091i \(0.403175\pi\)
\(684\) 0 0
\(685\) 49.6265 1.89613
\(686\) 0 0
\(687\) −31.4336 −1.19927
\(688\) 0 0
\(689\) 10.0381 0.382423
\(690\) 0 0
\(691\) −32.5630 −1.23875 −0.619377 0.785094i \(-0.712615\pi\)
−0.619377 + 0.785094i \(0.712615\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 58.1375 2.20528
\(696\) 0 0
\(697\) −14.5315 −0.550422
\(698\) 0 0
\(699\) 10.0553 0.380325
\(700\) 0 0
\(701\) 9.96344 0.376314 0.188157 0.982139i \(-0.439749\pi\)
0.188157 + 0.982139i \(0.439749\pi\)
\(702\) 0 0
\(703\) 4.97929 0.187798
\(704\) 0 0
\(705\) −26.5649 −1.00049
\(706\) 0 0
\(707\) 54.1349 2.03595
\(708\) 0 0
\(709\) 41.2326 1.54852 0.774261 0.632867i \(-0.218122\pi\)
0.774261 + 0.632867i \(0.218122\pi\)
\(710\) 0 0
\(711\) −4.25457 −0.159559
\(712\) 0 0
\(713\) 24.7119 0.925470
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −28.9647 −1.08171
\(718\) 0 0
\(719\) 45.7345 1.70561 0.852804 0.522231i \(-0.174900\pi\)
0.852804 + 0.522231i \(0.174900\pi\)
\(720\) 0 0
\(721\) 55.2638 2.05813
\(722\) 0 0
\(723\) −30.1264 −1.12041
\(724\) 0 0
\(725\) 26.4645 0.982867
\(726\) 0 0
\(727\) 30.2567 1.12216 0.561080 0.827762i \(-0.310386\pi\)
0.561080 + 0.827762i \(0.310386\pi\)
\(728\) 0 0
\(729\) 25.1801 0.932598
\(730\) 0 0
\(731\) −11.7722 −0.435411
\(732\) 0 0
\(733\) 47.3263 1.74803 0.874017 0.485894i \(-0.161506\pi\)
0.874017 + 0.485894i \(0.161506\pi\)
\(734\) 0 0
\(735\) 77.4623 2.85724
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −19.4166 −0.714251 −0.357126 0.934056i \(-0.616243\pi\)
−0.357126 + 0.934056i \(0.616243\pi\)
\(740\) 0 0
\(741\) 4.27342 0.156988
\(742\) 0 0
\(743\) −44.6624 −1.63850 −0.819252 0.573434i \(-0.805611\pi\)
−0.819252 + 0.573434i \(0.805611\pi\)
\(744\) 0 0
\(745\) 59.2252 2.16984
\(746\) 0 0
\(747\) 7.72285 0.282564
\(748\) 0 0
\(749\) −55.2924 −2.02034
\(750\) 0 0
\(751\) 20.4500 0.746230 0.373115 0.927785i \(-0.378290\pi\)
0.373115 + 0.927785i \(0.378290\pi\)
\(752\) 0 0
\(753\) −11.5883 −0.422300
\(754\) 0 0
\(755\) −71.5687 −2.60465
\(756\) 0 0
\(757\) −26.4719 −0.962137 −0.481068 0.876683i \(-0.659751\pi\)
−0.481068 + 0.876683i \(0.659751\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.6847 −0.423569 −0.211784 0.977316i \(-0.567927\pi\)
−0.211784 + 0.977316i \(0.567927\pi\)
\(762\) 0 0
\(763\) 59.8428 2.16646
\(764\) 0 0
\(765\) −9.76725 −0.353136
\(766\) 0 0
\(767\) 37.2727 1.34584
\(768\) 0 0
\(769\) 47.8048 1.72388 0.861942 0.507006i \(-0.169248\pi\)
0.861942 + 0.507006i \(0.169248\pi\)
\(770\) 0 0
\(771\) −5.83836 −0.210263
\(772\) 0 0
\(773\) 32.0729 1.15358 0.576791 0.816892i \(-0.304305\pi\)
0.576791 + 0.816892i \(0.304305\pi\)
\(774\) 0 0
\(775\) 39.3112 1.41210
\(776\) 0 0
\(777\) 29.9144 1.07317
\(778\) 0 0
\(779\) 8.19238 0.293523
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −13.8931 −0.496499
\(784\) 0 0
\(785\) −20.1537 −0.719318
\(786\) 0 0
\(787\) −29.3096 −1.04478 −0.522388 0.852708i \(-0.674959\pi\)
−0.522388 + 0.852708i \(0.674959\pi\)
\(788\) 0 0
\(789\) −1.16130 −0.0413434
\(790\) 0 0
\(791\) −77.2995 −2.74845
\(792\) 0 0
\(793\) −25.5840 −0.908515
\(794\) 0 0
\(795\) −14.9051 −0.528629
\(796\) 0 0
\(797\) 21.2144 0.751452 0.375726 0.926731i \(-0.377393\pi\)
0.375726 + 0.926731i \(0.377393\pi\)
\(798\) 0 0
\(799\) −9.41129 −0.332947
\(800\) 0 0
\(801\) 6.46531 0.228441
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −124.874 −4.40124
\(806\) 0 0
\(807\) 3.87097 0.136265
\(808\) 0 0
\(809\) 23.0489 0.810356 0.405178 0.914238i \(-0.367209\pi\)
0.405178 + 0.914238i \(0.367209\pi\)
\(810\) 0 0
\(811\) −10.2453 −0.359763 −0.179881 0.983688i \(-0.557571\pi\)
−0.179881 + 0.983688i \(0.557571\pi\)
\(812\) 0 0
\(813\) −19.7399 −0.692307
\(814\) 0 0
\(815\) −54.5385 −1.91040
\(816\) 0 0
\(817\) 6.63677 0.232191
\(818\) 0 0
\(819\) −22.2793 −0.778501
\(820\) 0 0
\(821\) 46.3606 1.61800 0.808998 0.587812i \(-0.200010\pi\)
0.808998 + 0.587812i \(0.200010\pi\)
\(822\) 0 0
\(823\) −12.1369 −0.423065 −0.211533 0.977371i \(-0.567845\pi\)
−0.211533 + 0.977371i \(0.567845\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −36.7261 −1.27709 −0.638546 0.769584i \(-0.720464\pi\)
−0.638546 + 0.769584i \(0.720464\pi\)
\(828\) 0 0
\(829\) −39.2159 −1.36203 −0.681013 0.732271i \(-0.738460\pi\)
−0.681013 + 0.732271i \(0.738460\pi\)
\(830\) 0 0
\(831\) 13.2781 0.460612
\(832\) 0 0
\(833\) 27.4430 0.950843
\(834\) 0 0
\(835\) −10.0255 −0.346948
\(836\) 0 0
\(837\) −20.6373 −0.713328
\(838\) 0 0
\(839\) −5.94469 −0.205234 −0.102617 0.994721i \(-0.532722\pi\)
−0.102617 + 0.994721i \(0.532722\pi\)
\(840\) 0 0
\(841\) −22.7753 −0.785354
\(842\) 0 0
\(843\) −27.5052 −0.947328
\(844\) 0 0
\(845\) −6.43976 −0.221535
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −13.6863 −0.469712
\(850\) 0 0
\(851\) −33.2018 −1.13814
\(852\) 0 0
\(853\) −43.9703 −1.50551 −0.752757 0.658299i \(-0.771276\pi\)
−0.752757 + 0.658299i \(0.771276\pi\)
\(854\) 0 0
\(855\) 5.50644 0.188316
\(856\) 0 0
\(857\) 50.2226 1.71557 0.857785 0.514008i \(-0.171840\pi\)
0.857785 + 0.514008i \(0.171840\pi\)
\(858\) 0 0
\(859\) 1.33169 0.0454365 0.0227183 0.999742i \(-0.492768\pi\)
0.0227183 + 0.999742i \(0.492768\pi\)
\(860\) 0 0
\(861\) 49.2178 1.67734
\(862\) 0 0
\(863\) −11.9240 −0.405898 −0.202949 0.979189i \(-0.565053\pi\)
−0.202949 + 0.979189i \(0.565053\pi\)
\(864\) 0 0
\(865\) −83.0385 −2.82340
\(866\) 0 0
\(867\) −17.5575 −0.596283
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 43.0445 1.45851
\(872\) 0 0
\(873\) 11.9397 0.404096
\(874\) 0 0
\(875\) −105.010 −3.54998
\(876\) 0 0
\(877\) −31.1974 −1.05346 −0.526731 0.850032i \(-0.676583\pi\)
−0.526731 + 0.850032i \(0.676583\pi\)
\(878\) 0 0
\(879\) 20.9200 0.705615
\(880\) 0 0
\(881\) −24.5987 −0.828751 −0.414376 0.910106i \(-0.636000\pi\)
−0.414376 + 0.910106i \(0.636000\pi\)
\(882\) 0 0
\(883\) 8.21839 0.276571 0.138285 0.990392i \(-0.455841\pi\)
0.138285 + 0.990392i \(0.455841\pi\)
\(884\) 0 0
\(885\) −55.3443 −1.86038
\(886\) 0 0
\(887\) 34.9556 1.17369 0.586847 0.809698i \(-0.300369\pi\)
0.586847 + 0.809698i \(0.300369\pi\)
\(888\) 0 0
\(889\) 46.3433 1.55431
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.30576 0.177550
\(894\) 0 0
\(895\) −23.9581 −0.800829
\(896\) 0 0
\(897\) −28.4951 −0.951423
\(898\) 0 0
\(899\) 9.24640 0.308385
\(900\) 0 0
\(901\) −5.28051 −0.175919
\(902\) 0 0
\(903\) 39.8721 1.32686
\(904\) 0 0
\(905\) −103.614 −3.44423
\(906\) 0 0
\(907\) 42.4858 1.41072 0.705359 0.708851i \(-0.250786\pi\)
0.705359 + 0.708851i \(0.250786\pi\)
\(908\) 0 0
\(909\) 15.9173 0.527944
\(910\) 0 0
\(911\) −44.8547 −1.48610 −0.743051 0.669235i \(-0.766622\pi\)
−0.743051 + 0.669235i \(0.766622\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 37.9883 1.25586
\(916\) 0 0
\(917\) −15.5239 −0.512643
\(918\) 0 0
\(919\) −12.7521 −0.420654 −0.210327 0.977631i \(-0.567453\pi\)
−0.210327 + 0.977631i \(0.567453\pi\)
\(920\) 0 0
\(921\) 39.4963 1.30145
\(922\) 0 0
\(923\) 25.0702 0.825196
\(924\) 0 0
\(925\) −52.8167 −1.73660
\(926\) 0 0
\(927\) 16.2492 0.533694
\(928\) 0 0
\(929\) 24.3234 0.798025 0.399012 0.916946i \(-0.369353\pi\)
0.399012 + 0.916946i \(0.369353\pi\)
\(930\) 0 0
\(931\) −15.4714 −0.507055
\(932\) 0 0
\(933\) 27.7292 0.907815
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 24.4944 0.800197 0.400098 0.916472i \(-0.368976\pi\)
0.400098 + 0.916472i \(0.368976\pi\)
\(938\) 0 0
\(939\) −32.5455 −1.06208
\(940\) 0 0
\(941\) −27.9939 −0.912575 −0.456288 0.889832i \(-0.650821\pi\)
−0.456288 + 0.889832i \(0.650821\pi\)
\(942\) 0 0
\(943\) −54.6266 −1.77889
\(944\) 0 0
\(945\) 104.284 3.39236
\(946\) 0 0
\(947\) −7.07867 −0.230026 −0.115013 0.993364i \(-0.536691\pi\)
−0.115013 + 0.993364i \(0.536691\pi\)
\(948\) 0 0
\(949\) −27.9585 −0.907572
\(950\) 0 0
\(951\) 16.0764 0.521313
\(952\) 0 0
\(953\) −23.1909 −0.751228 −0.375614 0.926776i \(-0.622568\pi\)
−0.375614 + 0.926776i \(0.622568\pi\)
\(954\) 0 0
\(955\) 66.4037 2.14877
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −59.5477 −1.92289
\(960\) 0 0
\(961\) −17.2651 −0.556938
\(962\) 0 0
\(963\) −16.2576 −0.523895
\(964\) 0 0
\(965\) 31.0411 0.999248
\(966\) 0 0
\(967\) −46.0591 −1.48116 −0.740580 0.671968i \(-0.765449\pi\)
−0.740580 + 0.671968i \(0.765449\pi\)
\(968\) 0 0
\(969\) −2.24801 −0.0722165
\(970\) 0 0
\(971\) 46.5490 1.49383 0.746915 0.664920i \(-0.231534\pi\)
0.746915 + 0.664920i \(0.231534\pi\)
\(972\) 0 0
\(973\) −69.7603 −2.23641
\(974\) 0 0
\(975\) −45.3294 −1.45170
\(976\) 0 0
\(977\) 13.1105 0.419443 0.209721 0.977761i \(-0.432744\pi\)
0.209721 + 0.977761i \(0.432744\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 17.5956 0.561785
\(982\) 0 0
\(983\) 36.7492 1.17212 0.586058 0.810269i \(-0.300679\pi\)
0.586058 + 0.810269i \(0.300679\pi\)
\(984\) 0 0
\(985\) 64.3288 2.04969
\(986\) 0 0
\(987\) 31.8757 1.01461
\(988\) 0 0
\(989\) −44.2538 −1.40719
\(990\) 0 0
\(991\) 29.9778 0.952277 0.476139 0.879370i \(-0.342036\pi\)
0.476139 + 0.879370i \(0.342036\pi\)
\(992\) 0 0
\(993\) −11.4948 −0.364778
\(994\) 0 0
\(995\) 74.8647 2.37337
\(996\) 0 0
\(997\) 1.94157 0.0614901 0.0307450 0.999527i \(-0.490212\pi\)
0.0307450 + 0.999527i \(0.490212\pi\)
\(998\) 0 0
\(999\) 27.7273 0.877252
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.o.1.6 7
11.10 odd 2 9196.2.a.p.1.6 yes 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9196.2.a.o.1.6 7 1.1 even 1 trivial
9196.2.a.p.1.6 yes 7 11.10 odd 2