Properties

Label 9196.2.a.o.1.4
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9196,2,Mod(1,9196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9196.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,-1,0,3,0,-2,0,8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 14x^{5} + 8x^{4} + 46x^{3} - 2x^{2} - 48x - 21 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.735972\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.735972 q^{3} +1.46540 q^{5} +2.78748 q^{7} -2.45834 q^{9} -5.24805 q^{13} +1.07850 q^{15} -0.661557 q^{17} -1.00000 q^{19} +2.05151 q^{21} +3.27281 q^{23} -2.85259 q^{25} -4.01719 q^{27} -5.31315 q^{29} -4.78340 q^{31} +4.08479 q^{35} +2.24580 q^{37} -3.86242 q^{39} +5.21043 q^{41} +7.42956 q^{43} -3.60247 q^{45} +13.5211 q^{47} +0.770048 q^{49} -0.486888 q^{51} -9.59489 q^{53} -0.735972 q^{57} -5.95454 q^{59} -10.5573 q^{61} -6.85259 q^{63} -7.69051 q^{65} +15.1410 q^{67} +2.40870 q^{69} +14.4865 q^{71} -8.48754 q^{73} -2.09943 q^{75} -12.3540 q^{79} +4.41849 q^{81} -4.59839 q^{83} -0.969449 q^{85} -3.91033 q^{87} -10.0320 q^{89} -14.6288 q^{91} -3.52045 q^{93} -1.46540 q^{95} -18.0923 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{3} + 3 q^{5} - 2 q^{7} + 8 q^{9} + 11 q^{15} - 12 q^{17} - 7 q^{19} - q^{21} - 5 q^{23} + 4 q^{25} - 13 q^{27} + 2 q^{29} + 5 q^{31} - 16 q^{35} + 8 q^{37} - 15 q^{39} - 31 q^{41} - 12 q^{43}+ \cdots - 25 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.735972 0.424914 0.212457 0.977170i \(-0.431853\pi\)
0.212457 + 0.977170i \(0.431853\pi\)
\(4\) 0 0
\(5\) 1.46540 0.655349 0.327674 0.944791i \(-0.393735\pi\)
0.327674 + 0.944791i \(0.393735\pi\)
\(6\) 0 0
\(7\) 2.78748 1.05357 0.526784 0.849999i \(-0.323398\pi\)
0.526784 + 0.849999i \(0.323398\pi\)
\(8\) 0 0
\(9\) −2.45834 −0.819448
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −5.24805 −1.45555 −0.727773 0.685818i \(-0.759445\pi\)
−0.727773 + 0.685818i \(0.759445\pi\)
\(14\) 0 0
\(15\) 1.07850 0.278467
\(16\) 0 0
\(17\) −0.661557 −0.160451 −0.0802256 0.996777i \(-0.525564\pi\)
−0.0802256 + 0.996777i \(0.525564\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 2.05151 0.447676
\(22\) 0 0
\(23\) 3.27281 0.682429 0.341214 0.939985i \(-0.389162\pi\)
0.341214 + 0.939985i \(0.389162\pi\)
\(24\) 0 0
\(25\) −2.85259 −0.570518
\(26\) 0 0
\(27\) −4.01719 −0.773109
\(28\) 0 0
\(29\) −5.31315 −0.986628 −0.493314 0.869851i \(-0.664215\pi\)
−0.493314 + 0.869851i \(0.664215\pi\)
\(30\) 0 0
\(31\) −4.78340 −0.859124 −0.429562 0.903037i \(-0.641332\pi\)
−0.429562 + 0.903037i \(0.641332\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.08479 0.690455
\(36\) 0 0
\(37\) 2.24580 0.369207 0.184604 0.982813i \(-0.440900\pi\)
0.184604 + 0.982813i \(0.440900\pi\)
\(38\) 0 0
\(39\) −3.86242 −0.618482
\(40\) 0 0
\(41\) 5.21043 0.813733 0.406867 0.913488i \(-0.366621\pi\)
0.406867 + 0.913488i \(0.366621\pi\)
\(42\) 0 0
\(43\) 7.42956 1.13300 0.566499 0.824063i \(-0.308298\pi\)
0.566499 + 0.824063i \(0.308298\pi\)
\(44\) 0 0
\(45\) −3.60247 −0.537025
\(46\) 0 0
\(47\) 13.5211 1.97226 0.986130 0.165976i \(-0.0530773\pi\)
0.986130 + 0.165976i \(0.0530773\pi\)
\(48\) 0 0
\(49\) 0.770048 0.110007
\(50\) 0 0
\(51\) −0.486888 −0.0681779
\(52\) 0 0
\(53\) −9.59489 −1.31796 −0.658980 0.752161i \(-0.729012\pi\)
−0.658980 + 0.752161i \(0.729012\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.735972 −0.0974819
\(58\) 0 0
\(59\) −5.95454 −0.775215 −0.387608 0.921825i \(-0.626698\pi\)
−0.387608 + 0.921825i \(0.626698\pi\)
\(60\) 0 0
\(61\) −10.5573 −1.35172 −0.675861 0.737030i \(-0.736228\pi\)
−0.675861 + 0.737030i \(0.736228\pi\)
\(62\) 0 0
\(63\) −6.85259 −0.863345
\(64\) 0 0
\(65\) −7.69051 −0.953891
\(66\) 0 0
\(67\) 15.1410 1.84977 0.924884 0.380250i \(-0.124162\pi\)
0.924884 + 0.380250i \(0.124162\pi\)
\(68\) 0 0
\(69\) 2.40870 0.289973
\(70\) 0 0
\(71\) 14.4865 1.71923 0.859616 0.510941i \(-0.170703\pi\)
0.859616 + 0.510941i \(0.170703\pi\)
\(72\) 0 0
\(73\) −8.48754 −0.993392 −0.496696 0.867925i \(-0.665454\pi\)
−0.496696 + 0.867925i \(0.665454\pi\)
\(74\) 0 0
\(75\) −2.09943 −0.242421
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −12.3540 −1.38994 −0.694969 0.719040i \(-0.744582\pi\)
−0.694969 + 0.719040i \(0.744582\pi\)
\(80\) 0 0
\(81\) 4.41849 0.490944
\(82\) 0 0
\(83\) −4.59839 −0.504739 −0.252369 0.967631i \(-0.581210\pi\)
−0.252369 + 0.967631i \(0.581210\pi\)
\(84\) 0 0
\(85\) −0.969449 −0.105152
\(86\) 0 0
\(87\) −3.91033 −0.419232
\(88\) 0 0
\(89\) −10.0320 −1.06339 −0.531693 0.846937i \(-0.678444\pi\)
−0.531693 + 0.846937i \(0.678444\pi\)
\(90\) 0 0
\(91\) −14.6288 −1.53352
\(92\) 0 0
\(93\) −3.52045 −0.365053
\(94\) 0 0
\(95\) −1.46540 −0.150347
\(96\) 0 0
\(97\) −18.0923 −1.83699 −0.918495 0.395432i \(-0.870595\pi\)
−0.918495 + 0.395432i \(0.870595\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.0252 1.19655 0.598275 0.801291i \(-0.295853\pi\)
0.598275 + 0.801291i \(0.295853\pi\)
\(102\) 0 0
\(103\) −10.9906 −1.08293 −0.541467 0.840722i \(-0.682131\pi\)
−0.541467 + 0.840722i \(0.682131\pi\)
\(104\) 0 0
\(105\) 3.00629 0.293384
\(106\) 0 0
\(107\) −13.7568 −1.32992 −0.664961 0.746878i \(-0.731552\pi\)
−0.664961 + 0.746878i \(0.731552\pi\)
\(108\) 0 0
\(109\) −12.5274 −1.19991 −0.599954 0.800035i \(-0.704814\pi\)
−0.599954 + 0.800035i \(0.704814\pi\)
\(110\) 0 0
\(111\) 1.65285 0.156881
\(112\) 0 0
\(113\) −1.71448 −0.161285 −0.0806426 0.996743i \(-0.525697\pi\)
−0.0806426 + 0.996743i \(0.525697\pi\)
\(114\) 0 0
\(115\) 4.79600 0.447229
\(116\) 0 0
\(117\) 12.9015 1.19274
\(118\) 0 0
\(119\) −1.84408 −0.169046
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 3.83474 0.345766
\(124\) 0 0
\(125\) −11.5072 −1.02924
\(126\) 0 0
\(127\) 0.0328621 0.00291604 0.00145802 0.999999i \(-0.499536\pi\)
0.00145802 + 0.999999i \(0.499536\pi\)
\(128\) 0 0
\(129\) 5.46795 0.481426
\(130\) 0 0
\(131\) −6.84827 −0.598336 −0.299168 0.954200i \(-0.596709\pi\)
−0.299168 + 0.954200i \(0.596709\pi\)
\(132\) 0 0
\(133\) −2.78748 −0.241705
\(134\) 0 0
\(135\) −5.88681 −0.506656
\(136\) 0 0
\(137\) −17.1416 −1.46450 −0.732252 0.681033i \(-0.761531\pi\)
−0.732252 + 0.681033i \(0.761531\pi\)
\(138\) 0 0
\(139\) 2.75054 0.233298 0.116649 0.993173i \(-0.462785\pi\)
0.116649 + 0.993173i \(0.462785\pi\)
\(140\) 0 0
\(141\) 9.95118 0.838040
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −7.78592 −0.646586
\(146\) 0 0
\(147\) 0.566734 0.0467434
\(148\) 0 0
\(149\) 5.26314 0.431173 0.215586 0.976485i \(-0.430834\pi\)
0.215586 + 0.976485i \(0.430834\pi\)
\(150\) 0 0
\(151\) −13.3693 −1.08797 −0.543987 0.839093i \(-0.683086\pi\)
−0.543987 + 0.839093i \(0.683086\pi\)
\(152\) 0 0
\(153\) 1.62634 0.131481
\(154\) 0 0
\(155\) −7.00962 −0.563026
\(156\) 0 0
\(157\) 16.9724 1.35454 0.677272 0.735733i \(-0.263162\pi\)
0.677272 + 0.735733i \(0.263162\pi\)
\(158\) 0 0
\(159\) −7.06157 −0.560019
\(160\) 0 0
\(161\) 9.12291 0.718986
\(162\) 0 0
\(163\) 5.68072 0.444948 0.222474 0.974939i \(-0.428587\pi\)
0.222474 + 0.974939i \(0.428587\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.532239 0.0411859 0.0205930 0.999788i \(-0.493445\pi\)
0.0205930 + 0.999788i \(0.493445\pi\)
\(168\) 0 0
\(169\) 14.5420 1.11861
\(170\) 0 0
\(171\) 2.45834 0.187994
\(172\) 0 0
\(173\) −12.2751 −0.933256 −0.466628 0.884454i \(-0.654531\pi\)
−0.466628 + 0.884454i \(0.654531\pi\)
\(174\) 0 0
\(175\) −7.95154 −0.601080
\(176\) 0 0
\(177\) −4.38238 −0.329400
\(178\) 0 0
\(179\) 7.42597 0.555043 0.277521 0.960719i \(-0.410487\pi\)
0.277521 + 0.960719i \(0.410487\pi\)
\(180\) 0 0
\(181\) 0.0594328 0.00441760 0.00220880 0.999998i \(-0.499297\pi\)
0.00220880 + 0.999998i \(0.499297\pi\)
\(182\) 0 0
\(183\) −7.76986 −0.574365
\(184\) 0 0
\(185\) 3.29100 0.241959
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −11.1978 −0.814523
\(190\) 0 0
\(191\) 23.1839 1.67753 0.838764 0.544496i \(-0.183279\pi\)
0.838764 + 0.544496i \(0.183279\pi\)
\(192\) 0 0
\(193\) −21.9784 −1.58204 −0.791021 0.611789i \(-0.790450\pi\)
−0.791021 + 0.611789i \(0.790450\pi\)
\(194\) 0 0
\(195\) −5.66000 −0.405321
\(196\) 0 0
\(197\) −25.9670 −1.85007 −0.925036 0.379881i \(-0.875965\pi\)
−0.925036 + 0.379881i \(0.875965\pi\)
\(198\) 0 0
\(199\) −12.7068 −0.900761 −0.450381 0.892837i \(-0.648712\pi\)
−0.450381 + 0.892837i \(0.648712\pi\)
\(200\) 0 0
\(201\) 11.1434 0.785992
\(202\) 0 0
\(203\) −14.8103 −1.03948
\(204\) 0 0
\(205\) 7.63540 0.533279
\(206\) 0 0
\(207\) −8.04571 −0.559215
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 6.70905 0.461870 0.230935 0.972969i \(-0.425822\pi\)
0.230935 + 0.972969i \(0.425822\pi\)
\(212\) 0 0
\(213\) 10.6617 0.730525
\(214\) 0 0
\(215\) 10.8873 0.742509
\(216\) 0 0
\(217\) −13.3336 −0.905146
\(218\) 0 0
\(219\) −6.24660 −0.422106
\(220\) 0 0
\(221\) 3.47188 0.233544
\(222\) 0 0
\(223\) 16.3216 1.09297 0.546486 0.837468i \(-0.315965\pi\)
0.546486 + 0.837468i \(0.315965\pi\)
\(224\) 0 0
\(225\) 7.01265 0.467510
\(226\) 0 0
\(227\) 4.68256 0.310792 0.155396 0.987852i \(-0.450335\pi\)
0.155396 + 0.987852i \(0.450335\pi\)
\(228\) 0 0
\(229\) −13.1864 −0.871384 −0.435692 0.900096i \(-0.643496\pi\)
−0.435692 + 0.900096i \(0.643496\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.27867 0.607866 0.303933 0.952693i \(-0.401700\pi\)
0.303933 + 0.952693i \(0.401700\pi\)
\(234\) 0 0
\(235\) 19.8139 1.29252
\(236\) 0 0
\(237\) −9.09223 −0.590604
\(238\) 0 0
\(239\) −26.9043 −1.74029 −0.870147 0.492792i \(-0.835976\pi\)
−0.870147 + 0.492792i \(0.835976\pi\)
\(240\) 0 0
\(241\) 3.42981 0.220933 0.110467 0.993880i \(-0.464765\pi\)
0.110467 + 0.993880i \(0.464765\pi\)
\(242\) 0 0
\(243\) 15.3035 0.981717
\(244\) 0 0
\(245\) 1.12843 0.0720929
\(246\) 0 0
\(247\) 5.24805 0.333925
\(248\) 0 0
\(249\) −3.38429 −0.214470
\(250\) 0 0
\(251\) 6.96954 0.439914 0.219957 0.975510i \(-0.429408\pi\)
0.219957 + 0.975510i \(0.429408\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −0.713488 −0.0446803
\(256\) 0 0
\(257\) −9.71600 −0.606068 −0.303034 0.952980i \(-0.598000\pi\)
−0.303034 + 0.952980i \(0.598000\pi\)
\(258\) 0 0
\(259\) 6.26012 0.388985
\(260\) 0 0
\(261\) 13.0616 0.808491
\(262\) 0 0
\(263\) −20.2544 −1.24894 −0.624469 0.781050i \(-0.714685\pi\)
−0.624469 + 0.781050i \(0.714685\pi\)
\(264\) 0 0
\(265\) −14.0604 −0.863723
\(266\) 0 0
\(267\) −7.38325 −0.451847
\(268\) 0 0
\(269\) 0.577707 0.0352234 0.0176117 0.999845i \(-0.494394\pi\)
0.0176117 + 0.999845i \(0.494394\pi\)
\(270\) 0 0
\(271\) −1.74939 −0.106268 −0.0531340 0.998587i \(-0.516921\pi\)
−0.0531340 + 0.998587i \(0.516921\pi\)
\(272\) 0 0
\(273\) −10.7664 −0.651613
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −14.7187 −0.884359 −0.442179 0.896927i \(-0.645794\pi\)
−0.442179 + 0.896927i \(0.645794\pi\)
\(278\) 0 0
\(279\) 11.7592 0.704007
\(280\) 0 0
\(281\) −5.42382 −0.323558 −0.161779 0.986827i \(-0.551723\pi\)
−0.161779 + 0.986827i \(0.551723\pi\)
\(282\) 0 0
\(283\) 20.6442 1.22717 0.613587 0.789627i \(-0.289726\pi\)
0.613587 + 0.789627i \(0.289726\pi\)
\(284\) 0 0
\(285\) −1.07850 −0.0638847
\(286\) 0 0
\(287\) 14.5240 0.857324
\(288\) 0 0
\(289\) −16.5623 −0.974255
\(290\) 0 0
\(291\) −13.3154 −0.780563
\(292\) 0 0
\(293\) 10.6149 0.620130 0.310065 0.950715i \(-0.399649\pi\)
0.310065 + 0.950715i \(0.399649\pi\)
\(294\) 0 0
\(295\) −8.72581 −0.508036
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −17.1759 −0.993307
\(300\) 0 0
\(301\) 20.7098 1.19369
\(302\) 0 0
\(303\) 8.85020 0.508431
\(304\) 0 0
\(305\) −15.4707 −0.885849
\(306\) 0 0
\(307\) −6.67347 −0.380875 −0.190438 0.981699i \(-0.560991\pi\)
−0.190438 + 0.981699i \(0.560991\pi\)
\(308\) 0 0
\(309\) −8.08877 −0.460154
\(310\) 0 0
\(311\) −10.6450 −0.603625 −0.301813 0.953367i \(-0.597592\pi\)
−0.301813 + 0.953367i \(0.597592\pi\)
\(312\) 0 0
\(313\) −11.7192 −0.662411 −0.331205 0.943559i \(-0.607455\pi\)
−0.331205 + 0.943559i \(0.607455\pi\)
\(314\) 0 0
\(315\) −10.0418 −0.565792
\(316\) 0 0
\(317\) 12.7134 0.714055 0.357027 0.934094i \(-0.383790\pi\)
0.357027 + 0.934094i \(0.383790\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −10.1246 −0.565102
\(322\) 0 0
\(323\) 0.661557 0.0368100
\(324\) 0 0
\(325\) 14.9705 0.830415
\(326\) 0 0
\(327\) −9.21982 −0.509857
\(328\) 0 0
\(329\) 37.6899 2.07791
\(330\) 0 0
\(331\) 6.90103 0.379315 0.189657 0.981850i \(-0.439262\pi\)
0.189657 + 0.981850i \(0.439262\pi\)
\(332\) 0 0
\(333\) −5.52095 −0.302546
\(334\) 0 0
\(335\) 22.1877 1.21224
\(336\) 0 0
\(337\) −23.0296 −1.25450 −0.627251 0.778817i \(-0.715820\pi\)
−0.627251 + 0.778817i \(0.715820\pi\)
\(338\) 0 0
\(339\) −1.26181 −0.0685323
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −17.3659 −0.937669
\(344\) 0 0
\(345\) 3.52972 0.190034
\(346\) 0 0
\(347\) 2.11823 0.113712 0.0568562 0.998382i \(-0.481892\pi\)
0.0568562 + 0.998382i \(0.481892\pi\)
\(348\) 0 0
\(349\) −6.49706 −0.347780 −0.173890 0.984765i \(-0.555634\pi\)
−0.173890 + 0.984765i \(0.555634\pi\)
\(350\) 0 0
\(351\) 21.0824 1.12530
\(352\) 0 0
\(353\) −14.6837 −0.781532 −0.390766 0.920490i \(-0.627790\pi\)
−0.390766 + 0.920490i \(0.627790\pi\)
\(354\) 0 0
\(355\) 21.2286 1.12670
\(356\) 0 0
\(357\) −1.35719 −0.0718301
\(358\) 0 0
\(359\) 1.70057 0.0897526 0.0448763 0.998993i \(-0.485711\pi\)
0.0448763 + 0.998993i \(0.485711\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −12.4377 −0.651018
\(366\) 0 0
\(367\) 25.8187 1.34772 0.673862 0.738857i \(-0.264634\pi\)
0.673862 + 0.738857i \(0.264634\pi\)
\(368\) 0 0
\(369\) −12.8090 −0.666812
\(370\) 0 0
\(371\) −26.7456 −1.38856
\(372\) 0 0
\(373\) −32.8818 −1.70256 −0.851278 0.524715i \(-0.824172\pi\)
−0.851278 + 0.524715i \(0.824172\pi\)
\(374\) 0 0
\(375\) −8.46900 −0.437337
\(376\) 0 0
\(377\) 27.8837 1.43608
\(378\) 0 0
\(379\) 3.52086 0.180854 0.0904272 0.995903i \(-0.471177\pi\)
0.0904272 + 0.995903i \(0.471177\pi\)
\(380\) 0 0
\(381\) 0.0241856 0.00123907
\(382\) 0 0
\(383\) −11.1844 −0.571497 −0.285749 0.958305i \(-0.592242\pi\)
−0.285749 + 0.958305i \(0.592242\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −18.2644 −0.928433
\(388\) 0 0
\(389\) 9.91397 0.502658 0.251329 0.967902i \(-0.419132\pi\)
0.251329 + 0.967902i \(0.419132\pi\)
\(390\) 0 0
\(391\) −2.16515 −0.109497
\(392\) 0 0
\(393\) −5.04013 −0.254241
\(394\) 0 0
\(395\) −18.1037 −0.910895
\(396\) 0 0
\(397\) 0.530021 0.0266010 0.0133005 0.999912i \(-0.495766\pi\)
0.0133005 + 0.999912i \(0.495766\pi\)
\(398\) 0 0
\(399\) −2.05151 −0.102704
\(400\) 0 0
\(401\) 1.16125 0.0579901 0.0289951 0.999580i \(-0.490769\pi\)
0.0289951 + 0.999580i \(0.490769\pi\)
\(402\) 0 0
\(403\) 25.1035 1.25049
\(404\) 0 0
\(405\) 6.47488 0.321740
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 20.4592 1.01164 0.505822 0.862638i \(-0.331189\pi\)
0.505822 + 0.862638i \(0.331189\pi\)
\(410\) 0 0
\(411\) −12.6157 −0.622288
\(412\) 0 0
\(413\) −16.5982 −0.816742
\(414\) 0 0
\(415\) −6.73850 −0.330780
\(416\) 0 0
\(417\) 2.02432 0.0991315
\(418\) 0 0
\(419\) 33.7923 1.65086 0.825431 0.564503i \(-0.190932\pi\)
0.825431 + 0.564503i \(0.190932\pi\)
\(420\) 0 0
\(421\) 35.1454 1.71288 0.856441 0.516246i \(-0.172671\pi\)
0.856441 + 0.516246i \(0.172671\pi\)
\(422\) 0 0
\(423\) −33.2396 −1.61616
\(424\) 0 0
\(425\) 1.88715 0.0915402
\(426\) 0 0
\(427\) −29.4282 −1.42413
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 33.4993 1.61360 0.806802 0.590822i \(-0.201196\pi\)
0.806802 + 0.590822i \(0.201196\pi\)
\(432\) 0 0
\(433\) 30.7901 1.47968 0.739840 0.672783i \(-0.234901\pi\)
0.739840 + 0.672783i \(0.234901\pi\)
\(434\) 0 0
\(435\) −5.73022 −0.274743
\(436\) 0 0
\(437\) −3.27281 −0.156560
\(438\) 0 0
\(439\) −16.9703 −0.809949 −0.404975 0.914328i \(-0.632720\pi\)
−0.404975 + 0.914328i \(0.632720\pi\)
\(440\) 0 0
\(441\) −1.89304 −0.0901449
\(442\) 0 0
\(443\) 33.6051 1.59663 0.798313 0.602243i \(-0.205726\pi\)
0.798313 + 0.602243i \(0.205726\pi\)
\(444\) 0 0
\(445\) −14.7009 −0.696889
\(446\) 0 0
\(447\) 3.87352 0.183211
\(448\) 0 0
\(449\) −18.9523 −0.894413 −0.447207 0.894431i \(-0.647581\pi\)
−0.447207 + 0.894431i \(0.647581\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −9.83940 −0.462296
\(454\) 0 0
\(455\) −21.4372 −1.00499
\(456\) 0 0
\(457\) 42.0582 1.96740 0.983699 0.179824i \(-0.0575528\pi\)
0.983699 + 0.179824i \(0.0575528\pi\)
\(458\) 0 0
\(459\) 2.65760 0.124046
\(460\) 0 0
\(461\) 33.4540 1.55811 0.779054 0.626956i \(-0.215700\pi\)
0.779054 + 0.626956i \(0.215700\pi\)
\(462\) 0 0
\(463\) 29.0238 1.34885 0.674426 0.738343i \(-0.264391\pi\)
0.674426 + 0.738343i \(0.264391\pi\)
\(464\) 0 0
\(465\) −5.15888 −0.239237
\(466\) 0 0
\(467\) 6.71452 0.310711 0.155356 0.987859i \(-0.450348\pi\)
0.155356 + 0.987859i \(0.450348\pi\)
\(468\) 0 0
\(469\) 42.2052 1.94886
\(470\) 0 0
\(471\) 12.4912 0.575564
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 2.85259 0.130886
\(476\) 0 0
\(477\) 23.5875 1.08000
\(478\) 0 0
\(479\) 31.8500 1.45526 0.727632 0.685968i \(-0.240621\pi\)
0.727632 + 0.685968i \(0.240621\pi\)
\(480\) 0 0
\(481\) −11.7861 −0.537398
\(482\) 0 0
\(483\) 6.71421 0.305507
\(484\) 0 0
\(485\) −26.5125 −1.20387
\(486\) 0 0
\(487\) −24.1279 −1.09334 −0.546669 0.837349i \(-0.684104\pi\)
−0.546669 + 0.837349i \(0.684104\pi\)
\(488\) 0 0
\(489\) 4.18085 0.189065
\(490\) 0 0
\(491\) 24.9575 1.12631 0.563157 0.826350i \(-0.309586\pi\)
0.563157 + 0.826350i \(0.309586\pi\)
\(492\) 0 0
\(493\) 3.51496 0.158306
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 40.3808 1.81133
\(498\) 0 0
\(499\) 10.9224 0.488952 0.244476 0.969655i \(-0.421384\pi\)
0.244476 + 0.969655i \(0.421384\pi\)
\(500\) 0 0
\(501\) 0.391713 0.0175005
\(502\) 0 0
\(503\) 11.5773 0.516204 0.258102 0.966118i \(-0.416903\pi\)
0.258102 + 0.966118i \(0.416903\pi\)
\(504\) 0 0
\(505\) 17.6218 0.784158
\(506\) 0 0
\(507\) 10.7025 0.475315
\(508\) 0 0
\(509\) 32.9551 1.46071 0.730355 0.683068i \(-0.239355\pi\)
0.730355 + 0.683068i \(0.239355\pi\)
\(510\) 0 0
\(511\) −23.6589 −1.04661
\(512\) 0 0
\(513\) 4.01719 0.177363
\(514\) 0 0
\(515\) −16.1057 −0.709700
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −9.03410 −0.396553
\(520\) 0 0
\(521\) −2.58112 −0.113081 −0.0565405 0.998400i \(-0.518007\pi\)
−0.0565405 + 0.998400i \(0.518007\pi\)
\(522\) 0 0
\(523\) −4.43555 −0.193953 −0.0969765 0.995287i \(-0.530917\pi\)
−0.0969765 + 0.995287i \(0.530917\pi\)
\(524\) 0 0
\(525\) −5.85211 −0.255407
\(526\) 0 0
\(527\) 3.16449 0.137847
\(528\) 0 0
\(529\) −12.2887 −0.534291
\(530\) 0 0
\(531\) 14.6383 0.635249
\(532\) 0 0
\(533\) −27.3446 −1.18443
\(534\) 0 0
\(535\) −20.1593 −0.871563
\(536\) 0 0
\(537\) 5.46531 0.235845
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −16.0115 −0.688390 −0.344195 0.938898i \(-0.611848\pi\)
−0.344195 + 0.938898i \(0.611848\pi\)
\(542\) 0 0
\(543\) 0.0437409 0.00187710
\(544\) 0 0
\(545\) −18.3577 −0.786358
\(546\) 0 0
\(547\) −0.976078 −0.0417341 −0.0208670 0.999782i \(-0.506643\pi\)
−0.0208670 + 0.999782i \(0.506643\pi\)
\(548\) 0 0
\(549\) 25.9534 1.10767
\(550\) 0 0
\(551\) 5.31315 0.226348
\(552\) 0 0
\(553\) −34.4366 −1.46440
\(554\) 0 0
\(555\) 2.42209 0.102812
\(556\) 0 0
\(557\) 12.2238 0.517937 0.258969 0.965886i \(-0.416617\pi\)
0.258969 + 0.965886i \(0.416617\pi\)
\(558\) 0 0
\(559\) −38.9907 −1.64913
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −36.1164 −1.52213 −0.761063 0.648678i \(-0.775322\pi\)
−0.761063 + 0.648678i \(0.775322\pi\)
\(564\) 0 0
\(565\) −2.51241 −0.105698
\(566\) 0 0
\(567\) 12.3165 0.517243
\(568\) 0 0
\(569\) 6.78355 0.284381 0.142191 0.989839i \(-0.454585\pi\)
0.142191 + 0.989839i \(0.454585\pi\)
\(570\) 0 0
\(571\) −18.0818 −0.756700 −0.378350 0.925663i \(-0.623508\pi\)
−0.378350 + 0.925663i \(0.623508\pi\)
\(572\) 0 0
\(573\) 17.0627 0.712805
\(574\) 0 0
\(575\) −9.33599 −0.389338
\(576\) 0 0
\(577\) 20.1259 0.837850 0.418925 0.908021i \(-0.362407\pi\)
0.418925 + 0.908021i \(0.362407\pi\)
\(578\) 0 0
\(579\) −16.1755 −0.672232
\(580\) 0 0
\(581\) −12.8179 −0.531777
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 18.9059 0.781664
\(586\) 0 0
\(587\) −11.7864 −0.486476 −0.243238 0.969967i \(-0.578210\pi\)
−0.243238 + 0.969967i \(0.578210\pi\)
\(588\) 0 0
\(589\) 4.78340 0.197096
\(590\) 0 0
\(591\) −19.1110 −0.786121
\(592\) 0 0
\(593\) −44.7098 −1.83601 −0.918005 0.396569i \(-0.870201\pi\)
−0.918005 + 0.396569i \(0.870201\pi\)
\(594\) 0 0
\(595\) −2.70232 −0.110784
\(596\) 0 0
\(597\) −9.35185 −0.382746
\(598\) 0 0
\(599\) −29.8765 −1.22072 −0.610361 0.792124i \(-0.708975\pi\)
−0.610361 + 0.792124i \(0.708975\pi\)
\(600\) 0 0
\(601\) 12.3581 0.504095 0.252048 0.967715i \(-0.418896\pi\)
0.252048 + 0.967715i \(0.418896\pi\)
\(602\) 0 0
\(603\) −37.2218 −1.51579
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 3.08605 0.125259 0.0626295 0.998037i \(-0.480051\pi\)
0.0626295 + 0.998037i \(0.480051\pi\)
\(608\) 0 0
\(609\) −10.9000 −0.441689
\(610\) 0 0
\(611\) −70.9595 −2.87071
\(612\) 0 0
\(613\) −15.4192 −0.622776 −0.311388 0.950283i \(-0.600794\pi\)
−0.311388 + 0.950283i \(0.600794\pi\)
\(614\) 0 0
\(615\) 5.61944 0.226598
\(616\) 0 0
\(617\) −34.0019 −1.36886 −0.684432 0.729077i \(-0.739950\pi\)
−0.684432 + 0.729077i \(0.739950\pi\)
\(618\) 0 0
\(619\) −3.06520 −0.123201 −0.0616005 0.998101i \(-0.519620\pi\)
−0.0616005 + 0.998101i \(0.519620\pi\)
\(620\) 0 0
\(621\) −13.1475 −0.527592
\(622\) 0 0
\(623\) −27.9639 −1.12035
\(624\) 0 0
\(625\) −2.59980 −0.103992
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.48572 −0.0592397
\(630\) 0 0
\(631\) −4.56632 −0.181782 −0.0908912 0.995861i \(-0.528972\pi\)
−0.0908912 + 0.995861i \(0.528972\pi\)
\(632\) 0 0
\(633\) 4.93767 0.196255
\(634\) 0 0
\(635\) 0.0481563 0.00191103
\(636\) 0 0
\(637\) −4.04125 −0.160120
\(638\) 0 0
\(639\) −35.6128 −1.40882
\(640\) 0 0
\(641\) 24.6689 0.974364 0.487182 0.873301i \(-0.338025\pi\)
0.487182 + 0.873301i \(0.338025\pi\)
\(642\) 0 0
\(643\) 12.8861 0.508178 0.254089 0.967181i \(-0.418224\pi\)
0.254089 + 0.967181i \(0.418224\pi\)
\(644\) 0 0
\(645\) 8.01276 0.315502
\(646\) 0 0
\(647\) −9.04643 −0.355652 −0.177826 0.984062i \(-0.556906\pi\)
−0.177826 + 0.984062i \(0.556906\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −9.81318 −0.384609
\(652\) 0 0
\(653\) 14.4810 0.566686 0.283343 0.959019i \(-0.408557\pi\)
0.283343 + 0.959019i \(0.408557\pi\)
\(654\) 0 0
\(655\) −10.0355 −0.392119
\(656\) 0 0
\(657\) 20.8653 0.814033
\(658\) 0 0
\(659\) −25.8823 −1.00823 −0.504115 0.863636i \(-0.668181\pi\)
−0.504115 + 0.863636i \(0.668181\pi\)
\(660\) 0 0
\(661\) 28.0516 1.09108 0.545541 0.838084i \(-0.316324\pi\)
0.545541 + 0.838084i \(0.316324\pi\)
\(662\) 0 0
\(663\) 2.55521 0.0992361
\(664\) 0 0
\(665\) −4.08479 −0.158401
\(666\) 0 0
\(667\) −17.3890 −0.673303
\(668\) 0 0
\(669\) 12.0122 0.464419
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 48.7740 1.88010 0.940050 0.341036i \(-0.110778\pi\)
0.940050 + 0.341036i \(0.110778\pi\)
\(674\) 0 0
\(675\) 11.4594 0.441072
\(676\) 0 0
\(677\) −46.2533 −1.77766 −0.888828 0.458240i \(-0.848480\pi\)
−0.888828 + 0.458240i \(0.848480\pi\)
\(678\) 0 0
\(679\) −50.4318 −1.93540
\(680\) 0 0
\(681\) 3.44623 0.132060
\(682\) 0 0
\(683\) 7.80364 0.298598 0.149299 0.988792i \(-0.452298\pi\)
0.149299 + 0.988792i \(0.452298\pi\)
\(684\) 0 0
\(685\) −25.1194 −0.959762
\(686\) 0 0
\(687\) −9.70485 −0.370263
\(688\) 0 0
\(689\) 50.3544 1.91835
\(690\) 0 0
\(691\) 10.7800 0.410089 0.205045 0.978753i \(-0.434266\pi\)
0.205045 + 0.978753i \(0.434266\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.03066 0.152892
\(696\) 0 0
\(697\) −3.44700 −0.130564
\(698\) 0 0
\(699\) 6.82884 0.258290
\(700\) 0 0
\(701\) −41.2228 −1.55696 −0.778481 0.627668i \(-0.784010\pi\)
−0.778481 + 0.627668i \(0.784010\pi\)
\(702\) 0 0
\(703\) −2.24580 −0.0847019
\(704\) 0 0
\(705\) 14.5825 0.549209
\(706\) 0 0
\(707\) 33.5200 1.26065
\(708\) 0 0
\(709\) −35.3192 −1.32644 −0.663219 0.748425i \(-0.730810\pi\)
−0.663219 + 0.748425i \(0.730810\pi\)
\(710\) 0 0
\(711\) 30.3705 1.13898
\(712\) 0 0
\(713\) −15.6552 −0.586291
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −19.8008 −0.739475
\(718\) 0 0
\(719\) −45.6912 −1.70399 −0.851997 0.523546i \(-0.824609\pi\)
−0.851997 + 0.523546i \(0.824609\pi\)
\(720\) 0 0
\(721\) −30.6360 −1.14095
\(722\) 0 0
\(723\) 2.52424 0.0938777
\(724\) 0 0
\(725\) 15.1562 0.562889
\(726\) 0 0
\(727\) −50.2094 −1.86216 −0.931082 0.364810i \(-0.881134\pi\)
−0.931082 + 0.364810i \(0.881134\pi\)
\(728\) 0 0
\(729\) −1.99256 −0.0737985
\(730\) 0 0
\(731\) −4.91508 −0.181791
\(732\) 0 0
\(733\) 12.7694 0.471649 0.235824 0.971796i \(-0.424221\pi\)
0.235824 + 0.971796i \(0.424221\pi\)
\(734\) 0 0
\(735\) 0.830495 0.0306333
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 43.5923 1.60357 0.801783 0.597615i \(-0.203885\pi\)
0.801783 + 0.597615i \(0.203885\pi\)
\(740\) 0 0
\(741\) 3.86242 0.141889
\(742\) 0 0
\(743\) −26.7661 −0.981955 −0.490977 0.871172i \(-0.663360\pi\)
−0.490977 + 0.871172i \(0.663360\pi\)
\(744\) 0 0
\(745\) 7.71262 0.282569
\(746\) 0 0
\(747\) 11.3044 0.413607
\(748\) 0 0
\(749\) −38.3469 −1.40116
\(750\) 0 0
\(751\) −11.0819 −0.404386 −0.202193 0.979346i \(-0.564807\pi\)
−0.202193 + 0.979346i \(0.564807\pi\)
\(752\) 0 0
\(753\) 5.12939 0.186925
\(754\) 0 0
\(755\) −19.5914 −0.713003
\(756\) 0 0
\(757\) −9.37562 −0.340763 −0.170381 0.985378i \(-0.554500\pi\)
−0.170381 + 0.985378i \(0.554500\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.04634 0.255430 0.127715 0.991811i \(-0.459236\pi\)
0.127715 + 0.991811i \(0.459236\pi\)
\(762\) 0 0
\(763\) −34.9199 −1.26418
\(764\) 0 0
\(765\) 2.38324 0.0861662
\(766\) 0 0
\(767\) 31.2497 1.12836
\(768\) 0 0
\(769\) 42.3274 1.52637 0.763183 0.646183i \(-0.223636\pi\)
0.763183 + 0.646183i \(0.223636\pi\)
\(770\) 0 0
\(771\) −7.15071 −0.257526
\(772\) 0 0
\(773\) 13.5595 0.487701 0.243850 0.969813i \(-0.421589\pi\)
0.243850 + 0.969813i \(0.421589\pi\)
\(774\) 0 0
\(775\) 13.6451 0.490145
\(776\) 0 0
\(777\) 4.60727 0.165285
\(778\) 0 0
\(779\) −5.21043 −0.186683
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 21.3439 0.762771
\(784\) 0 0
\(785\) 24.8714 0.887699
\(786\) 0 0
\(787\) 19.7436 0.703784 0.351892 0.936041i \(-0.385538\pi\)
0.351892 + 0.936041i \(0.385538\pi\)
\(788\) 0 0
\(789\) −14.9067 −0.530691
\(790\) 0 0
\(791\) −4.77909 −0.169925
\(792\) 0 0
\(793\) 55.4051 1.96749
\(794\) 0 0
\(795\) −10.3481 −0.367008
\(796\) 0 0
\(797\) −20.7217 −0.733999 −0.367000 0.930221i \(-0.619615\pi\)
−0.367000 + 0.930221i \(0.619615\pi\)
\(798\) 0 0
\(799\) −8.94500 −0.316451
\(800\) 0 0
\(801\) 24.6620 0.871390
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 13.3688 0.471187
\(806\) 0 0
\(807\) 0.425176 0.0149669
\(808\) 0 0
\(809\) −20.1883 −0.709783 −0.354891 0.934908i \(-0.615482\pi\)
−0.354891 + 0.934908i \(0.615482\pi\)
\(810\) 0 0
\(811\) −2.03212 −0.0713573 −0.0356786 0.999363i \(-0.511359\pi\)
−0.0356786 + 0.999363i \(0.511359\pi\)
\(812\) 0 0
\(813\) −1.28750 −0.0451547
\(814\) 0 0
\(815\) 8.32455 0.291596
\(816\) 0 0
\(817\) −7.42956 −0.259927
\(818\) 0 0
\(819\) 35.9627 1.25664
\(820\) 0 0
\(821\) −32.2030 −1.12389 −0.561946 0.827174i \(-0.689947\pi\)
−0.561946 + 0.827174i \(0.689947\pi\)
\(822\) 0 0
\(823\) 5.04397 0.175822 0.0879109 0.996128i \(-0.471981\pi\)
0.0879109 + 0.996128i \(0.471981\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −8.33031 −0.289673 −0.144837 0.989456i \(-0.546266\pi\)
−0.144837 + 0.989456i \(0.546266\pi\)
\(828\) 0 0
\(829\) −44.2158 −1.53568 −0.767839 0.640643i \(-0.778668\pi\)
−0.767839 + 0.640643i \(0.778668\pi\)
\(830\) 0 0
\(831\) −10.8325 −0.375776
\(832\) 0 0
\(833\) −0.509431 −0.0176507
\(834\) 0 0
\(835\) 0.779946 0.0269912
\(836\) 0 0
\(837\) 19.2158 0.664196
\(838\) 0 0
\(839\) 10.8395 0.374222 0.187111 0.982339i \(-0.440088\pi\)
0.187111 + 0.982339i \(0.440088\pi\)
\(840\) 0 0
\(841\) −0.770397 −0.0265654
\(842\) 0 0
\(843\) −3.99178 −0.137484
\(844\) 0 0
\(845\) 21.3099 0.733083
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 15.1936 0.521443
\(850\) 0 0
\(851\) 7.35008 0.251958
\(852\) 0 0
\(853\) 14.2376 0.487485 0.243742 0.969840i \(-0.421625\pi\)
0.243742 + 0.969840i \(0.421625\pi\)
\(854\) 0 0
\(855\) 3.60247 0.123202
\(856\) 0 0
\(857\) −1.80268 −0.0615783 −0.0307891 0.999526i \(-0.509802\pi\)
−0.0307891 + 0.999526i \(0.509802\pi\)
\(858\) 0 0
\(859\) 19.8861 0.678506 0.339253 0.940695i \(-0.389826\pi\)
0.339253 + 0.940695i \(0.389826\pi\)
\(860\) 0 0
\(861\) 10.6893 0.364289
\(862\) 0 0
\(863\) 6.66877 0.227008 0.113504 0.993538i \(-0.463793\pi\)
0.113504 + 0.993538i \(0.463793\pi\)
\(864\) 0 0
\(865\) −17.9879 −0.611608
\(866\) 0 0
\(867\) −12.1894 −0.413975
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −79.4607 −2.69242
\(872\) 0 0
\(873\) 44.4770 1.50532
\(874\) 0 0
\(875\) −32.0762 −1.08437
\(876\) 0 0
\(877\) 28.9853 0.978764 0.489382 0.872070i \(-0.337222\pi\)
0.489382 + 0.872070i \(0.337222\pi\)
\(878\) 0 0
\(879\) 7.81228 0.263502
\(880\) 0 0
\(881\) −34.4951 −1.16217 −0.581084 0.813843i \(-0.697371\pi\)
−0.581084 + 0.813843i \(0.697371\pi\)
\(882\) 0 0
\(883\) 11.9912 0.403538 0.201769 0.979433i \(-0.435331\pi\)
0.201769 + 0.979433i \(0.435331\pi\)
\(884\) 0 0
\(885\) −6.42196 −0.215872
\(886\) 0 0
\(887\) 14.2750 0.479308 0.239654 0.970858i \(-0.422966\pi\)
0.239654 + 0.970858i \(0.422966\pi\)
\(888\) 0 0
\(889\) 0.0916025 0.00307225
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −13.5211 −0.452467
\(894\) 0 0
\(895\) 10.8821 0.363747
\(896\) 0 0
\(897\) −12.6410 −0.422070
\(898\) 0 0
\(899\) 25.4149 0.847635
\(900\) 0 0
\(901\) 6.34757 0.211468
\(902\) 0 0
\(903\) 15.2418 0.507215
\(904\) 0 0
\(905\) 0.0870931 0.00289507
\(906\) 0 0
\(907\) 22.8888 0.760009 0.380005 0.924985i \(-0.375922\pi\)
0.380005 + 0.924985i \(0.375922\pi\)
\(908\) 0 0
\(909\) −29.5620 −0.980511
\(910\) 0 0
\(911\) 0.120096 0.00397895 0.00198948 0.999998i \(-0.499367\pi\)
0.00198948 + 0.999998i \(0.499367\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −11.3860 −0.376409
\(916\) 0 0
\(917\) −19.0894 −0.630388
\(918\) 0 0
\(919\) 46.4700 1.53290 0.766452 0.642301i \(-0.222020\pi\)
0.766452 + 0.642301i \(0.222020\pi\)
\(920\) 0 0
\(921\) −4.91149 −0.161839
\(922\) 0 0
\(923\) −76.0258 −2.50242
\(924\) 0 0
\(925\) −6.40634 −0.210639
\(926\) 0 0
\(927\) 27.0187 0.887409
\(928\) 0 0
\(929\) 4.31451 0.141555 0.0707773 0.997492i \(-0.477452\pi\)
0.0707773 + 0.997492i \(0.477452\pi\)
\(930\) 0 0
\(931\) −0.770048 −0.0252373
\(932\) 0 0
\(933\) −7.83446 −0.256489
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 9.23075 0.301555 0.150778 0.988568i \(-0.451822\pi\)
0.150778 + 0.988568i \(0.451822\pi\)
\(938\) 0 0
\(939\) −8.62504 −0.281467
\(940\) 0 0
\(941\) 57.9211 1.88817 0.944086 0.329699i \(-0.106947\pi\)
0.944086 + 0.329699i \(0.106947\pi\)
\(942\) 0 0
\(943\) 17.0528 0.555315
\(944\) 0 0
\(945\) −16.4094 −0.533797
\(946\) 0 0
\(947\) −23.9217 −0.777350 −0.388675 0.921375i \(-0.627067\pi\)
−0.388675 + 0.921375i \(0.627067\pi\)
\(948\) 0 0
\(949\) 44.5430 1.44593
\(950\) 0 0
\(951\) 9.35670 0.303412
\(952\) 0 0
\(953\) −32.3468 −1.04782 −0.523908 0.851775i \(-0.675527\pi\)
−0.523908 + 0.851775i \(0.675527\pi\)
\(954\) 0 0
\(955\) 33.9738 1.09937
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −47.7818 −1.54296
\(960\) 0 0
\(961\) −8.11910 −0.261906
\(962\) 0 0
\(963\) 33.8190 1.08980
\(964\) 0 0
\(965\) −32.2073 −1.03679
\(966\) 0 0
\(967\) −1.02137 −0.0328451 −0.0164225 0.999865i \(-0.505228\pi\)
−0.0164225 + 0.999865i \(0.505228\pi\)
\(968\) 0 0
\(969\) 0.486888 0.0156411
\(970\) 0 0
\(971\) −50.7514 −1.62869 −0.814345 0.580381i \(-0.802904\pi\)
−0.814345 + 0.580381i \(0.802904\pi\)
\(972\) 0 0
\(973\) 7.66709 0.245795
\(974\) 0 0
\(975\) 11.0179 0.352855
\(976\) 0 0
\(977\) −13.1735 −0.421456 −0.210728 0.977545i \(-0.567583\pi\)
−0.210728 + 0.977545i \(0.567583\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 30.7967 0.983262
\(982\) 0 0
\(983\) −9.24612 −0.294905 −0.147453 0.989069i \(-0.547107\pi\)
−0.147453 + 0.989069i \(0.547107\pi\)
\(984\) 0 0
\(985\) −38.0521 −1.21244
\(986\) 0 0
\(987\) 27.7387 0.882933
\(988\) 0 0
\(989\) 24.3156 0.773190
\(990\) 0 0
\(991\) 10.6286 0.337627 0.168814 0.985648i \(-0.446006\pi\)
0.168814 + 0.985648i \(0.446006\pi\)
\(992\) 0 0
\(993\) 5.07896 0.161176
\(994\) 0 0
\(995\) −18.6206 −0.590313
\(996\) 0 0
\(997\) −5.06696 −0.160472 −0.0802361 0.996776i \(-0.525567\pi\)
−0.0802361 + 0.996776i \(0.525567\pi\)
\(998\) 0 0
\(999\) −9.02180 −0.285437
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.o.1.4 7
11.10 odd 2 9196.2.a.p.1.4 yes 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9196.2.a.o.1.4 7 1.1 even 1 trivial
9196.2.a.p.1.4 yes 7 11.10 odd 2