Properties

Label 9196.2.a.l.1.5
Level $9196$
Weight $2$
Character 9196.1
Self dual yes
Analytic conductor $73.430$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9196,2,Mod(1,9196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9196.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9196 = 2^{2} \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9196.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-4,0,-4,0,2,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4304296988\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.114134848.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 10x^{4} - 6x^{3} + 20x^{2} + 14x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.50521\) of defining polynomial
Character \(\chi\) \(=\) 9196.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.50521 q^{3} -3.76432 q^{5} +4.72308 q^{7} -0.734348 q^{9} -0.374304 q^{13} -5.66608 q^{15} -2.41704 q^{17} +1.00000 q^{19} +7.10922 q^{21} -4.04039 q^{23} +9.17009 q^{25} -5.62097 q^{27} +8.79699 q^{29} -5.56277 q^{31} -17.7792 q^{35} -4.35412 q^{37} -0.563405 q^{39} +1.30956 q^{41} +7.35588 q^{43} +2.76432 q^{45} -1.25139 q^{47} +15.3075 q^{49} -3.63815 q^{51} -12.6976 q^{53} +1.50521 q^{57} -0.988733 q^{59} +14.7987 q^{61} -3.46838 q^{63} +1.40900 q^{65} -12.1018 q^{67} -6.08163 q^{69} -1.84949 q^{71} -8.51822 q^{73} +13.8029 q^{75} -2.81068 q^{79} -6.25769 q^{81} -16.5999 q^{83} +9.09851 q^{85} +13.2413 q^{87} -7.66431 q^{89} -1.76787 q^{91} -8.37313 q^{93} -3.76432 q^{95} +11.6055 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{5} - 4 q^{7} + 2 q^{9} - 8 q^{13} + 2 q^{15} - 6 q^{17} + 6 q^{19} + 20 q^{21} + 6 q^{23} + 2 q^{25} - 18 q^{27} + 2 q^{29} - 6 q^{31} - 14 q^{35} + 4 q^{37} - 6 q^{39} - 14 q^{41} + 10 q^{43}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50521 0.869032 0.434516 0.900664i \(-0.356919\pi\)
0.434516 + 0.900664i \(0.356919\pi\)
\(4\) 0 0
\(5\) −3.76432 −1.68345 −0.841727 0.539903i \(-0.818461\pi\)
−0.841727 + 0.539903i \(0.818461\pi\)
\(6\) 0 0
\(7\) 4.72308 1.78516 0.892578 0.450892i \(-0.148894\pi\)
0.892578 + 0.450892i \(0.148894\pi\)
\(8\) 0 0
\(9\) −0.734348 −0.244783
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −0.374304 −0.103813 −0.0519066 0.998652i \(-0.516530\pi\)
−0.0519066 + 0.998652i \(0.516530\pi\)
\(14\) 0 0
\(15\) −5.66608 −1.46298
\(16\) 0 0
\(17\) −2.41704 −0.586218 −0.293109 0.956079i \(-0.594690\pi\)
−0.293109 + 0.956079i \(0.594690\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 7.10922 1.55136
\(22\) 0 0
\(23\) −4.04039 −0.842479 −0.421240 0.906949i \(-0.638405\pi\)
−0.421240 + 0.906949i \(0.638405\pi\)
\(24\) 0 0
\(25\) 9.17009 1.83402
\(26\) 0 0
\(27\) −5.62097 −1.08176
\(28\) 0 0
\(29\) 8.79699 1.63356 0.816780 0.576949i \(-0.195757\pi\)
0.816780 + 0.576949i \(0.195757\pi\)
\(30\) 0 0
\(31\) −5.56277 −0.999104 −0.499552 0.866284i \(-0.666502\pi\)
−0.499552 + 0.866284i \(0.666502\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −17.7792 −3.00523
\(36\) 0 0
\(37\) −4.35412 −0.715813 −0.357906 0.933757i \(-0.616509\pi\)
−0.357906 + 0.933757i \(0.616509\pi\)
\(38\) 0 0
\(39\) −0.563405 −0.0902171
\(40\) 0 0
\(41\) 1.30956 0.204520 0.102260 0.994758i \(-0.467393\pi\)
0.102260 + 0.994758i \(0.467393\pi\)
\(42\) 0 0
\(43\) 7.35588 1.12176 0.560880 0.827897i \(-0.310463\pi\)
0.560880 + 0.827897i \(0.310463\pi\)
\(44\) 0 0
\(45\) 2.76432 0.412080
\(46\) 0 0
\(47\) −1.25139 −0.182534 −0.0912672 0.995826i \(-0.529092\pi\)
−0.0912672 + 0.995826i \(0.529092\pi\)
\(48\) 0 0
\(49\) 15.3075 2.18678
\(50\) 0 0
\(51\) −3.63815 −0.509443
\(52\) 0 0
\(53\) −12.6976 −1.74414 −0.872072 0.489378i \(-0.837224\pi\)
−0.872072 + 0.489378i \(0.837224\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.50521 0.199370
\(58\) 0 0
\(59\) −0.988733 −0.128722 −0.0643610 0.997927i \(-0.520501\pi\)
−0.0643610 + 0.997927i \(0.520501\pi\)
\(60\) 0 0
\(61\) 14.7987 1.89478 0.947392 0.320076i \(-0.103709\pi\)
0.947392 + 0.320076i \(0.103709\pi\)
\(62\) 0 0
\(63\) −3.46838 −0.436975
\(64\) 0 0
\(65\) 1.40900 0.174765
\(66\) 0 0
\(67\) −12.1018 −1.47847 −0.739237 0.673446i \(-0.764814\pi\)
−0.739237 + 0.673446i \(0.764814\pi\)
\(68\) 0 0
\(69\) −6.08163 −0.732142
\(70\) 0 0
\(71\) −1.84949 −0.219494 −0.109747 0.993960i \(-0.535004\pi\)
−0.109747 + 0.993960i \(0.535004\pi\)
\(72\) 0 0
\(73\) −8.51822 −0.996982 −0.498491 0.866895i \(-0.666112\pi\)
−0.498491 + 0.866895i \(0.666112\pi\)
\(74\) 0 0
\(75\) 13.8029 1.59382
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.81068 −0.316226 −0.158113 0.987421i \(-0.550541\pi\)
−0.158113 + 0.987421i \(0.550541\pi\)
\(80\) 0 0
\(81\) −6.25769 −0.695299
\(82\) 0 0
\(83\) −16.5999 −1.82208 −0.911041 0.412317i \(-0.864720\pi\)
−0.911041 + 0.412317i \(0.864720\pi\)
\(84\) 0 0
\(85\) 9.09851 0.986872
\(86\) 0 0
\(87\) 13.2413 1.41962
\(88\) 0 0
\(89\) −7.66431 −0.812416 −0.406208 0.913781i \(-0.633149\pi\)
−0.406208 + 0.913781i \(0.633149\pi\)
\(90\) 0 0
\(91\) −1.76787 −0.185323
\(92\) 0 0
\(93\) −8.37313 −0.868254
\(94\) 0 0
\(95\) −3.76432 −0.386211
\(96\) 0 0
\(97\) 11.6055 1.17836 0.589181 0.808001i \(-0.299451\pi\)
0.589181 + 0.808001i \(0.299451\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.2253 −1.01746 −0.508729 0.860927i \(-0.669884\pi\)
−0.508729 + 0.860927i \(0.669884\pi\)
\(102\) 0 0
\(103\) 9.18375 0.904901 0.452451 0.891789i \(-0.350550\pi\)
0.452451 + 0.891789i \(0.350550\pi\)
\(104\) 0 0
\(105\) −26.7614 −2.61164
\(106\) 0 0
\(107\) −3.19620 −0.308988 −0.154494 0.987994i \(-0.549375\pi\)
−0.154494 + 0.987994i \(0.549375\pi\)
\(108\) 0 0
\(109\) 6.07063 0.581461 0.290730 0.956805i \(-0.406102\pi\)
0.290730 + 0.956805i \(0.406102\pi\)
\(110\) 0 0
\(111\) −6.55386 −0.622065
\(112\) 0 0
\(113\) 14.1261 1.32887 0.664437 0.747344i \(-0.268671\pi\)
0.664437 + 0.747344i \(0.268671\pi\)
\(114\) 0 0
\(115\) 15.2093 1.41827
\(116\) 0 0
\(117\) 0.274869 0.0254117
\(118\) 0 0
\(119\) −11.4159 −1.04649
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 1.97117 0.177734
\(124\) 0 0
\(125\) −15.6976 −1.40403
\(126\) 0 0
\(127\) −5.51357 −0.489250 −0.244625 0.969618i \(-0.578665\pi\)
−0.244625 + 0.969618i \(0.578665\pi\)
\(128\) 0 0
\(129\) 11.0721 0.974846
\(130\) 0 0
\(131\) −8.00626 −0.699510 −0.349755 0.936841i \(-0.613735\pi\)
−0.349755 + 0.936841i \(0.613735\pi\)
\(132\) 0 0
\(133\) 4.72308 0.409543
\(134\) 0 0
\(135\) 21.1591 1.82109
\(136\) 0 0
\(137\) −17.2250 −1.47163 −0.735816 0.677181i \(-0.763201\pi\)
−0.735816 + 0.677181i \(0.763201\pi\)
\(138\) 0 0
\(139\) 7.70353 0.653405 0.326702 0.945127i \(-0.394063\pi\)
0.326702 + 0.945127i \(0.394063\pi\)
\(140\) 0 0
\(141\) −1.88361 −0.158628
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −33.1147 −2.75002
\(146\) 0 0
\(147\) 23.0410 1.90039
\(148\) 0 0
\(149\) 8.69755 0.712531 0.356266 0.934385i \(-0.384050\pi\)
0.356266 + 0.934385i \(0.384050\pi\)
\(150\) 0 0
\(151\) −19.0525 −1.55047 −0.775236 0.631672i \(-0.782369\pi\)
−0.775236 + 0.631672i \(0.782369\pi\)
\(152\) 0 0
\(153\) 1.77495 0.143496
\(154\) 0 0
\(155\) 20.9401 1.68195
\(156\) 0 0
\(157\) 1.57730 0.125882 0.0629410 0.998017i \(-0.479952\pi\)
0.0629410 + 0.998017i \(0.479952\pi\)
\(158\) 0 0
\(159\) −19.1125 −1.51572
\(160\) 0 0
\(161\) −19.0831 −1.50396
\(162\) 0 0
\(163\) −3.61351 −0.283032 −0.141516 0.989936i \(-0.545198\pi\)
−0.141516 + 0.989936i \(0.545198\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −20.3660 −1.57597 −0.787984 0.615696i \(-0.788875\pi\)
−0.787984 + 0.615696i \(0.788875\pi\)
\(168\) 0 0
\(169\) −12.8599 −0.989223
\(170\) 0 0
\(171\) −0.734348 −0.0561570
\(172\) 0 0
\(173\) 21.8886 1.66416 0.832080 0.554655i \(-0.187150\pi\)
0.832080 + 0.554655i \(0.187150\pi\)
\(174\) 0 0
\(175\) 43.3111 3.27401
\(176\) 0 0
\(177\) −1.48825 −0.111864
\(178\) 0 0
\(179\) −16.0336 −1.19840 −0.599202 0.800598i \(-0.704515\pi\)
−0.599202 + 0.800598i \(0.704515\pi\)
\(180\) 0 0
\(181\) −3.89824 −0.289754 −0.144877 0.989450i \(-0.546279\pi\)
−0.144877 + 0.989450i \(0.546279\pi\)
\(182\) 0 0
\(183\) 22.2752 1.64663
\(184\) 0 0
\(185\) 16.3903 1.20504
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −26.5483 −1.93110
\(190\) 0 0
\(191\) 4.25769 0.308076 0.154038 0.988065i \(-0.450772\pi\)
0.154038 + 0.988065i \(0.450772\pi\)
\(192\) 0 0
\(193\) −2.87144 −0.206691 −0.103346 0.994646i \(-0.532955\pi\)
−0.103346 + 0.994646i \(0.532955\pi\)
\(194\) 0 0
\(195\) 2.12084 0.151876
\(196\) 0 0
\(197\) −27.2422 −1.94093 −0.970464 0.241246i \(-0.922444\pi\)
−0.970464 + 0.241246i \(0.922444\pi\)
\(198\) 0 0
\(199\) −17.2390 −1.22204 −0.611020 0.791615i \(-0.709241\pi\)
−0.611020 + 0.791615i \(0.709241\pi\)
\(200\) 0 0
\(201\) −18.2158 −1.28484
\(202\) 0 0
\(203\) 41.5489 2.91616
\(204\) 0 0
\(205\) −4.92962 −0.344299
\(206\) 0 0
\(207\) 2.96705 0.206224
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 5.42981 0.373803 0.186902 0.982379i \(-0.440155\pi\)
0.186902 + 0.982379i \(0.440155\pi\)
\(212\) 0 0
\(213\) −2.78387 −0.190748
\(214\) 0 0
\(215\) −27.6899 −1.88843
\(216\) 0 0
\(217\) −26.2734 −1.78356
\(218\) 0 0
\(219\) −12.8217 −0.866410
\(220\) 0 0
\(221\) 0.904708 0.0608572
\(222\) 0 0
\(223\) 8.88179 0.594769 0.297384 0.954758i \(-0.403886\pi\)
0.297384 + 0.954758i \(0.403886\pi\)
\(224\) 0 0
\(225\) −6.73404 −0.448936
\(226\) 0 0
\(227\) 26.5928 1.76503 0.882514 0.470287i \(-0.155850\pi\)
0.882514 + 0.470287i \(0.155850\pi\)
\(228\) 0 0
\(229\) −11.2173 −0.741258 −0.370629 0.928781i \(-0.620858\pi\)
−0.370629 + 0.928781i \(0.620858\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.7503 1.29389 0.646944 0.762537i \(-0.276047\pi\)
0.646944 + 0.762537i \(0.276047\pi\)
\(234\) 0 0
\(235\) 4.71064 0.307288
\(236\) 0 0
\(237\) −4.23066 −0.274811
\(238\) 0 0
\(239\) −12.1282 −0.784505 −0.392253 0.919858i \(-0.628304\pi\)
−0.392253 + 0.919858i \(0.628304\pi\)
\(240\) 0 0
\(241\) −12.9849 −0.836429 −0.418215 0.908348i \(-0.637344\pi\)
−0.418215 + 0.908348i \(0.637344\pi\)
\(242\) 0 0
\(243\) 7.44379 0.477519
\(244\) 0 0
\(245\) −57.6223 −3.68135
\(246\) 0 0
\(247\) −0.374304 −0.0238164
\(248\) 0 0
\(249\) −24.9864 −1.58345
\(250\) 0 0
\(251\) 0.0125045 0.000789279 0 0.000394639 1.00000i \(-0.499874\pi\)
0.000394639 1.00000i \(0.499874\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 13.6952 0.857624
\(256\) 0 0
\(257\) 4.41016 0.275098 0.137549 0.990495i \(-0.456078\pi\)
0.137549 + 0.990495i \(0.456078\pi\)
\(258\) 0 0
\(259\) −20.5649 −1.27784
\(260\) 0 0
\(261\) −6.46005 −0.399867
\(262\) 0 0
\(263\) 20.4329 1.25994 0.629972 0.776618i \(-0.283066\pi\)
0.629972 + 0.776618i \(0.283066\pi\)
\(264\) 0 0
\(265\) 47.7976 2.93619
\(266\) 0 0
\(267\) −11.5364 −0.706016
\(268\) 0 0
\(269\) −0.354969 −0.0216429 −0.0108214 0.999941i \(-0.503445\pi\)
−0.0108214 + 0.999941i \(0.503445\pi\)
\(270\) 0 0
\(271\) −19.8613 −1.20649 −0.603245 0.797556i \(-0.706126\pi\)
−0.603245 + 0.797556i \(0.706126\pi\)
\(272\) 0 0
\(273\) −2.66101 −0.161052
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 16.6660 1.00136 0.500682 0.865631i \(-0.333082\pi\)
0.500682 + 0.865631i \(0.333082\pi\)
\(278\) 0 0
\(279\) 4.08501 0.244563
\(280\) 0 0
\(281\) −14.1650 −0.845013 −0.422506 0.906360i \(-0.638850\pi\)
−0.422506 + 0.906360i \(0.638850\pi\)
\(282\) 0 0
\(283\) −12.5314 −0.744912 −0.372456 0.928050i \(-0.621484\pi\)
−0.372456 + 0.928050i \(0.621484\pi\)
\(284\) 0 0
\(285\) −5.66608 −0.335630
\(286\) 0 0
\(287\) 6.18518 0.365100
\(288\) 0 0
\(289\) −11.1579 −0.656348
\(290\) 0 0
\(291\) 17.4687 1.02403
\(292\) 0 0
\(293\) −25.1270 −1.46794 −0.733969 0.679183i \(-0.762334\pi\)
−0.733969 + 0.679183i \(0.762334\pi\)
\(294\) 0 0
\(295\) 3.72191 0.216698
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.51233 0.0874605
\(300\) 0 0
\(301\) 34.7424 2.00252
\(302\) 0 0
\(303\) −15.3912 −0.884204
\(304\) 0 0
\(305\) −55.7071 −3.18978
\(306\) 0 0
\(307\) 22.4129 1.27917 0.639587 0.768719i \(-0.279105\pi\)
0.639587 + 0.768719i \(0.279105\pi\)
\(308\) 0 0
\(309\) 13.8235 0.786389
\(310\) 0 0
\(311\) 16.5415 0.937980 0.468990 0.883204i \(-0.344618\pi\)
0.468990 + 0.883204i \(0.344618\pi\)
\(312\) 0 0
\(313\) −30.8590 −1.74425 −0.872127 0.489280i \(-0.837260\pi\)
−0.872127 + 0.489280i \(0.837260\pi\)
\(314\) 0 0
\(315\) 13.0561 0.735628
\(316\) 0 0
\(317\) −2.29769 −0.129051 −0.0645256 0.997916i \(-0.520553\pi\)
−0.0645256 + 0.997916i \(0.520553\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −4.81095 −0.268521
\(322\) 0 0
\(323\) −2.41704 −0.134488
\(324\) 0 0
\(325\) −3.43240 −0.190395
\(326\) 0 0
\(327\) 9.13756 0.505308
\(328\) 0 0
\(329\) −5.91043 −0.325852
\(330\) 0 0
\(331\) 12.0889 0.664464 0.332232 0.943198i \(-0.392198\pi\)
0.332232 + 0.943198i \(0.392198\pi\)
\(332\) 0 0
\(333\) 3.19744 0.175218
\(334\) 0 0
\(335\) 45.5551 2.48894
\(336\) 0 0
\(337\) −30.0531 −1.63710 −0.818548 0.574437i \(-0.805221\pi\)
−0.818548 + 0.574437i \(0.805221\pi\)
\(338\) 0 0
\(339\) 21.2628 1.15484
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 39.2369 2.11860
\(344\) 0 0
\(345\) 22.8932 1.23253
\(346\) 0 0
\(347\) −1.66553 −0.0894105 −0.0447052 0.999000i \(-0.514235\pi\)
−0.0447052 + 0.999000i \(0.514235\pi\)
\(348\) 0 0
\(349\) −24.6231 −1.31804 −0.659022 0.752124i \(-0.729030\pi\)
−0.659022 + 0.752124i \(0.729030\pi\)
\(350\) 0 0
\(351\) 2.10395 0.112301
\(352\) 0 0
\(353\) 1.61479 0.0859467 0.0429733 0.999076i \(-0.486317\pi\)
0.0429733 + 0.999076i \(0.486317\pi\)
\(354\) 0 0
\(355\) 6.96208 0.369509
\(356\) 0 0
\(357\) −17.1833 −0.909435
\(358\) 0 0
\(359\) −7.07832 −0.373579 −0.186790 0.982400i \(-0.559808\pi\)
−0.186790 + 0.982400i \(0.559808\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 32.0653 1.67837
\(366\) 0 0
\(367\) 32.4405 1.69338 0.846690 0.532086i \(-0.178592\pi\)
0.846690 + 0.532086i \(0.178592\pi\)
\(368\) 0 0
\(369\) −0.961676 −0.0500628
\(370\) 0 0
\(371\) −59.9716 −3.11357
\(372\) 0 0
\(373\) 23.6392 1.22399 0.611995 0.790861i \(-0.290367\pi\)
0.611995 + 0.790861i \(0.290367\pi\)
\(374\) 0 0
\(375\) −23.6281 −1.22015
\(376\) 0 0
\(377\) −3.29275 −0.169585
\(378\) 0 0
\(379\) −35.4750 −1.82223 −0.911113 0.412156i \(-0.864776\pi\)
−0.911113 + 0.412156i \(0.864776\pi\)
\(380\) 0 0
\(381\) −8.29907 −0.425174
\(382\) 0 0
\(383\) −28.7917 −1.47119 −0.735593 0.677423i \(-0.763097\pi\)
−0.735593 + 0.677423i \(0.763097\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.40177 −0.274587
\(388\) 0 0
\(389\) 3.54588 0.179783 0.0898916 0.995952i \(-0.471348\pi\)
0.0898916 + 0.995952i \(0.471348\pi\)
\(390\) 0 0
\(391\) 9.76578 0.493877
\(392\) 0 0
\(393\) −12.0511 −0.607897
\(394\) 0 0
\(395\) 10.5803 0.532352
\(396\) 0 0
\(397\) 4.93712 0.247787 0.123893 0.992296i \(-0.460462\pi\)
0.123893 + 0.992296i \(0.460462\pi\)
\(398\) 0 0
\(399\) 7.10922 0.355906
\(400\) 0 0
\(401\) 13.9253 0.695395 0.347697 0.937607i \(-0.386964\pi\)
0.347697 + 0.937607i \(0.386964\pi\)
\(402\) 0 0
\(403\) 2.08217 0.103720
\(404\) 0 0
\(405\) 23.5559 1.17050
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 10.0953 0.499182 0.249591 0.968351i \(-0.419704\pi\)
0.249591 + 0.968351i \(0.419704\pi\)
\(410\) 0 0
\(411\) −25.9272 −1.27890
\(412\) 0 0
\(413\) −4.66987 −0.229789
\(414\) 0 0
\(415\) 62.4875 3.06739
\(416\) 0 0
\(417\) 11.5954 0.567830
\(418\) 0 0
\(419\) −8.76469 −0.428183 −0.214092 0.976814i \(-0.568679\pi\)
−0.214092 + 0.976814i \(0.568679\pi\)
\(420\) 0 0
\(421\) 22.3390 1.08874 0.544369 0.838846i \(-0.316769\pi\)
0.544369 + 0.838846i \(0.316769\pi\)
\(422\) 0 0
\(423\) 0.918957 0.0446812
\(424\) 0 0
\(425\) −22.1645 −1.07514
\(426\) 0 0
\(427\) 69.8956 3.38249
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.9849 0.529126 0.264563 0.964368i \(-0.414772\pi\)
0.264563 + 0.964368i \(0.414772\pi\)
\(432\) 0 0
\(433\) −18.1660 −0.873004 −0.436502 0.899703i \(-0.643783\pi\)
−0.436502 + 0.899703i \(0.643783\pi\)
\(434\) 0 0
\(435\) −49.8445 −2.38986
\(436\) 0 0
\(437\) −4.04039 −0.193278
\(438\) 0 0
\(439\) −10.1208 −0.483037 −0.241519 0.970396i \(-0.577645\pi\)
−0.241519 + 0.970396i \(0.577645\pi\)
\(440\) 0 0
\(441\) −11.2410 −0.535287
\(442\) 0 0
\(443\) 16.1109 0.765453 0.382726 0.923862i \(-0.374985\pi\)
0.382726 + 0.923862i \(0.374985\pi\)
\(444\) 0 0
\(445\) 28.8509 1.36766
\(446\) 0 0
\(447\) 13.0916 0.619213
\(448\) 0 0
\(449\) −0.396839 −0.0187280 −0.00936400 0.999956i \(-0.502981\pi\)
−0.00936400 + 0.999956i \(0.502981\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −28.6780 −1.34741
\(454\) 0 0
\(455\) 6.65482 0.311983
\(456\) 0 0
\(457\) −0.319620 −0.0149512 −0.00747560 0.999972i \(-0.502380\pi\)
−0.00747560 + 0.999972i \(0.502380\pi\)
\(458\) 0 0
\(459\) 13.5861 0.634146
\(460\) 0 0
\(461\) −5.47580 −0.255033 −0.127517 0.991836i \(-0.540701\pi\)
−0.127517 + 0.991836i \(0.540701\pi\)
\(462\) 0 0
\(463\) −14.3949 −0.668989 −0.334494 0.942398i \(-0.608565\pi\)
−0.334494 + 0.942398i \(0.608565\pi\)
\(464\) 0 0
\(465\) 31.5191 1.46167
\(466\) 0 0
\(467\) 9.78868 0.452966 0.226483 0.974015i \(-0.427277\pi\)
0.226483 + 0.974015i \(0.427277\pi\)
\(468\) 0 0
\(469\) −57.1579 −2.63931
\(470\) 0 0
\(471\) 2.37416 0.109396
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 9.17009 0.420753
\(476\) 0 0
\(477\) 9.32442 0.426936
\(478\) 0 0
\(479\) −17.1474 −0.783487 −0.391743 0.920075i \(-0.628128\pi\)
−0.391743 + 0.920075i \(0.628128\pi\)
\(480\) 0 0
\(481\) 1.62976 0.0743108
\(482\) 0 0
\(483\) −28.7240 −1.30699
\(484\) 0 0
\(485\) −43.6868 −1.98372
\(486\) 0 0
\(487\) −38.1522 −1.72884 −0.864421 0.502769i \(-0.832314\pi\)
−0.864421 + 0.502769i \(0.832314\pi\)
\(488\) 0 0
\(489\) −5.43909 −0.245964
\(490\) 0 0
\(491\) 5.88366 0.265526 0.132763 0.991148i \(-0.457615\pi\)
0.132763 + 0.991148i \(0.457615\pi\)
\(492\) 0 0
\(493\) −21.2627 −0.957623
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8.73530 −0.391832
\(498\) 0 0
\(499\) −26.9072 −1.20453 −0.602265 0.798296i \(-0.705735\pi\)
−0.602265 + 0.798296i \(0.705735\pi\)
\(500\) 0 0
\(501\) −30.6551 −1.36957
\(502\) 0 0
\(503\) −29.2264 −1.30314 −0.651570 0.758588i \(-0.725889\pi\)
−0.651570 + 0.758588i \(0.725889\pi\)
\(504\) 0 0
\(505\) 38.4914 1.71284
\(506\) 0 0
\(507\) −19.3568 −0.859667
\(508\) 0 0
\(509\) 19.7242 0.874258 0.437129 0.899399i \(-0.355995\pi\)
0.437129 + 0.899399i \(0.355995\pi\)
\(510\) 0 0
\(511\) −40.2322 −1.77977
\(512\) 0 0
\(513\) −5.62097 −0.248172
\(514\) 0 0
\(515\) −34.5705 −1.52336
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 32.9469 1.44621
\(520\) 0 0
\(521\) −18.5672 −0.813445 −0.406722 0.913552i \(-0.633328\pi\)
−0.406722 + 0.913552i \(0.633328\pi\)
\(522\) 0 0
\(523\) 16.0658 0.702510 0.351255 0.936280i \(-0.385755\pi\)
0.351255 + 0.936280i \(0.385755\pi\)
\(524\) 0 0
\(525\) 65.1922 2.84522
\(526\) 0 0
\(527\) 13.4455 0.585693
\(528\) 0 0
\(529\) −6.67527 −0.290229
\(530\) 0 0
\(531\) 0.726074 0.0315089
\(532\) 0 0
\(533\) −0.490175 −0.0212318
\(534\) 0 0
\(535\) 12.0315 0.520168
\(536\) 0 0
\(537\) −24.1338 −1.04145
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.54553 −0.0664474 −0.0332237 0.999448i \(-0.510577\pi\)
−0.0332237 + 0.999448i \(0.510577\pi\)
\(542\) 0 0
\(543\) −5.86766 −0.251806
\(544\) 0 0
\(545\) −22.8518 −0.978862
\(546\) 0 0
\(547\) −32.6301 −1.39516 −0.697582 0.716505i \(-0.745741\pi\)
−0.697582 + 0.716505i \(0.745741\pi\)
\(548\) 0 0
\(549\) −10.8674 −0.463810
\(550\) 0 0
\(551\) 8.79699 0.374764
\(552\) 0 0
\(553\) −13.2751 −0.564513
\(554\) 0 0
\(555\) 24.6708 1.04722
\(556\) 0 0
\(557\) −3.75374 −0.159051 −0.0795255 0.996833i \(-0.525341\pi\)
−0.0795255 + 0.996833i \(0.525341\pi\)
\(558\) 0 0
\(559\) −2.75333 −0.116454
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12.1901 −0.513753 −0.256877 0.966444i \(-0.582693\pi\)
−0.256877 + 0.966444i \(0.582693\pi\)
\(564\) 0 0
\(565\) −53.1753 −2.23710
\(566\) 0 0
\(567\) −29.5556 −1.24122
\(568\) 0 0
\(569\) 8.10125 0.339622 0.169811 0.985477i \(-0.445684\pi\)
0.169811 + 0.985477i \(0.445684\pi\)
\(570\) 0 0
\(571\) −28.3681 −1.18717 −0.593585 0.804771i \(-0.702288\pi\)
−0.593585 + 0.804771i \(0.702288\pi\)
\(572\) 0 0
\(573\) 6.40871 0.267728
\(574\) 0 0
\(575\) −37.0507 −1.54512
\(576\) 0 0
\(577\) 4.88199 0.203240 0.101620 0.994823i \(-0.467597\pi\)
0.101620 + 0.994823i \(0.467597\pi\)
\(578\) 0 0
\(579\) −4.32212 −0.179621
\(580\) 0 0
\(581\) −78.4029 −3.25270
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1.03470 −0.0427794
\(586\) 0 0
\(587\) −25.6285 −1.05780 −0.528902 0.848683i \(-0.677396\pi\)
−0.528902 + 0.848683i \(0.677396\pi\)
\(588\) 0 0
\(589\) −5.56277 −0.229210
\(590\) 0 0
\(591\) −41.0052 −1.68673
\(592\) 0 0
\(593\) 2.42516 0.0995893 0.0497946 0.998759i \(-0.484143\pi\)
0.0497946 + 0.998759i \(0.484143\pi\)
\(594\) 0 0
\(595\) 42.9730 1.76172
\(596\) 0 0
\(597\) −25.9483 −1.06199
\(598\) 0 0
\(599\) 1.93817 0.0791914 0.0395957 0.999216i \(-0.487393\pi\)
0.0395957 + 0.999216i \(0.487393\pi\)
\(600\) 0 0
\(601\) −23.0321 −0.939499 −0.469750 0.882800i \(-0.655656\pi\)
−0.469750 + 0.882800i \(0.655656\pi\)
\(602\) 0 0
\(603\) 8.88695 0.361905
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 17.0707 0.692878 0.346439 0.938073i \(-0.387391\pi\)
0.346439 + 0.938073i \(0.387391\pi\)
\(608\) 0 0
\(609\) 62.5397 2.53424
\(610\) 0 0
\(611\) 0.468401 0.0189495
\(612\) 0 0
\(613\) −24.0509 −0.971408 −0.485704 0.874123i \(-0.661437\pi\)
−0.485704 + 0.874123i \(0.661437\pi\)
\(614\) 0 0
\(615\) −7.42010 −0.299207
\(616\) 0 0
\(617\) −7.68237 −0.309281 −0.154640 0.987971i \(-0.549422\pi\)
−0.154640 + 0.987971i \(0.549422\pi\)
\(618\) 0 0
\(619\) 38.9380 1.56505 0.782525 0.622619i \(-0.213931\pi\)
0.782525 + 0.622619i \(0.213931\pi\)
\(620\) 0 0
\(621\) 22.7109 0.911357
\(622\) 0 0
\(623\) −36.1992 −1.45029
\(624\) 0 0
\(625\) 13.2401 0.529605
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.5241 0.419623
\(630\) 0 0
\(631\) −22.9866 −0.915082 −0.457541 0.889188i \(-0.651270\pi\)
−0.457541 + 0.889188i \(0.651270\pi\)
\(632\) 0 0
\(633\) 8.17299 0.324847
\(634\) 0 0
\(635\) 20.7548 0.823630
\(636\) 0 0
\(637\) −5.72965 −0.227017
\(638\) 0 0
\(639\) 1.35817 0.0537284
\(640\) 0 0
\(641\) 6.15460 0.243092 0.121546 0.992586i \(-0.461215\pi\)
0.121546 + 0.992586i \(0.461215\pi\)
\(642\) 0 0
\(643\) −27.9222 −1.10114 −0.550572 0.834788i \(-0.685590\pi\)
−0.550572 + 0.834788i \(0.685590\pi\)
\(644\) 0 0
\(645\) −41.6790 −1.64111
\(646\) 0 0
\(647\) 41.1422 1.61747 0.808733 0.588176i \(-0.200154\pi\)
0.808733 + 0.588176i \(0.200154\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −39.5470 −1.54997
\(652\) 0 0
\(653\) −9.38105 −0.367109 −0.183554 0.983010i \(-0.558760\pi\)
−0.183554 + 0.983010i \(0.558760\pi\)
\(654\) 0 0
\(655\) 30.1381 1.17759
\(656\) 0 0
\(657\) 6.25533 0.244044
\(658\) 0 0
\(659\) −17.8237 −0.694313 −0.347157 0.937807i \(-0.612853\pi\)
−0.347157 + 0.937807i \(0.612853\pi\)
\(660\) 0 0
\(661\) 27.7143 1.07796 0.538980 0.842319i \(-0.318810\pi\)
0.538980 + 0.842319i \(0.318810\pi\)
\(662\) 0 0
\(663\) 1.36177 0.0528869
\(664\) 0 0
\(665\) −17.7792 −0.689447
\(666\) 0 0
\(667\) −35.5432 −1.37624
\(668\) 0 0
\(669\) 13.3689 0.516873
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −10.5455 −0.406500 −0.203250 0.979127i \(-0.565150\pi\)
−0.203250 + 0.979127i \(0.565150\pi\)
\(674\) 0 0
\(675\) −51.5448 −1.98396
\(676\) 0 0
\(677\) 43.8910 1.68687 0.843433 0.537234i \(-0.180531\pi\)
0.843433 + 0.537234i \(0.180531\pi\)
\(678\) 0 0
\(679\) 54.8138 2.10356
\(680\) 0 0
\(681\) 40.0277 1.53387
\(682\) 0 0
\(683\) −37.4188 −1.43179 −0.715895 0.698208i \(-0.753981\pi\)
−0.715895 + 0.698208i \(0.753981\pi\)
\(684\) 0 0
\(685\) 64.8404 2.47743
\(686\) 0 0
\(687\) −16.8843 −0.644177
\(688\) 0 0
\(689\) 4.75274 0.181065
\(690\) 0 0
\(691\) −22.2844 −0.847737 −0.423869 0.905724i \(-0.639328\pi\)
−0.423869 + 0.905724i \(0.639328\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −28.9985 −1.09998
\(696\) 0 0
\(697\) −3.16527 −0.119893
\(698\) 0 0
\(699\) 29.7284 1.12443
\(700\) 0 0
\(701\) 7.51432 0.283812 0.141906 0.989880i \(-0.454677\pi\)
0.141906 + 0.989880i \(0.454677\pi\)
\(702\) 0 0
\(703\) −4.35412 −0.164219
\(704\) 0 0
\(705\) 7.09049 0.267043
\(706\) 0 0
\(707\) −48.2950 −1.81632
\(708\) 0 0
\(709\) −35.3022 −1.32580 −0.662900 0.748708i \(-0.730675\pi\)
−0.662900 + 0.748708i \(0.730675\pi\)
\(710\) 0 0
\(711\) 2.06402 0.0774066
\(712\) 0 0
\(713\) 22.4758 0.841724
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −18.2554 −0.681761
\(718\) 0 0
\(719\) 2.73664 0.102060 0.0510298 0.998697i \(-0.483750\pi\)
0.0510298 + 0.998697i \(0.483750\pi\)
\(720\) 0 0
\(721\) 43.3756 1.61539
\(722\) 0 0
\(723\) −19.5449 −0.726884
\(724\) 0 0
\(725\) 80.6692 2.99598
\(726\) 0 0
\(727\) −23.4681 −0.870382 −0.435191 0.900338i \(-0.643319\pi\)
−0.435191 + 0.900338i \(0.643319\pi\)
\(728\) 0 0
\(729\) 29.9775 1.11028
\(730\) 0 0
\(731\) −17.7795 −0.657597
\(732\) 0 0
\(733\) −0.490093 −0.0181020 −0.00905100 0.999959i \(-0.502881\pi\)
−0.00905100 + 0.999959i \(0.502881\pi\)
\(734\) 0 0
\(735\) −86.7335 −3.19921
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 52.1774 1.91938 0.959689 0.281064i \(-0.0906873\pi\)
0.959689 + 0.281064i \(0.0906873\pi\)
\(740\) 0 0
\(741\) −0.563405 −0.0206972
\(742\) 0 0
\(743\) −11.5533 −0.423850 −0.211925 0.977286i \(-0.567973\pi\)
−0.211925 + 0.977286i \(0.567973\pi\)
\(744\) 0 0
\(745\) −32.7404 −1.19951
\(746\) 0 0
\(747\) 12.1901 0.446014
\(748\) 0 0
\(749\) −15.0959 −0.551593
\(750\) 0 0
\(751\) −4.40464 −0.160727 −0.0803637 0.996766i \(-0.525608\pi\)
−0.0803637 + 0.996766i \(0.525608\pi\)
\(752\) 0 0
\(753\) 0.0188219 0.000685909 0
\(754\) 0 0
\(755\) 71.7198 2.61015
\(756\) 0 0
\(757\) 44.2986 1.61006 0.805030 0.593234i \(-0.202149\pi\)
0.805030 + 0.593234i \(0.202149\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 38.6170 1.39987 0.699933 0.714209i \(-0.253213\pi\)
0.699933 + 0.714209i \(0.253213\pi\)
\(762\) 0 0
\(763\) 28.6721 1.03800
\(764\) 0 0
\(765\) −6.68147 −0.241569
\(766\) 0 0
\(767\) 0.370087 0.0133631
\(768\) 0 0
\(769\) 33.7369 1.21659 0.608293 0.793713i \(-0.291855\pi\)
0.608293 + 0.793713i \(0.291855\pi\)
\(770\) 0 0
\(771\) 6.63821 0.239069
\(772\) 0 0
\(773\) −46.5746 −1.67517 −0.837586 0.546305i \(-0.816034\pi\)
−0.837586 + 0.546305i \(0.816034\pi\)
\(774\) 0 0
\(775\) −51.0112 −1.83237
\(776\) 0 0
\(777\) −30.9544 −1.11048
\(778\) 0 0
\(779\) 1.30956 0.0469200
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −49.4476 −1.76711
\(784\) 0 0
\(785\) −5.93745 −0.211917
\(786\) 0 0
\(787\) −43.7448 −1.55934 −0.779668 0.626194i \(-0.784612\pi\)
−0.779668 + 0.626194i \(0.784612\pi\)
\(788\) 0 0
\(789\) 30.7557 1.09493
\(790\) 0 0
\(791\) 66.7189 2.37225
\(792\) 0 0
\(793\) −5.53922 −0.196704
\(794\) 0 0
\(795\) 71.9454 2.55164
\(796\) 0 0
\(797\) 40.6996 1.44165 0.720827 0.693115i \(-0.243762\pi\)
0.720827 + 0.693115i \(0.243762\pi\)
\(798\) 0 0
\(799\) 3.02467 0.107005
\(800\) 0 0
\(801\) 5.62827 0.198865
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 71.8348 2.53184
\(806\) 0 0
\(807\) −0.534303 −0.0188084
\(808\) 0 0
\(809\) −5.83239 −0.205056 −0.102528 0.994730i \(-0.532693\pi\)
−0.102528 + 0.994730i \(0.532693\pi\)
\(810\) 0 0
\(811\) 42.9571 1.50843 0.754214 0.656629i \(-0.228018\pi\)
0.754214 + 0.656629i \(0.228018\pi\)
\(812\) 0 0
\(813\) −29.8955 −1.04848
\(814\) 0 0
\(815\) 13.6024 0.476472
\(816\) 0 0
\(817\) 7.35588 0.257350
\(818\) 0 0
\(819\) 1.29823 0.0453638
\(820\) 0 0
\(821\) 24.2449 0.846153 0.423076 0.906094i \(-0.360950\pi\)
0.423076 + 0.906094i \(0.360950\pi\)
\(822\) 0 0
\(823\) −0.501066 −0.0174661 −0.00873303 0.999962i \(-0.502780\pi\)
−0.00873303 + 0.999962i \(0.502780\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 38.8655 1.35148 0.675742 0.737138i \(-0.263823\pi\)
0.675742 + 0.737138i \(0.263823\pi\)
\(828\) 0 0
\(829\) −2.45369 −0.0852203 −0.0426102 0.999092i \(-0.513567\pi\)
−0.0426102 + 0.999092i \(0.513567\pi\)
\(830\) 0 0
\(831\) 25.0859 0.870219
\(832\) 0 0
\(833\) −36.9988 −1.28193
\(834\) 0 0
\(835\) 76.6641 2.65307
\(836\) 0 0
\(837\) 31.2682 1.08079
\(838\) 0 0
\(839\) 31.9540 1.10317 0.551586 0.834118i \(-0.314023\pi\)
0.551586 + 0.834118i \(0.314023\pi\)
\(840\) 0 0
\(841\) 48.3870 1.66852
\(842\) 0 0
\(843\) −21.3213 −0.734344
\(844\) 0 0
\(845\) 48.4087 1.66531
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −18.8623 −0.647353
\(850\) 0 0
\(851\) 17.5923 0.603057
\(852\) 0 0
\(853\) 43.4431 1.48746 0.743731 0.668479i \(-0.233054\pi\)
0.743731 + 0.668479i \(0.233054\pi\)
\(854\) 0 0
\(855\) 2.76432 0.0945377
\(856\) 0 0
\(857\) −29.4476 −1.00591 −0.502955 0.864312i \(-0.667754\pi\)
−0.502955 + 0.864312i \(0.667754\pi\)
\(858\) 0 0
\(859\) −47.7033 −1.62762 −0.813808 0.581134i \(-0.802609\pi\)
−0.813808 + 0.581134i \(0.802609\pi\)
\(860\) 0 0
\(861\) 9.30998 0.317283
\(862\) 0 0
\(863\) 15.8972 0.541146 0.270573 0.962699i \(-0.412787\pi\)
0.270573 + 0.962699i \(0.412787\pi\)
\(864\) 0 0
\(865\) −82.3957 −2.80154
\(866\) 0 0
\(867\) −16.7950 −0.570388
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 4.52976 0.153485
\(872\) 0 0
\(873\) −8.52248 −0.288442
\(874\) 0 0
\(875\) −74.1408 −2.50642
\(876\) 0 0
\(877\) 42.0102 1.41858 0.709291 0.704916i \(-0.249015\pi\)
0.709291 + 0.704916i \(0.249015\pi\)
\(878\) 0 0
\(879\) −37.8214 −1.27569
\(880\) 0 0
\(881\) −49.6270 −1.67198 −0.835989 0.548746i \(-0.815105\pi\)
−0.835989 + 0.548746i \(0.815105\pi\)
\(882\) 0 0
\(883\) 58.2922 1.96169 0.980844 0.194797i \(-0.0624048\pi\)
0.980844 + 0.194797i \(0.0624048\pi\)
\(884\) 0 0
\(885\) 5.60224 0.188317
\(886\) 0 0
\(887\) 46.9783 1.57738 0.788689 0.614792i \(-0.210760\pi\)
0.788689 + 0.614792i \(0.210760\pi\)
\(888\) 0 0
\(889\) −26.0410 −0.873388
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.25139 −0.0418762
\(894\) 0 0
\(895\) 60.3554 2.01746
\(896\) 0 0
\(897\) 2.27638 0.0760060
\(898\) 0 0
\(899\) −48.9357 −1.63210
\(900\) 0 0
\(901\) 30.6905 1.02245
\(902\) 0 0
\(903\) 52.2945 1.74025
\(904\) 0 0
\(905\) 14.6742 0.487788
\(906\) 0 0
\(907\) −46.4709 −1.54304 −0.771521 0.636204i \(-0.780504\pi\)
−0.771521 + 0.636204i \(0.780504\pi\)
\(908\) 0 0
\(909\) 7.50894 0.249056
\(910\) 0 0
\(911\) −44.3741 −1.47018 −0.735090 0.677969i \(-0.762860\pi\)
−0.735090 + 0.677969i \(0.762860\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −83.8509 −2.77202
\(916\) 0 0
\(917\) −37.8142 −1.24874
\(918\) 0 0
\(919\) 32.0627 1.05765 0.528826 0.848730i \(-0.322632\pi\)
0.528826 + 0.848730i \(0.322632\pi\)
\(920\) 0 0
\(921\) 33.7361 1.11164
\(922\) 0 0
\(923\) 0.692272 0.0227864
\(924\) 0 0
\(925\) −39.9277 −1.31281
\(926\) 0 0
\(927\) −6.74406 −0.221504
\(928\) 0 0
\(929\) 35.7205 1.17195 0.585976 0.810328i \(-0.300711\pi\)
0.585976 + 0.810328i \(0.300711\pi\)
\(930\) 0 0
\(931\) 15.3075 0.501683
\(932\) 0 0
\(933\) 24.8983 0.815135
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 43.2264 1.41214 0.706072 0.708140i \(-0.250466\pi\)
0.706072 + 0.708140i \(0.250466\pi\)
\(938\) 0 0
\(939\) −46.4492 −1.51581
\(940\) 0 0
\(941\) −12.1950 −0.397547 −0.198773 0.980045i \(-0.563696\pi\)
−0.198773 + 0.980045i \(0.563696\pi\)
\(942\) 0 0
\(943\) −5.29115 −0.172303
\(944\) 0 0
\(945\) 99.9363 3.25093
\(946\) 0 0
\(947\) 46.7136 1.51799 0.758994 0.651098i \(-0.225691\pi\)
0.758994 + 0.651098i \(0.225691\pi\)
\(948\) 0 0
\(949\) 3.18840 0.103500
\(950\) 0 0
\(951\) −3.45851 −0.112150
\(952\) 0 0
\(953\) 24.1844 0.783408 0.391704 0.920091i \(-0.371886\pi\)
0.391704 + 0.920091i \(0.371886\pi\)
\(954\) 0 0
\(955\) −16.0273 −0.518631
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −81.3551 −2.62709
\(960\) 0 0
\(961\) −0.0555403 −0.00179162
\(962\) 0 0
\(963\) 2.34712 0.0756350
\(964\) 0 0
\(965\) 10.8090 0.347955
\(966\) 0 0
\(967\) 24.7122 0.794692 0.397346 0.917669i \(-0.369931\pi\)
0.397346 + 0.917669i \(0.369931\pi\)
\(968\) 0 0
\(969\) −3.63815 −0.116874
\(970\) 0 0
\(971\) −23.2303 −0.745496 −0.372748 0.927933i \(-0.621584\pi\)
−0.372748 + 0.927933i \(0.621584\pi\)
\(972\) 0 0
\(973\) 36.3844 1.16643
\(974\) 0 0
\(975\) −5.16648 −0.165460
\(976\) 0 0
\(977\) −40.8058 −1.30549 −0.652747 0.757576i \(-0.726383\pi\)
−0.652747 + 0.757576i \(0.726383\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −4.45795 −0.142331
\(982\) 0 0
\(983\) 20.5743 0.656218 0.328109 0.944640i \(-0.393589\pi\)
0.328109 + 0.944640i \(0.393589\pi\)
\(984\) 0 0
\(985\) 102.548 3.26746
\(986\) 0 0
\(987\) −8.89642 −0.283176
\(988\) 0 0
\(989\) −29.7206 −0.945060
\(990\) 0 0
\(991\) 19.9994 0.635303 0.317651 0.948208i \(-0.397106\pi\)
0.317651 + 0.948208i \(0.397106\pi\)
\(992\) 0 0
\(993\) 18.1963 0.577441
\(994\) 0 0
\(995\) 64.8931 2.05725
\(996\) 0 0
\(997\) 47.6591 1.50938 0.754689 0.656082i \(-0.227788\pi\)
0.754689 + 0.656082i \(0.227788\pi\)
\(998\) 0 0
\(999\) 24.4744 0.774335
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9196.2.a.l.1.5 6
11.10 odd 2 9196.2.a.m.1.5 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9196.2.a.l.1.5 6 1.1 even 1 trivial
9196.2.a.m.1.5 yes 6 11.10 odd 2