Properties

Label 9152.2.a.cv.1.5
Level $9152$
Weight $2$
Character 9152.1
Self dual yes
Analytic conductor $73.079$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9152,2,Mod(1,9152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9152.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9152, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9152 = 2^{6} \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9152.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-1,0,1,0,-4,0,9,0,8,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.0790879299\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 16x^{6} + 16x^{5} + 68x^{4} - 70x^{3} - 89x^{2} + 91x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 4576)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.0818190\) of defining polynomial
Character \(\chi\) \(=\) 9152.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0818190 q^{3} -2.12622 q^{5} +1.15548 q^{7} -2.99331 q^{9} +1.00000 q^{11} -1.00000 q^{13} -0.173966 q^{15} -1.78259 q^{17} +7.57824 q^{19} +0.0945404 q^{21} +3.00509 q^{23} -0.479170 q^{25} -0.490366 q^{27} -7.42086 q^{29} -4.34363 q^{31} +0.0818190 q^{33} -2.45682 q^{35} +5.00270 q^{37} -0.0818190 q^{39} +1.36657 q^{41} +5.81648 q^{43} +6.36444 q^{45} +5.50365 q^{47} -5.66486 q^{49} -0.145850 q^{51} -0.407900 q^{53} -2.12622 q^{55} +0.620044 q^{57} +11.0187 q^{59} -1.51658 q^{61} -3.45871 q^{63} +2.12622 q^{65} +5.69950 q^{67} +0.245874 q^{69} -2.63381 q^{71} -12.1178 q^{73} -0.0392052 q^{75} +1.15548 q^{77} -6.92082 q^{79} +8.93980 q^{81} +5.80856 q^{83} +3.79019 q^{85} -0.607167 q^{87} -1.86021 q^{89} -1.15548 q^{91} -0.355391 q^{93} -16.1130 q^{95} +0.00722180 q^{97} -2.99331 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{3} + q^{5} - 4 q^{7} + 9 q^{9} + 8 q^{11} - 8 q^{13} - 13 q^{15} - 8 q^{17} - 2 q^{19} + 12 q^{21} - 17 q^{23} + 23 q^{25} + 5 q^{27} - 23 q^{31} - q^{33} + 2 q^{35} + q^{37} + q^{39} - 14 q^{41}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0818190 0.0472382 0.0236191 0.999721i \(-0.492481\pi\)
0.0236191 + 0.999721i \(0.492481\pi\)
\(4\) 0 0
\(5\) −2.12622 −0.950876 −0.475438 0.879749i \(-0.657710\pi\)
−0.475438 + 0.879749i \(0.657710\pi\)
\(6\) 0 0
\(7\) 1.15548 0.436732 0.218366 0.975867i \(-0.429927\pi\)
0.218366 + 0.975867i \(0.429927\pi\)
\(8\) 0 0
\(9\) −2.99331 −0.997769
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −0.173966 −0.0449177
\(16\) 0 0
\(17\) −1.78259 −0.432342 −0.216171 0.976355i \(-0.569357\pi\)
−0.216171 + 0.976355i \(0.569357\pi\)
\(18\) 0 0
\(19\) 7.57824 1.73857 0.869284 0.494313i \(-0.164580\pi\)
0.869284 + 0.494313i \(0.164580\pi\)
\(20\) 0 0
\(21\) 0.0945404 0.0206304
\(22\) 0 0
\(23\) 3.00509 0.626605 0.313303 0.949653i \(-0.398565\pi\)
0.313303 + 0.949653i \(0.398565\pi\)
\(24\) 0 0
\(25\) −0.479170 −0.0958341
\(26\) 0 0
\(27\) −0.490366 −0.0943710
\(28\) 0 0
\(29\) −7.42086 −1.37802 −0.689010 0.724752i \(-0.741954\pi\)
−0.689010 + 0.724752i \(0.741954\pi\)
\(30\) 0 0
\(31\) −4.34363 −0.780139 −0.390070 0.920785i \(-0.627549\pi\)
−0.390070 + 0.920785i \(0.627549\pi\)
\(32\) 0 0
\(33\) 0.0818190 0.0142429
\(34\) 0 0
\(35\) −2.45682 −0.415278
\(36\) 0 0
\(37\) 5.00270 0.822439 0.411219 0.911536i \(-0.365103\pi\)
0.411219 + 0.911536i \(0.365103\pi\)
\(38\) 0 0
\(39\) −0.0818190 −0.0131015
\(40\) 0 0
\(41\) 1.36657 0.213422 0.106711 0.994290i \(-0.465968\pi\)
0.106711 + 0.994290i \(0.465968\pi\)
\(42\) 0 0
\(43\) 5.81648 0.887005 0.443502 0.896273i \(-0.353736\pi\)
0.443502 + 0.896273i \(0.353736\pi\)
\(44\) 0 0
\(45\) 6.36444 0.948755
\(46\) 0 0
\(47\) 5.50365 0.802789 0.401395 0.915905i \(-0.368526\pi\)
0.401395 + 0.915905i \(0.368526\pi\)
\(48\) 0 0
\(49\) −5.66486 −0.809266
\(50\) 0 0
\(51\) −0.145850 −0.0204231
\(52\) 0 0
\(53\) −0.407900 −0.0560294 −0.0280147 0.999608i \(-0.508919\pi\)
−0.0280147 + 0.999608i \(0.508919\pi\)
\(54\) 0 0
\(55\) −2.12622 −0.286700
\(56\) 0 0
\(57\) 0.620044 0.0821269
\(58\) 0 0
\(59\) 11.0187 1.43451 0.717257 0.696808i \(-0.245397\pi\)
0.717257 + 0.696808i \(0.245397\pi\)
\(60\) 0 0
\(61\) −1.51658 −0.194179 −0.0970893 0.995276i \(-0.530953\pi\)
−0.0970893 + 0.995276i \(0.530953\pi\)
\(62\) 0 0
\(63\) −3.45871 −0.435757
\(64\) 0 0
\(65\) 2.12622 0.263726
\(66\) 0 0
\(67\) 5.69950 0.696305 0.348152 0.937438i \(-0.386809\pi\)
0.348152 + 0.937438i \(0.386809\pi\)
\(68\) 0 0
\(69\) 0.245874 0.0295997
\(70\) 0 0
\(71\) −2.63381 −0.312575 −0.156288 0.987712i \(-0.549953\pi\)
−0.156288 + 0.987712i \(0.549953\pi\)
\(72\) 0 0
\(73\) −12.1178 −1.41829 −0.709143 0.705065i \(-0.750918\pi\)
−0.709143 + 0.705065i \(0.750918\pi\)
\(74\) 0 0
\(75\) −0.0392052 −0.00452703
\(76\) 0 0
\(77\) 1.15548 0.131680
\(78\) 0 0
\(79\) −6.92082 −0.778653 −0.389326 0.921100i \(-0.627292\pi\)
−0.389326 + 0.921100i \(0.627292\pi\)
\(80\) 0 0
\(81\) 8.93980 0.993311
\(82\) 0 0
\(83\) 5.80856 0.637573 0.318786 0.947827i \(-0.396725\pi\)
0.318786 + 0.947827i \(0.396725\pi\)
\(84\) 0 0
\(85\) 3.79019 0.411104
\(86\) 0 0
\(87\) −0.607167 −0.0650952
\(88\) 0 0
\(89\) −1.86021 −0.197182 −0.0985912 0.995128i \(-0.531434\pi\)
−0.0985912 + 0.995128i \(0.531434\pi\)
\(90\) 0 0
\(91\) −1.15548 −0.121128
\(92\) 0 0
\(93\) −0.355391 −0.0368524
\(94\) 0 0
\(95\) −16.1130 −1.65316
\(96\) 0 0
\(97\) 0.00722180 0.000733263 0 0.000366631 1.00000i \(-0.499883\pi\)
0.000366631 1.00000i \(0.499883\pi\)
\(98\) 0 0
\(99\) −2.99331 −0.300839
\(100\) 0 0
\(101\) −18.0936 −1.80038 −0.900191 0.435495i \(-0.856573\pi\)
−0.900191 + 0.435495i \(0.856573\pi\)
\(102\) 0 0
\(103\) −12.2254 −1.20461 −0.602304 0.798267i \(-0.705751\pi\)
−0.602304 + 0.798267i \(0.705751\pi\)
\(104\) 0 0
\(105\) −0.201014 −0.0196170
\(106\) 0 0
\(107\) −0.810358 −0.0783403 −0.0391701 0.999233i \(-0.512471\pi\)
−0.0391701 + 0.999233i \(0.512471\pi\)
\(108\) 0 0
\(109\) −3.34991 −0.320863 −0.160431 0.987047i \(-0.551289\pi\)
−0.160431 + 0.987047i \(0.551289\pi\)
\(110\) 0 0
\(111\) 0.409316 0.0388505
\(112\) 0 0
\(113\) 9.79318 0.921265 0.460632 0.887591i \(-0.347623\pi\)
0.460632 + 0.887591i \(0.347623\pi\)
\(114\) 0 0
\(115\) −6.38950 −0.595824
\(116\) 0 0
\(117\) 2.99331 0.276731
\(118\) 0 0
\(119\) −2.05976 −0.188818
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0.111811 0.0100817
\(124\) 0 0
\(125\) 11.6499 1.04200
\(126\) 0 0
\(127\) 1.49762 0.132892 0.0664461 0.997790i \(-0.478834\pi\)
0.0664461 + 0.997790i \(0.478834\pi\)
\(128\) 0 0
\(129\) 0.475898 0.0419005
\(130\) 0 0
\(131\) 20.6370 1.80307 0.901533 0.432711i \(-0.142443\pi\)
0.901533 + 0.432711i \(0.142443\pi\)
\(132\) 0 0
\(133\) 8.75653 0.759288
\(134\) 0 0
\(135\) 1.04263 0.0897352
\(136\) 0 0
\(137\) 6.34808 0.542353 0.271177 0.962530i \(-0.412587\pi\)
0.271177 + 0.962530i \(0.412587\pi\)
\(138\) 0 0
\(139\) −13.4926 −1.14443 −0.572213 0.820105i \(-0.693915\pi\)
−0.572213 + 0.820105i \(0.693915\pi\)
\(140\) 0 0
\(141\) 0.450303 0.0379223
\(142\) 0 0
\(143\) −1.00000 −0.0836242
\(144\) 0 0
\(145\) 15.7784 1.31033
\(146\) 0 0
\(147\) −0.463493 −0.0382283
\(148\) 0 0
\(149\) 9.35318 0.766242 0.383121 0.923698i \(-0.374849\pi\)
0.383121 + 0.923698i \(0.374849\pi\)
\(150\) 0 0
\(151\) −13.1271 −1.06827 −0.534135 0.845399i \(-0.679362\pi\)
−0.534135 + 0.845399i \(0.679362\pi\)
\(152\) 0 0
\(153\) 5.33585 0.431378
\(154\) 0 0
\(155\) 9.23553 0.741816
\(156\) 0 0
\(157\) −14.5722 −1.16299 −0.581493 0.813552i \(-0.697531\pi\)
−0.581493 + 0.813552i \(0.697531\pi\)
\(158\) 0 0
\(159\) −0.0333740 −0.00264673
\(160\) 0 0
\(161\) 3.47233 0.273658
\(162\) 0 0
\(163\) −0.712050 −0.0557720 −0.0278860 0.999611i \(-0.508878\pi\)
−0.0278860 + 0.999611i \(0.508878\pi\)
\(164\) 0 0
\(165\) −0.173966 −0.0135432
\(166\) 0 0
\(167\) 17.5231 1.35598 0.677989 0.735072i \(-0.262852\pi\)
0.677989 + 0.735072i \(0.262852\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −22.6840 −1.73469
\(172\) 0 0
\(173\) 15.1199 1.14954 0.574771 0.818315i \(-0.305091\pi\)
0.574771 + 0.818315i \(0.305091\pi\)
\(174\) 0 0
\(175\) −0.553673 −0.0418538
\(176\) 0 0
\(177\) 0.901540 0.0677639
\(178\) 0 0
\(179\) −10.8705 −0.812502 −0.406251 0.913762i \(-0.633164\pi\)
−0.406251 + 0.913762i \(0.633164\pi\)
\(180\) 0 0
\(181\) −12.1507 −0.903158 −0.451579 0.892231i \(-0.649139\pi\)
−0.451579 + 0.892231i \(0.649139\pi\)
\(182\) 0 0
\(183\) −0.124085 −0.00917265
\(184\) 0 0
\(185\) −10.6369 −0.782038
\(186\) 0 0
\(187\) −1.78259 −0.130356
\(188\) 0 0
\(189\) −0.566610 −0.0412148
\(190\) 0 0
\(191\) −22.0247 −1.59365 −0.796827 0.604208i \(-0.793490\pi\)
−0.796827 + 0.604208i \(0.793490\pi\)
\(192\) 0 0
\(193\) −21.3417 −1.53621 −0.768105 0.640324i \(-0.778800\pi\)
−0.768105 + 0.640324i \(0.778800\pi\)
\(194\) 0 0
\(195\) 0.173966 0.0124579
\(196\) 0 0
\(197\) −4.30142 −0.306463 −0.153232 0.988190i \(-0.548968\pi\)
−0.153232 + 0.988190i \(0.548968\pi\)
\(198\) 0 0
\(199\) −5.94319 −0.421302 −0.210651 0.977561i \(-0.567558\pi\)
−0.210651 + 0.977561i \(0.567558\pi\)
\(200\) 0 0
\(201\) 0.466327 0.0328922
\(202\) 0 0
\(203\) −8.57468 −0.601825
\(204\) 0 0
\(205\) −2.90563 −0.202938
\(206\) 0 0
\(207\) −8.99516 −0.625207
\(208\) 0 0
\(209\) 7.57824 0.524198
\(210\) 0 0
\(211\) 16.5964 1.14255 0.571273 0.820760i \(-0.306450\pi\)
0.571273 + 0.820760i \(0.306450\pi\)
\(212\) 0 0
\(213\) −0.215495 −0.0147655
\(214\) 0 0
\(215\) −12.3671 −0.843432
\(216\) 0 0
\(217\) −5.01899 −0.340711
\(218\) 0 0
\(219\) −0.991470 −0.0669973
\(220\) 0 0
\(221\) 1.78259 0.119910
\(222\) 0 0
\(223\) −5.42392 −0.363213 −0.181606 0.983371i \(-0.558130\pi\)
−0.181606 + 0.983371i \(0.558130\pi\)
\(224\) 0 0
\(225\) 1.43430 0.0956202
\(226\) 0 0
\(227\) 26.5716 1.76362 0.881808 0.471609i \(-0.156326\pi\)
0.881808 + 0.471609i \(0.156326\pi\)
\(228\) 0 0
\(229\) −25.5474 −1.68822 −0.844111 0.536168i \(-0.819871\pi\)
−0.844111 + 0.536168i \(0.819871\pi\)
\(230\) 0 0
\(231\) 0.0945404 0.00622030
\(232\) 0 0
\(233\) −9.31557 −0.610283 −0.305142 0.952307i \(-0.598704\pi\)
−0.305142 + 0.952307i \(0.598704\pi\)
\(234\) 0 0
\(235\) −11.7020 −0.763353
\(236\) 0 0
\(237\) −0.566254 −0.0367822
\(238\) 0 0
\(239\) 1.05081 0.0679711 0.0339856 0.999422i \(-0.489180\pi\)
0.0339856 + 0.999422i \(0.489180\pi\)
\(240\) 0 0
\(241\) 15.2468 0.982130 0.491065 0.871123i \(-0.336608\pi\)
0.491065 + 0.871123i \(0.336608\pi\)
\(242\) 0 0
\(243\) 2.20254 0.141293
\(244\) 0 0
\(245\) 12.0448 0.769512
\(246\) 0 0
\(247\) −7.57824 −0.482192
\(248\) 0 0
\(249\) 0.475251 0.0301178
\(250\) 0 0
\(251\) −24.0214 −1.51622 −0.758108 0.652129i \(-0.773876\pi\)
−0.758108 + 0.652129i \(0.773876\pi\)
\(252\) 0 0
\(253\) 3.00509 0.188929
\(254\) 0 0
\(255\) 0.310110 0.0194198
\(256\) 0 0
\(257\) −24.6383 −1.53689 −0.768446 0.639914i \(-0.778970\pi\)
−0.768446 + 0.639914i \(0.778970\pi\)
\(258\) 0 0
\(259\) 5.78053 0.359185
\(260\) 0 0
\(261\) 22.2129 1.37494
\(262\) 0 0
\(263\) −5.36547 −0.330849 −0.165424 0.986222i \(-0.552899\pi\)
−0.165424 + 0.986222i \(0.552899\pi\)
\(264\) 0 0
\(265\) 0.867287 0.0532770
\(266\) 0 0
\(267\) −0.152201 −0.00931454
\(268\) 0 0
\(269\) −19.1979 −1.17052 −0.585260 0.810846i \(-0.699007\pi\)
−0.585260 + 0.810846i \(0.699007\pi\)
\(270\) 0 0
\(271\) −4.38291 −0.266243 −0.133121 0.991100i \(-0.542500\pi\)
−0.133121 + 0.991100i \(0.542500\pi\)
\(272\) 0 0
\(273\) −0.0945404 −0.00572185
\(274\) 0 0
\(275\) −0.479170 −0.0288951
\(276\) 0 0
\(277\) 2.79860 0.168151 0.0840757 0.996459i \(-0.473206\pi\)
0.0840757 + 0.996459i \(0.473206\pi\)
\(278\) 0 0
\(279\) 13.0018 0.778398
\(280\) 0 0
\(281\) −16.1165 −0.961433 −0.480716 0.876876i \(-0.659623\pi\)
−0.480716 + 0.876876i \(0.659623\pi\)
\(282\) 0 0
\(283\) −28.7229 −1.70740 −0.853700 0.520765i \(-0.825647\pi\)
−0.853700 + 0.520765i \(0.825647\pi\)
\(284\) 0 0
\(285\) −1.31835 −0.0780925
\(286\) 0 0
\(287\) 1.57904 0.0932081
\(288\) 0 0
\(289\) −13.8224 −0.813080
\(290\) 0 0
\(291\) 0.000590880 0 3.46380e−5 0
\(292\) 0 0
\(293\) 13.1606 0.768849 0.384425 0.923156i \(-0.374400\pi\)
0.384425 + 0.923156i \(0.374400\pi\)
\(294\) 0 0
\(295\) −23.4283 −1.36405
\(296\) 0 0
\(297\) −0.490366 −0.0284539
\(298\) 0 0
\(299\) −3.00509 −0.173789
\(300\) 0 0
\(301\) 6.72084 0.387383
\(302\) 0 0
\(303\) −1.48040 −0.0850468
\(304\) 0 0
\(305\) 3.22460 0.184640
\(306\) 0 0
\(307\) −14.0743 −0.803263 −0.401631 0.915801i \(-0.631557\pi\)
−0.401631 + 0.915801i \(0.631557\pi\)
\(308\) 0 0
\(309\) −1.00027 −0.0569035
\(310\) 0 0
\(311\) −19.4539 −1.10313 −0.551566 0.834131i \(-0.685969\pi\)
−0.551566 + 0.834131i \(0.685969\pi\)
\(312\) 0 0
\(313\) 16.9771 0.959603 0.479802 0.877377i \(-0.340709\pi\)
0.479802 + 0.877377i \(0.340709\pi\)
\(314\) 0 0
\(315\) 7.35400 0.414351
\(316\) 0 0
\(317\) −8.68416 −0.487751 −0.243875 0.969807i \(-0.578419\pi\)
−0.243875 + 0.969807i \(0.578419\pi\)
\(318\) 0 0
\(319\) −7.42086 −0.415489
\(320\) 0 0
\(321\) −0.0663027 −0.00370065
\(322\) 0 0
\(323\) −13.5089 −0.751657
\(324\) 0 0
\(325\) 0.479170 0.0265796
\(326\) 0 0
\(327\) −0.274086 −0.0151570
\(328\) 0 0
\(329\) 6.35937 0.350603
\(330\) 0 0
\(331\) −27.4303 −1.50771 −0.753853 0.657043i \(-0.771807\pi\)
−0.753853 + 0.657043i \(0.771807\pi\)
\(332\) 0 0
\(333\) −14.9746 −0.820604
\(334\) 0 0
\(335\) −12.1184 −0.662100
\(336\) 0 0
\(337\) −19.8824 −1.08306 −0.541531 0.840681i \(-0.682155\pi\)
−0.541531 + 0.840681i \(0.682155\pi\)
\(338\) 0 0
\(339\) 0.801268 0.0435189
\(340\) 0 0
\(341\) −4.34363 −0.235221
\(342\) 0 0
\(343\) −14.6340 −0.790163
\(344\) 0 0
\(345\) −0.522783 −0.0281457
\(346\) 0 0
\(347\) −5.10143 −0.273859 −0.136929 0.990581i \(-0.543723\pi\)
−0.136929 + 0.990581i \(0.543723\pi\)
\(348\) 0 0
\(349\) −2.26115 −0.121037 −0.0605184 0.998167i \(-0.519275\pi\)
−0.0605184 + 0.998167i \(0.519275\pi\)
\(350\) 0 0
\(351\) 0.490366 0.0261738
\(352\) 0 0
\(353\) −0.835846 −0.0444876 −0.0222438 0.999753i \(-0.507081\pi\)
−0.0222438 + 0.999753i \(0.507081\pi\)
\(354\) 0 0
\(355\) 5.60006 0.297220
\(356\) 0 0
\(357\) −0.168527 −0.00891941
\(358\) 0 0
\(359\) 3.39733 0.179304 0.0896521 0.995973i \(-0.471424\pi\)
0.0896521 + 0.995973i \(0.471424\pi\)
\(360\) 0 0
\(361\) 38.4298 2.02262
\(362\) 0 0
\(363\) 0.0818190 0.00429438
\(364\) 0 0
\(365\) 25.7653 1.34861
\(366\) 0 0
\(367\) −2.96848 −0.154954 −0.0774768 0.996994i \(-0.524686\pi\)
−0.0774768 + 0.996994i \(0.524686\pi\)
\(368\) 0 0
\(369\) −4.09055 −0.212946
\(370\) 0 0
\(371\) −0.471322 −0.0244698
\(372\) 0 0
\(373\) −4.86138 −0.251713 −0.125856 0.992048i \(-0.540168\pi\)
−0.125856 + 0.992048i \(0.540168\pi\)
\(374\) 0 0
\(375\) 0.953187 0.0492223
\(376\) 0 0
\(377\) 7.42086 0.382194
\(378\) 0 0
\(379\) 1.41059 0.0724571 0.0362286 0.999344i \(-0.488466\pi\)
0.0362286 + 0.999344i \(0.488466\pi\)
\(380\) 0 0
\(381\) 0.122534 0.00627759
\(382\) 0 0
\(383\) −27.0646 −1.38294 −0.691469 0.722406i \(-0.743036\pi\)
−0.691469 + 0.722406i \(0.743036\pi\)
\(384\) 0 0
\(385\) −2.45682 −0.125211
\(386\) 0 0
\(387\) −17.4105 −0.885025
\(388\) 0 0
\(389\) 5.69774 0.288887 0.144443 0.989513i \(-0.453861\pi\)
0.144443 + 0.989513i \(0.453861\pi\)
\(390\) 0 0
\(391\) −5.35686 −0.270908
\(392\) 0 0
\(393\) 1.68850 0.0851736
\(394\) 0 0
\(395\) 14.7152 0.740402
\(396\) 0 0
\(397\) −6.67743 −0.335131 −0.167565 0.985861i \(-0.553590\pi\)
−0.167565 + 0.985861i \(0.553590\pi\)
\(398\) 0 0
\(399\) 0.716451 0.0358674
\(400\) 0 0
\(401\) 8.71848 0.435380 0.217690 0.976018i \(-0.430148\pi\)
0.217690 + 0.976018i \(0.430148\pi\)
\(402\) 0 0
\(403\) 4.34363 0.216372
\(404\) 0 0
\(405\) −19.0080 −0.944516
\(406\) 0 0
\(407\) 5.00270 0.247975
\(408\) 0 0
\(409\) 12.7688 0.631378 0.315689 0.948863i \(-0.397764\pi\)
0.315689 + 0.948863i \(0.397764\pi\)
\(410\) 0 0
\(411\) 0.519394 0.0256198
\(412\) 0 0
\(413\) 12.7319 0.626498
\(414\) 0 0
\(415\) −12.3503 −0.606253
\(416\) 0 0
\(417\) −1.10395 −0.0540607
\(418\) 0 0
\(419\) 22.1037 1.07984 0.539918 0.841718i \(-0.318455\pi\)
0.539918 + 0.841718i \(0.318455\pi\)
\(420\) 0 0
\(421\) 18.6607 0.909467 0.454733 0.890628i \(-0.349735\pi\)
0.454733 + 0.890628i \(0.349735\pi\)
\(422\) 0 0
\(423\) −16.4741 −0.800998
\(424\) 0 0
\(425\) 0.854166 0.0414331
\(426\) 0 0
\(427\) −1.75239 −0.0848039
\(428\) 0 0
\(429\) −0.0818190 −0.00395026
\(430\) 0 0
\(431\) 8.31911 0.400717 0.200359 0.979723i \(-0.435789\pi\)
0.200359 + 0.979723i \(0.435789\pi\)
\(432\) 0 0
\(433\) 2.31947 0.111466 0.0557332 0.998446i \(-0.482250\pi\)
0.0557332 + 0.998446i \(0.482250\pi\)
\(434\) 0 0
\(435\) 1.29097 0.0618975
\(436\) 0 0
\(437\) 22.7733 1.08940
\(438\) 0 0
\(439\) −8.88062 −0.423849 −0.211924 0.977286i \(-0.567973\pi\)
−0.211924 + 0.977286i \(0.567973\pi\)
\(440\) 0 0
\(441\) 16.9567 0.807460
\(442\) 0 0
\(443\) 20.9064 0.993293 0.496646 0.867953i \(-0.334565\pi\)
0.496646 + 0.867953i \(0.334565\pi\)
\(444\) 0 0
\(445\) 3.95523 0.187496
\(446\) 0 0
\(447\) 0.765268 0.0361959
\(448\) 0 0
\(449\) 0.806925 0.0380811 0.0190406 0.999819i \(-0.493939\pi\)
0.0190406 + 0.999819i \(0.493939\pi\)
\(450\) 0 0
\(451\) 1.36657 0.0643491
\(452\) 0 0
\(453\) −1.07405 −0.0504631
\(454\) 0 0
\(455\) 2.45682 0.115177
\(456\) 0 0
\(457\) −21.0713 −0.985673 −0.492837 0.870122i \(-0.664040\pi\)
−0.492837 + 0.870122i \(0.664040\pi\)
\(458\) 0 0
\(459\) 0.874124 0.0408006
\(460\) 0 0
\(461\) 6.31724 0.294223 0.147112 0.989120i \(-0.453002\pi\)
0.147112 + 0.989120i \(0.453002\pi\)
\(462\) 0 0
\(463\) −19.4379 −0.903357 −0.451678 0.892181i \(-0.649175\pi\)
−0.451678 + 0.892181i \(0.649175\pi\)
\(464\) 0 0
\(465\) 0.755642 0.0350421
\(466\) 0 0
\(467\) 32.8919 1.52205 0.761027 0.648720i \(-0.224696\pi\)
0.761027 + 0.648720i \(0.224696\pi\)
\(468\) 0 0
\(469\) 6.58567 0.304098
\(470\) 0 0
\(471\) −1.19228 −0.0549373
\(472\) 0 0
\(473\) 5.81648 0.267442
\(474\) 0 0
\(475\) −3.63127 −0.166614
\(476\) 0 0
\(477\) 1.22097 0.0559044
\(478\) 0 0
\(479\) 15.0384 0.687120 0.343560 0.939131i \(-0.388367\pi\)
0.343560 + 0.939131i \(0.388367\pi\)
\(480\) 0 0
\(481\) −5.00270 −0.228103
\(482\) 0 0
\(483\) 0.284103 0.0129271
\(484\) 0 0
\(485\) −0.0153552 −0.000697242 0
\(486\) 0 0
\(487\) −6.69852 −0.303539 −0.151769 0.988416i \(-0.548497\pi\)
−0.151769 + 0.988416i \(0.548497\pi\)
\(488\) 0 0
\(489\) −0.0582592 −0.00263457
\(490\) 0 0
\(491\) −36.2726 −1.63696 −0.818480 0.574536i \(-0.805183\pi\)
−0.818480 + 0.574536i \(0.805183\pi\)
\(492\) 0 0
\(493\) 13.2284 0.595776
\(494\) 0 0
\(495\) 6.36444 0.286060
\(496\) 0 0
\(497\) −3.04332 −0.136511
\(498\) 0 0
\(499\) 5.20742 0.233116 0.116558 0.993184i \(-0.462814\pi\)
0.116558 + 0.993184i \(0.462814\pi\)
\(500\) 0 0
\(501\) 1.43372 0.0640540
\(502\) 0 0
\(503\) −9.59145 −0.427661 −0.213831 0.976871i \(-0.568594\pi\)
−0.213831 + 0.976871i \(0.568594\pi\)
\(504\) 0 0
\(505\) 38.4711 1.71194
\(506\) 0 0
\(507\) 0.0818190 0.00363371
\(508\) 0 0
\(509\) −2.30267 −0.102064 −0.0510319 0.998697i \(-0.516251\pi\)
−0.0510319 + 0.998697i \(0.516251\pi\)
\(510\) 0 0
\(511\) −14.0020 −0.619410
\(512\) 0 0
\(513\) −3.71611 −0.164070
\(514\) 0 0
\(515\) 25.9940 1.14543
\(516\) 0 0
\(517\) 5.50365 0.242050
\(518\) 0 0
\(519\) 1.23709 0.0543023
\(520\) 0 0
\(521\) −21.0663 −0.922932 −0.461466 0.887158i \(-0.652676\pi\)
−0.461466 + 0.887158i \(0.652676\pi\)
\(522\) 0 0
\(523\) 18.1126 0.792011 0.396005 0.918248i \(-0.370396\pi\)
0.396005 + 0.918248i \(0.370396\pi\)
\(524\) 0 0
\(525\) −0.0453010 −0.00197710
\(526\) 0 0
\(527\) 7.74293 0.337287
\(528\) 0 0
\(529\) −13.9694 −0.607366
\(530\) 0 0
\(531\) −32.9824 −1.43131
\(532\) 0 0
\(533\) −1.36657 −0.0591926
\(534\) 0 0
\(535\) 1.72300 0.0744919
\(536\) 0 0
\(537\) −0.889416 −0.0383811
\(538\) 0 0
\(539\) −5.66486 −0.244003
\(540\) 0 0
\(541\) −32.6055 −1.40182 −0.700909 0.713250i \(-0.747222\pi\)
−0.700909 + 0.713250i \(0.747222\pi\)
\(542\) 0 0
\(543\) −0.994162 −0.0426636
\(544\) 0 0
\(545\) 7.12265 0.305101
\(546\) 0 0
\(547\) −7.11533 −0.304230 −0.152115 0.988363i \(-0.548608\pi\)
−0.152115 + 0.988363i \(0.548608\pi\)
\(548\) 0 0
\(549\) 4.53960 0.193745
\(550\) 0 0
\(551\) −56.2371 −2.39578
\(552\) 0 0
\(553\) −7.99688 −0.340062
\(554\) 0 0
\(555\) −0.870297 −0.0369421
\(556\) 0 0
\(557\) −5.86169 −0.248368 −0.124184 0.992259i \(-0.539631\pi\)
−0.124184 + 0.992259i \(0.539631\pi\)
\(558\) 0 0
\(559\) −5.81648 −0.246011
\(560\) 0 0
\(561\) −0.145850 −0.00615779
\(562\) 0 0
\(563\) 15.0844 0.635733 0.317866 0.948136i \(-0.397034\pi\)
0.317866 + 0.948136i \(0.397034\pi\)
\(564\) 0 0
\(565\) −20.8225 −0.876009
\(566\) 0 0
\(567\) 10.3298 0.433810
\(568\) 0 0
\(569\) −34.8108 −1.45934 −0.729672 0.683797i \(-0.760327\pi\)
−0.729672 + 0.683797i \(0.760327\pi\)
\(570\) 0 0
\(571\) 15.2782 0.639371 0.319686 0.947524i \(-0.396423\pi\)
0.319686 + 0.947524i \(0.396423\pi\)
\(572\) 0 0
\(573\) −1.80204 −0.0752814
\(574\) 0 0
\(575\) −1.43995 −0.0600501
\(576\) 0 0
\(577\) −19.2354 −0.800780 −0.400390 0.916345i \(-0.631125\pi\)
−0.400390 + 0.916345i \(0.631125\pi\)
\(578\) 0 0
\(579\) −1.74616 −0.0725678
\(580\) 0 0
\(581\) 6.71170 0.278448
\(582\) 0 0
\(583\) −0.407900 −0.0168935
\(584\) 0 0
\(585\) −6.36444 −0.263137
\(586\) 0 0
\(587\) −40.9161 −1.68879 −0.844394 0.535722i \(-0.820040\pi\)
−0.844394 + 0.535722i \(0.820040\pi\)
\(588\) 0 0
\(589\) −32.9171 −1.35633
\(590\) 0 0
\(591\) −0.351938 −0.0144768
\(592\) 0 0
\(593\) 19.0482 0.782215 0.391108 0.920345i \(-0.372092\pi\)
0.391108 + 0.920345i \(0.372092\pi\)
\(594\) 0 0
\(595\) 4.37950 0.179542
\(596\) 0 0
\(597\) −0.486266 −0.0199015
\(598\) 0 0
\(599\) 21.2427 0.867952 0.433976 0.900925i \(-0.357110\pi\)
0.433976 + 0.900925i \(0.357110\pi\)
\(600\) 0 0
\(601\) −28.7245 −1.17170 −0.585848 0.810421i \(-0.699238\pi\)
−0.585848 + 0.810421i \(0.699238\pi\)
\(602\) 0 0
\(603\) −17.0603 −0.694751
\(604\) 0 0
\(605\) −2.12622 −0.0864433
\(606\) 0 0
\(607\) −12.3354 −0.500679 −0.250339 0.968158i \(-0.580542\pi\)
−0.250339 + 0.968158i \(0.580542\pi\)
\(608\) 0 0
\(609\) −0.701572 −0.0284291
\(610\) 0 0
\(611\) −5.50365 −0.222654
\(612\) 0 0
\(613\) 24.1201 0.974202 0.487101 0.873346i \(-0.338054\pi\)
0.487101 + 0.873346i \(0.338054\pi\)
\(614\) 0 0
\(615\) −0.237736 −0.00958642
\(616\) 0 0
\(617\) 18.7965 0.756721 0.378360 0.925658i \(-0.376488\pi\)
0.378360 + 0.925658i \(0.376488\pi\)
\(618\) 0 0
\(619\) 14.9163 0.599536 0.299768 0.954012i \(-0.403091\pi\)
0.299768 + 0.954012i \(0.403091\pi\)
\(620\) 0 0
\(621\) −1.47360 −0.0591334
\(622\) 0 0
\(623\) −2.14945 −0.0861157
\(624\) 0 0
\(625\) −22.3745 −0.894982
\(626\) 0 0
\(627\) 0.620044 0.0247622
\(628\) 0 0
\(629\) −8.91778 −0.355575
\(630\) 0 0
\(631\) 45.8637 1.82581 0.912903 0.408176i \(-0.133835\pi\)
0.912903 + 0.408176i \(0.133835\pi\)
\(632\) 0 0
\(633\) 1.35790 0.0539719
\(634\) 0 0
\(635\) −3.18427 −0.126364
\(636\) 0 0
\(637\) 5.66486 0.224450
\(638\) 0 0
\(639\) 7.88378 0.311878
\(640\) 0 0
\(641\) 21.7671 0.859748 0.429874 0.902889i \(-0.358558\pi\)
0.429874 + 0.902889i \(0.358558\pi\)
\(642\) 0 0
\(643\) 1.52696 0.0602175 0.0301088 0.999547i \(-0.490415\pi\)
0.0301088 + 0.999547i \(0.490415\pi\)
\(644\) 0 0
\(645\) −1.01187 −0.0398422
\(646\) 0 0
\(647\) 38.9091 1.52967 0.764836 0.644225i \(-0.222820\pi\)
0.764836 + 0.644225i \(0.222820\pi\)
\(648\) 0 0
\(649\) 11.0187 0.432522
\(650\) 0 0
\(651\) −0.410649 −0.0160946
\(652\) 0 0
\(653\) −20.5645 −0.804750 −0.402375 0.915475i \(-0.631815\pi\)
−0.402375 + 0.915475i \(0.631815\pi\)
\(654\) 0 0
\(655\) −43.8789 −1.71449
\(656\) 0 0
\(657\) 36.2724 1.41512
\(658\) 0 0
\(659\) −50.0671 −1.95034 −0.975169 0.221463i \(-0.928917\pi\)
−0.975169 + 0.221463i \(0.928917\pi\)
\(660\) 0 0
\(661\) 5.22780 0.203338 0.101669 0.994818i \(-0.467582\pi\)
0.101669 + 0.994818i \(0.467582\pi\)
\(662\) 0 0
\(663\) 0.145850 0.00566434
\(664\) 0 0
\(665\) −18.6183 −0.721989
\(666\) 0 0
\(667\) −22.3004 −0.863475
\(668\) 0 0
\(669\) −0.443780 −0.0171575
\(670\) 0 0
\(671\) −1.51658 −0.0585471
\(672\) 0 0
\(673\) 1.62268 0.0625497 0.0312748 0.999511i \(-0.490043\pi\)
0.0312748 + 0.999511i \(0.490043\pi\)
\(674\) 0 0
\(675\) 0.234969 0.00904396
\(676\) 0 0
\(677\) −37.5035 −1.44138 −0.720688 0.693259i \(-0.756174\pi\)
−0.720688 + 0.693259i \(0.756174\pi\)
\(678\) 0 0
\(679\) 0.00834467 0.000320239 0
\(680\) 0 0
\(681\) 2.17406 0.0833101
\(682\) 0 0
\(683\) −25.1893 −0.963843 −0.481921 0.876214i \(-0.660061\pi\)
−0.481921 + 0.876214i \(0.660061\pi\)
\(684\) 0 0
\(685\) −13.4975 −0.515711
\(686\) 0 0
\(687\) −2.09027 −0.0797486
\(688\) 0 0
\(689\) 0.407900 0.0155398
\(690\) 0 0
\(691\) −12.5056 −0.475737 −0.237868 0.971297i \(-0.576449\pi\)
−0.237868 + 0.971297i \(0.576449\pi\)
\(692\) 0 0
\(693\) −3.45871 −0.131386
\(694\) 0 0
\(695\) 28.6883 1.08821
\(696\) 0 0
\(697\) −2.43603 −0.0922714
\(698\) 0 0
\(699\) −0.762190 −0.0288287
\(700\) 0 0
\(701\) 14.4303 0.545025 0.272512 0.962152i \(-0.412145\pi\)
0.272512 + 0.962152i \(0.412145\pi\)
\(702\) 0 0
\(703\) 37.9117 1.42987
\(704\) 0 0
\(705\) −0.957445 −0.0360595
\(706\) 0 0
\(707\) −20.9069 −0.786283
\(708\) 0 0
\(709\) 2.14339 0.0804967 0.0402483 0.999190i \(-0.487185\pi\)
0.0402483 + 0.999190i \(0.487185\pi\)
\(710\) 0 0
\(711\) 20.7161 0.776915
\(712\) 0 0
\(713\) −13.0530 −0.488839
\(714\) 0 0
\(715\) 2.12622 0.0795163
\(716\) 0 0
\(717\) 0.0859761 0.00321084
\(718\) 0 0
\(719\) −28.8092 −1.07440 −0.537201 0.843454i \(-0.680518\pi\)
−0.537201 + 0.843454i \(0.680518\pi\)
\(720\) 0 0
\(721\) −14.1263 −0.526090
\(722\) 0 0
\(723\) 1.24747 0.0463941
\(724\) 0 0
\(725\) 3.55586 0.132061
\(726\) 0 0
\(727\) 19.1139 0.708895 0.354447 0.935076i \(-0.384669\pi\)
0.354447 + 0.935076i \(0.384669\pi\)
\(728\) 0 0
\(729\) −26.6392 −0.986636
\(730\) 0 0
\(731\) −10.3684 −0.383490
\(732\) 0 0
\(733\) 17.8002 0.657464 0.328732 0.944423i \(-0.393379\pi\)
0.328732 + 0.944423i \(0.393379\pi\)
\(734\) 0 0
\(735\) 0.985490 0.0363504
\(736\) 0 0
\(737\) 5.69950 0.209944
\(738\) 0 0
\(739\) −9.07208 −0.333722 −0.166861 0.985980i \(-0.553363\pi\)
−0.166861 + 0.985980i \(0.553363\pi\)
\(740\) 0 0
\(741\) −0.620044 −0.0227779
\(742\) 0 0
\(743\) −20.7249 −0.760322 −0.380161 0.924920i \(-0.624131\pi\)
−0.380161 + 0.924920i \(0.624131\pi\)
\(744\) 0 0
\(745\) −19.8870 −0.728602
\(746\) 0 0
\(747\) −17.3868 −0.636150
\(748\) 0 0
\(749\) −0.936355 −0.0342137
\(750\) 0 0
\(751\) 8.63566 0.315120 0.157560 0.987509i \(-0.449637\pi\)
0.157560 + 0.987509i \(0.449637\pi\)
\(752\) 0 0
\(753\) −1.96541 −0.0716234
\(754\) 0 0
\(755\) 27.9112 1.01579
\(756\) 0 0
\(757\) −36.8692 −1.34003 −0.670017 0.742345i \(-0.733713\pi\)
−0.670017 + 0.742345i \(0.733713\pi\)
\(758\) 0 0
\(759\) 0.245874 0.00892465
\(760\) 0 0
\(761\) 15.4227 0.559072 0.279536 0.960135i \(-0.409819\pi\)
0.279536 + 0.960135i \(0.409819\pi\)
\(762\) 0 0
\(763\) −3.87076 −0.140131
\(764\) 0 0
\(765\) −11.3452 −0.410187
\(766\) 0 0
\(767\) −11.0187 −0.397863
\(768\) 0 0
\(769\) 36.5443 1.31782 0.658911 0.752221i \(-0.271017\pi\)
0.658911 + 0.752221i \(0.271017\pi\)
\(770\) 0 0
\(771\) −2.01588 −0.0726001
\(772\) 0 0
\(773\) −50.1473 −1.80367 −0.901836 0.432078i \(-0.857780\pi\)
−0.901836 + 0.432078i \(0.857780\pi\)
\(774\) 0 0
\(775\) 2.08134 0.0747639
\(776\) 0 0
\(777\) 0.472957 0.0169673
\(778\) 0 0
\(779\) 10.3562 0.371049
\(780\) 0 0
\(781\) −2.63381 −0.0942450
\(782\) 0 0
\(783\) 3.63894 0.130045
\(784\) 0 0
\(785\) 30.9837 1.10586
\(786\) 0 0
\(787\) −35.6537 −1.27092 −0.635459 0.772135i \(-0.719189\pi\)
−0.635459 + 0.772135i \(0.719189\pi\)
\(788\) 0 0
\(789\) −0.438997 −0.0156287
\(790\) 0 0
\(791\) 11.3158 0.402345
\(792\) 0 0
\(793\) 1.51658 0.0538555
\(794\) 0 0
\(795\) 0.0709606 0.00251671
\(796\) 0 0
\(797\) −16.1666 −0.572652 −0.286326 0.958132i \(-0.592434\pi\)
−0.286326 + 0.958132i \(0.592434\pi\)
\(798\) 0 0
\(799\) −9.81077 −0.347080
\(800\) 0 0
\(801\) 5.56819 0.196742
\(802\) 0 0
\(803\) −12.1178 −0.427629
\(804\) 0 0
\(805\) −7.38296 −0.260215
\(806\) 0 0
\(807\) −1.57076 −0.0552933
\(808\) 0 0
\(809\) −14.3356 −0.504012 −0.252006 0.967726i \(-0.581090\pi\)
−0.252006 + 0.967726i \(0.581090\pi\)
\(810\) 0 0
\(811\) −53.2835 −1.87104 −0.935518 0.353278i \(-0.885067\pi\)
−0.935518 + 0.353278i \(0.885067\pi\)
\(812\) 0 0
\(813\) −0.358605 −0.0125768
\(814\) 0 0
\(815\) 1.51398 0.0530323
\(816\) 0 0
\(817\) 44.0787 1.54212
\(818\) 0 0
\(819\) 3.45871 0.120857
\(820\) 0 0
\(821\) 2.87576 0.100365 0.0501823 0.998740i \(-0.484020\pi\)
0.0501823 + 0.998740i \(0.484020\pi\)
\(822\) 0 0
\(823\) 38.8566 1.35446 0.677228 0.735773i \(-0.263181\pi\)
0.677228 + 0.735773i \(0.263181\pi\)
\(824\) 0 0
\(825\) −0.0392052 −0.00136495
\(826\) 0 0
\(827\) 6.52970 0.227060 0.113530 0.993535i \(-0.463784\pi\)
0.113530 + 0.993535i \(0.463784\pi\)
\(828\) 0 0
\(829\) 51.7728 1.79814 0.899071 0.437802i \(-0.144243\pi\)
0.899071 + 0.437802i \(0.144243\pi\)
\(830\) 0 0
\(831\) 0.228978 0.00794317
\(832\) 0 0
\(833\) 10.0981 0.349880
\(834\) 0 0
\(835\) −37.2580 −1.28937
\(836\) 0 0
\(837\) 2.12997 0.0736225
\(838\) 0 0
\(839\) −18.5912 −0.641841 −0.320921 0.947106i \(-0.603992\pi\)
−0.320921 + 0.947106i \(0.603992\pi\)
\(840\) 0 0
\(841\) 26.0692 0.898938
\(842\) 0 0
\(843\) −1.31864 −0.0454164
\(844\) 0 0
\(845\) −2.12622 −0.0731443
\(846\) 0 0
\(847\) 1.15548 0.0397029
\(848\) 0 0
\(849\) −2.35008 −0.0806545
\(850\) 0 0
\(851\) 15.0336 0.515345
\(852\) 0 0
\(853\) 31.5418 1.07997 0.539985 0.841674i \(-0.318430\pi\)
0.539985 + 0.841674i \(0.318430\pi\)
\(854\) 0 0
\(855\) 48.2313 1.64947
\(856\) 0 0
\(857\) −23.8577 −0.814965 −0.407483 0.913213i \(-0.633593\pi\)
−0.407483 + 0.913213i \(0.633593\pi\)
\(858\) 0 0
\(859\) −3.72951 −0.127249 −0.0636247 0.997974i \(-0.520266\pi\)
−0.0636247 + 0.997974i \(0.520266\pi\)
\(860\) 0 0
\(861\) 0.129196 0.00440298
\(862\) 0 0
\(863\) 14.2870 0.486337 0.243168 0.969984i \(-0.421813\pi\)
0.243168 + 0.969984i \(0.421813\pi\)
\(864\) 0 0
\(865\) −32.1482 −1.09307
\(866\) 0 0
\(867\) −1.13093 −0.0384084
\(868\) 0 0
\(869\) −6.92082 −0.234773
\(870\) 0 0
\(871\) −5.69950 −0.193120
\(872\) 0 0
\(873\) −0.0216171 −0.000731627 0
\(874\) 0 0
\(875\) 13.4613 0.455075
\(876\) 0 0
\(877\) 55.5050 1.87427 0.937135 0.348967i \(-0.113467\pi\)
0.937135 + 0.348967i \(0.113467\pi\)
\(878\) 0 0
\(879\) 1.07679 0.0363191
\(880\) 0 0
\(881\) −51.5573 −1.73701 −0.868505 0.495681i \(-0.834919\pi\)
−0.868505 + 0.495681i \(0.834919\pi\)
\(882\) 0 0
\(883\) 37.1539 1.25033 0.625164 0.780494i \(-0.285032\pi\)
0.625164 + 0.780494i \(0.285032\pi\)
\(884\) 0 0
\(885\) −1.91688 −0.0644351
\(886\) 0 0
\(887\) 51.9115 1.74302 0.871508 0.490381i \(-0.163142\pi\)
0.871508 + 0.490381i \(0.163142\pi\)
\(888\) 0 0
\(889\) 1.73047 0.0580382
\(890\) 0 0
\(891\) 8.93980 0.299494
\(892\) 0 0
\(893\) 41.7080 1.39570
\(894\) 0 0
\(895\) 23.1132 0.772589
\(896\) 0 0
\(897\) −0.245874 −0.00820949
\(898\) 0 0
\(899\) 32.2335 1.07505
\(900\) 0 0
\(901\) 0.727120 0.0242239
\(902\) 0 0
\(903\) 0.549892 0.0182993
\(904\) 0 0
\(905\) 25.8352 0.858792
\(906\) 0 0
\(907\) −50.4270 −1.67440 −0.837201 0.546896i \(-0.815809\pi\)
−0.837201 + 0.546896i \(0.815809\pi\)
\(908\) 0 0
\(909\) 54.1597 1.79636
\(910\) 0 0
\(911\) 58.3276 1.93248 0.966239 0.257646i \(-0.0829468\pi\)
0.966239 + 0.257646i \(0.0829468\pi\)
\(912\) 0 0
\(913\) 5.80856 0.192235
\(914\) 0 0
\(915\) 0.263833 0.00872206
\(916\) 0 0
\(917\) 23.8457 0.787455
\(918\) 0 0
\(919\) 31.4216 1.03650 0.518251 0.855229i \(-0.326583\pi\)
0.518251 + 0.855229i \(0.326583\pi\)
\(920\) 0 0
\(921\) −1.15154 −0.0379447
\(922\) 0 0
\(923\) 2.63381 0.0866928
\(924\) 0 0
\(925\) −2.39715 −0.0788176
\(926\) 0 0
\(927\) 36.5945 1.20192
\(928\) 0 0
\(929\) −3.61994 −0.118767 −0.0593833 0.998235i \(-0.518913\pi\)
−0.0593833 + 0.998235i \(0.518913\pi\)
\(930\) 0 0
\(931\) −42.9297 −1.40696
\(932\) 0 0
\(933\) −1.59170 −0.0521100
\(934\) 0 0
\(935\) 3.79019 0.123953
\(936\) 0 0
\(937\) 1.27442 0.0416335 0.0208168 0.999783i \(-0.493373\pi\)
0.0208168 + 0.999783i \(0.493373\pi\)
\(938\) 0 0
\(939\) 1.38905 0.0453300
\(940\) 0 0
\(941\) −48.4927 −1.58082 −0.790408 0.612581i \(-0.790131\pi\)
−0.790408 + 0.612581i \(0.790131\pi\)
\(942\) 0 0
\(943\) 4.10666 0.133731
\(944\) 0 0
\(945\) 1.20474 0.0391902
\(946\) 0 0
\(947\) −17.4674 −0.567615 −0.283808 0.958881i \(-0.591598\pi\)
−0.283808 + 0.958881i \(0.591598\pi\)
\(948\) 0 0
\(949\) 12.1178 0.393362
\(950\) 0 0
\(951\) −0.710529 −0.0230405
\(952\) 0 0
\(953\) −26.0324 −0.843274 −0.421637 0.906765i \(-0.638544\pi\)
−0.421637 + 0.906765i \(0.638544\pi\)
\(954\) 0 0
\(955\) 46.8295 1.51537
\(956\) 0 0
\(957\) −0.607167 −0.0196269
\(958\) 0 0
\(959\) 7.33510 0.236863
\(960\) 0 0
\(961\) −12.1329 −0.391383
\(962\) 0 0
\(963\) 2.42565 0.0781655
\(964\) 0 0
\(965\) 45.3773 1.46075
\(966\) 0 0
\(967\) −48.7405 −1.56739 −0.783694 0.621147i \(-0.786667\pi\)
−0.783694 + 0.621147i \(0.786667\pi\)
\(968\) 0 0
\(969\) −1.10529 −0.0355069
\(970\) 0 0
\(971\) −40.5560 −1.30150 −0.650751 0.759291i \(-0.725546\pi\)
−0.650751 + 0.759291i \(0.725546\pi\)
\(972\) 0 0
\(973\) −15.5905 −0.499807
\(974\) 0 0
\(975\) 0.0392052 0.00125557
\(976\) 0 0
\(977\) −20.0816 −0.642466 −0.321233 0.947000i \(-0.604097\pi\)
−0.321233 + 0.947000i \(0.604097\pi\)
\(978\) 0 0
\(979\) −1.86021 −0.0594527
\(980\) 0 0
\(981\) 10.0273 0.320147
\(982\) 0 0
\(983\) −25.8729 −0.825219 −0.412609 0.910908i \(-0.635383\pi\)
−0.412609 + 0.910908i \(0.635383\pi\)
\(984\) 0 0
\(985\) 9.14578 0.291409
\(986\) 0 0
\(987\) 0.520317 0.0165619
\(988\) 0 0
\(989\) 17.4791 0.555802
\(990\) 0 0
\(991\) 15.5782 0.494858 0.247429 0.968906i \(-0.420414\pi\)
0.247429 + 0.968906i \(0.420414\pi\)
\(992\) 0 0
\(993\) −2.24432 −0.0712213
\(994\) 0 0
\(995\) 12.6366 0.400606
\(996\) 0 0
\(997\) 35.9606 1.13888 0.569442 0.822031i \(-0.307159\pi\)
0.569442 + 0.822031i \(0.307159\pi\)
\(998\) 0 0
\(999\) −2.45315 −0.0776144
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9152.2.a.cv.1.5 8
4.3 odd 2 9152.2.a.cw.1.4 8
8.3 odd 2 4576.2.a.t.1.5 8
8.5 even 2 4576.2.a.u.1.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4576.2.a.t.1.5 8 8.3 odd 2
4576.2.a.u.1.4 yes 8 8.5 even 2
9152.2.a.cv.1.5 8 1.1 even 1 trivial
9152.2.a.cw.1.4 8 4.3 odd 2