Properties

Label 912.6.a.r.1.3
Level $912$
Weight $6$
Character 912.1
Self dual yes
Analytic conductor $146.270$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [912,6,Mod(1,912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("912.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 912.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,36,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.270043669\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 90x^{2} + 118x + 1412 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(5.82184\) of defining polynomial
Character \(\chi\) \(=\) 912.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} +23.6174 q^{5} +250.612 q^{7} +81.0000 q^{9} -414.956 q^{11} -920.892 q^{13} +212.557 q^{15} -238.401 q^{17} +361.000 q^{19} +2255.50 q^{21} -1138.97 q^{23} -2567.22 q^{25} +729.000 q^{27} +7031.41 q^{29} -495.673 q^{31} -3734.61 q^{33} +5918.80 q^{35} +2981.99 q^{37} -8288.03 q^{39} +9339.27 q^{41} +11537.4 q^{43} +1913.01 q^{45} +19955.6 q^{47} +45999.2 q^{49} -2145.61 q^{51} -20089.6 q^{53} -9800.20 q^{55} +3249.00 q^{57} +48844.4 q^{59} +24559.4 q^{61} +20299.5 q^{63} -21749.1 q^{65} +59482.1 q^{67} -10250.7 q^{69} +4635.76 q^{71} -26670.8 q^{73} -23105.0 q^{75} -103993. q^{77} +68240.6 q^{79} +6561.00 q^{81} -2260.79 q^{83} -5630.41 q^{85} +63282.7 q^{87} +749.444 q^{89} -230786. q^{91} -4461.06 q^{93} +8525.89 q^{95} +88106.3 q^{97} -33611.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 36 q^{3} - 8 q^{5} + 142 q^{7} + 324 q^{9} + 714 q^{11} - 74 q^{13} - 72 q^{15} - 3690 q^{17} + 1444 q^{19} + 1278 q^{21} - 862 q^{23} + 3282 q^{25} + 2916 q^{27} + 992 q^{29} + 7382 q^{31} + 6426 q^{33}+ \cdots + 57834 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) 23.6174 0.422482 0.211241 0.977434i \(-0.432250\pi\)
0.211241 + 0.977434i \(0.432250\pi\)
\(6\) 0 0
\(7\) 250.612 1.93311 0.966554 0.256464i \(-0.0825575\pi\)
0.966554 + 0.256464i \(0.0825575\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −414.956 −1.03400 −0.517000 0.855985i \(-0.672951\pi\)
−0.517000 + 0.855985i \(0.672951\pi\)
\(12\) 0 0
\(13\) −920.892 −1.51130 −0.755650 0.654976i \(-0.772679\pi\)
−0.755650 + 0.654976i \(0.772679\pi\)
\(14\) 0 0
\(15\) 212.557 0.243920
\(16\) 0 0
\(17\) −238.401 −0.200071 −0.100036 0.994984i \(-0.531896\pi\)
−0.100036 + 0.994984i \(0.531896\pi\)
\(18\) 0 0
\(19\) 361.000 0.229416
\(20\) 0 0
\(21\) 2255.50 1.11608
\(22\) 0 0
\(23\) −1138.97 −0.448945 −0.224472 0.974480i \(-0.572066\pi\)
−0.224472 + 0.974480i \(0.572066\pi\)
\(24\) 0 0
\(25\) −2567.22 −0.821509
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) 7031.41 1.55256 0.776278 0.630391i \(-0.217105\pi\)
0.776278 + 0.630391i \(0.217105\pi\)
\(30\) 0 0
\(31\) −495.673 −0.0926384 −0.0463192 0.998927i \(-0.514749\pi\)
−0.0463192 + 0.998927i \(0.514749\pi\)
\(32\) 0 0
\(33\) −3734.61 −0.596980
\(34\) 0 0
\(35\) 5918.80 0.816702
\(36\) 0 0
\(37\) 2981.99 0.358098 0.179049 0.983840i \(-0.442698\pi\)
0.179049 + 0.983840i \(0.442698\pi\)
\(38\) 0 0
\(39\) −8288.03 −0.872549
\(40\) 0 0
\(41\) 9339.27 0.867668 0.433834 0.900993i \(-0.357160\pi\)
0.433834 + 0.900993i \(0.357160\pi\)
\(42\) 0 0
\(43\) 11537.4 0.951563 0.475781 0.879564i \(-0.342165\pi\)
0.475781 + 0.879564i \(0.342165\pi\)
\(44\) 0 0
\(45\) 1913.01 0.140827
\(46\) 0 0
\(47\) 19955.6 1.31771 0.658857 0.752268i \(-0.271040\pi\)
0.658857 + 0.752268i \(0.271040\pi\)
\(48\) 0 0
\(49\) 45999.2 2.73690
\(50\) 0 0
\(51\) −2145.61 −0.115511
\(52\) 0 0
\(53\) −20089.6 −0.982385 −0.491193 0.871051i \(-0.663439\pi\)
−0.491193 + 0.871051i \(0.663439\pi\)
\(54\) 0 0
\(55\) −9800.20 −0.436846
\(56\) 0 0
\(57\) 3249.00 0.132453
\(58\) 0 0
\(59\) 48844.4 1.82677 0.913387 0.407093i \(-0.133457\pi\)
0.913387 + 0.407093i \(0.133457\pi\)
\(60\) 0 0
\(61\) 24559.4 0.845069 0.422535 0.906347i \(-0.361140\pi\)
0.422535 + 0.906347i \(0.361140\pi\)
\(62\) 0 0
\(63\) 20299.5 0.644369
\(64\) 0 0
\(65\) −21749.1 −0.638496
\(66\) 0 0
\(67\) 59482.1 1.61882 0.809411 0.587243i \(-0.199787\pi\)
0.809411 + 0.587243i \(0.199787\pi\)
\(68\) 0 0
\(69\) −10250.7 −0.259199
\(70\) 0 0
\(71\) 4635.76 0.109138 0.0545689 0.998510i \(-0.482622\pi\)
0.0545689 + 0.998510i \(0.482622\pi\)
\(72\) 0 0
\(73\) −26670.8 −0.585772 −0.292886 0.956147i \(-0.594616\pi\)
−0.292886 + 0.956147i \(0.594616\pi\)
\(74\) 0 0
\(75\) −23105.0 −0.474299
\(76\) 0 0
\(77\) −103993. −1.99883
\(78\) 0 0
\(79\) 68240.6 1.23020 0.615100 0.788449i \(-0.289116\pi\)
0.615100 + 0.788449i \(0.289116\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −2260.79 −0.0360217 −0.0180109 0.999838i \(-0.505733\pi\)
−0.0180109 + 0.999838i \(0.505733\pi\)
\(84\) 0 0
\(85\) −5630.41 −0.0845265
\(86\) 0 0
\(87\) 63282.7 0.896368
\(88\) 0 0
\(89\) 749.444 0.0100291 0.00501457 0.999987i \(-0.498404\pi\)
0.00501457 + 0.999987i \(0.498404\pi\)
\(90\) 0 0
\(91\) −230786. −2.92150
\(92\) 0 0
\(93\) −4461.06 −0.0534848
\(94\) 0 0
\(95\) 8525.89 0.0969239
\(96\) 0 0
\(97\) 88106.3 0.950775 0.475387 0.879777i \(-0.342308\pi\)
0.475387 + 0.879777i \(0.342308\pi\)
\(98\) 0 0
\(99\) −33611.5 −0.344667
\(100\) 0 0
\(101\) −125404. −1.22323 −0.611613 0.791157i \(-0.709479\pi\)
−0.611613 + 0.791157i \(0.709479\pi\)
\(102\) 0 0
\(103\) 110218. 1.02367 0.511835 0.859084i \(-0.328966\pi\)
0.511835 + 0.859084i \(0.328966\pi\)
\(104\) 0 0
\(105\) 53269.2 0.471523
\(106\) 0 0
\(107\) −160783. −1.35763 −0.678813 0.734311i \(-0.737505\pi\)
−0.678813 + 0.734311i \(0.737505\pi\)
\(108\) 0 0
\(109\) −111776. −0.901122 −0.450561 0.892746i \(-0.648776\pi\)
−0.450561 + 0.892746i \(0.648776\pi\)
\(110\) 0 0
\(111\) 26837.9 0.206748
\(112\) 0 0
\(113\) 116128. 0.855544 0.427772 0.903887i \(-0.359299\pi\)
0.427772 + 0.903887i \(0.359299\pi\)
\(114\) 0 0
\(115\) −26899.6 −0.189671
\(116\) 0 0
\(117\) −74592.3 −0.503766
\(118\) 0 0
\(119\) −59746.0 −0.386760
\(120\) 0 0
\(121\) 11137.7 0.0691561
\(122\) 0 0
\(123\) 84053.5 0.500948
\(124\) 0 0
\(125\) −134436. −0.769554
\(126\) 0 0
\(127\) 6062.47 0.0333534 0.0166767 0.999861i \(-0.494691\pi\)
0.0166767 + 0.999861i \(0.494691\pi\)
\(128\) 0 0
\(129\) 103837. 0.549385
\(130\) 0 0
\(131\) −115145. −0.586228 −0.293114 0.956078i \(-0.594692\pi\)
−0.293114 + 0.956078i \(0.594692\pi\)
\(132\) 0 0
\(133\) 90470.8 0.443485
\(134\) 0 0
\(135\) 17217.1 0.0813066
\(136\) 0 0
\(137\) 326643. 1.48687 0.743434 0.668810i \(-0.233196\pi\)
0.743434 + 0.668810i \(0.233196\pi\)
\(138\) 0 0
\(139\) 228617. 1.00362 0.501812 0.864977i \(-0.332667\pi\)
0.501812 + 0.864977i \(0.332667\pi\)
\(140\) 0 0
\(141\) 179601. 0.760782
\(142\) 0 0
\(143\) 382130. 1.56268
\(144\) 0 0
\(145\) 166064. 0.655926
\(146\) 0 0
\(147\) 413992. 1.58015
\(148\) 0 0
\(149\) 225286. 0.831321 0.415661 0.909520i \(-0.363550\pi\)
0.415661 + 0.909520i \(0.363550\pi\)
\(150\) 0 0
\(151\) −102524. −0.365918 −0.182959 0.983121i \(-0.558568\pi\)
−0.182959 + 0.983121i \(0.558568\pi\)
\(152\) 0 0
\(153\) −19310.5 −0.0666905
\(154\) 0 0
\(155\) −11706.5 −0.0391380
\(156\) 0 0
\(157\) 441599. 1.42981 0.714906 0.699220i \(-0.246469\pi\)
0.714906 + 0.699220i \(0.246469\pi\)
\(158\) 0 0
\(159\) −180806. −0.567180
\(160\) 0 0
\(161\) −285439. −0.867859
\(162\) 0 0
\(163\) 451041. 1.32968 0.664839 0.746986i \(-0.268500\pi\)
0.664839 + 0.746986i \(0.268500\pi\)
\(164\) 0 0
\(165\) −88201.8 −0.252213
\(166\) 0 0
\(167\) −447874. −1.24270 −0.621348 0.783535i \(-0.713415\pi\)
−0.621348 + 0.783535i \(0.713415\pi\)
\(168\) 0 0
\(169\) 476750. 1.28403
\(170\) 0 0
\(171\) 29241.0 0.0764719
\(172\) 0 0
\(173\) −381949. −0.970266 −0.485133 0.874440i \(-0.661229\pi\)
−0.485133 + 0.874440i \(0.661229\pi\)
\(174\) 0 0
\(175\) −643374. −1.58807
\(176\) 0 0
\(177\) 439600. 1.05469
\(178\) 0 0
\(179\) −193497. −0.451379 −0.225690 0.974199i \(-0.572464\pi\)
−0.225690 + 0.974199i \(0.572464\pi\)
\(180\) 0 0
\(181\) 52655.8 0.119468 0.0597338 0.998214i \(-0.480975\pi\)
0.0597338 + 0.998214i \(0.480975\pi\)
\(182\) 0 0
\(183\) 221034. 0.487901
\(184\) 0 0
\(185\) 70426.9 0.151290
\(186\) 0 0
\(187\) 98925.8 0.206874
\(188\) 0 0
\(189\) 182696. 0.372027
\(190\) 0 0
\(191\) 303888. 0.602739 0.301370 0.953507i \(-0.402556\pi\)
0.301370 + 0.953507i \(0.402556\pi\)
\(192\) 0 0
\(193\) 134586. 0.260080 0.130040 0.991509i \(-0.458489\pi\)
0.130040 + 0.991509i \(0.458489\pi\)
\(194\) 0 0
\(195\) −195742. −0.368636
\(196\) 0 0
\(197\) −651096. −1.19531 −0.597654 0.801754i \(-0.703900\pi\)
−0.597654 + 0.801754i \(0.703900\pi\)
\(198\) 0 0
\(199\) 291770. 0.522286 0.261143 0.965300i \(-0.415901\pi\)
0.261143 + 0.965300i \(0.415901\pi\)
\(200\) 0 0
\(201\) 535339. 0.934627
\(202\) 0 0
\(203\) 1.76215e6 3.00126
\(204\) 0 0
\(205\) 220570. 0.366574
\(206\) 0 0
\(207\) −92256.7 −0.149648
\(208\) 0 0
\(209\) −149799. −0.237216
\(210\) 0 0
\(211\) −1.05072e6 −1.62472 −0.812361 0.583154i \(-0.801818\pi\)
−0.812361 + 0.583154i \(0.801818\pi\)
\(212\) 0 0
\(213\) 41721.8 0.0630107
\(214\) 0 0
\(215\) 272484. 0.402018
\(216\) 0 0
\(217\) −124221. −0.179080
\(218\) 0 0
\(219\) −240037. −0.338196
\(220\) 0 0
\(221\) 219541. 0.302368
\(222\) 0 0
\(223\) 81993.8 0.110413 0.0552063 0.998475i \(-0.482418\pi\)
0.0552063 + 0.998475i \(0.482418\pi\)
\(224\) 0 0
\(225\) −207945. −0.273836
\(226\) 0 0
\(227\) −911528. −1.17410 −0.587051 0.809550i \(-0.699711\pi\)
−0.587051 + 0.809550i \(0.699711\pi\)
\(228\) 0 0
\(229\) −660815. −0.832705 −0.416353 0.909203i \(-0.636692\pi\)
−0.416353 + 0.909203i \(0.636692\pi\)
\(230\) 0 0
\(231\) −935935. −1.15403
\(232\) 0 0
\(233\) 866250. 1.04533 0.522665 0.852538i \(-0.324938\pi\)
0.522665 + 0.852538i \(0.324938\pi\)
\(234\) 0 0
\(235\) 471301. 0.556710
\(236\) 0 0
\(237\) 614166. 0.710256
\(238\) 0 0
\(239\) 385761. 0.436841 0.218421 0.975855i \(-0.429910\pi\)
0.218421 + 0.975855i \(0.429910\pi\)
\(240\) 0 0
\(241\) −1.27179e6 −1.41050 −0.705252 0.708957i \(-0.749166\pi\)
−0.705252 + 0.708957i \(0.749166\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) 1.08638e6 1.15629
\(246\) 0 0
\(247\) −332442. −0.346716
\(248\) 0 0
\(249\) −20347.1 −0.0207972
\(250\) 0 0
\(251\) 1.13475e6 1.13689 0.568444 0.822722i \(-0.307546\pi\)
0.568444 + 0.822722i \(0.307546\pi\)
\(252\) 0 0
\(253\) 472623. 0.464209
\(254\) 0 0
\(255\) −50673.7 −0.0488014
\(256\) 0 0
\(257\) −129194. −0.122014 −0.0610071 0.998137i \(-0.519431\pi\)
−0.0610071 + 0.998137i \(0.519431\pi\)
\(258\) 0 0
\(259\) 747320. 0.692241
\(260\) 0 0
\(261\) 569544. 0.517519
\(262\) 0 0
\(263\) −913758. −0.814595 −0.407298 0.913295i \(-0.633529\pi\)
−0.407298 + 0.913295i \(0.633529\pi\)
\(264\) 0 0
\(265\) −474465. −0.415040
\(266\) 0 0
\(267\) 6744.99 0.00579033
\(268\) 0 0
\(269\) −460736. −0.388214 −0.194107 0.980980i \(-0.562181\pi\)
−0.194107 + 0.980980i \(0.562181\pi\)
\(270\) 0 0
\(271\) 726289. 0.600739 0.300370 0.953823i \(-0.402890\pi\)
0.300370 + 0.953823i \(0.402890\pi\)
\(272\) 0 0
\(273\) −2.07708e6 −1.68673
\(274\) 0 0
\(275\) 1.06528e6 0.849441
\(276\) 0 0
\(277\) −588940. −0.461181 −0.230590 0.973051i \(-0.574066\pi\)
−0.230590 + 0.973051i \(0.574066\pi\)
\(278\) 0 0
\(279\) −40149.5 −0.0308795
\(280\) 0 0
\(281\) 111634. 0.0843396 0.0421698 0.999110i \(-0.486573\pi\)
0.0421698 + 0.999110i \(0.486573\pi\)
\(282\) 0 0
\(283\) 686287. 0.509377 0.254689 0.967023i \(-0.418027\pi\)
0.254689 + 0.967023i \(0.418027\pi\)
\(284\) 0 0
\(285\) 76733.0 0.0559590
\(286\) 0 0
\(287\) 2.34053e6 1.67730
\(288\) 0 0
\(289\) −1.36302e6 −0.959971
\(290\) 0 0
\(291\) 792957. 0.548930
\(292\) 0 0
\(293\) −1.87734e6 −1.27754 −0.638769 0.769399i \(-0.720556\pi\)
−0.638769 + 0.769399i \(0.720556\pi\)
\(294\) 0 0
\(295\) 1.15358e6 0.771778
\(296\) 0 0
\(297\) −302503. −0.198993
\(298\) 0 0
\(299\) 1.04887e6 0.678490
\(300\) 0 0
\(301\) 2.89141e6 1.83947
\(302\) 0 0
\(303\) −1.12863e6 −0.706230
\(304\) 0 0
\(305\) 580029. 0.357026
\(306\) 0 0
\(307\) −396709. −0.240229 −0.120115 0.992760i \(-0.538326\pi\)
−0.120115 + 0.992760i \(0.538326\pi\)
\(308\) 0 0
\(309\) 991964. 0.591016
\(310\) 0 0
\(311\) 1.18936e6 0.697290 0.348645 0.937255i \(-0.386642\pi\)
0.348645 + 0.937255i \(0.386642\pi\)
\(312\) 0 0
\(313\) −778041. −0.448892 −0.224446 0.974487i \(-0.572057\pi\)
−0.224446 + 0.974487i \(0.572057\pi\)
\(314\) 0 0
\(315\) 479423. 0.272234
\(316\) 0 0
\(317\) 3.52584e6 1.97067 0.985335 0.170630i \(-0.0545802\pi\)
0.985335 + 0.170630i \(0.0545802\pi\)
\(318\) 0 0
\(319\) −2.91773e6 −1.60534
\(320\) 0 0
\(321\) −1.44705e6 −0.783826
\(322\) 0 0
\(323\) −86062.7 −0.0458995
\(324\) 0 0
\(325\) 2.36413e6 1.24155
\(326\) 0 0
\(327\) −1.00599e6 −0.520263
\(328\) 0 0
\(329\) 5.00112e6 2.54728
\(330\) 0 0
\(331\) −2.21135e6 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(332\) 0 0
\(333\) 241541. 0.119366
\(334\) 0 0
\(335\) 1.40481e6 0.683922
\(336\) 0 0
\(337\) 3.52355e6 1.69008 0.845038 0.534706i \(-0.179578\pi\)
0.845038 + 0.534706i \(0.179578\pi\)
\(338\) 0 0
\(339\) 1.04516e6 0.493949
\(340\) 0 0
\(341\) 205683. 0.0957881
\(342\) 0 0
\(343\) 7.31589e6 3.35762
\(344\) 0 0
\(345\) −242096. −0.109507
\(346\) 0 0
\(347\) −3.53103e6 −1.57426 −0.787131 0.616785i \(-0.788435\pi\)
−0.787131 + 0.616785i \(0.788435\pi\)
\(348\) 0 0
\(349\) −1.25322e6 −0.550760 −0.275380 0.961335i \(-0.588804\pi\)
−0.275380 + 0.961335i \(0.588804\pi\)
\(350\) 0 0
\(351\) −671330. −0.290850
\(352\) 0 0
\(353\) 964634. 0.412027 0.206014 0.978549i \(-0.433951\pi\)
0.206014 + 0.978549i \(0.433951\pi\)
\(354\) 0 0
\(355\) 109485. 0.0461087
\(356\) 0 0
\(357\) −537714. −0.223296
\(358\) 0 0
\(359\) 1.26957e6 0.519900 0.259950 0.965622i \(-0.416294\pi\)
0.259950 + 0.965622i \(0.416294\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) 0 0
\(363\) 100239. 0.0399273
\(364\) 0 0
\(365\) −629896. −0.247478
\(366\) 0 0
\(367\) 1.26919e6 0.491881 0.245941 0.969285i \(-0.420903\pi\)
0.245941 + 0.969285i \(0.420903\pi\)
\(368\) 0 0
\(369\) 756481. 0.289223
\(370\) 0 0
\(371\) −5.03469e6 −1.89906
\(372\) 0 0
\(373\) 3.47150e6 1.29195 0.645975 0.763359i \(-0.276451\pi\)
0.645975 + 0.763359i \(0.276451\pi\)
\(374\) 0 0
\(375\) −1.20992e6 −0.444302
\(376\) 0 0
\(377\) −6.47517e6 −2.34638
\(378\) 0 0
\(379\) 2.84273e6 1.01657 0.508286 0.861188i \(-0.330279\pi\)
0.508286 + 0.861188i \(0.330279\pi\)
\(380\) 0 0
\(381\) 54562.2 0.0192566
\(382\) 0 0
\(383\) 1.59297e6 0.554894 0.277447 0.960741i \(-0.410512\pi\)
0.277447 + 0.960741i \(0.410512\pi\)
\(384\) 0 0
\(385\) −2.45604e6 −0.844470
\(386\) 0 0
\(387\) 934531. 0.317188
\(388\) 0 0
\(389\) −5.24604e6 −1.75775 −0.878876 0.477050i \(-0.841706\pi\)
−0.878876 + 0.477050i \(0.841706\pi\)
\(390\) 0 0
\(391\) 271532. 0.0898211
\(392\) 0 0
\(393\) −1.03630e6 −0.338459
\(394\) 0 0
\(395\) 1.61167e6 0.519736
\(396\) 0 0
\(397\) −361755. −0.115196 −0.0575982 0.998340i \(-0.518344\pi\)
−0.0575982 + 0.998340i \(0.518344\pi\)
\(398\) 0 0
\(399\) 814237. 0.256046
\(400\) 0 0
\(401\) −3.07851e6 −0.956049 −0.478025 0.878346i \(-0.658647\pi\)
−0.478025 + 0.878346i \(0.658647\pi\)
\(402\) 0 0
\(403\) 456461. 0.140004
\(404\) 0 0
\(405\) 154954. 0.0469424
\(406\) 0 0
\(407\) −1.23739e6 −0.370273
\(408\) 0 0
\(409\) 4.13583e6 1.22252 0.611258 0.791432i \(-0.290664\pi\)
0.611258 + 0.791432i \(0.290664\pi\)
\(410\) 0 0
\(411\) 2.93979e6 0.858443
\(412\) 0 0
\(413\) 1.22410e7 3.53135
\(414\) 0 0
\(415\) −53394.0 −0.0152185
\(416\) 0 0
\(417\) 2.05755e6 0.579443
\(418\) 0 0
\(419\) −3.19560e6 −0.889238 −0.444619 0.895720i \(-0.646661\pi\)
−0.444619 + 0.895720i \(0.646661\pi\)
\(420\) 0 0
\(421\) 996574. 0.274034 0.137017 0.990569i \(-0.456249\pi\)
0.137017 + 0.990569i \(0.456249\pi\)
\(422\) 0 0
\(423\) 1.61641e6 0.439238
\(424\) 0 0
\(425\) 612026. 0.164361
\(426\) 0 0
\(427\) 6.15486e6 1.63361
\(428\) 0 0
\(429\) 3.43917e6 0.902216
\(430\) 0 0
\(431\) 2.51955e6 0.653325 0.326662 0.945141i \(-0.394076\pi\)
0.326662 + 0.945141i \(0.394076\pi\)
\(432\) 0 0
\(433\) −3.82101e6 −0.979395 −0.489698 0.871892i \(-0.662893\pi\)
−0.489698 + 0.871892i \(0.662893\pi\)
\(434\) 0 0
\(435\) 1.49457e6 0.378699
\(436\) 0 0
\(437\) −411169. −0.102995
\(438\) 0 0
\(439\) −619538. −0.153429 −0.0767144 0.997053i \(-0.524443\pi\)
−0.0767144 + 0.997053i \(0.524443\pi\)
\(440\) 0 0
\(441\) 3.72593e6 0.912302
\(442\) 0 0
\(443\) 1.08715e6 0.263198 0.131599 0.991303i \(-0.457989\pi\)
0.131599 + 0.991303i \(0.457989\pi\)
\(444\) 0 0
\(445\) 17699.9 0.00423713
\(446\) 0 0
\(447\) 2.02758e6 0.479963
\(448\) 0 0
\(449\) −4.56352e6 −1.06828 −0.534139 0.845397i \(-0.679364\pi\)
−0.534139 + 0.845397i \(0.679364\pi\)
\(450\) 0 0
\(451\) −3.87539e6 −0.897169
\(452\) 0 0
\(453\) −922717. −0.211263
\(454\) 0 0
\(455\) −5.45058e6 −1.23428
\(456\) 0 0
\(457\) 605485. 0.135617 0.0678083 0.997698i \(-0.478399\pi\)
0.0678083 + 0.997698i \(0.478399\pi\)
\(458\) 0 0
\(459\) −173794. −0.0385038
\(460\) 0 0
\(461\) −7.26112e6 −1.59130 −0.795649 0.605759i \(-0.792870\pi\)
−0.795649 + 0.605759i \(0.792870\pi\)
\(462\) 0 0
\(463\) −1.84692e6 −0.400400 −0.200200 0.979755i \(-0.564159\pi\)
−0.200200 + 0.979755i \(0.564159\pi\)
\(464\) 0 0
\(465\) −105359. −0.0225963
\(466\) 0 0
\(467\) −6.63166e6 −1.40712 −0.703559 0.710637i \(-0.748407\pi\)
−0.703559 + 0.710637i \(0.748407\pi\)
\(468\) 0 0
\(469\) 1.49069e7 3.12936
\(470\) 0 0
\(471\) 3.97439e6 0.825503
\(472\) 0 0
\(473\) −4.78752e6 −0.983916
\(474\) 0 0
\(475\) −926765. −0.188467
\(476\) 0 0
\(477\) −1.62726e6 −0.327462
\(478\) 0 0
\(479\) 2.39693e6 0.477328 0.238664 0.971102i \(-0.423291\pi\)
0.238664 + 0.971102i \(0.423291\pi\)
\(480\) 0 0
\(481\) −2.74609e6 −0.541193
\(482\) 0 0
\(483\) −2.56895e6 −0.501059
\(484\) 0 0
\(485\) 2.08084e6 0.401685
\(486\) 0 0
\(487\) 2.17359e6 0.415294 0.207647 0.978204i \(-0.433420\pi\)
0.207647 + 0.978204i \(0.433420\pi\)
\(488\) 0 0
\(489\) 4.05937e6 0.767690
\(490\) 0 0
\(491\) −9.09470e6 −1.70249 −0.851245 0.524768i \(-0.824152\pi\)
−0.851245 + 0.524768i \(0.824152\pi\)
\(492\) 0 0
\(493\) −1.67629e6 −0.310622
\(494\) 0 0
\(495\) −793816. −0.145615
\(496\) 0 0
\(497\) 1.16177e6 0.210975
\(498\) 0 0
\(499\) −8.69614e6 −1.56342 −0.781709 0.623644i \(-0.785652\pi\)
−0.781709 + 0.623644i \(0.785652\pi\)
\(500\) 0 0
\(501\) −4.03087e6 −0.717470
\(502\) 0 0
\(503\) 2.72206e6 0.479708 0.239854 0.970809i \(-0.422900\pi\)
0.239854 + 0.970809i \(0.422900\pi\)
\(504\) 0 0
\(505\) −2.96171e6 −0.516790
\(506\) 0 0
\(507\) 4.29075e6 0.741332
\(508\) 0 0
\(509\) 7.17949e6 1.22828 0.614142 0.789195i \(-0.289502\pi\)
0.614142 + 0.789195i \(0.289502\pi\)
\(510\) 0 0
\(511\) −6.68401e6 −1.13236
\(512\) 0 0
\(513\) 263169. 0.0441511
\(514\) 0 0
\(515\) 2.60307e6 0.432482
\(516\) 0 0
\(517\) −8.28072e6 −1.36252
\(518\) 0 0
\(519\) −3.43755e6 −0.560183
\(520\) 0 0
\(521\) −2.71363e6 −0.437982 −0.218991 0.975727i \(-0.570277\pi\)
−0.218991 + 0.975727i \(0.570277\pi\)
\(522\) 0 0
\(523\) 8.12813e6 1.29938 0.649690 0.760199i \(-0.274899\pi\)
0.649690 + 0.760199i \(0.274899\pi\)
\(524\) 0 0
\(525\) −5.79037e6 −0.916870
\(526\) 0 0
\(527\) 118169. 0.0185343
\(528\) 0 0
\(529\) −5.13909e6 −0.798448
\(530\) 0 0
\(531\) 3.95640e6 0.608925
\(532\) 0 0
\(533\) −8.60047e6 −1.31131
\(534\) 0 0
\(535\) −3.79728e6 −0.573572
\(536\) 0 0
\(537\) −1.74147e6 −0.260604
\(538\) 0 0
\(539\) −1.90876e7 −2.82996
\(540\) 0 0
\(541\) 6.55456e6 0.962831 0.481416 0.876492i \(-0.340123\pi\)
0.481416 + 0.876492i \(0.340123\pi\)
\(542\) 0 0
\(543\) 473903. 0.0689747
\(544\) 0 0
\(545\) −2.63987e6 −0.380707
\(546\) 0 0
\(547\) −4.13403e6 −0.590752 −0.295376 0.955381i \(-0.595445\pi\)
−0.295376 + 0.955381i \(0.595445\pi\)
\(548\) 0 0
\(549\) 1.98931e6 0.281690
\(550\) 0 0
\(551\) 2.53834e6 0.356181
\(552\) 0 0
\(553\) 1.71019e7 2.37811
\(554\) 0 0
\(555\) 633842. 0.0873471
\(556\) 0 0
\(557\) −1.13647e7 −1.55211 −0.776053 0.630668i \(-0.782781\pi\)
−0.776053 + 0.630668i \(0.782781\pi\)
\(558\) 0 0
\(559\) −1.06247e7 −1.43810
\(560\) 0 0
\(561\) 890333. 0.119439
\(562\) 0 0
\(563\) −1.00795e7 −1.34019 −0.670095 0.742276i \(-0.733746\pi\)
−0.670095 + 0.742276i \(0.733746\pi\)
\(564\) 0 0
\(565\) 2.74266e6 0.361452
\(566\) 0 0
\(567\) 1.64426e6 0.214790
\(568\) 0 0
\(569\) 1.25833e7 1.62934 0.814671 0.579924i \(-0.196918\pi\)
0.814671 + 0.579924i \(0.196918\pi\)
\(570\) 0 0
\(571\) 1.32744e7 1.70382 0.851909 0.523690i \(-0.175445\pi\)
0.851909 + 0.523690i \(0.175445\pi\)
\(572\) 0 0
\(573\) 2.73499e6 0.347992
\(574\) 0 0
\(575\) 2.92399e6 0.368813
\(576\) 0 0
\(577\) −7.77405e6 −0.972093 −0.486046 0.873933i \(-0.661561\pi\)
−0.486046 + 0.873933i \(0.661561\pi\)
\(578\) 0 0
\(579\) 1.21127e6 0.150157
\(580\) 0 0
\(581\) −566580. −0.0696339
\(582\) 0 0
\(583\) 8.33631e6 1.01579
\(584\) 0 0
\(585\) −1.76168e6 −0.212832
\(586\) 0 0
\(587\) 9.72112e6 1.16445 0.582225 0.813027i \(-0.302182\pi\)
0.582225 + 0.813027i \(0.302182\pi\)
\(588\) 0 0
\(589\) −178938. −0.0212527
\(590\) 0 0
\(591\) −5.85986e6 −0.690111
\(592\) 0 0
\(593\) −9.51207e6 −1.11081 −0.555403 0.831581i \(-0.687436\pi\)
−0.555403 + 0.831581i \(0.687436\pi\)
\(594\) 0 0
\(595\) −1.41105e6 −0.163399
\(596\) 0 0
\(597\) 2.62593e6 0.301542
\(598\) 0 0
\(599\) −2.79130e6 −0.317863 −0.158931 0.987290i \(-0.550805\pi\)
−0.158931 + 0.987290i \(0.550805\pi\)
\(600\) 0 0
\(601\) −1.71913e6 −0.194143 −0.0970716 0.995277i \(-0.530948\pi\)
−0.0970716 + 0.995277i \(0.530948\pi\)
\(602\) 0 0
\(603\) 4.81805e6 0.539607
\(604\) 0 0
\(605\) 263043. 0.0292172
\(606\) 0 0
\(607\) 1.11303e7 1.22612 0.613061 0.790035i \(-0.289938\pi\)
0.613061 + 0.790035i \(0.289938\pi\)
\(608\) 0 0
\(609\) 1.58594e7 1.73278
\(610\) 0 0
\(611\) −1.83770e7 −1.99146
\(612\) 0 0
\(613\) 998180. 0.107290 0.0536448 0.998560i \(-0.482916\pi\)
0.0536448 + 0.998560i \(0.482916\pi\)
\(614\) 0 0
\(615\) 1.98513e6 0.211641
\(616\) 0 0
\(617\) −5.14322e6 −0.543904 −0.271952 0.962311i \(-0.587669\pi\)
−0.271952 + 0.962311i \(0.587669\pi\)
\(618\) 0 0
\(619\) 1.51122e7 1.58526 0.792632 0.609701i \(-0.208710\pi\)
0.792632 + 0.609701i \(0.208710\pi\)
\(620\) 0 0
\(621\) −830310. −0.0863995
\(622\) 0 0
\(623\) 187819. 0.0193874
\(624\) 0 0
\(625\) 4.84753e6 0.496387
\(626\) 0 0
\(627\) −1.34819e6 −0.136957
\(628\) 0 0
\(629\) −710908. −0.0716451
\(630\) 0 0
\(631\) 3.02455e6 0.302404 0.151202 0.988503i \(-0.451686\pi\)
0.151202 + 0.988503i \(0.451686\pi\)
\(632\) 0 0
\(633\) −9.45644e6 −0.938034
\(634\) 0 0
\(635\) 143180. 0.0140912
\(636\) 0 0
\(637\) −4.23603e7 −4.13628
\(638\) 0 0
\(639\) 375496. 0.0363792
\(640\) 0 0
\(641\) −6.09294e6 −0.585709 −0.292855 0.956157i \(-0.594605\pi\)
−0.292855 + 0.956157i \(0.594605\pi\)
\(642\) 0 0
\(643\) −7.43059e6 −0.708755 −0.354377 0.935103i \(-0.615307\pi\)
−0.354377 + 0.935103i \(0.615307\pi\)
\(644\) 0 0
\(645\) 2.45236e6 0.232105
\(646\) 0 0
\(647\) 1.75431e6 0.164758 0.0823789 0.996601i \(-0.473748\pi\)
0.0823789 + 0.996601i \(0.473748\pi\)
\(648\) 0 0
\(649\) −2.02683e7 −1.88888
\(650\) 0 0
\(651\) −1.11799e6 −0.103392
\(652\) 0 0
\(653\) −6.02593e6 −0.553021 −0.276510 0.961011i \(-0.589178\pi\)
−0.276510 + 0.961011i \(0.589178\pi\)
\(654\) 0 0
\(655\) −2.71943e6 −0.247670
\(656\) 0 0
\(657\) −2.16033e6 −0.195257
\(658\) 0 0
\(659\) 1.15725e7 1.03804 0.519018 0.854763i \(-0.326298\pi\)
0.519018 + 0.854763i \(0.326298\pi\)
\(660\) 0 0
\(661\) −8.34628e6 −0.743001 −0.371500 0.928433i \(-0.621157\pi\)
−0.371500 + 0.928433i \(0.621157\pi\)
\(662\) 0 0
\(663\) 1.97587e6 0.174572
\(664\) 0 0
\(665\) 2.13669e6 0.187364
\(666\) 0 0
\(667\) −8.00857e6 −0.697012
\(668\) 0 0
\(669\) 737944. 0.0637468
\(670\) 0 0
\(671\) −1.01911e7 −0.873802
\(672\) 0 0
\(673\) −5.33266e6 −0.453843 −0.226922 0.973913i \(-0.572866\pi\)
−0.226922 + 0.973913i \(0.572866\pi\)
\(674\) 0 0
\(675\) −1.87150e6 −0.158100
\(676\) 0 0
\(677\) 2.14247e7 1.79656 0.898282 0.439418i \(-0.144815\pi\)
0.898282 + 0.439418i \(0.144815\pi\)
\(678\) 0 0
\(679\) 2.20805e7 1.83795
\(680\) 0 0
\(681\) −8.20376e6 −0.677868
\(682\) 0 0
\(683\) −2.01614e7 −1.65375 −0.826874 0.562388i \(-0.809883\pi\)
−0.826874 + 0.562388i \(0.809883\pi\)
\(684\) 0 0
\(685\) 7.71448e6 0.628174
\(686\) 0 0
\(687\) −5.94734e6 −0.480763
\(688\) 0 0
\(689\) 1.85004e7 1.48468
\(690\) 0 0
\(691\) −1.54453e7 −1.23056 −0.615279 0.788310i \(-0.710957\pi\)
−0.615279 + 0.788310i \(0.710957\pi\)
\(692\) 0 0
\(693\) −8.42342e6 −0.666278
\(694\) 0 0
\(695\) 5.39934e6 0.424013
\(696\) 0 0
\(697\) −2.22649e6 −0.173596
\(698\) 0 0
\(699\) 7.79625e6 0.603521
\(700\) 0 0
\(701\) −3.36415e6 −0.258571 −0.129285 0.991607i \(-0.541268\pi\)
−0.129285 + 0.991607i \(0.541268\pi\)
\(702\) 0 0
\(703\) 1.07650e6 0.0821532
\(704\) 0 0
\(705\) 4.24171e6 0.321417
\(706\) 0 0
\(707\) −3.14276e7 −2.36463
\(708\) 0 0
\(709\) 9.46957e6 0.707481 0.353740 0.935344i \(-0.384910\pi\)
0.353740 + 0.935344i \(0.384910\pi\)
\(710\) 0 0
\(711\) 5.52749e6 0.410066
\(712\) 0 0
\(713\) 564557. 0.0415895
\(714\) 0 0
\(715\) 9.02493e6 0.660205
\(716\) 0 0
\(717\) 3.47185e6 0.252210
\(718\) 0 0
\(719\) 1.17104e7 0.844790 0.422395 0.906412i \(-0.361189\pi\)
0.422395 + 0.906412i \(0.361189\pi\)
\(720\) 0 0
\(721\) 2.76219e7 1.97886
\(722\) 0 0
\(723\) −1.14461e7 −0.814355
\(724\) 0 0
\(725\) −1.80511e7 −1.27544
\(726\) 0 0
\(727\) −1.55978e7 −1.09453 −0.547265 0.836959i \(-0.684331\pi\)
−0.547265 + 0.836959i \(0.684331\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −2.75053e6 −0.190381
\(732\) 0 0
\(733\) 172411. 0.0118523 0.00592617 0.999982i \(-0.498114\pi\)
0.00592617 + 0.999982i \(0.498114\pi\)
\(734\) 0 0
\(735\) 9.77744e6 0.667585
\(736\) 0 0
\(737\) −2.46825e7 −1.67386
\(738\) 0 0
\(739\) 1.29022e6 0.0869064 0.0434532 0.999055i \(-0.486164\pi\)
0.0434532 + 0.999055i \(0.486164\pi\)
\(740\) 0 0
\(741\) −2.99198e6 −0.200176
\(742\) 0 0
\(743\) 3.69707e6 0.245689 0.122844 0.992426i \(-0.460798\pi\)
0.122844 + 0.992426i \(0.460798\pi\)
\(744\) 0 0
\(745\) 5.32068e6 0.351218
\(746\) 0 0
\(747\) −183124. −0.0120072
\(748\) 0 0
\(749\) −4.02940e7 −2.62444
\(750\) 0 0
\(751\) 188742. 0.0122115 0.00610575 0.999981i \(-0.498056\pi\)
0.00610575 + 0.999981i \(0.498056\pi\)
\(752\) 0 0
\(753\) 1.02128e7 0.656382
\(754\) 0 0
\(755\) −2.42136e6 −0.154594
\(756\) 0 0
\(757\) −2.13322e7 −1.35299 −0.676497 0.736446i \(-0.736503\pi\)
−0.676497 + 0.736446i \(0.736503\pi\)
\(758\) 0 0
\(759\) 4.25361e6 0.268011
\(760\) 0 0
\(761\) −2.83469e7 −1.77437 −0.887185 0.461414i \(-0.847342\pi\)
−0.887185 + 0.461414i \(0.847342\pi\)
\(762\) 0 0
\(763\) −2.80124e7 −1.74197
\(764\) 0 0
\(765\) −456063. −0.0281755
\(766\) 0 0
\(767\) −4.49804e7 −2.76080
\(768\) 0 0
\(769\) 2.37153e7 1.44615 0.723073 0.690772i \(-0.242729\pi\)
0.723073 + 0.690772i \(0.242729\pi\)
\(770\) 0 0
\(771\) −1.16275e6 −0.0704450
\(772\) 0 0
\(773\) 92234.1 0.00555192 0.00277596 0.999996i \(-0.499116\pi\)
0.00277596 + 0.999996i \(0.499116\pi\)
\(774\) 0 0
\(775\) 1.27250e6 0.0761033
\(776\) 0 0
\(777\) 6.72588e6 0.399666
\(778\) 0 0
\(779\) 3.37148e6 0.199057
\(780\) 0 0
\(781\) −1.92364e6 −0.112848
\(782\) 0 0
\(783\) 5.12589e6 0.298789
\(784\) 0 0
\(785\) 1.04294e7 0.604070
\(786\) 0 0
\(787\) −350387. −0.0201656 −0.0100828 0.999949i \(-0.503210\pi\)
−0.0100828 + 0.999949i \(0.503210\pi\)
\(788\) 0 0
\(789\) −8.22382e6 −0.470307
\(790\) 0 0
\(791\) 2.91031e7 1.65386
\(792\) 0 0
\(793\) −2.26165e7 −1.27715
\(794\) 0 0
\(795\) −4.27018e6 −0.239623
\(796\) 0 0
\(797\) 9.25461e6 0.516074 0.258037 0.966135i \(-0.416924\pi\)
0.258037 + 0.966135i \(0.416924\pi\)
\(798\) 0 0
\(799\) −4.75744e6 −0.263637
\(800\) 0 0
\(801\) 60704.9 0.00334305
\(802\) 0 0
\(803\) 1.10672e7 0.605688
\(804\) 0 0
\(805\) −6.74134e6 −0.366654
\(806\) 0 0
\(807\) −4.14663e6 −0.224136
\(808\) 0 0
\(809\) −2.94050e6 −0.157961 −0.0789805 0.996876i \(-0.525166\pi\)
−0.0789805 + 0.996876i \(0.525166\pi\)
\(810\) 0 0
\(811\) −2.12110e7 −1.13242 −0.566211 0.824260i \(-0.691591\pi\)
−0.566211 + 0.824260i \(0.691591\pi\)
\(812\) 0 0
\(813\) 6.53660e6 0.346837
\(814\) 0 0
\(815\) 1.06524e7 0.561765
\(816\) 0 0
\(817\) 4.16501e6 0.218303
\(818\) 0 0
\(819\) −1.86937e7 −0.973835
\(820\) 0 0
\(821\) −28537.6 −0.00147761 −0.000738804 1.00000i \(-0.500235\pi\)
−0.000738804 1.00000i \(0.500235\pi\)
\(822\) 0 0
\(823\) 1.60864e7 0.827863 0.413931 0.910308i \(-0.364155\pi\)
0.413931 + 0.910308i \(0.364155\pi\)
\(824\) 0 0
\(825\) 9.58754e6 0.490425
\(826\) 0 0
\(827\) 1.43894e7 0.731607 0.365803 0.930692i \(-0.380794\pi\)
0.365803 + 0.930692i \(0.380794\pi\)
\(828\) 0 0
\(829\) 2.29442e7 1.15954 0.579771 0.814779i \(-0.303142\pi\)
0.579771 + 0.814779i \(0.303142\pi\)
\(830\) 0 0
\(831\) −5.30046e6 −0.266263
\(832\) 0 0
\(833\) −1.09662e7 −0.547577
\(834\) 0 0
\(835\) −1.05776e7 −0.525016
\(836\) 0 0
\(837\) −361345. −0.0178283
\(838\) 0 0
\(839\) 3.34833e7 1.64219 0.821095 0.570792i \(-0.193364\pi\)
0.821095 + 0.570792i \(0.193364\pi\)
\(840\) 0 0
\(841\) 2.89295e7 1.41043
\(842\) 0 0
\(843\) 1.00471e6 0.0486935
\(844\) 0 0
\(845\) 1.12596e7 0.542477
\(846\) 0 0
\(847\) 2.79123e6 0.133686
\(848\) 0 0
\(849\) 6.17658e6 0.294089
\(850\) 0 0
\(851\) −3.39640e6 −0.160766
\(852\) 0 0
\(853\) −9.55702e6 −0.449728 −0.224864 0.974390i \(-0.572194\pi\)
−0.224864 + 0.974390i \(0.572194\pi\)
\(854\) 0 0
\(855\) 690597. 0.0323080
\(856\) 0 0
\(857\) 1.69429e7 0.788019 0.394009 0.919106i \(-0.371088\pi\)
0.394009 + 0.919106i \(0.371088\pi\)
\(858\) 0 0
\(859\) 6.40368e6 0.296106 0.148053 0.988979i \(-0.452699\pi\)
0.148053 + 0.988979i \(0.452699\pi\)
\(860\) 0 0
\(861\) 2.10648e7 0.968387
\(862\) 0 0
\(863\) −3.12340e6 −0.142758 −0.0713791 0.997449i \(-0.522740\pi\)
−0.0713791 + 0.997449i \(0.522740\pi\)
\(864\) 0 0
\(865\) −9.02067e6 −0.409919
\(866\) 0 0
\(867\) −1.22672e7 −0.554240
\(868\) 0 0
\(869\) −2.83169e7 −1.27203
\(870\) 0 0
\(871\) −5.47766e7 −2.44652
\(872\) 0 0
\(873\) 7.13661e6 0.316925
\(874\) 0 0
\(875\) −3.36911e7 −1.48763
\(876\) 0 0
\(877\) 3.31907e7 1.45719 0.728597 0.684943i \(-0.240173\pi\)
0.728597 + 0.684943i \(0.240173\pi\)
\(878\) 0 0
\(879\) −1.68961e7 −0.737587
\(880\) 0 0
\(881\) 3.73467e7 1.62111 0.810555 0.585662i \(-0.199165\pi\)
0.810555 + 0.585662i \(0.199165\pi\)
\(882\) 0 0
\(883\) 3.95144e7 1.70551 0.852753 0.522314i \(-0.174931\pi\)
0.852753 + 0.522314i \(0.174931\pi\)
\(884\) 0 0
\(885\) 1.03822e7 0.445586
\(886\) 0 0
\(887\) −3.39325e7 −1.44813 −0.724064 0.689732i \(-0.757728\pi\)
−0.724064 + 0.689732i \(0.757728\pi\)
\(888\) 0 0
\(889\) 1.51932e6 0.0644757
\(890\) 0 0
\(891\) −2.72253e6 −0.114889
\(892\) 0 0
\(893\) 7.20399e6 0.302304
\(894\) 0 0
\(895\) −4.56990e6 −0.190699
\(896\) 0 0
\(897\) 9.43983e6 0.391726
\(898\) 0 0
\(899\) −3.48528e6 −0.143826
\(900\) 0 0
\(901\) 4.78938e6 0.196547
\(902\) 0 0
\(903\) 2.60227e7 1.06202
\(904\) 0 0
\(905\) 1.24360e6 0.0504729
\(906\) 0 0
\(907\) 1.00269e7 0.404716 0.202358 0.979312i \(-0.435140\pi\)
0.202358 + 0.979312i \(0.435140\pi\)
\(908\) 0 0
\(909\) −1.01577e7 −0.407742
\(910\) 0 0
\(911\) 6.57126e6 0.262333 0.131166 0.991360i \(-0.458128\pi\)
0.131166 + 0.991360i \(0.458128\pi\)
\(912\) 0 0
\(913\) 938128. 0.0372465
\(914\) 0 0
\(915\) 5.22026e6 0.206129
\(916\) 0 0
\(917\) −2.88566e7 −1.13324
\(918\) 0 0
\(919\) 7.60638e6 0.297091 0.148545 0.988906i \(-0.452541\pi\)
0.148545 + 0.988906i \(0.452541\pi\)
\(920\) 0 0
\(921\) −3.57038e6 −0.138696
\(922\) 0 0
\(923\) −4.26903e6 −0.164940
\(924\) 0 0
\(925\) −7.65541e6 −0.294181
\(926\) 0 0
\(927\) 8.92767e6 0.341223
\(928\) 0 0
\(929\) −3.40362e7 −1.29390 −0.646951 0.762532i \(-0.723956\pi\)
−0.646951 + 0.762532i \(0.723956\pi\)
\(930\) 0 0
\(931\) 1.66057e7 0.627889
\(932\) 0 0
\(933\) 1.07043e7 0.402580
\(934\) 0 0
\(935\) 2.33637e6 0.0874004
\(936\) 0 0
\(937\) 1.77553e6 0.0660663 0.0330332 0.999454i \(-0.489483\pi\)
0.0330332 + 0.999454i \(0.489483\pi\)
\(938\) 0 0
\(939\) −7.00237e6 −0.259168
\(940\) 0 0
\(941\) 1.16181e7 0.427721 0.213860 0.976864i \(-0.431396\pi\)
0.213860 + 0.976864i \(0.431396\pi\)
\(942\) 0 0
\(943\) −1.06372e7 −0.389535
\(944\) 0 0
\(945\) 4.31481e6 0.157174
\(946\) 0 0
\(947\) −3.38853e7 −1.22782 −0.613912 0.789374i \(-0.710405\pi\)
−0.613912 + 0.789374i \(0.710405\pi\)
\(948\) 0 0
\(949\) 2.45609e7 0.885277
\(950\) 0 0
\(951\) 3.17325e7 1.13777
\(952\) 0 0
\(953\) −2.44407e7 −0.871729 −0.435864 0.900012i \(-0.643557\pi\)
−0.435864 + 0.900012i \(0.643557\pi\)
\(954\) 0 0
\(955\) 7.17705e6 0.254646
\(956\) 0 0
\(957\) −2.62595e7 −0.926845
\(958\) 0 0
\(959\) 8.18606e7 2.87427
\(960\) 0 0
\(961\) −2.83835e7 −0.991418
\(962\) 0 0
\(963\) −1.30234e7 −0.452542
\(964\) 0 0
\(965\) 3.17858e6 0.109879
\(966\) 0 0
\(967\) 3.67340e7 1.26329 0.631644 0.775258i \(-0.282380\pi\)
0.631644 + 0.775258i \(0.282380\pi\)
\(968\) 0 0
\(969\) −774564. −0.0265001
\(970\) 0 0
\(971\) 3.43205e7 1.16817 0.584085 0.811693i \(-0.301454\pi\)
0.584085 + 0.811693i \(0.301454\pi\)
\(972\) 0 0
\(973\) 5.72940e7 1.94011
\(974\) 0 0
\(975\) 2.12772e7 0.716807
\(976\) 0 0
\(977\) −8.40409e6 −0.281679 −0.140839 0.990032i \(-0.544980\pi\)
−0.140839 + 0.990032i \(0.544980\pi\)
\(978\) 0 0
\(979\) −310986. −0.0103701
\(980\) 0 0
\(981\) −9.05388e6 −0.300374
\(982\) 0 0
\(983\) −1.87755e7 −0.619738 −0.309869 0.950779i \(-0.600285\pi\)
−0.309869 + 0.950779i \(0.600285\pi\)
\(984\) 0 0
\(985\) −1.53772e7 −0.504995
\(986\) 0 0
\(987\) 4.50100e7 1.47067
\(988\) 0 0
\(989\) −1.31408e7 −0.427199
\(990\) 0 0
\(991\) 1.98114e6 0.0640814 0.0320407 0.999487i \(-0.489799\pi\)
0.0320407 + 0.999487i \(0.489799\pi\)
\(992\) 0 0
\(993\) −1.99022e7 −0.640512
\(994\) 0 0
\(995\) 6.89086e6 0.220656
\(996\) 0 0
\(997\) 1.55752e6 0.0496244 0.0248122 0.999692i \(-0.492101\pi\)
0.0248122 + 0.999692i \(0.492101\pi\)
\(998\) 0 0
\(999\) 2.17387e6 0.0689159
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.6.a.r.1.3 4
4.3 odd 2 57.6.a.f.1.3 4
12.11 even 2 171.6.a.j.1.2 4
76.75 even 2 1083.6.a.g.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.6.a.f.1.3 4 4.3 odd 2
171.6.a.j.1.2 4 12.11 even 2
912.6.a.r.1.3 4 1.1 even 1 trivial
1083.6.a.g.1.2 4 76.75 even 2