Properties

Label 171.6.a.j.1.2
Level $171$
Weight $6$
Character 171.1
Self dual yes
Analytic conductor $27.426$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Error: no document with id 228956422 found in table mf_hecke_traces.

Error: table True does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [171,6,Mod(1,171)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("171.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(171, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 171.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,0,53,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.4256331880\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 90x^{2} + 118x + 1412 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(5.82184\) of defining polynomial
Character \(\chi\) \(=\) 171.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.82184 q^{2} +1.89382 q^{4} -23.6174 q^{5} -250.612 q^{7} +175.273 q^{8} +137.497 q^{10} -414.956 q^{11} -920.892 q^{13} +1459.02 q^{14} -1081.02 q^{16} +238.401 q^{17} -361.000 q^{19} -44.7271 q^{20} +2415.81 q^{22} -1138.97 q^{23} -2567.22 q^{25} +5361.29 q^{26} -474.613 q^{28} -7031.41 q^{29} +495.673 q^{31} +684.752 q^{32} -1387.93 q^{34} +5918.80 q^{35} +2981.99 q^{37} +2101.68 q^{38} -4139.51 q^{40} -9339.27 q^{41} -11537.4 q^{43} -785.851 q^{44} +6630.91 q^{46} +19955.6 q^{47} +45999.2 q^{49} +14945.9 q^{50} -1744.00 q^{52} +20089.6 q^{53} +9800.20 q^{55} -43925.5 q^{56} +40935.7 q^{58} +48844.4 q^{59} +24559.4 q^{61} -2885.73 q^{62} +30606.0 q^{64} +21749.1 q^{65} -59482.1 q^{67} +451.487 q^{68} -34458.3 q^{70} +4635.76 q^{71} -26670.8 q^{73} -17360.6 q^{74} -683.668 q^{76} +103993. q^{77} -68240.6 q^{79} +25530.8 q^{80} +54371.8 q^{82} -2260.79 q^{83} -5630.41 q^{85} +67169.0 q^{86} -72730.8 q^{88} -749.444 q^{89} +230786. q^{91} -2157.00 q^{92} -116179. q^{94} +8525.89 q^{95} +88106.3 q^{97} -267800. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 53 q^{4} + 8 q^{5} - 142 q^{7} + 147 q^{8} - 496 q^{10} + 714 q^{11} - 74 q^{13} + 2790 q^{14} - 2839 q^{16} + 3690 q^{17} - 1444 q^{19} + 5158 q^{20} - 1582 q^{22} - 862 q^{23} + 3282 q^{25}+ \cdots - 178319 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.82184 −1.02917 −0.514583 0.857441i \(-0.672053\pi\)
−0.514583 + 0.857441i \(0.672053\pi\)
\(3\) 0 0
\(4\) 1.89382 0.0591818
\(5\) −23.6174 −0.422482 −0.211241 0.977434i \(-0.567750\pi\)
−0.211241 + 0.977434i \(0.567750\pi\)
\(6\) 0 0
\(7\) −250.612 −1.93311 −0.966554 0.256464i \(-0.917443\pi\)
−0.966554 + 0.256464i \(0.917443\pi\)
\(8\) 175.273 0.968258
\(9\) 0 0
\(10\) 137.497 0.434803
\(11\) −414.956 −1.03400 −0.517000 0.855985i \(-0.672951\pi\)
−0.517000 + 0.855985i \(0.672951\pi\)
\(12\) 0 0
\(13\) −920.892 −1.51130 −0.755650 0.654976i \(-0.772679\pi\)
−0.755650 + 0.654976i \(0.772679\pi\)
\(14\) 1459.02 1.98949
\(15\) 0 0
\(16\) −1081.02 −1.05568
\(17\) 238.401 0.200071 0.100036 0.994984i \(-0.468104\pi\)
0.100036 + 0.994984i \(0.468104\pi\)
\(18\) 0 0
\(19\) −361.000 −0.229416
\(20\) −44.7271 −0.0250032
\(21\) 0 0
\(22\) 2415.81 1.06416
\(23\) −1138.97 −0.448945 −0.224472 0.974480i \(-0.572066\pi\)
−0.224472 + 0.974480i \(0.572066\pi\)
\(24\) 0 0
\(25\) −2567.22 −0.821509
\(26\) 5361.29 1.55538
\(27\) 0 0
\(28\) −474.613 −0.114405
\(29\) −7031.41 −1.55256 −0.776278 0.630391i \(-0.782895\pi\)
−0.776278 + 0.630391i \(0.782895\pi\)
\(30\) 0 0
\(31\) 495.673 0.0926384 0.0463192 0.998927i \(-0.485251\pi\)
0.0463192 + 0.998927i \(0.485251\pi\)
\(32\) 684.752 0.118211
\(33\) 0 0
\(34\) −1387.93 −0.205907
\(35\) 5918.80 0.816702
\(36\) 0 0
\(37\) 2981.99 0.358098 0.179049 0.983840i \(-0.442698\pi\)
0.179049 + 0.983840i \(0.442698\pi\)
\(38\) 2101.68 0.236107
\(39\) 0 0
\(40\) −4139.51 −0.409071
\(41\) −9339.27 −0.867668 −0.433834 0.900993i \(-0.642840\pi\)
−0.433834 + 0.900993i \(0.642840\pi\)
\(42\) 0 0
\(43\) −11537.4 −0.951563 −0.475781 0.879564i \(-0.657835\pi\)
−0.475781 + 0.879564i \(0.657835\pi\)
\(44\) −785.851 −0.0611940
\(45\) 0 0
\(46\) 6630.91 0.462039
\(47\) 19955.6 1.31771 0.658857 0.752268i \(-0.271040\pi\)
0.658857 + 0.752268i \(0.271040\pi\)
\(48\) 0 0
\(49\) 45999.2 2.73690
\(50\) 14945.9 0.845469
\(51\) 0 0
\(52\) −1744.00 −0.0894414
\(53\) 20089.6 0.982385 0.491193 0.871051i \(-0.336561\pi\)
0.491193 + 0.871051i \(0.336561\pi\)
\(54\) 0 0
\(55\) 9800.20 0.436846
\(56\) −43925.5 −1.87175
\(57\) 0 0
\(58\) 40935.7 1.59784
\(59\) 48844.4 1.82677 0.913387 0.407093i \(-0.133457\pi\)
0.913387 + 0.407093i \(0.133457\pi\)
\(60\) 0 0
\(61\) 24559.4 0.845069 0.422535 0.906347i \(-0.361140\pi\)
0.422535 + 0.906347i \(0.361140\pi\)
\(62\) −2885.73 −0.0953402
\(63\) 0 0
\(64\) 30606.0 0.934021
\(65\) 21749.1 0.638496
\(66\) 0 0
\(67\) −59482.1 −1.61882 −0.809411 0.587243i \(-0.800213\pi\)
−0.809411 + 0.587243i \(0.800213\pi\)
\(68\) 451.487 0.0118406
\(69\) 0 0
\(70\) −34458.3 −0.840522
\(71\) 4635.76 0.109138 0.0545689 0.998510i \(-0.482622\pi\)
0.0545689 + 0.998510i \(0.482622\pi\)
\(72\) 0 0
\(73\) −26670.8 −0.585772 −0.292886 0.956147i \(-0.594616\pi\)
−0.292886 + 0.956147i \(0.594616\pi\)
\(74\) −17360.6 −0.368542
\(75\) 0 0
\(76\) −683.668 −0.0135772
\(77\) 103993. 1.99883
\(78\) 0 0
\(79\) −68240.6 −1.23020 −0.615100 0.788449i \(-0.710884\pi\)
−0.615100 + 0.788449i \(0.710884\pi\)
\(80\) 25530.8 0.446005
\(81\) 0 0
\(82\) 54371.8 0.892974
\(83\) −2260.79 −0.0360217 −0.0180109 0.999838i \(-0.505733\pi\)
−0.0180109 + 0.999838i \(0.505733\pi\)
\(84\) 0 0
\(85\) −5630.41 −0.0845265
\(86\) 67169.0 0.979315
\(87\) 0 0
\(88\) −72730.8 −1.00118
\(89\) −749.444 −0.0100291 −0.00501457 0.999987i \(-0.501596\pi\)
−0.00501457 + 0.999987i \(0.501596\pi\)
\(90\) 0 0
\(91\) 230786. 2.92150
\(92\) −2157.00 −0.0265694
\(93\) 0 0
\(94\) −116179. −1.35615
\(95\) 8525.89 0.0969239
\(96\) 0 0
\(97\) 88106.3 0.950775 0.475387 0.879777i \(-0.342308\pi\)
0.475387 + 0.879777i \(0.342308\pi\)
\(98\) −267800. −2.81673
\(99\) 0 0
\(100\) −4861.84 −0.0486184
\(101\) 125404. 1.22323 0.611613 0.791157i \(-0.290521\pi\)
0.611613 + 0.791157i \(0.290521\pi\)
\(102\) 0 0
\(103\) −110218. −1.02367 −0.511835 0.859084i \(-0.671034\pi\)
−0.511835 + 0.859084i \(0.671034\pi\)
\(104\) −161408. −1.46333
\(105\) 0 0
\(106\) −116958. −1.01104
\(107\) −160783. −1.35763 −0.678813 0.734311i \(-0.737505\pi\)
−0.678813 + 0.734311i \(0.737505\pi\)
\(108\) 0 0
\(109\) −111776. −0.901122 −0.450561 0.892746i \(-0.648776\pi\)
−0.450561 + 0.892746i \(0.648776\pi\)
\(110\) −57055.2 −0.449587
\(111\) 0 0
\(112\) 270915. 2.04074
\(113\) −116128. −0.855544 −0.427772 0.903887i \(-0.640701\pi\)
−0.427772 + 0.903887i \(0.640701\pi\)
\(114\) 0 0
\(115\) 26899.6 0.189671
\(116\) −13316.2 −0.0918830
\(117\) 0 0
\(118\) −284364. −1.88005
\(119\) −59746.0 −0.386760
\(120\) 0 0
\(121\) 11137.7 0.0691561
\(122\) −142981. −0.869716
\(123\) 0 0
\(124\) 938.714 0.00548250
\(125\) 134436. 0.769554
\(126\) 0 0
\(127\) −6062.47 −0.0333534 −0.0166767 0.999861i \(-0.505309\pi\)
−0.0166767 + 0.999861i \(0.505309\pi\)
\(128\) −200095. −1.07947
\(129\) 0 0
\(130\) −126620. −0.657118
\(131\) −115145. −0.586228 −0.293114 0.956078i \(-0.594692\pi\)
−0.293114 + 0.956078i \(0.594692\pi\)
\(132\) 0 0
\(133\) 90470.8 0.443485
\(134\) 346295. 1.66604
\(135\) 0 0
\(136\) 41785.3 0.193721
\(137\) −326643. −1.48687 −0.743434 0.668810i \(-0.766804\pi\)
−0.743434 + 0.668810i \(0.766804\pi\)
\(138\) 0 0
\(139\) −228617. −1.00362 −0.501812 0.864977i \(-0.667333\pi\)
−0.501812 + 0.864977i \(0.667333\pi\)
\(140\) 11209.1 0.0483339
\(141\) 0 0
\(142\) −26988.6 −0.112321
\(143\) 382130. 1.56268
\(144\) 0 0
\(145\) 166064. 0.655926
\(146\) 155273. 0.602857
\(147\) 0 0
\(148\) 5647.34 0.0211929
\(149\) −225286. −0.831321 −0.415661 0.909520i \(-0.636450\pi\)
−0.415661 + 0.909520i \(0.636450\pi\)
\(150\) 0 0
\(151\) 102524. 0.365918 0.182959 0.983121i \(-0.441432\pi\)
0.182959 + 0.983121i \(0.441432\pi\)
\(152\) −63273.7 −0.222134
\(153\) 0 0
\(154\) −605430. −2.05713
\(155\) −11706.5 −0.0391380
\(156\) 0 0
\(157\) 441599. 1.42981 0.714906 0.699220i \(-0.246469\pi\)
0.714906 + 0.699220i \(0.246469\pi\)
\(158\) 397286. 1.26608
\(159\) 0 0
\(160\) −16172.1 −0.0499420
\(161\) 285439. 0.867859
\(162\) 0 0
\(163\) −451041. −1.32968 −0.664839 0.746986i \(-0.731500\pi\)
−0.664839 + 0.746986i \(0.731500\pi\)
\(164\) −17686.9 −0.0513501
\(165\) 0 0
\(166\) 13161.9 0.0370723
\(167\) −447874. −1.24270 −0.621348 0.783535i \(-0.713415\pi\)
−0.621348 + 0.783535i \(0.713415\pi\)
\(168\) 0 0
\(169\) 476750. 1.28403
\(170\) 32779.4 0.0869918
\(171\) 0 0
\(172\) −21849.8 −0.0563152
\(173\) 381949. 0.970266 0.485133 0.874440i \(-0.338771\pi\)
0.485133 + 0.874440i \(0.338771\pi\)
\(174\) 0 0
\(175\) 643374. 1.58807
\(176\) 448574. 1.09157
\(177\) 0 0
\(178\) 4363.14 0.0103217
\(179\) −193497. −0.451379 −0.225690 0.974199i \(-0.572464\pi\)
−0.225690 + 0.974199i \(0.572464\pi\)
\(180\) 0 0
\(181\) 52655.8 0.119468 0.0597338 0.998214i \(-0.480975\pi\)
0.0597338 + 0.998214i \(0.480975\pi\)
\(182\) −1.34360e6 −3.00671
\(183\) 0 0
\(184\) −199631. −0.434694
\(185\) −70426.9 −0.151290
\(186\) 0 0
\(187\) −98925.8 −0.206874
\(188\) 37792.4 0.0779847
\(189\) 0 0
\(190\) −49636.4 −0.0997507
\(191\) 303888. 0.602739 0.301370 0.953507i \(-0.402556\pi\)
0.301370 + 0.953507i \(0.402556\pi\)
\(192\) 0 0
\(193\) 134586. 0.260080 0.130040 0.991509i \(-0.458489\pi\)
0.130040 + 0.991509i \(0.458489\pi\)
\(194\) −512941. −0.978505
\(195\) 0 0
\(196\) 87114.0 0.161975
\(197\) 651096. 1.19531 0.597654 0.801754i \(-0.296100\pi\)
0.597654 + 0.801754i \(0.296100\pi\)
\(198\) 0 0
\(199\) −291770. −0.522286 −0.261143 0.965300i \(-0.584099\pi\)
−0.261143 + 0.965300i \(0.584099\pi\)
\(200\) −449965. −0.795433
\(201\) 0 0
\(202\) −730080. −1.25890
\(203\) 1.76215e6 3.00126
\(204\) 0 0
\(205\) 220570. 0.366574
\(206\) 641673. 1.05353
\(207\) 0 0
\(208\) 995499. 1.59545
\(209\) 149799. 0.237216
\(210\) 0 0
\(211\) 1.05072e6 1.62472 0.812361 0.583154i \(-0.198182\pi\)
0.812361 + 0.583154i \(0.198182\pi\)
\(212\) 38046.1 0.0581393
\(213\) 0 0
\(214\) 936052. 1.39722
\(215\) 272484. 0.402018
\(216\) 0 0
\(217\) −124221. −0.179080
\(218\) 650744. 0.927404
\(219\) 0 0
\(220\) 18559.8 0.0258533
\(221\) −219541. −0.302368
\(222\) 0 0
\(223\) −81993.8 −0.110413 −0.0552063 0.998475i \(-0.517582\pi\)
−0.0552063 + 0.998475i \(0.517582\pi\)
\(224\) −171607. −0.228515
\(225\) 0 0
\(226\) 676081. 0.880497
\(227\) −911528. −1.17410 −0.587051 0.809550i \(-0.699711\pi\)
−0.587051 + 0.809550i \(0.699711\pi\)
\(228\) 0 0
\(229\) −660815. −0.832705 −0.416353 0.909203i \(-0.636692\pi\)
−0.416353 + 0.909203i \(0.636692\pi\)
\(230\) −156605. −0.195203
\(231\) 0 0
\(232\) −1.23242e6 −1.50327
\(233\) −866250. −1.04533 −0.522665 0.852538i \(-0.675062\pi\)
−0.522665 + 0.852538i \(0.675062\pi\)
\(234\) 0 0
\(235\) −471301. −0.556710
\(236\) 92502.4 0.108112
\(237\) 0 0
\(238\) 347831. 0.398040
\(239\) 385761. 0.436841 0.218421 0.975855i \(-0.429910\pi\)
0.218421 + 0.975855i \(0.429910\pi\)
\(240\) 0 0
\(241\) −1.27179e6 −1.41050 −0.705252 0.708957i \(-0.749166\pi\)
−0.705252 + 0.708957i \(0.749166\pi\)
\(242\) −64841.7 −0.0711731
\(243\) 0 0
\(244\) 46510.9 0.0500127
\(245\) −1.08638e6 −1.15629
\(246\) 0 0
\(247\) 332442. 0.346716
\(248\) 86878.2 0.0896978
\(249\) 0 0
\(250\) −782662. −0.791999
\(251\) 1.13475e6 1.13689 0.568444 0.822722i \(-0.307546\pi\)
0.568444 + 0.822722i \(0.307546\pi\)
\(252\) 0 0
\(253\) 472623. 0.464209
\(254\) 35294.7 0.0343262
\(255\) 0 0
\(256\) 185531. 0.176936
\(257\) 129194. 0.122014 0.0610071 0.998137i \(-0.480569\pi\)
0.0610071 + 0.998137i \(0.480569\pi\)
\(258\) 0 0
\(259\) −747320. −0.692241
\(260\) 41188.9 0.0377873
\(261\) 0 0
\(262\) 670355. 0.603326
\(263\) −913758. −0.814595 −0.407298 0.913295i \(-0.633529\pi\)
−0.407298 + 0.913295i \(0.633529\pi\)
\(264\) 0 0
\(265\) −474465. −0.415040
\(266\) −526706. −0.456420
\(267\) 0 0
\(268\) −112648. −0.0958048
\(269\) 460736. 0.388214 0.194107 0.980980i \(-0.437819\pi\)
0.194107 + 0.980980i \(0.437819\pi\)
\(270\) 0 0
\(271\) −726289. −0.600739 −0.300370 0.953823i \(-0.597110\pi\)
−0.300370 + 0.953823i \(0.597110\pi\)
\(272\) −257715. −0.211211
\(273\) 0 0
\(274\) 1.90166e6 1.53023
\(275\) 1.06528e6 0.849441
\(276\) 0 0
\(277\) −588940. −0.461181 −0.230590 0.973051i \(-0.574066\pi\)
−0.230590 + 0.973051i \(0.574066\pi\)
\(278\) 1.33097e6 1.03290
\(279\) 0 0
\(280\) 1.03741e6 0.790778
\(281\) −111634. −0.0843396 −0.0421698 0.999110i \(-0.513427\pi\)
−0.0421698 + 0.999110i \(0.513427\pi\)
\(282\) 0 0
\(283\) −686287. −0.509377 −0.254689 0.967023i \(-0.581973\pi\)
−0.254689 + 0.967023i \(0.581973\pi\)
\(284\) 8779.28 0.00645897
\(285\) 0 0
\(286\) −2.22470e6 −1.60826
\(287\) 2.34053e6 1.67730
\(288\) 0 0
\(289\) −1.36302e6 −0.959971
\(290\) −966797. −0.675056
\(291\) 0 0
\(292\) −50509.6 −0.0346670
\(293\) 1.87734e6 1.27754 0.638769 0.769399i \(-0.279444\pi\)
0.638769 + 0.769399i \(0.279444\pi\)
\(294\) 0 0
\(295\) −1.15358e6 −0.771778
\(296\) 522663. 0.346731
\(297\) 0 0
\(298\) 1.31158e6 0.855567
\(299\) 1.04887e6 0.678490
\(300\) 0 0
\(301\) 2.89141e6 1.83947
\(302\) −596879. −0.376590
\(303\) 0 0
\(304\) 390247. 0.242189
\(305\) −580029. −0.357026
\(306\) 0 0
\(307\) 396709. 0.240229 0.120115 0.992760i \(-0.461674\pi\)
0.120115 + 0.992760i \(0.461674\pi\)
\(308\) 196943. 0.118295
\(309\) 0 0
\(310\) 68153.5 0.0402795
\(311\) 1.18936e6 0.697290 0.348645 0.937255i \(-0.386642\pi\)
0.348645 + 0.937255i \(0.386642\pi\)
\(312\) 0 0
\(313\) −778041. −0.448892 −0.224446 0.974487i \(-0.572057\pi\)
−0.224446 + 0.974487i \(0.572057\pi\)
\(314\) −2.57092e6 −1.47151
\(315\) 0 0
\(316\) −129235. −0.0728054
\(317\) −3.52584e6 −1.97067 −0.985335 0.170630i \(-0.945420\pi\)
−0.985335 + 0.170630i \(0.945420\pi\)
\(318\) 0 0
\(319\) 2.91773e6 1.60534
\(320\) −722835. −0.394606
\(321\) 0 0
\(322\) −1.66178e6 −0.893171
\(323\) −86062.7 −0.0458995
\(324\) 0 0
\(325\) 2.36413e6 1.24155
\(326\) 2.62589e6 1.36846
\(327\) 0 0
\(328\) −1.63693e6 −0.840126
\(329\) −5.00112e6 −2.54728
\(330\) 0 0
\(331\) 2.21135e6 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(332\) −4281.52 −0.00213183
\(333\) 0 0
\(334\) 2.60745e6 1.27894
\(335\) 1.40481e6 0.683922
\(336\) 0 0
\(337\) 3.52355e6 1.69008 0.845038 0.534706i \(-0.179578\pi\)
0.845038 + 0.534706i \(0.179578\pi\)
\(338\) −2.77556e6 −1.32147
\(339\) 0 0
\(340\) −10663.0 −0.00500243
\(341\) −205683. −0.0957881
\(342\) 0 0
\(343\) −7.31589e6 −3.35762
\(344\) −2.02220e6 −0.921358
\(345\) 0 0
\(346\) −2.22365e6 −0.998564
\(347\) −3.53103e6 −1.57426 −0.787131 0.616785i \(-0.788435\pi\)
−0.787131 + 0.616785i \(0.788435\pi\)
\(348\) 0 0
\(349\) −1.25322e6 −0.550760 −0.275380 0.961335i \(-0.588804\pi\)
−0.275380 + 0.961335i \(0.588804\pi\)
\(350\) −3.74562e6 −1.63438
\(351\) 0 0
\(352\) −284142. −0.122230
\(353\) −964634. −0.412027 −0.206014 0.978549i \(-0.566049\pi\)
−0.206014 + 0.978549i \(0.566049\pi\)
\(354\) 0 0
\(355\) −109485. −0.0461087
\(356\) −1419.31 −0.000593543 0
\(357\) 0 0
\(358\) 1.12651e6 0.464544
\(359\) 1.26957e6 0.519900 0.259950 0.965622i \(-0.416294\pi\)
0.259950 + 0.965622i \(0.416294\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) −306554. −0.122952
\(363\) 0 0
\(364\) 437067. 0.172900
\(365\) 629896. 0.247478
\(366\) 0 0
\(367\) −1.26919e6 −0.491881 −0.245941 0.969285i \(-0.579097\pi\)
−0.245941 + 0.969285i \(0.579097\pi\)
\(368\) 1.23125e6 0.473942
\(369\) 0 0
\(370\) 410014. 0.155702
\(371\) −5.03469e6 −1.89906
\(372\) 0 0
\(373\) 3.47150e6 1.29195 0.645975 0.763359i \(-0.276451\pi\)
0.645975 + 0.763359i \(0.276451\pi\)
\(374\) 575930. 0.212908
\(375\) 0 0
\(376\) 3.49769e6 1.27589
\(377\) 6.47517e6 2.34638
\(378\) 0 0
\(379\) −2.84273e6 −1.01657 −0.508286 0.861188i \(-0.669721\pi\)
−0.508286 + 0.861188i \(0.669721\pi\)
\(380\) 16146.5 0.00573613
\(381\) 0 0
\(382\) −1.76918e6 −0.620319
\(383\) 1.59297e6 0.554894 0.277447 0.960741i \(-0.410512\pi\)
0.277447 + 0.960741i \(0.410512\pi\)
\(384\) 0 0
\(385\) −2.45604e6 −0.844470
\(386\) −783538. −0.267665
\(387\) 0 0
\(388\) 166857. 0.0562686
\(389\) 5.24604e6 1.75775 0.878876 0.477050i \(-0.158294\pi\)
0.878876 + 0.477050i \(0.158294\pi\)
\(390\) 0 0
\(391\) −271532. −0.0898211
\(392\) 8.06243e6 2.65003
\(393\) 0 0
\(394\) −3.79058e6 −1.23017
\(395\) 1.61167e6 0.519736
\(396\) 0 0
\(397\) −361755. −0.115196 −0.0575982 0.998340i \(-0.518344\pi\)
−0.0575982 + 0.998340i \(0.518344\pi\)
\(398\) 1.69864e6 0.537518
\(399\) 0 0
\(400\) 2.77520e6 0.867250
\(401\) 3.07851e6 0.956049 0.478025 0.878346i \(-0.341353\pi\)
0.478025 + 0.878346i \(0.341353\pi\)
\(402\) 0 0
\(403\) −456461. −0.140004
\(404\) 237492. 0.0723927
\(405\) 0 0
\(406\) −1.02590e7 −3.08879
\(407\) −1.23739e6 −0.370273
\(408\) 0 0
\(409\) 4.13583e6 1.22252 0.611258 0.791432i \(-0.290664\pi\)
0.611258 + 0.791432i \(0.290664\pi\)
\(410\) −1.28412e6 −0.377265
\(411\) 0 0
\(412\) −208733. −0.0605827
\(413\) −1.22410e7 −3.53135
\(414\) 0 0
\(415\) 53394.0 0.0152185
\(416\) −630583. −0.178652
\(417\) 0 0
\(418\) −872107. −0.244134
\(419\) −3.19560e6 −0.889238 −0.444619 0.895720i \(-0.646661\pi\)
−0.444619 + 0.895720i \(0.646661\pi\)
\(420\) 0 0
\(421\) 996574. 0.274034 0.137017 0.990569i \(-0.456249\pi\)
0.137017 + 0.990569i \(0.456249\pi\)
\(422\) −6.11710e6 −1.67211
\(423\) 0 0
\(424\) 3.52117e6 0.951202
\(425\) −612026. −0.164361
\(426\) 0 0
\(427\) −6.15486e6 −1.63361
\(428\) −304493. −0.0803467
\(429\) 0 0
\(430\) −1.58636e6 −0.413743
\(431\) 2.51955e6 0.653325 0.326662 0.945141i \(-0.394076\pi\)
0.326662 + 0.945141i \(0.394076\pi\)
\(432\) 0 0
\(433\) −3.82101e6 −0.979395 −0.489698 0.871892i \(-0.662893\pi\)
−0.489698 + 0.871892i \(0.662893\pi\)
\(434\) 723197. 0.184303
\(435\) 0 0
\(436\) −211684. −0.0533300
\(437\) 411169. 0.102995
\(438\) 0 0
\(439\) 619538. 0.153429 0.0767144 0.997053i \(-0.475557\pi\)
0.0767144 + 0.997053i \(0.475557\pi\)
\(440\) 1.71771e6 0.422979
\(441\) 0 0
\(442\) 1.27813e6 0.311187
\(443\) 1.08715e6 0.263198 0.131599 0.991303i \(-0.457989\pi\)
0.131599 + 0.991303i \(0.457989\pi\)
\(444\) 0 0
\(445\) 17699.9 0.00423713
\(446\) 477355. 0.113633
\(447\) 0 0
\(448\) −7.67021e6 −1.80556
\(449\) 4.56352e6 1.06828 0.534139 0.845397i \(-0.320636\pi\)
0.534139 + 0.845397i \(0.320636\pi\)
\(450\) 0 0
\(451\) 3.87539e6 0.897169
\(452\) −219926. −0.0506327
\(453\) 0 0
\(454\) 5.30677e6 1.20834
\(455\) −5.45058e6 −1.23428
\(456\) 0 0
\(457\) 605485. 0.135617 0.0678083 0.997698i \(-0.478399\pi\)
0.0678083 + 0.997698i \(0.478399\pi\)
\(458\) 3.84716e6 0.856992
\(459\) 0 0
\(460\) 50942.9 0.0112251
\(461\) 7.26112e6 1.59130 0.795649 0.605759i \(-0.207130\pi\)
0.795649 + 0.605759i \(0.207130\pi\)
\(462\) 0 0
\(463\) 1.84692e6 0.400400 0.200200 0.979755i \(-0.435841\pi\)
0.200200 + 0.979755i \(0.435841\pi\)
\(464\) 7.60106e6 1.63900
\(465\) 0 0
\(466\) 5.04317e6 1.07582
\(467\) −6.63166e6 −1.40712 −0.703559 0.710637i \(-0.748407\pi\)
−0.703559 + 0.710637i \(0.748407\pi\)
\(468\) 0 0
\(469\) 1.49069e7 3.12936
\(470\) 2.74384e6 0.572947
\(471\) 0 0
\(472\) 8.56112e6 1.76879
\(473\) 4.78752e6 0.983916
\(474\) 0 0
\(475\) 926765. 0.188467
\(476\) −113148. −0.0228891
\(477\) 0 0
\(478\) −2.24584e6 −0.449582
\(479\) 2.39693e6 0.477328 0.238664 0.971102i \(-0.423291\pi\)
0.238664 + 0.971102i \(0.423291\pi\)
\(480\) 0 0
\(481\) −2.74609e6 −0.541193
\(482\) 7.40418e6 1.45164
\(483\) 0 0
\(484\) 21092.7 0.00409278
\(485\) −2.08084e6 −0.401685
\(486\) 0 0
\(487\) −2.17359e6 −0.415294 −0.207647 0.978204i \(-0.566580\pi\)
−0.207647 + 0.978204i \(0.566580\pi\)
\(488\) 4.30460e6 0.818245
\(489\) 0 0
\(490\) 6.32474e6 1.19002
\(491\) −9.09470e6 −1.70249 −0.851245 0.524768i \(-0.824152\pi\)
−0.851245 + 0.524768i \(0.824152\pi\)
\(492\) 0 0
\(493\) −1.67629e6 −0.310622
\(494\) −1.93542e6 −0.356828
\(495\) 0 0
\(496\) −535830. −0.0977964
\(497\) −1.16177e6 −0.210975
\(498\) 0 0
\(499\) 8.69614e6 1.56342 0.781709 0.623644i \(-0.214348\pi\)
0.781709 + 0.623644i \(0.214348\pi\)
\(500\) 254596. 0.0455436
\(501\) 0 0
\(502\) −6.60636e6 −1.17005
\(503\) 2.72206e6 0.479708 0.239854 0.970809i \(-0.422900\pi\)
0.239854 + 0.970809i \(0.422900\pi\)
\(504\) 0 0
\(505\) −2.96171e6 −0.516790
\(506\) −2.75154e6 −0.477748
\(507\) 0 0
\(508\) −11481.2 −0.00197391
\(509\) −7.17949e6 −1.22828 −0.614142 0.789195i \(-0.710498\pi\)
−0.614142 + 0.789195i \(0.710498\pi\)
\(510\) 0 0
\(511\) 6.68401e6 1.13236
\(512\) 5.32292e6 0.897377
\(513\) 0 0
\(514\) −752149. −0.125573
\(515\) 2.60307e6 0.432482
\(516\) 0 0
\(517\) −8.28072e6 −1.36252
\(518\) 4.35078e6 0.712431
\(519\) 0 0
\(520\) 3.81204e6 0.618229
\(521\) 2.71363e6 0.437982 0.218991 0.975727i \(-0.429723\pi\)
0.218991 + 0.975727i \(0.429723\pi\)
\(522\) 0 0
\(523\) −8.12813e6 −1.29938 −0.649690 0.760199i \(-0.725101\pi\)
−0.649690 + 0.760199i \(0.725101\pi\)
\(524\) −218063. −0.0346940
\(525\) 0 0
\(526\) 5.31975e6 0.838353
\(527\) 118169. 0.0185343
\(528\) 0 0
\(529\) −5.13909e6 −0.798448
\(530\) 2.76226e6 0.427144
\(531\) 0 0
\(532\) 171335. 0.0262463
\(533\) 8.60047e6 1.31131
\(534\) 0 0
\(535\) 3.79728e6 0.573572
\(536\) −1.04256e7 −1.56744
\(537\) 0 0
\(538\) −2.68233e6 −0.399537
\(539\) −1.90876e7 −2.82996
\(540\) 0 0
\(541\) 6.55456e6 0.962831 0.481416 0.876492i \(-0.340123\pi\)
0.481416 + 0.876492i \(0.340123\pi\)
\(542\) 4.22834e6 0.618260
\(543\) 0 0
\(544\) 163245. 0.0236507
\(545\) 2.63987e6 0.380707
\(546\) 0 0
\(547\) 4.13403e6 0.590752 0.295376 0.955381i \(-0.404555\pi\)
0.295376 + 0.955381i \(0.404555\pi\)
\(548\) −618603. −0.0879955
\(549\) 0 0
\(550\) −6.20190e6 −0.874215
\(551\) 2.53834e6 0.356181
\(552\) 0 0
\(553\) 1.71019e7 2.37811
\(554\) 3.42871e6 0.474632
\(555\) 0 0
\(556\) −432959. −0.0593963
\(557\) 1.13647e7 1.55211 0.776053 0.630668i \(-0.217219\pi\)
0.776053 + 0.630668i \(0.217219\pi\)
\(558\) 0 0
\(559\) 1.06247e7 1.43810
\(560\) −6.39832e6 −0.862176
\(561\) 0 0
\(562\) 649917. 0.0867994
\(563\) −1.00795e7 −1.34019 −0.670095 0.742276i \(-0.733746\pi\)
−0.670095 + 0.742276i \(0.733746\pi\)
\(564\) 0 0
\(565\) 2.74266e6 0.361452
\(566\) 3.99545e6 0.524233
\(567\) 0 0
\(568\) 812525. 0.105673
\(569\) −1.25833e7 −1.62934 −0.814671 0.579924i \(-0.803082\pi\)
−0.814671 + 0.579924i \(0.803082\pi\)
\(570\) 0 0
\(571\) −1.32744e7 −1.70382 −0.851909 0.523690i \(-0.824555\pi\)
−0.851909 + 0.523690i \(0.824555\pi\)
\(572\) 723684. 0.0924824
\(573\) 0 0
\(574\) −1.36262e7 −1.72621
\(575\) 2.92399e6 0.368813
\(576\) 0 0
\(577\) −7.77405e6 −0.972093 −0.486046 0.873933i \(-0.661561\pi\)
−0.486046 + 0.873933i \(0.661561\pi\)
\(578\) 7.93530e6 0.987970
\(579\) 0 0
\(580\) 314494. 0.0388189
\(581\) 566580. 0.0696339
\(582\) 0 0
\(583\) −8.33631e6 −1.01579
\(584\) −4.67468e6 −0.567178
\(585\) 0 0
\(586\) −1.09296e7 −1.31480
\(587\) 9.72112e6 1.16445 0.582225 0.813027i \(-0.302182\pi\)
0.582225 + 0.813027i \(0.302182\pi\)
\(588\) 0 0
\(589\) −178938. −0.0212527
\(590\) 6.71595e6 0.794287
\(591\) 0 0
\(592\) −3.22357e6 −0.378036
\(593\) 9.51207e6 1.11081 0.555403 0.831581i \(-0.312564\pi\)
0.555403 + 0.831581i \(0.312564\pi\)
\(594\) 0 0
\(595\) 1.41105e6 0.163399
\(596\) −426651. −0.0491991
\(597\) 0 0
\(598\) −6.10635e6 −0.698279
\(599\) −2.79130e6 −0.317863 −0.158931 0.987290i \(-0.550805\pi\)
−0.158931 + 0.987290i \(0.550805\pi\)
\(600\) 0 0
\(601\) −1.71913e6 −0.194143 −0.0970716 0.995277i \(-0.530948\pi\)
−0.0970716 + 0.995277i \(0.530948\pi\)
\(602\) −1.68333e7 −1.89312
\(603\) 0 0
\(604\) 194162. 0.0216557
\(605\) −263043. −0.0292172
\(606\) 0 0
\(607\) −1.11303e7 −1.22612 −0.613061 0.790035i \(-0.710062\pi\)
−0.613061 + 0.790035i \(0.710062\pi\)
\(608\) −247195. −0.0271195
\(609\) 0 0
\(610\) 3.37684e6 0.367439
\(611\) −1.83770e7 −1.99146
\(612\) 0 0
\(613\) 998180. 0.107290 0.0536448 0.998560i \(-0.482916\pi\)
0.0536448 + 0.998560i \(0.482916\pi\)
\(614\) −2.30958e6 −0.247236
\(615\) 0 0
\(616\) 1.82272e7 1.93539
\(617\) 5.14322e6 0.543904 0.271952 0.962311i \(-0.412331\pi\)
0.271952 + 0.962311i \(0.412331\pi\)
\(618\) 0 0
\(619\) −1.51122e7 −1.58526 −0.792632 0.609701i \(-0.791290\pi\)
−0.792632 + 0.609701i \(0.791290\pi\)
\(620\) −22170.0 −0.00231626
\(621\) 0 0
\(622\) −6.92428e6 −0.717626
\(623\) 187819. 0.0193874
\(624\) 0 0
\(625\) 4.84753e6 0.496387
\(626\) 4.52963e6 0.461984
\(627\) 0 0
\(628\) 836308. 0.0846189
\(629\) 710908. 0.0716451
\(630\) 0 0
\(631\) −3.02455e6 −0.302404 −0.151202 0.988503i \(-0.548314\pi\)
−0.151202 + 0.988503i \(0.548314\pi\)
\(632\) −1.19608e7 −1.19115
\(633\) 0 0
\(634\) 2.05269e7 2.02815
\(635\) 143180. 0.0140912
\(636\) 0 0
\(637\) −4.23603e7 −4.13628
\(638\) −1.69865e7 −1.65216
\(639\) 0 0
\(640\) 4.72574e6 0.456057
\(641\) 6.09294e6 0.585709 0.292855 0.956157i \(-0.405395\pi\)
0.292855 + 0.956157i \(0.405395\pi\)
\(642\) 0 0
\(643\) 7.43059e6 0.708755 0.354377 0.935103i \(-0.384693\pi\)
0.354377 + 0.935103i \(0.384693\pi\)
\(644\) 540570. 0.0513615
\(645\) 0 0
\(646\) 501043. 0.0472382
\(647\) 1.75431e6 0.164758 0.0823789 0.996601i \(-0.473748\pi\)
0.0823789 + 0.996601i \(0.473748\pi\)
\(648\) 0 0
\(649\) −2.02683e7 −1.88888
\(650\) −1.37636e7 −1.27776
\(651\) 0 0
\(652\) −854189. −0.0786928
\(653\) 6.02593e6 0.553021 0.276510 0.961011i \(-0.410822\pi\)
0.276510 + 0.961011i \(0.410822\pi\)
\(654\) 0 0
\(655\) 2.71943e6 0.247670
\(656\) 1.00959e7 0.915979
\(657\) 0 0
\(658\) 2.91157e7 2.62158
\(659\) 1.15725e7 1.03804 0.519018 0.854763i \(-0.326298\pi\)
0.519018 + 0.854763i \(0.326298\pi\)
\(660\) 0 0
\(661\) −8.34628e6 −0.743001 −0.371500 0.928433i \(-0.621157\pi\)
−0.371500 + 0.928433i \(0.621157\pi\)
\(662\) −1.28741e7 −1.14176
\(663\) 0 0
\(664\) −396256. −0.0348783
\(665\) −2.13669e6 −0.187364
\(666\) 0 0
\(667\) 8.00857e6 0.697012
\(668\) −848192. −0.0735449
\(669\) 0 0
\(670\) −8.17860e6 −0.703869
\(671\) −1.01911e7 −0.873802
\(672\) 0 0
\(673\) −5.33266e6 −0.453843 −0.226922 0.973913i \(-0.572866\pi\)
−0.226922 + 0.973913i \(0.572866\pi\)
\(674\) −2.05136e7 −1.73937
\(675\) 0 0
\(676\) 902877. 0.0759909
\(677\) −2.14247e7 −1.79656 −0.898282 0.439418i \(-0.855185\pi\)
−0.898282 + 0.439418i \(0.855185\pi\)
\(678\) 0 0
\(679\) −2.20805e7 −1.83795
\(680\) −986861. −0.0818434
\(681\) 0 0
\(682\) 1.19745e6 0.0985818
\(683\) −2.01614e7 −1.65375 −0.826874 0.562388i \(-0.809883\pi\)
−0.826874 + 0.562388i \(0.809883\pi\)
\(684\) 0 0
\(685\) 7.71448e6 0.628174
\(686\) 4.25920e7 3.45555
\(687\) 0 0
\(688\) 1.24721e7 1.00454
\(689\) −1.85004e7 −1.48468
\(690\) 0 0
\(691\) 1.54453e7 1.23056 0.615279 0.788310i \(-0.289043\pi\)
0.615279 + 0.788310i \(0.289043\pi\)
\(692\) 723343. 0.0574221
\(693\) 0 0
\(694\) 2.05571e7 1.62018
\(695\) 5.39934e6 0.424013
\(696\) 0 0
\(697\) −2.22649e6 −0.173596
\(698\) 7.29603e6 0.566823
\(699\) 0 0
\(700\) 1.21843e6 0.0939846
\(701\) 3.36415e6 0.258571 0.129285 0.991607i \(-0.458732\pi\)
0.129285 + 0.991607i \(0.458732\pi\)
\(702\) 0 0
\(703\) −1.07650e6 −0.0821532
\(704\) −1.27001e7 −0.965777
\(705\) 0 0
\(706\) 5.61595e6 0.424044
\(707\) −3.14276e7 −2.36463
\(708\) 0 0
\(709\) 9.46957e6 0.707481 0.353740 0.935344i \(-0.384910\pi\)
0.353740 + 0.935344i \(0.384910\pi\)
\(710\) 637402. 0.0474535
\(711\) 0 0
\(712\) −131358. −0.00971080
\(713\) −564557. −0.0415895
\(714\) 0 0
\(715\) −9.02493e6 −0.660205
\(716\) −366448. −0.0267135
\(717\) 0 0
\(718\) −7.39122e6 −0.535063
\(719\) 1.17104e7 0.844790 0.422395 0.906412i \(-0.361189\pi\)
0.422395 + 0.906412i \(0.361189\pi\)
\(720\) 0 0
\(721\) 2.76219e7 1.97886
\(722\) −758708. −0.0541666
\(723\) 0 0
\(724\) 99720.6 0.00707031
\(725\) 1.80511e7 1.27544
\(726\) 0 0
\(727\) 1.55978e7 1.09453 0.547265 0.836959i \(-0.315669\pi\)
0.547265 + 0.836959i \(0.315669\pi\)
\(728\) 4.04507e7 2.82877
\(729\) 0 0
\(730\) −3.66715e6 −0.254696
\(731\) −2.75053e6 −0.190381
\(732\) 0 0
\(733\) 172411. 0.0118523 0.00592617 0.999982i \(-0.498114\pi\)
0.00592617 + 0.999982i \(0.498114\pi\)
\(734\) 7.38900e6 0.506227
\(735\) 0 0
\(736\) −779913. −0.0530703
\(737\) 2.46825e7 1.67386
\(738\) 0 0
\(739\) −1.29022e6 −0.0869064 −0.0434532 0.999055i \(-0.513836\pi\)
−0.0434532 + 0.999055i \(0.513836\pi\)
\(740\) −133376. −0.00895359
\(741\) 0 0
\(742\) 2.93111e7 1.95444
\(743\) 3.69707e6 0.245689 0.122844 0.992426i \(-0.460798\pi\)
0.122844 + 0.992426i \(0.460798\pi\)
\(744\) 0 0
\(745\) 5.32068e6 0.351218
\(746\) −2.02105e7 −1.32963
\(747\) 0 0
\(748\) −187348. −0.0122432
\(749\) 4.02940e7 2.62444
\(750\) 0 0
\(751\) −188742. −0.0122115 −0.00610575 0.999981i \(-0.501944\pi\)
−0.00610575 + 0.999981i \(0.501944\pi\)
\(752\) −2.15724e7 −1.39108
\(753\) 0 0
\(754\) −3.76974e7 −2.41481
\(755\) −2.42136e6 −0.154594
\(756\) 0 0
\(757\) −2.13322e7 −1.35299 −0.676497 0.736446i \(-0.736503\pi\)
−0.676497 + 0.736446i \(0.736503\pi\)
\(758\) 1.65499e7 1.04622
\(759\) 0 0
\(760\) 1.49436e6 0.0938473
\(761\) 2.83469e7 1.77437 0.887185 0.461414i \(-0.152658\pi\)
0.887185 + 0.461414i \(0.152658\pi\)
\(762\) 0 0
\(763\) 2.80124e7 1.74197
\(764\) 575508. 0.0356712
\(765\) 0 0
\(766\) −9.27400e6 −0.571078
\(767\) −4.49804e7 −2.76080
\(768\) 0 0
\(769\) 2.37153e7 1.44615 0.723073 0.690772i \(-0.242729\pi\)
0.723073 + 0.690772i \(0.242729\pi\)
\(770\) 1.42987e7 0.869100
\(771\) 0 0
\(772\) 254881. 0.0153920
\(773\) −92234.1 −0.00555192 −0.00277596 0.999996i \(-0.500884\pi\)
−0.00277596 + 0.999996i \(0.500884\pi\)
\(774\) 0 0
\(775\) −1.27250e6 −0.0761033
\(776\) 1.54427e7 0.920595
\(777\) 0 0
\(778\) −3.05416e7 −1.80902
\(779\) 3.37148e6 0.199057
\(780\) 0 0
\(781\) −1.92364e6 −0.112848
\(782\) 1.58081e6 0.0924408
\(783\) 0 0
\(784\) −4.97258e7 −2.88929
\(785\) −1.04294e7 −0.604070
\(786\) 0 0
\(787\) 350387. 0.0201656 0.0100828 0.999949i \(-0.496790\pi\)
0.0100828 + 0.999949i \(0.496790\pi\)
\(788\) 1.23306e6 0.0707404
\(789\) 0 0
\(790\) −9.38288e6 −0.534895
\(791\) 2.91031e7 1.65386
\(792\) 0 0
\(793\) −2.26165e7 −1.27715
\(794\) 2.10608e6 0.118556
\(795\) 0 0
\(796\) −552559. −0.0309098
\(797\) −9.25461e6 −0.516074 −0.258037 0.966135i \(-0.583076\pi\)
−0.258037 + 0.966135i \(0.583076\pi\)
\(798\) 0 0
\(799\) 4.75744e6 0.263637
\(800\) −1.75791e6 −0.0971115
\(801\) 0 0
\(802\) −1.79226e7 −0.983933
\(803\) 1.10672e7 0.605688
\(804\) 0 0
\(805\) −6.74134e6 −0.366654
\(806\) 2.65744e6 0.144088
\(807\) 0 0
\(808\) 2.19799e7 1.18440
\(809\) 2.94050e6 0.157961 0.0789805 0.996876i \(-0.474834\pi\)
0.0789805 + 0.996876i \(0.474834\pi\)
\(810\) 0 0
\(811\) 2.12110e7 1.13242 0.566211 0.824260i \(-0.308409\pi\)
0.566211 + 0.824260i \(0.308409\pi\)
\(812\) 3.33719e6 0.177620
\(813\) 0 0
\(814\) 7.20391e6 0.381072
\(815\) 1.06524e7 0.561765
\(816\) 0 0
\(817\) 4.16501e6 0.218303
\(818\) −2.40781e7 −1.25817
\(819\) 0 0
\(820\) 417719. 0.0216945
\(821\) 28537.6 0.00147761 0.000738804 1.00000i \(-0.499765\pi\)
0.000738804 1.00000i \(0.499765\pi\)
\(822\) 0 0
\(823\) −1.60864e7 −0.827863 −0.413931 0.910308i \(-0.635845\pi\)
−0.413931 + 0.910308i \(0.635845\pi\)
\(824\) −1.93183e7 −0.991177
\(825\) 0 0
\(826\) 7.12650e7 3.63434
\(827\) 1.43894e7 0.731607 0.365803 0.930692i \(-0.380794\pi\)
0.365803 + 0.930692i \(0.380794\pi\)
\(828\) 0 0
\(829\) 2.29442e7 1.15954 0.579771 0.814779i \(-0.303142\pi\)
0.579771 + 0.814779i \(0.303142\pi\)
\(830\) −310851. −0.0156624
\(831\) 0 0
\(832\) −2.81848e7 −1.41158
\(833\) 1.09662e7 0.547577
\(834\) 0 0
\(835\) 1.05776e7 0.525016
\(836\) 283692. 0.0140389
\(837\) 0 0
\(838\) 1.86043e7 0.915173
\(839\) 3.34833e7 1.64219 0.821095 0.570792i \(-0.193364\pi\)
0.821095 + 0.570792i \(0.193364\pi\)
\(840\) 0 0
\(841\) 2.89295e7 1.41043
\(842\) −5.80189e6 −0.282026
\(843\) 0 0
\(844\) 1.98986e6 0.0961540
\(845\) −1.12596e7 −0.542477
\(846\) 0 0
\(847\) −2.79123e6 −0.133686
\(848\) −2.17172e7 −1.03708
\(849\) 0 0
\(850\) 3.56312e6 0.169154
\(851\) −3.39640e6 −0.160766
\(852\) 0 0
\(853\) −9.55702e6 −0.449728 −0.224864 0.974390i \(-0.572194\pi\)
−0.224864 + 0.974390i \(0.572194\pi\)
\(854\) 3.58326e7 1.68126
\(855\) 0 0
\(856\) −2.81809e7 −1.31453
\(857\) −1.69429e7 −0.788019 −0.394009 0.919106i \(-0.628912\pi\)
−0.394009 + 0.919106i \(0.628912\pi\)
\(858\) 0 0
\(859\) −6.40368e6 −0.296106 −0.148053 0.988979i \(-0.547301\pi\)
−0.148053 + 0.988979i \(0.547301\pi\)
\(860\) 516035. 0.0237921
\(861\) 0 0
\(862\) −1.46684e7 −0.672379
\(863\) −3.12340e6 −0.142758 −0.0713791 0.997449i \(-0.522740\pi\)
−0.0713791 + 0.997449i \(0.522740\pi\)
\(864\) 0 0
\(865\) −9.02067e6 −0.409919
\(866\) 2.22453e7 1.00796
\(867\) 0 0
\(868\) −235253. −0.0105983
\(869\) 2.83169e7 1.27203
\(870\) 0 0
\(871\) 5.47766e7 2.44652
\(872\) −1.95914e7 −0.872518
\(873\) 0 0
\(874\) −2.39376e6 −0.105999
\(875\) −3.36911e7 −1.48763
\(876\) 0 0
\(877\) 3.31907e7 1.45719 0.728597 0.684943i \(-0.240173\pi\)
0.728597 + 0.684943i \(0.240173\pi\)
\(878\) −3.60685e6 −0.157904
\(879\) 0 0
\(880\) −1.05942e7 −0.461169
\(881\) −3.73467e7 −1.62111 −0.810555 0.585662i \(-0.800835\pi\)
−0.810555 + 0.585662i \(0.800835\pi\)
\(882\) 0 0
\(883\) −3.95144e7 −1.70551 −0.852753 0.522314i \(-0.825069\pi\)
−0.852753 + 0.522314i \(0.825069\pi\)
\(884\) −415771. −0.0178947
\(885\) 0 0
\(886\) −6.32924e6 −0.270874
\(887\) −3.39325e7 −1.44813 −0.724064 0.689732i \(-0.757728\pi\)
−0.724064 + 0.689732i \(0.757728\pi\)
\(888\) 0 0
\(889\) 1.51932e6 0.0644757
\(890\) −103046. −0.00436071
\(891\) 0 0
\(892\) −155281. −0.00653442
\(893\) −7.20399e6 −0.302304
\(894\) 0 0
\(895\) 4.56990e6 0.190699
\(896\) 5.01462e7 2.08674
\(897\) 0 0
\(898\) −2.65681e7 −1.09943
\(899\) −3.48528e6 −0.143826
\(900\) 0 0
\(901\) 4.78938e6 0.196547
\(902\) −2.25619e7 −0.923335
\(903\) 0 0
\(904\) −2.03542e7 −0.828388
\(905\) −1.24360e6 −0.0504729
\(906\) 0 0
\(907\) −1.00269e7 −0.404716 −0.202358 0.979312i \(-0.564860\pi\)
−0.202358 + 0.979312i \(0.564860\pi\)
\(908\) −1.72627e6 −0.0694854
\(909\) 0 0
\(910\) 3.17324e7 1.27028
\(911\) 6.57126e6 0.262333 0.131166 0.991360i \(-0.458128\pi\)
0.131166 + 0.991360i \(0.458128\pi\)
\(912\) 0 0
\(913\) 938128. 0.0372465
\(914\) −3.52504e6 −0.139572
\(915\) 0 0
\(916\) −1.25146e6 −0.0492810
\(917\) 2.88566e7 1.13324
\(918\) 0 0
\(919\) −7.60638e6 −0.297091 −0.148545 0.988906i \(-0.547459\pi\)
−0.148545 + 0.988906i \(0.547459\pi\)
\(920\) 4.71478e6 0.183650
\(921\) 0 0
\(922\) −4.22731e7 −1.63771
\(923\) −4.26903e6 −0.164940
\(924\) 0 0
\(925\) −7.65541e6 −0.294181
\(926\) −1.07524e7 −0.412078
\(927\) 0 0
\(928\) −4.81477e6 −0.183529
\(929\) 3.40362e7 1.29390 0.646951 0.762532i \(-0.276044\pi\)
0.646951 + 0.762532i \(0.276044\pi\)
\(930\) 0 0
\(931\) −1.66057e7 −0.627889
\(932\) −1.64052e6 −0.0618645
\(933\) 0 0
\(934\) 3.86085e7 1.44816
\(935\) 2.33637e6 0.0874004
\(936\) 0 0
\(937\) 1.77553e6 0.0660663 0.0330332 0.999454i \(-0.489483\pi\)
0.0330332 + 0.999454i \(0.489483\pi\)
\(938\) −8.67855e7 −3.22063
\(939\) 0 0
\(940\) −892558. −0.0329471
\(941\) −1.16181e7 −0.427721 −0.213860 0.976864i \(-0.568604\pi\)
−0.213860 + 0.976864i \(0.568604\pi\)
\(942\) 0 0
\(943\) 1.06372e7 0.389535
\(944\) −5.28016e7 −1.92849
\(945\) 0 0
\(946\) −2.78722e7 −1.01261
\(947\) −3.38853e7 −1.22782 −0.613912 0.789374i \(-0.710405\pi\)
−0.613912 + 0.789374i \(0.710405\pi\)
\(948\) 0 0
\(949\) 2.45609e7 0.885277
\(950\) −5.39548e6 −0.193964
\(951\) 0 0
\(952\) −1.04719e7 −0.374483
\(953\) 2.44407e7 0.871729 0.435864 0.900012i \(-0.356443\pi\)
0.435864 + 0.900012i \(0.356443\pi\)
\(954\) 0 0
\(955\) −7.17705e6 −0.254646
\(956\) 730561. 0.0258530
\(957\) 0 0
\(958\) −1.39546e7 −0.491250
\(959\) 8.18606e7 2.87427
\(960\) 0 0
\(961\) −2.83835e7 −0.991418
\(962\) 1.59873e7 0.556977
\(963\) 0 0
\(964\) −2.40855e6 −0.0834762
\(965\) −3.17858e6 −0.109879
\(966\) 0 0
\(967\) −3.67340e7 −1.26329 −0.631644 0.775258i \(-0.717620\pi\)
−0.631644 + 0.775258i \(0.717620\pi\)
\(968\) 1.95214e6 0.0669609
\(969\) 0 0
\(970\) 1.21143e7 0.413400
\(971\) 3.43205e7 1.16817 0.584085 0.811693i \(-0.301454\pi\)
0.584085 + 0.811693i \(0.301454\pi\)
\(972\) 0 0
\(973\) 5.72940e7 1.94011
\(974\) 1.26543e7 0.427406
\(975\) 0 0
\(976\) −2.65490e7 −0.892122
\(977\) 8.40409e6 0.281679 0.140839 0.990032i \(-0.455020\pi\)
0.140839 + 0.990032i \(0.455020\pi\)
\(978\) 0 0
\(979\) 310986. 0.0103701
\(980\) −2.05741e6 −0.0684314
\(981\) 0 0
\(982\) 5.29479e7 1.75215
\(983\) −1.87755e7 −0.619738 −0.309869 0.950779i \(-0.600285\pi\)
−0.309869 + 0.950779i \(0.600285\pi\)
\(984\) 0 0
\(985\) −1.53772e7 −0.504995
\(986\) 9.75910e6 0.319682
\(987\) 0 0
\(988\) 629585. 0.0205193
\(989\) 1.31408e7 0.427199
\(990\) 0 0
\(991\) −1.98114e6 −0.0640814 −0.0320407 0.999487i \(-0.510201\pi\)
−0.0320407 + 0.999487i \(0.510201\pi\)
\(992\) 339413. 0.0109509
\(993\) 0 0
\(994\) 6.76366e6 0.217128
\(995\) 6.89086e6 0.220656
\(996\) 0 0
\(997\) 1.55752e6 0.0496244 0.0248122 0.999692i \(-0.492101\pi\)
0.0248122 + 0.999692i \(0.492101\pi\)
\(998\) −5.06275e7 −1.60902
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.6.a.j.1.2 4
3.2 odd 2 57.6.a.f.1.3 4
12.11 even 2 912.6.a.r.1.3 4
57.56 even 2 1083.6.a.g.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.6.a.f.1.3 4 3.2 odd 2
171.6.a.j.1.2 4 1.1 even 1 trivial
912.6.a.r.1.3 4 12.11 even 2
1083.6.a.g.1.2 4 57.56 even 2