Properties

Label 912.2.bo.h.289.1
Level $912$
Weight $2$
Character 912.289
Analytic conductor $7.282$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [912,2,Mod(289,912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("912.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(912, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bo (of order \(9\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 12 x^{10} - 16 x^{9} - 6 x^{8} + 27 x^{7} + 5 x^{6} - 27 x^{5} - 6 x^{4} + 16 x^{3} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 456)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 289.1
Root \(1.05581 - 0.885927i\) of defining polynomial
Character \(\chi\) \(=\) 912.289
Dual form 912.2.bo.h.385.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.173648 - 0.984808i) q^{3} +(-1.05581 + 0.885927i) q^{5} +(0.112213 - 0.194359i) q^{7} +(-0.939693 + 0.342020i) q^{9} +(-0.735431 - 1.27380i) q^{11} +(-0.821851 + 4.66095i) q^{13} +(1.05581 + 0.885927i) q^{15} +(-3.95753 - 1.44042i) q^{17} +(-1.63007 - 4.04263i) q^{19} +(-0.210892 - 0.0767582i) q^{21} +(-0.242193 - 0.203224i) q^{23} +(-0.538380 + 3.05330i) q^{25} +(0.500000 + 0.866025i) q^{27} +(-7.31385 + 2.66202i) q^{29} +(-1.24150 + 2.15035i) q^{31} +(-1.12675 + 0.945452i) q^{33} +(0.0537123 + 0.304618i) q^{35} -0.191209 q^{37} +4.73285 q^{39} +(-0.144260 - 0.818139i) q^{41} +(-9.37929 + 7.87016i) q^{43} +(0.689129 - 1.19361i) q^{45} +(2.93341 - 1.06767i) q^{47} +(3.47482 + 6.01856i) q^{49} +(-0.731322 + 4.14753i) q^{51} +(-0.453098 - 0.380194i) q^{53} +(1.90497 + 0.693352i) q^{55} +(-3.69815 + 2.30731i) q^{57} +(-10.8224 - 3.93902i) q^{59} +(4.81237 + 4.03806i) q^{61} +(-0.0389712 + 0.221017i) q^{63} +(-3.26154 - 5.64916i) q^{65} +(-3.53896 + 1.28807i) q^{67} +(-0.158080 + 0.273803i) q^{69} +(-0.237470 + 0.199261i) q^{71} +(-0.975891 - 5.53455i) q^{73} +3.10041 q^{75} -0.330100 q^{77} +(0.0118758 + 0.0673508i) q^{79} +(0.766044 - 0.642788i) q^{81} +(-4.33891 + 7.51521i) q^{83} +(5.45449 - 1.98527i) q^{85} +(3.89162 + 6.74048i) q^{87} +(1.06141 - 6.01955i) q^{89} +(0.813673 + 0.682753i) q^{91} +(2.33327 + 0.849239i) q^{93} +(5.30252 + 2.82411i) q^{95} +(10.7305 + 3.90559i) q^{97} +(1.12675 + 0.945452i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{5} + 3 q^{11} + 9 q^{13} + 3 q^{15} - 9 q^{17} - 6 q^{19} + 12 q^{21} - 24 q^{23} - 15 q^{25} + 6 q^{27} - 3 q^{29} - 3 q^{31} - 24 q^{35} - 30 q^{37} - 6 q^{39} + 15 q^{41} - 27 q^{43} + 3 q^{45}+ \cdots + 39 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.173648 0.984808i −0.100256 0.568579i
\(4\) 0 0
\(5\) −1.05581 + 0.885927i −0.472171 + 0.396199i −0.847586 0.530658i \(-0.821945\pi\)
0.375415 + 0.926857i \(0.377500\pi\)
\(6\) 0 0
\(7\) 0.112213 0.194359i 0.0424125 0.0734607i −0.844040 0.536280i \(-0.819829\pi\)
0.886452 + 0.462820i \(0.153162\pi\)
\(8\) 0 0
\(9\) −0.939693 + 0.342020i −0.313231 + 0.114007i
\(10\) 0 0
\(11\) −0.735431 1.27380i −0.221741 0.384066i 0.733596 0.679586i \(-0.237841\pi\)
−0.955337 + 0.295520i \(0.904507\pi\)
\(12\) 0 0
\(13\) −0.821851 + 4.66095i −0.227940 + 1.29271i 0.629043 + 0.777371i \(0.283447\pi\)
−0.856983 + 0.515344i \(0.827664\pi\)
\(14\) 0 0
\(15\) 1.05581 + 0.885927i 0.272608 + 0.228745i
\(16\) 0 0
\(17\) −3.95753 1.44042i −0.959842 0.349354i −0.185870 0.982574i \(-0.559510\pi\)
−0.773972 + 0.633220i \(0.781733\pi\)
\(18\) 0 0
\(19\) −1.63007 4.04263i −0.373965 0.927443i
\(20\) 0 0
\(21\) −0.210892 0.0767582i −0.0460203 0.0167500i
\(22\) 0 0
\(23\) −0.242193 0.203224i −0.0505006 0.0423751i 0.617188 0.786816i \(-0.288272\pi\)
−0.667689 + 0.744441i \(0.732716\pi\)
\(24\) 0 0
\(25\) −0.538380 + 3.05330i −0.107676 + 0.610661i
\(26\) 0 0
\(27\) 0.500000 + 0.866025i 0.0962250 + 0.166667i
\(28\) 0 0
\(29\) −7.31385 + 2.66202i −1.35815 + 0.494325i −0.915481 0.402361i \(-0.868190\pi\)
−0.442667 + 0.896686i \(0.645968\pi\)
\(30\) 0 0
\(31\) −1.24150 + 2.15035i −0.222981 + 0.386214i −0.955712 0.294304i \(-0.904912\pi\)
0.732731 + 0.680519i \(0.238245\pi\)
\(32\) 0 0
\(33\) −1.12675 + 0.945452i −0.196141 + 0.164582i
\(34\) 0 0
\(35\) 0.0537123 + 0.304618i 0.00907904 + 0.0514898i
\(36\) 0 0
\(37\) −0.191209 −0.0314346 −0.0157173 0.999876i \(-0.505003\pi\)
−0.0157173 + 0.999876i \(0.505003\pi\)
\(38\) 0 0
\(39\) 4.73285 0.757863
\(40\) 0 0
\(41\) −0.144260 0.818139i −0.0225296 0.127772i 0.971469 0.237168i \(-0.0762193\pi\)
−0.993998 + 0.109396i \(0.965108\pi\)
\(42\) 0 0
\(43\) −9.37929 + 7.87016i −1.43033 + 1.20019i −0.484809 + 0.874620i \(0.661111\pi\)
−0.945519 + 0.325568i \(0.894445\pi\)
\(44\) 0 0
\(45\) 0.689129 1.19361i 0.102729 0.177932i
\(46\) 0 0
\(47\) 2.93341 1.06767i 0.427882 0.155736i −0.119097 0.992883i \(-0.538000\pi\)
0.546979 + 0.837146i \(0.315778\pi\)
\(48\) 0 0
\(49\) 3.47482 + 6.01856i 0.496402 + 0.859794i
\(50\) 0 0
\(51\) −0.731322 + 4.14753i −0.102406 + 0.580771i
\(52\) 0 0
\(53\) −0.453098 0.380194i −0.0622377 0.0522237i 0.611138 0.791524i \(-0.290712\pi\)
−0.673376 + 0.739300i \(0.735156\pi\)
\(54\) 0 0
\(55\) 1.90497 + 0.693352i 0.256866 + 0.0934916i
\(56\) 0 0
\(57\) −3.69815 + 2.30731i −0.489832 + 0.305610i
\(58\) 0 0
\(59\) −10.8224 3.93902i −1.40895 0.512817i −0.478130 0.878289i \(-0.658685\pi\)
−0.930822 + 0.365472i \(0.880907\pi\)
\(60\) 0 0
\(61\) 4.81237 + 4.03806i 0.616161 + 0.517021i 0.896594 0.442853i \(-0.146034\pi\)
−0.280433 + 0.959874i \(0.590478\pi\)
\(62\) 0 0
\(63\) −0.0389712 + 0.221017i −0.00490991 + 0.0278455i
\(64\) 0 0
\(65\) −3.26154 5.64916i −0.404545 0.700692i
\(66\) 0 0
\(67\) −3.53896 + 1.28807i −0.432352 + 0.157363i −0.549023 0.835807i \(-0.685000\pi\)
0.116671 + 0.993171i \(0.462778\pi\)
\(68\) 0 0
\(69\) −0.158080 + 0.273803i −0.0190306 + 0.0329620i
\(70\) 0 0
\(71\) −0.237470 + 0.199261i −0.0281825 + 0.0236479i −0.656770 0.754091i \(-0.728078\pi\)
0.628588 + 0.777739i \(0.283633\pi\)
\(72\) 0 0
\(73\) −0.975891 5.53455i −0.114219 0.647770i −0.987134 0.159897i \(-0.948884\pi\)
0.872914 0.487873i \(-0.162227\pi\)
\(74\) 0 0
\(75\) 3.10041 0.358004
\(76\) 0 0
\(77\) −0.330100 −0.0376184
\(78\) 0 0
\(79\) 0.0118758 + 0.0673508i 0.00133613 + 0.00757756i 0.985469 0.169858i \(-0.0543309\pi\)
−0.984132 + 0.177436i \(0.943220\pi\)
\(80\) 0 0
\(81\) 0.766044 0.642788i 0.0851160 0.0714208i
\(82\) 0 0
\(83\) −4.33891 + 7.51521i −0.476257 + 0.824901i −0.999630 0.0272024i \(-0.991340\pi\)
0.523373 + 0.852104i \(0.324673\pi\)
\(84\) 0 0
\(85\) 5.45449 1.98527i 0.591623 0.215333i
\(86\) 0 0
\(87\) 3.89162 + 6.74048i 0.417225 + 0.722655i
\(88\) 0 0
\(89\) 1.06141 6.01955i 0.112509 0.638071i −0.875444 0.483319i \(-0.839431\pi\)
0.987953 0.154752i \(-0.0494579\pi\)
\(90\) 0 0
\(91\) 0.813673 + 0.682753i 0.0852961 + 0.0715720i
\(92\) 0 0
\(93\) 2.33327 + 0.849239i 0.241948 + 0.0880620i
\(94\) 0 0
\(95\) 5.30252 + 2.82411i 0.544027 + 0.289747i
\(96\) 0 0
\(97\) 10.7305 + 3.90559i 1.08952 + 0.396553i 0.823443 0.567399i \(-0.192050\pi\)
0.266077 + 0.963952i \(0.414272\pi\)
\(98\) 0 0
\(99\) 1.12675 + 0.945452i 0.113242 + 0.0950215i
\(100\) 0 0
\(101\) −1.39373 + 7.90423i −0.138681 + 0.786500i 0.833544 + 0.552453i \(0.186308\pi\)
−0.972225 + 0.234047i \(0.924803\pi\)
\(102\) 0 0
\(103\) −1.83438 3.17723i −0.180746 0.313062i 0.761389 0.648296i \(-0.224518\pi\)
−0.942135 + 0.335234i \(0.891185\pi\)
\(104\) 0 0
\(105\) 0.290663 0.105793i 0.0283658 0.0103243i
\(106\) 0 0
\(107\) −1.70295 + 2.94960i −0.164630 + 0.285148i −0.936524 0.350604i \(-0.885976\pi\)
0.771894 + 0.635752i \(0.219310\pi\)
\(108\) 0 0
\(109\) 2.34018 1.96364i 0.224148 0.188083i −0.523797 0.851843i \(-0.675485\pi\)
0.747945 + 0.663760i \(0.231040\pi\)
\(110\) 0 0
\(111\) 0.0332032 + 0.188305i 0.00315151 + 0.0178731i
\(112\) 0 0
\(113\) 2.46657 0.232036 0.116018 0.993247i \(-0.462987\pi\)
0.116018 + 0.993247i \(0.462987\pi\)
\(114\) 0 0
\(115\) 0.435750 0.0406339
\(116\) 0 0
\(117\) −0.821851 4.66095i −0.0759801 0.430905i
\(118\) 0 0
\(119\) −0.724045 + 0.607546i −0.0663731 + 0.0556936i
\(120\) 0 0
\(121\) 4.41828 7.65269i 0.401662 0.695699i
\(122\) 0 0
\(123\) −0.780659 + 0.284137i −0.0703897 + 0.0256197i
\(124\) 0 0
\(125\) −5.58222 9.66869i −0.499289 0.864794i
\(126\) 0 0
\(127\) −0.855404 + 4.85124i −0.0759048 + 0.430478i 0.923046 + 0.384689i \(0.125691\pi\)
−0.998951 + 0.0457888i \(0.985420\pi\)
\(128\) 0 0
\(129\) 9.37929 + 7.87016i 0.825800 + 0.692929i
\(130\) 0 0
\(131\) −9.47605 3.44900i −0.827926 0.301341i −0.106919 0.994268i \(-0.534099\pi\)
−0.721008 + 0.692927i \(0.756321\pi\)
\(132\) 0 0
\(133\) −0.968636 0.136817i −0.0839914 0.0118635i
\(134\) 0 0
\(135\) −1.29514 0.471392i −0.111468 0.0405709i
\(136\) 0 0
\(137\) −17.3300 14.5416i −1.48060 1.24237i −0.905538 0.424265i \(-0.860532\pi\)
−0.575065 0.818108i \(-0.695023\pi\)
\(138\) 0 0
\(139\) 1.01571 5.76038i 0.0861514 0.488589i −0.910951 0.412515i \(-0.864650\pi\)
0.997102 0.0760740i \(-0.0242385\pi\)
\(140\) 0 0
\(141\) −1.56084 2.70345i −0.131446 0.227671i
\(142\) 0 0
\(143\) 6.54155 2.38093i 0.547032 0.199103i
\(144\) 0 0
\(145\) 5.36365 9.29012i 0.445427 0.771502i
\(146\) 0 0
\(147\) 5.32373 4.46714i 0.439094 0.368443i
\(148\) 0 0
\(149\) −1.90290 10.7919i −0.155892 0.884107i −0.957966 0.286882i \(-0.907381\pi\)
0.802074 0.597225i \(-0.203730\pi\)
\(150\) 0 0
\(151\) 14.7687 1.20186 0.600931 0.799301i \(-0.294797\pi\)
0.600931 + 0.799301i \(0.294797\pi\)
\(152\) 0 0
\(153\) 4.21151 0.340481
\(154\) 0 0
\(155\) −0.594263 3.37024i −0.0477324 0.270704i
\(156\) 0 0
\(157\) 5.99269 5.02846i 0.478269 0.401315i −0.371531 0.928420i \(-0.621167\pi\)
0.849800 + 0.527105i \(0.176723\pi\)
\(158\) 0 0
\(159\) −0.295738 + 0.512234i −0.0234536 + 0.0406228i
\(160\) 0 0
\(161\) −0.0666755 + 0.0242679i −0.00525476 + 0.00191258i
\(162\) 0 0
\(163\) −4.83995 8.38304i −0.379094 0.656610i 0.611837 0.790984i \(-0.290431\pi\)
−0.990931 + 0.134374i \(0.957098\pi\)
\(164\) 0 0
\(165\) 0.352024 1.99643i 0.0274050 0.155422i
\(166\) 0 0
\(167\) −6.20310 5.20502i −0.480010 0.402776i 0.370420 0.928864i \(-0.379214\pi\)
−0.850430 + 0.526088i \(0.823658\pi\)
\(168\) 0 0
\(169\) −8.83300 3.21495i −0.679461 0.247304i
\(170\) 0 0
\(171\) 2.91443 + 3.24131i 0.222872 + 0.247869i
\(172\) 0 0
\(173\) 24.1487 + 8.78940i 1.83599 + 0.668246i 0.991068 + 0.133356i \(0.0425754\pi\)
0.844922 + 0.534890i \(0.179647\pi\)
\(174\) 0 0
\(175\) 0.533023 + 0.447259i 0.0402927 + 0.0338096i
\(176\) 0 0
\(177\) −1.99989 + 11.3420i −0.150321 + 0.852513i
\(178\) 0 0
\(179\) −7.86954 13.6304i −0.588197 1.01879i −0.994469 0.105035i \(-0.966505\pi\)
0.406271 0.913752i \(-0.366829\pi\)
\(180\) 0 0
\(181\) −21.5144 + 7.83061i −1.59915 + 0.582045i −0.979254 0.202636i \(-0.935049\pi\)
−0.619900 + 0.784681i \(0.712827\pi\)
\(182\) 0 0
\(183\) 3.14105 5.44047i 0.232193 0.402171i
\(184\) 0 0
\(185\) 0.201880 0.169398i 0.0148425 0.0124544i
\(186\) 0 0
\(187\) 1.07567 + 6.10045i 0.0786610 + 0.446109i
\(188\) 0 0
\(189\) 0.224426 0.0163246
\(190\) 0 0
\(191\) 13.5678 0.981733 0.490866 0.871235i \(-0.336680\pi\)
0.490866 + 0.871235i \(0.336680\pi\)
\(192\) 0 0
\(193\) 1.34685 + 7.63838i 0.0969486 + 0.549823i 0.994133 + 0.108166i \(0.0344979\pi\)
−0.897184 + 0.441656i \(0.854391\pi\)
\(194\) 0 0
\(195\) −4.99697 + 4.19296i −0.357841 + 0.300264i
\(196\) 0 0
\(197\) −2.94072 + 5.09347i −0.209517 + 0.362895i −0.951563 0.307455i \(-0.900523\pi\)
0.742045 + 0.670350i \(0.233856\pi\)
\(198\) 0 0
\(199\) 15.7834 5.74469i 1.11886 0.407231i 0.284622 0.958640i \(-0.408132\pi\)
0.834235 + 0.551409i \(0.185910\pi\)
\(200\) 0 0
\(201\) 1.88304 + 3.26152i 0.132819 + 0.230050i
\(202\) 0 0
\(203\) −0.303322 + 1.72022i −0.0212890 + 0.120736i
\(204\) 0 0
\(205\) 0.877122 + 0.735993i 0.0612609 + 0.0514040i
\(206\) 0 0
\(207\) 0.297093 + 0.108133i 0.0206494 + 0.00751577i
\(208\) 0 0
\(209\) −3.95071 + 5.04947i −0.273276 + 0.349279i
\(210\) 0 0
\(211\) −1.03279 0.375905i −0.0711002 0.0258784i 0.306225 0.951959i \(-0.400934\pi\)
−0.377325 + 0.926081i \(0.623156\pi\)
\(212\) 0 0
\(213\) 0.237470 + 0.199261i 0.0162712 + 0.0136531i
\(214\) 0 0
\(215\) 2.93033 16.6187i 0.199847 1.13339i
\(216\) 0 0
\(217\) 0.278626 + 0.482595i 0.0189144 + 0.0327606i
\(218\) 0 0
\(219\) −5.28101 + 1.92213i −0.356857 + 0.129885i
\(220\) 0 0
\(221\) 9.96624 17.2620i 0.670402 1.16117i
\(222\) 0 0
\(223\) 12.2051 10.2413i 0.817311 0.685805i −0.135030 0.990842i \(-0.543113\pi\)
0.952341 + 0.305036i \(0.0986686\pi\)
\(224\) 0 0
\(225\) −0.538380 3.05330i −0.0358920 0.203554i
\(226\) 0 0
\(227\) 25.1660 1.67032 0.835162 0.550005i \(-0.185374\pi\)
0.835162 + 0.550005i \(0.185374\pi\)
\(228\) 0 0
\(229\) 9.22078 0.609327 0.304663 0.952460i \(-0.401456\pi\)
0.304663 + 0.952460i \(0.401456\pi\)
\(230\) 0 0
\(231\) 0.0573212 + 0.325085i 0.00377146 + 0.0213890i
\(232\) 0 0
\(233\) −2.72490 + 2.28647i −0.178514 + 0.149791i −0.727667 0.685931i \(-0.759395\pi\)
0.549152 + 0.835722i \(0.314951\pi\)
\(234\) 0 0
\(235\) −2.15123 + 3.72604i −0.140331 + 0.243060i
\(236\) 0 0
\(237\) 0.0642654 0.0233907i 0.00417449 0.00151939i
\(238\) 0 0
\(239\) −11.9844 20.7575i −0.775204 1.34269i −0.934680 0.355491i \(-0.884314\pi\)
0.159476 0.987202i \(-0.449020\pi\)
\(240\) 0 0
\(241\) −4.59396 + 26.0536i −0.295923 + 1.67826i 0.367505 + 0.930021i \(0.380212\pi\)
−0.663428 + 0.748240i \(0.730899\pi\)
\(242\) 0 0
\(243\) −0.766044 0.642788i −0.0491418 0.0412348i
\(244\) 0 0
\(245\) −9.00074 3.27600i −0.575036 0.209296i
\(246\) 0 0
\(247\) 20.1822 4.27526i 1.28416 0.272028i
\(248\) 0 0
\(249\) 8.15448 + 2.96799i 0.516769 + 0.188089i
\(250\) 0 0
\(251\) −19.3059 16.1996i −1.21858 1.02251i −0.998898 0.0469385i \(-0.985054\pi\)
−0.219682 0.975571i \(-0.570502\pi\)
\(252\) 0 0
\(253\) −0.0807512 + 0.457963i −0.00507679 + 0.0287919i
\(254\) 0 0
\(255\) −2.90228 5.02689i −0.181748 0.314796i
\(256\) 0 0
\(257\) 19.2995 7.02444i 1.20387 0.438173i 0.339296 0.940680i \(-0.389811\pi\)
0.864573 + 0.502507i \(0.167589\pi\)
\(258\) 0 0
\(259\) −0.0214562 + 0.0371632i −0.00133322 + 0.00230921i
\(260\) 0 0
\(261\) 5.96231 5.00297i 0.369057 0.309676i
\(262\) 0 0
\(263\) 1.33866 + 7.59191i 0.0825452 + 0.468137i 0.997859 + 0.0653964i \(0.0208312\pi\)
−0.915314 + 0.402741i \(0.868058\pi\)
\(264\) 0 0
\(265\) 0.815207 0.0500778
\(266\) 0 0
\(267\) −6.11242 −0.374074
\(268\) 0 0
\(269\) 4.00428 + 22.7094i 0.244145 + 1.38462i 0.822469 + 0.568809i \(0.192596\pi\)
−0.578324 + 0.815807i \(0.696293\pi\)
\(270\) 0 0
\(271\) −17.8276 + 14.9591i −1.08295 + 0.908702i −0.996162 0.0875245i \(-0.972104\pi\)
−0.0867870 + 0.996227i \(0.527660\pi\)
\(272\) 0 0
\(273\) 0.531088 0.919871i 0.0321429 0.0556731i
\(274\) 0 0
\(275\) 4.28525 1.55970i 0.258410 0.0940537i
\(276\) 0 0
\(277\) −15.8172 27.3961i −0.950361 1.64607i −0.744644 0.667462i \(-0.767381\pi\)
−0.205717 0.978611i \(-0.565953\pi\)
\(278\) 0 0
\(279\) 0.431170 2.44529i 0.0258135 0.146396i
\(280\) 0 0
\(281\) −2.62785 2.20503i −0.156764 0.131541i 0.561032 0.827794i \(-0.310405\pi\)
−0.717796 + 0.696253i \(0.754849\pi\)
\(282\) 0 0
\(283\) 31.2163 + 11.3618i 1.85562 + 0.675389i 0.982032 + 0.188716i \(0.0604326\pi\)
0.873584 + 0.486673i \(0.161790\pi\)
\(284\) 0 0
\(285\) 1.86043 5.71236i 0.110202 0.338371i
\(286\) 0 0
\(287\) −0.175200 0.0637677i −0.0103417 0.00376409i
\(288\) 0 0
\(289\) 0.564464 + 0.473642i 0.0332038 + 0.0278613i
\(290\) 0 0
\(291\) 1.98292 11.2457i 0.116241 0.659235i
\(292\) 0 0
\(293\) 11.6213 + 20.1286i 0.678921 + 1.17593i 0.975306 + 0.220857i \(0.0708853\pi\)
−0.296386 + 0.955068i \(0.595781\pi\)
\(294\) 0 0
\(295\) 14.9160 5.42898i 0.868444 0.316088i
\(296\) 0 0
\(297\) 0.735431 1.27380i 0.0426740 0.0739136i
\(298\) 0 0
\(299\) 1.14626 0.961828i 0.0662900 0.0556239i
\(300\) 0 0
\(301\) 0.477155 + 2.70608i 0.0275028 + 0.155976i
\(302\) 0 0
\(303\) 8.02616 0.461091
\(304\) 0 0
\(305\) −8.65836 −0.495776
\(306\) 0 0
\(307\) 1.36160 + 7.72200i 0.0777104 + 0.440718i 0.998693 + 0.0511135i \(0.0162770\pi\)
−0.920982 + 0.389604i \(0.872612\pi\)
\(308\) 0 0
\(309\) −2.81043 + 2.35823i −0.159880 + 0.134155i
\(310\) 0 0
\(311\) −11.9284 + 20.6606i −0.676399 + 1.17156i 0.299659 + 0.954046i \(0.403127\pi\)
−0.976058 + 0.217510i \(0.930206\pi\)
\(312\) 0 0
\(313\) 7.14722 2.60137i 0.403985 0.147038i −0.132033 0.991245i \(-0.542150\pi\)
0.536017 + 0.844207i \(0.319928\pi\)
\(314\) 0 0
\(315\) −0.154658 0.267876i −0.00871402 0.0150931i
\(316\) 0 0
\(317\) −3.30017 + 18.7162i −0.185356 + 1.05121i 0.740141 + 0.672452i \(0.234759\pi\)
−0.925497 + 0.378755i \(0.876352\pi\)
\(318\) 0 0
\(319\) 8.76973 + 7.35868i 0.491011 + 0.412007i
\(320\) 0 0
\(321\) 3.20050 + 1.16489i 0.178634 + 0.0650176i
\(322\) 0 0
\(323\) 0.627973 + 18.3468i 0.0349414 + 1.02084i
\(324\) 0 0
\(325\) −13.7888 5.01872i −0.764866 0.278389i
\(326\) 0 0
\(327\) −2.34018 1.96364i −0.129412 0.108590i
\(328\) 0 0
\(329\) 0.121655 0.689941i 0.00670707 0.0380377i
\(330\) 0 0
\(331\) −8.33615 14.4386i −0.458196 0.793619i 0.540670 0.841235i \(-0.318171\pi\)
−0.998866 + 0.0476162i \(0.984838\pi\)
\(332\) 0 0
\(333\) 0.179678 0.0653975i 0.00984630 0.00358376i
\(334\) 0 0
\(335\) 2.59531 4.49521i 0.141797 0.245600i
\(336\) 0 0
\(337\) −16.7123 + 14.0233i −0.910380 + 0.763899i −0.972191 0.234189i \(-0.924757\pi\)
0.0618115 + 0.998088i \(0.480312\pi\)
\(338\) 0 0
\(339\) −0.428316 2.42910i −0.0232629 0.131931i
\(340\) 0 0
\(341\) 3.65217 0.197776
\(342\) 0 0
\(343\) 3.13066 0.169040
\(344\) 0 0
\(345\) −0.0756672 0.429130i −0.00407378 0.0231036i
\(346\) 0 0
\(347\) −14.0886 + 11.8217i −0.756315 + 0.634623i −0.937165 0.348887i \(-0.886560\pi\)
0.180850 + 0.983511i \(0.442115\pi\)
\(348\) 0 0
\(349\) 8.93506 15.4760i 0.478283 0.828410i −0.521407 0.853308i \(-0.674593\pi\)
0.999690 + 0.0248977i \(0.00792599\pi\)
\(350\) 0 0
\(351\) −4.44743 + 1.61873i −0.237386 + 0.0864014i
\(352\) 0 0
\(353\) −2.39710 4.15190i −0.127585 0.220983i 0.795156 0.606406i \(-0.207389\pi\)
−0.922740 + 0.385422i \(0.874056\pi\)
\(354\) 0 0
\(355\) 0.0741917 0.420762i 0.00393768 0.0223317i
\(356\) 0 0
\(357\) 0.724045 + 0.607546i 0.0383205 + 0.0321547i
\(358\) 0 0
\(359\) 13.3149 + 4.84621i 0.702732 + 0.255773i 0.668577 0.743643i \(-0.266904\pi\)
0.0341549 + 0.999417i \(0.489126\pi\)
\(360\) 0 0
\(361\) −13.6857 + 13.1796i −0.720301 + 0.693662i
\(362\) 0 0
\(363\) −8.30365 3.02228i −0.435829 0.158629i
\(364\) 0 0
\(365\) 5.93356 + 4.97885i 0.310577 + 0.260605i
\(366\) 0 0
\(367\) −4.76500 + 27.0236i −0.248731 + 1.41062i 0.562936 + 0.826501i \(0.309672\pi\)
−0.811666 + 0.584121i \(0.801439\pi\)
\(368\) 0 0
\(369\) 0.415380 + 0.719459i 0.0216238 + 0.0374536i
\(370\) 0 0
\(371\) −0.124737 + 0.0454007i −0.00647605 + 0.00235709i
\(372\) 0 0
\(373\) 14.8768 25.7675i 0.770294 1.33419i −0.167108 0.985939i \(-0.553443\pi\)
0.937402 0.348250i \(-0.113224\pi\)
\(374\) 0 0
\(375\) −8.55246 + 7.17637i −0.441647 + 0.370586i
\(376\) 0 0
\(377\) −6.39666 36.2773i −0.329445 1.86837i
\(378\) 0 0
\(379\) −28.1970 −1.44838 −0.724192 0.689599i \(-0.757787\pi\)
−0.724192 + 0.689599i \(0.757787\pi\)
\(380\) 0 0
\(381\) 4.92607 0.252370
\(382\) 0 0
\(383\) 1.23470 + 7.00233i 0.0630902 + 0.357802i 0.999967 + 0.00814234i \(0.00259181\pi\)
−0.936877 + 0.349660i \(0.886297\pi\)
\(384\) 0 0
\(385\) 0.348522 0.292444i 0.0177623 0.0149043i
\(386\) 0 0
\(387\) 6.12190 10.6034i 0.311193 0.539003i
\(388\) 0 0
\(389\) −13.0258 + 4.74100i −0.660434 + 0.240378i −0.650424 0.759572i \(-0.725409\pi\)
−0.0100102 + 0.999950i \(0.503186\pi\)
\(390\) 0 0
\(391\) 0.665756 + 1.15312i 0.0336687 + 0.0583160i
\(392\) 0 0
\(393\) −1.75110 + 9.93100i −0.0883315 + 0.500953i
\(394\) 0 0
\(395\) −0.0722064 0.0605884i −0.00363310 0.00304853i
\(396\) 0 0
\(397\) −28.8104 10.4861i −1.44595 0.526284i −0.504495 0.863415i \(-0.668321\pi\)
−0.941458 + 0.337131i \(0.890543\pi\)
\(398\) 0 0
\(399\) 0.0334639 + 0.977678i 0.00167529 + 0.0489451i
\(400\) 0 0
\(401\) 22.6613 + 8.24804i 1.13165 + 0.411887i 0.838892 0.544299i \(-0.183204\pi\)
0.292760 + 0.956186i \(0.405426\pi\)
\(402\) 0 0
\(403\) −9.00234 7.55386i −0.448438 0.376284i
\(404\) 0 0
\(405\) −0.239332 + 1.35732i −0.0118925 + 0.0674457i
\(406\) 0 0
\(407\) 0.140621 + 0.243563i 0.00697034 + 0.0120730i
\(408\) 0 0
\(409\) −19.6088 + 7.13703i −0.969594 + 0.352903i −0.777786 0.628529i \(-0.783657\pi\)
−0.191808 + 0.981432i \(0.561435\pi\)
\(410\) 0 0
\(411\) −11.3114 + 19.5919i −0.557948 + 0.966395i
\(412\) 0 0
\(413\) −1.97999 + 1.66141i −0.0974291 + 0.0817527i
\(414\) 0 0
\(415\) −2.07688 11.7786i −0.101950 0.578187i
\(416\) 0 0
\(417\) −5.84924 −0.286439
\(418\) 0 0
\(419\) −21.7857 −1.06430 −0.532152 0.846649i \(-0.678616\pi\)
−0.532152 + 0.846649i \(0.678616\pi\)
\(420\) 0 0
\(421\) −0.533134 3.02355i −0.0259834 0.147359i 0.969056 0.246841i \(-0.0793925\pi\)
−0.995039 + 0.0994820i \(0.968281\pi\)
\(422\) 0 0
\(423\) −2.39134 + 2.00657i −0.116271 + 0.0975628i
\(424\) 0 0
\(425\) 6.52870 11.3080i 0.316689 0.548521i
\(426\) 0 0
\(427\) 1.32484 0.482204i 0.0641137 0.0233355i
\(428\) 0 0
\(429\) −3.48069 6.02872i −0.168049 0.291070i
\(430\) 0 0
\(431\) −5.13545 + 29.1246i −0.247366 + 1.40288i 0.567567 + 0.823327i \(0.307885\pi\)
−0.814933 + 0.579555i \(0.803226\pi\)
\(432\) 0 0
\(433\) 14.2430 + 11.9513i 0.684475 + 0.574342i 0.917310 0.398174i \(-0.130356\pi\)
−0.232835 + 0.972516i \(0.574800\pi\)
\(434\) 0 0
\(435\) −10.0804 3.66895i −0.483317 0.175913i
\(436\) 0 0
\(437\) −0.426766 + 1.31036i −0.0204150 + 0.0626833i
\(438\) 0 0
\(439\) −29.1860 10.6228i −1.39297 0.507001i −0.466888 0.884316i \(-0.654625\pi\)
−0.926085 + 0.377315i \(0.876847\pi\)
\(440\) 0 0
\(441\) −5.32373 4.46714i −0.253511 0.212721i
\(442\) 0 0
\(443\) 2.05326 11.6446i 0.0975532 0.553252i −0.896382 0.443283i \(-0.853814\pi\)
0.993935 0.109969i \(-0.0350751\pi\)
\(444\) 0 0
\(445\) 4.21224 + 7.29582i 0.199679 + 0.345855i
\(446\) 0 0
\(447\) −10.2975 + 3.74799i −0.487056 + 0.177274i
\(448\) 0 0
\(449\) 11.4036 19.7516i 0.538169 0.932135i −0.460834 0.887486i \(-0.652450\pi\)
0.999003 0.0446491i \(-0.0142170\pi\)
\(450\) 0 0
\(451\) −0.936055 + 0.785444i −0.0440771 + 0.0369851i
\(452\) 0 0
\(453\) −2.56456 14.5444i −0.120494 0.683353i
\(454\) 0 0
\(455\) −1.46395 −0.0686311
\(456\) 0 0
\(457\) −8.80077 −0.411683 −0.205841 0.978585i \(-0.565993\pi\)
−0.205841 + 0.978585i \(0.565993\pi\)
\(458\) 0 0
\(459\) −0.731322 4.14753i −0.0341352 0.193590i
\(460\) 0 0
\(461\) −12.9396 + 10.8576i −0.602657 + 0.505689i −0.892298 0.451446i \(-0.850908\pi\)
0.289642 + 0.957135i \(0.406464\pi\)
\(462\) 0 0
\(463\) −10.4535 + 18.1060i −0.485816 + 0.841457i −0.999867 0.0163021i \(-0.994811\pi\)
0.514052 + 0.857759i \(0.328144\pi\)
\(464\) 0 0
\(465\) −3.21584 + 1.17047i −0.149131 + 0.0542793i
\(466\) 0 0
\(467\) 8.67007 + 15.0170i 0.401203 + 0.694904i 0.993871 0.110543i \(-0.0352589\pi\)
−0.592669 + 0.805446i \(0.701926\pi\)
\(468\) 0 0
\(469\) −0.146768 + 0.832365i −0.00677714 + 0.0384351i
\(470\) 0 0
\(471\) −5.99269 5.02846i −0.276128 0.231699i
\(472\) 0 0
\(473\) 16.9229 + 6.15942i 0.778114 + 0.283210i
\(474\) 0 0
\(475\) 13.2210 2.80064i 0.606620 0.128502i
\(476\) 0 0
\(477\) 0.555806 + 0.202297i 0.0254486 + 0.00926254i
\(478\) 0 0
\(479\) −6.59338 5.53250i −0.301259 0.252787i 0.479609 0.877482i \(-0.340779\pi\)
−0.780868 + 0.624696i \(0.785223\pi\)
\(480\) 0 0
\(481\) 0.157146 0.891217i 0.00716522 0.0406360i
\(482\) 0 0
\(483\) 0.0354773 + 0.0614484i 0.00161427 + 0.00279600i
\(484\) 0 0
\(485\) −14.7894 + 5.38291i −0.671553 + 0.244425i
\(486\) 0 0
\(487\) −9.91739 + 17.1774i −0.449400 + 0.778383i −0.998347 0.0574739i \(-0.981695\pi\)
0.548947 + 0.835857i \(0.315029\pi\)
\(488\) 0 0
\(489\) −7.41523 + 6.22212i −0.335328 + 0.281374i
\(490\) 0 0
\(491\) 3.46859 + 19.6714i 0.156535 + 0.887756i 0.957369 + 0.288869i \(0.0932791\pi\)
−0.800833 + 0.598887i \(0.795610\pi\)
\(492\) 0 0
\(493\) 32.7792 1.47630
\(494\) 0 0
\(495\) −2.02723 −0.0911171
\(496\) 0 0
\(497\) 0.0120809 + 0.0685140i 0.000541901 + 0.00307327i
\(498\) 0 0
\(499\) −12.2806 + 10.3046i −0.549755 + 0.461299i −0.874858 0.484379i \(-0.839045\pi\)
0.325103 + 0.945679i \(0.394601\pi\)
\(500\) 0 0
\(501\) −4.04878 + 7.01270i −0.180886 + 0.313304i
\(502\) 0 0
\(503\) −3.53158 + 1.28539i −0.157465 + 0.0573126i −0.419550 0.907732i \(-0.637812\pi\)
0.262085 + 0.965045i \(0.415590\pi\)
\(504\) 0 0
\(505\) −5.53106 9.58007i −0.246129 0.426308i
\(506\) 0 0
\(507\) −1.63227 + 9.25707i −0.0724917 + 0.411121i
\(508\) 0 0
\(509\) 26.0513 + 21.8597i 1.15470 + 0.968912i 0.999819 0.0190199i \(-0.00605459\pi\)
0.154886 + 0.987932i \(0.450499\pi\)
\(510\) 0 0
\(511\) −1.18520 0.431376i −0.0524300 0.0190829i
\(512\) 0 0
\(513\) 2.68598 3.43300i 0.118589 0.151571i
\(514\) 0 0
\(515\) 4.75154 + 1.72942i 0.209378 + 0.0762073i
\(516\) 0 0
\(517\) −3.51733 2.95139i −0.154692 0.129802i
\(518\) 0 0
\(519\) 4.46250 25.3081i 0.195882 1.11090i
\(520\) 0 0
\(521\) −2.01219 3.48522i −0.0881558 0.152690i 0.818576 0.574399i \(-0.194764\pi\)
−0.906732 + 0.421708i \(0.861431\pi\)
\(522\) 0 0
\(523\) −13.8668 + 5.04710i −0.606352 + 0.220694i −0.626906 0.779095i \(-0.715679\pi\)
0.0205541 + 0.999789i \(0.493457\pi\)
\(524\) 0 0
\(525\) 0.347906 0.602591i 0.0151839 0.0262992i
\(526\) 0 0
\(527\) 8.01070 6.72178i 0.348952 0.292805i
\(528\) 0 0
\(529\) −3.97655 22.5521i −0.172894 0.980528i
\(530\) 0 0
\(531\) 11.5169 0.499792
\(532\) 0 0
\(533\) 3.93186 0.170308
\(534\) 0 0
\(535\) −0.815141 4.62289i −0.0352416 0.199865i
\(536\) 0 0
\(537\) −12.0568 + 10.1169i −0.520291 + 0.436576i
\(538\) 0 0
\(539\) 5.11098 8.85247i 0.220145 0.381303i
\(540\) 0 0
\(541\) −17.0568 + 6.20816i −0.733328 + 0.266910i −0.681573 0.731750i \(-0.738704\pi\)
−0.0517554 + 0.998660i \(0.516482\pi\)
\(542\) 0 0
\(543\) 11.4476 + 19.8278i 0.491263 + 0.850892i
\(544\) 0 0
\(545\) −0.731132 + 4.14645i −0.0313182 + 0.177615i
\(546\) 0 0
\(547\) 19.8921 + 16.6914i 0.850524 + 0.713674i 0.959905 0.280326i \(-0.0904425\pi\)
−0.109381 + 0.994000i \(0.534887\pi\)
\(548\) 0 0
\(549\) −5.90325 2.14861i −0.251945 0.0917004i
\(550\) 0 0
\(551\) 22.6837 + 25.2279i 0.966358 + 1.07474i
\(552\) 0 0
\(553\) 0.0144228 + 0.00524948i 0.000613321 + 0.000223231i
\(554\) 0 0
\(555\) −0.201880 0.169398i −0.00856934 0.00719053i
\(556\) 0 0
\(557\) −6.85624 + 38.8837i −0.290508 + 1.64755i 0.394410 + 0.918934i \(0.370949\pi\)
−0.684918 + 0.728620i \(0.740162\pi\)
\(558\) 0 0
\(559\) −28.9740 50.1845i −1.22547 2.12258i
\(560\) 0 0
\(561\) 5.82098 2.11866i 0.245762 0.0894500i
\(562\) 0 0
\(563\) 10.9754 19.0099i 0.462557 0.801172i −0.536531 0.843881i \(-0.680265\pi\)
0.999088 + 0.0427089i \(0.0135988\pi\)
\(564\) 0 0
\(565\) −2.60422 + 2.18520i −0.109560 + 0.0919322i
\(566\) 0 0
\(567\) −0.0389712 0.221017i −0.00163664 0.00928182i
\(568\) 0 0
\(569\) −27.7545 −1.16353 −0.581765 0.813357i \(-0.697637\pi\)
−0.581765 + 0.813357i \(0.697637\pi\)
\(570\) 0 0
\(571\) 27.6610 1.15758 0.578789 0.815477i \(-0.303525\pi\)
0.578789 + 0.815477i \(0.303525\pi\)
\(572\) 0 0
\(573\) −2.35603 13.3617i −0.0984244 0.558193i
\(574\) 0 0
\(575\) 0.750895 0.630076i 0.0313145 0.0262760i
\(576\) 0 0
\(577\) 10.3297 17.8915i 0.430029 0.744833i −0.566846 0.823824i \(-0.691837\pi\)
0.996875 + 0.0789911i \(0.0251699\pi\)
\(578\) 0 0
\(579\) 7.28846 2.65278i 0.302898 0.110246i
\(580\) 0 0
\(581\) 0.973764 + 1.68661i 0.0403985 + 0.0699723i
\(582\) 0 0
\(583\) −0.151071 + 0.856764i −0.00625671 + 0.0354835i
\(584\) 0 0
\(585\) 4.99697 + 4.19296i 0.206599 + 0.173358i
\(586\) 0 0
\(587\) 36.8394 + 13.4084i 1.52053 + 0.553426i 0.961279 0.275576i \(-0.0888686\pi\)
0.559246 + 0.829002i \(0.311091\pi\)
\(588\) 0 0
\(589\) 10.7168 + 1.51371i 0.441579 + 0.0623715i
\(590\) 0 0
\(591\) 5.52674 + 2.01157i 0.227340 + 0.0827449i
\(592\) 0 0
\(593\) 4.13801 + 3.47220i 0.169928 + 0.142586i 0.723785 0.690025i \(-0.242401\pi\)
−0.553858 + 0.832611i \(0.686845\pi\)
\(594\) 0 0
\(595\) 0.226210 1.28290i 0.00927371 0.0525938i
\(596\) 0 0
\(597\) −8.39818 14.5461i −0.343715 0.595331i
\(598\) 0 0
\(599\) −36.1226 + 13.1475i −1.47593 + 0.537194i −0.949703 0.313151i \(-0.898615\pi\)
−0.526226 + 0.850345i \(0.676393\pi\)
\(600\) 0 0
\(601\) −4.98002 + 8.62565i −0.203139 + 0.351848i −0.949538 0.313651i \(-0.898448\pi\)
0.746399 + 0.665499i \(0.231781\pi\)
\(602\) 0 0
\(603\) 2.88498 2.42079i 0.117486 0.0985821i
\(604\) 0 0
\(605\) 2.11487 + 11.9940i 0.0859818 + 0.487627i
\(606\) 0 0
\(607\) −23.5654 −0.956490 −0.478245 0.878226i \(-0.658727\pi\)
−0.478245 + 0.878226i \(0.658727\pi\)
\(608\) 0 0
\(609\) 1.74676 0.0707823
\(610\) 0 0
\(611\) 2.56555 + 14.5499i 0.103791 + 0.588628i
\(612\) 0 0
\(613\) −13.6777 + 11.4770i −0.552439 + 0.463551i −0.875766 0.482736i \(-0.839643\pi\)
0.323327 + 0.946287i \(0.395199\pi\)
\(614\) 0 0
\(615\) 0.572501 0.991600i 0.0230855 0.0399852i
\(616\) 0 0
\(617\) 0.507249 0.184624i 0.0204211 0.00743266i −0.331789 0.943353i \(-0.607652\pi\)
0.352210 + 0.935921i \(0.385430\pi\)
\(618\) 0 0
\(619\) −6.44901 11.1700i −0.259208 0.448961i 0.706822 0.707391i \(-0.250128\pi\)
−0.966030 + 0.258430i \(0.916795\pi\)
\(620\) 0 0
\(621\) 0.0549006 0.311357i 0.00220309 0.0124943i
\(622\) 0 0
\(623\) −1.05085 0.881767i −0.0421014 0.0353272i
\(624\) 0 0
\(625\) −0.107643 0.0391787i −0.00430571 0.00156715i
\(626\) 0 0
\(627\) 5.65879 + 3.01386i 0.225990 + 0.120362i
\(628\) 0 0
\(629\) 0.756717 + 0.275422i 0.0301723 + 0.0109818i
\(630\) 0 0
\(631\) −33.1594 27.8240i −1.32005 1.10766i −0.986294 0.164998i \(-0.947238\pi\)
−0.333759 0.942658i \(-0.608317\pi\)
\(632\) 0 0
\(633\) −0.190852 + 1.08238i −0.00758568 + 0.0430206i
\(634\) 0 0
\(635\) −3.39470 5.87979i −0.134715 0.233332i
\(636\) 0 0
\(637\) −30.9080 + 11.2496i −1.22462 + 0.445725i
\(638\) 0 0
\(639\) 0.154997 0.268463i 0.00613160 0.0106202i
\(640\) 0 0
\(641\) −7.64561 + 6.41543i −0.301984 + 0.253394i −0.781169 0.624319i \(-0.785376\pi\)
0.479186 + 0.877714i \(0.340932\pi\)
\(642\) 0 0
\(643\) −2.57514 14.6044i −0.101554 0.575939i −0.992541 0.121911i \(-0.961098\pi\)
0.890987 0.454028i \(-0.150013\pi\)
\(644\) 0 0
\(645\) −16.8751 −0.664456
\(646\) 0 0
\(647\) 12.2996 0.483548 0.241774 0.970333i \(-0.422271\pi\)
0.241774 + 0.970333i \(0.422271\pi\)
\(648\) 0 0
\(649\) 2.94157 + 16.6825i 0.115467 + 0.654843i
\(650\) 0 0
\(651\) 0.426880 0.358195i 0.0167307 0.0140388i
\(652\) 0 0
\(653\) −17.2787 + 29.9276i −0.676169 + 1.17116i 0.299957 + 0.953953i \(0.403028\pi\)
−0.976126 + 0.217206i \(0.930306\pi\)
\(654\) 0 0
\(655\) 13.0604 4.75361i 0.510314 0.185739i
\(656\) 0 0
\(657\) 2.80997 + 4.86700i 0.109627 + 0.189880i
\(658\) 0 0
\(659\) −4.05724 + 23.0098i −0.158048 + 0.896333i 0.797899 + 0.602792i \(0.205945\pi\)
−0.955946 + 0.293541i \(0.905166\pi\)
\(660\) 0 0
\(661\) 8.82765 + 7.40728i 0.343356 + 0.288110i 0.798116 0.602504i \(-0.205830\pi\)
−0.454760 + 0.890614i \(0.650275\pi\)
\(662\) 0 0
\(663\) −18.7304 6.81731i −0.727428 0.264762i
\(664\) 0 0
\(665\) 1.14390 0.713689i 0.0443586 0.0276757i
\(666\) 0 0
\(667\) 2.31235 + 0.841625i 0.0895344 + 0.0325879i
\(668\) 0 0
\(669\) −12.2051 10.2413i −0.471875 0.395950i
\(670\) 0 0
\(671\) 1.60453 9.09974i 0.0619422 0.351292i
\(672\) 0 0
\(673\) 8.55688 + 14.8210i 0.329844 + 0.571306i 0.982481 0.186365i \(-0.0596707\pi\)
−0.652637 + 0.757671i \(0.726337\pi\)
\(674\) 0 0
\(675\) −2.91343 + 1.06040i −0.112138 + 0.0408149i
\(676\) 0 0
\(677\) 12.3694 21.4245i 0.475396 0.823411i −0.524207 0.851591i \(-0.675638\pi\)
0.999603 + 0.0281806i \(0.00897136\pi\)
\(678\) 0 0
\(679\) 1.96319 1.64731i 0.0753403 0.0632181i
\(680\) 0 0
\(681\) −4.37002 24.7836i −0.167460 0.949711i
\(682\) 0 0
\(683\) 49.4101 1.89062 0.945312 0.326169i \(-0.105758\pi\)
0.945312 + 0.326169i \(0.105758\pi\)
\(684\) 0 0
\(685\) 31.1799 1.19132
\(686\) 0 0
\(687\) −1.60117 9.08070i −0.0610885 0.346450i
\(688\) 0 0
\(689\) 2.14444 1.79940i 0.0816968 0.0685517i
\(690\) 0 0
\(691\) 15.7808 27.3332i 0.600331 1.03980i −0.392440 0.919778i \(-0.628369\pi\)
0.992771 0.120026i \(-0.0382977\pi\)
\(692\) 0 0
\(693\) 0.310192 0.112901i 0.0117832 0.00428875i
\(694\) 0 0
\(695\) 4.03088 + 6.98169i 0.152900 + 0.264831i
\(696\) 0 0
\(697\) −0.607553 + 3.44560i −0.0230127 + 0.130512i
\(698\) 0 0
\(699\) 2.72490 + 2.28647i 0.103065 + 0.0864821i
\(700\) 0 0
\(701\) 41.1334 + 14.9713i 1.55359 + 0.565459i 0.969256 0.246056i \(-0.0791347\pi\)
0.584331 + 0.811515i \(0.301357\pi\)
\(702\) 0 0
\(703\) 0.311686 + 0.772989i 0.0117554 + 0.0291538i
\(704\) 0 0
\(705\) 4.04299 + 1.47153i 0.152268 + 0.0554210i
\(706\) 0 0
\(707\) 1.37986 + 1.15784i 0.0518950 + 0.0435451i
\(708\) 0 0
\(709\) 3.01509 17.0994i 0.113234 0.642182i −0.874375 0.485250i \(-0.838729\pi\)
0.987609 0.156932i \(-0.0501603\pi\)
\(710\) 0 0
\(711\) −0.0341949 0.0592273i −0.00128241 0.00222120i
\(712\) 0 0
\(713\) 0.737685 0.268495i 0.0276265 0.0100552i
\(714\) 0 0
\(715\) −4.79728 + 8.30913i −0.179408 + 0.310744i
\(716\) 0 0
\(717\) −18.3611 + 15.4068i −0.685708 + 0.575377i
\(718\) 0 0
\(719\) −4.75813 26.9847i −0.177448 1.00636i −0.935280 0.353910i \(-0.884852\pi\)
0.757831 0.652451i \(-0.226259\pi\)
\(720\) 0 0
\(721\) −0.823363 −0.0306637
\(722\) 0 0
\(723\) 26.4555 0.983892
\(724\) 0 0
\(725\) −4.19034 23.7646i −0.155625 0.882595i
\(726\) 0 0
\(727\) −30.8238 + 25.8642i −1.14319 + 0.959250i −0.999538 0.0303782i \(-0.990329\pi\)
−0.143651 + 0.989628i \(0.545884\pi\)
\(728\) 0 0
\(729\) −0.500000 + 0.866025i −0.0185185 + 0.0320750i
\(730\) 0 0
\(731\) 48.4552 17.6362i 1.79218 0.652300i
\(732\) 0 0
\(733\) 24.4834 + 42.4065i 0.904315 + 1.56632i 0.821835 + 0.569726i \(0.192951\pi\)
0.0824802 + 0.996593i \(0.473716\pi\)
\(734\) 0 0
\(735\) −1.66327 + 9.43287i −0.0613506 + 0.347937i
\(736\) 0 0
\(737\) 4.24341 + 3.56065i 0.156308 + 0.131158i
\(738\) 0 0
\(739\) −0.871374 0.317154i −0.0320540 0.0116667i 0.325943 0.945389i \(-0.394318\pi\)
−0.357997 + 0.933723i \(0.616540\pi\)
\(740\) 0 0
\(741\) −7.71490 19.1332i −0.283414 0.702874i
\(742\) 0 0
\(743\) −25.3808 9.23787i −0.931132 0.338904i −0.168474 0.985706i \(-0.553884\pi\)
−0.762658 + 0.646802i \(0.776106\pi\)
\(744\) 0 0
\(745\) 11.5699 + 9.70833i 0.423890 + 0.355686i
\(746\) 0 0
\(747\) 1.50689 8.54598i 0.0551341 0.312681i
\(748\) 0 0
\(749\) 0.382186 + 0.661966i 0.0139648 + 0.0241877i
\(750\) 0 0
\(751\) 11.3437 4.12877i 0.413938 0.150661i −0.126652 0.991947i \(-0.540423\pi\)
0.540590 + 0.841286i \(0.318201\pi\)
\(752\) 0 0
\(753\) −12.6011 + 21.8257i −0.459208 + 0.795372i
\(754\) 0 0
\(755\) −15.5929 + 13.0840i −0.567484 + 0.476176i
\(756\) 0 0
\(757\) −5.26975 29.8862i −0.191532 1.08623i −0.917271 0.398263i \(-0.869613\pi\)
0.725739 0.687970i \(-0.241498\pi\)
\(758\) 0 0
\(759\) 0.465028 0.0168794
\(760\) 0 0
\(761\) −18.8427 −0.683049 −0.341525 0.939873i \(-0.610943\pi\)
−0.341525 + 0.939873i \(0.610943\pi\)
\(762\) 0 0
\(763\) −0.119053 0.675180i −0.00430999 0.0244432i
\(764\) 0 0
\(765\) −4.44654 + 3.73109i −0.160765 + 0.134898i
\(766\) 0 0
\(767\) 27.2539 47.2052i 0.984083 1.70448i
\(768\) 0 0
\(769\) 33.0309 12.0223i 1.19113 0.433534i 0.331007 0.943628i \(-0.392612\pi\)
0.860119 + 0.510094i \(0.170389\pi\)
\(770\) 0 0
\(771\) −10.2690 17.7865i −0.369831 0.640565i
\(772\) 0 0
\(773\) −5.49606 + 31.1697i −0.197680 + 1.12110i 0.710871 + 0.703322i \(0.248301\pi\)
−0.908551 + 0.417774i \(0.862810\pi\)
\(774\) 0 0
\(775\) −5.89727 4.94840i −0.211836 0.177752i
\(776\) 0 0
\(777\) 0.0403244 + 0.0146769i 0.00144663 + 0.000526531i
\(778\) 0 0
\(779\) −3.07228 + 1.91682i −0.110076 + 0.0686771i
\(780\) 0 0
\(781\) 0.428462 + 0.155947i 0.0153316 + 0.00558024i
\(782\) 0 0
\(783\) −5.96231 5.00297i −0.213075 0.178792i
\(784\) 0 0
\(785\) −1.87227 + 10.6182i −0.0668241 + 0.378979i
\(786\) 0 0
\(787\) 13.4218 + 23.2472i 0.478435 + 0.828675i 0.999694 0.0247241i \(-0.00787072\pi\)
−0.521259 + 0.853399i \(0.674537\pi\)
\(788\) 0 0
\(789\) 7.24411 2.63664i 0.257897 0.0938669i
\(790\) 0 0
\(791\) 0.276782 0.479400i 0.00984122 0.0170455i
\(792\) 0 0
\(793\) −22.7763 + 19.1115i −0.808808 + 0.678671i
\(794\) 0 0
\(795\) −0.141559 0.802823i −0.00502059 0.0284732i
\(796\) 0 0
\(797\) 32.0162 1.13407 0.567037 0.823693i \(-0.308090\pi\)
0.567037 + 0.823693i \(0.308090\pi\)
\(798\) 0 0
\(799\) −13.1470 −0.465106
\(800\) 0 0
\(801\) 1.06141 + 6.01955i 0.0375031 + 0.212690i
\(802\) 0 0
\(803\) −6.33223 + 5.31337i −0.223460 + 0.187505i
\(804\) 0 0
\(805\) 0.0488968 0.0846918i 0.00172339 0.00298499i
\(806\) 0 0
\(807\) 21.6691 7.88689i 0.762787 0.277632i
\(808\) 0 0
\(809\) −19.1646 33.1941i −0.673793 1.16704i −0.976820 0.214061i \(-0.931331\pi\)
0.303028 0.952982i \(-0.402003\pi\)
\(810\) 0 0
\(811\) 9.58364 54.3515i 0.336527 1.90854i −0.0750780 0.997178i \(-0.523921\pi\)
0.411605 0.911362i \(-0.364968\pi\)
\(812\) 0 0
\(813\) 17.8276 + 14.9591i 0.625241 + 0.524640i
\(814\) 0 0
\(815\) 12.5368 + 4.56302i 0.439145 + 0.159836i
\(816\) 0 0
\(817\) 47.1051 + 25.0880i 1.64800 + 0.877719i
\(818\) 0 0
\(819\) −0.998118 0.363285i −0.0348771 0.0126942i
\(820\) 0 0
\(821\) −27.8861 23.3992i −0.973231 0.816638i 0.00982319 0.999952i \(-0.496873\pi\)
−0.983054 + 0.183314i \(0.941318\pi\)
\(822\) 0 0
\(823\) −0.443577 + 2.51565i −0.0154621 + 0.0876900i −0.991562 0.129631i \(-0.958621\pi\)
0.976100 + 0.217321i \(0.0697318\pi\)
\(824\) 0 0
\(825\) −2.28014 3.94931i −0.0793841 0.137497i
\(826\) 0 0
\(827\) 43.7731 15.9321i 1.52214 0.554014i 0.560458 0.828183i \(-0.310625\pi\)
0.961682 + 0.274169i \(0.0884028\pi\)
\(828\) 0 0
\(829\) 21.2834 36.8640i 0.739204 1.28034i −0.213650 0.976910i \(-0.568535\pi\)
0.952854 0.303429i \(-0.0981314\pi\)
\(830\) 0 0
\(831\) −24.2333 + 20.3341i −0.840644 + 0.705384i
\(832\) 0 0
\(833\) −5.08242 28.8238i −0.176095 0.998686i
\(834\) 0 0
\(835\) 11.1605 0.386226
\(836\) 0 0
\(837\) −2.48301 −0.0858254
\(838\) 0 0
\(839\) 2.55595 + 14.4955i 0.0882413 + 0.500442i 0.996610 + 0.0822712i \(0.0262174\pi\)
−0.908369 + 0.418170i \(0.862672\pi\)
\(840\) 0 0
\(841\) 24.1907 20.2984i 0.834164 0.699946i
\(842\) 0 0
\(843\) −1.71521 + 2.97083i −0.0590749 + 0.102321i
\(844\) 0 0
\(845\) 12.1741 4.43103i 0.418803 0.152432i
\(846\) 0 0
\(847\) −0.991578 1.71746i −0.0340710 0.0590127i
\(848\) 0 0
\(849\) 5.76854 32.7150i 0.197976 1.12278i
\(850\) 0 0
\(851\) 0.0463095 + 0.0388583i 0.00158747 + 0.00133205i
\(852\) 0 0
\(853\) −42.1943 15.3575i −1.44471 0.525830i −0.503598 0.863938i \(-0.667991\pi\)
−0.941107 + 0.338108i \(0.890213\pi\)
\(854\) 0 0
\(855\) −5.94864 0.840225i −0.203439 0.0287351i
\(856\) 0 0
\(857\) −10.6057 3.86015i −0.362283 0.131860i 0.154464 0.987998i \(-0.450635\pi\)
−0.516747 + 0.856138i \(0.672857\pi\)
\(858\) 0 0
\(859\) −11.6862 9.80589i −0.398728 0.334573i 0.421274 0.906934i \(-0.361583\pi\)
−0.820002 + 0.572361i \(0.806028\pi\)
\(860\) 0 0
\(861\) −0.0323757 + 0.183612i −0.00110336 + 0.00625747i
\(862\) 0 0
\(863\) 14.2681 + 24.7130i 0.485691 + 0.841241i 0.999865 0.0164450i \(-0.00523484\pi\)
−0.514174 + 0.857686i \(0.671902\pi\)
\(864\) 0 0
\(865\) −33.2831 + 12.1141i −1.13166 + 0.411890i
\(866\) 0 0
\(867\) 0.368428 0.638136i 0.0125125 0.0216722i
\(868\) 0 0
\(869\) 0.0770579 0.0646593i 0.00261401 0.00219342i
\(870\) 0 0
\(871\) −3.09515 17.5535i −0.104875 0.594777i
\(872\) 0 0
\(873\) −11.4192 −0.386481
\(874\) 0 0
\(875\) −2.50559 −0.0847045
\(876\) 0 0
\(877\) 0.681808 + 3.86673i 0.0230230 + 0.130570i 0.994153 0.107981i \(-0.0344386\pi\)
−0.971130 + 0.238551i \(0.923328\pi\)
\(878\) 0 0
\(879\) 17.8048 14.9400i 0.600541 0.503913i
\(880\) 0 0
\(881\) 13.5005 23.3836i 0.454843 0.787812i −0.543836 0.839192i \(-0.683029\pi\)
0.998679 + 0.0513797i \(0.0163619\pi\)
\(882\) 0 0
\(883\) −9.53744 + 3.47134i −0.320960 + 0.116820i −0.497476 0.867478i \(-0.665740\pi\)
0.176515 + 0.984298i \(0.443517\pi\)
\(884\) 0 0
\(885\) −7.93664 13.7467i −0.266787 0.462089i
\(886\) 0 0
\(887\) −4.63248 + 26.2721i −0.155543 + 0.882130i 0.802744 + 0.596324i \(0.203372\pi\)
−0.958287 + 0.285806i \(0.907739\pi\)
\(888\) 0 0
\(889\) 0.846892 + 0.710627i 0.0284039 + 0.0238337i
\(890\) 0 0
\(891\) −1.38216 0.503064i −0.0463040 0.0168533i
\(892\) 0 0
\(893\) −9.09789 10.1183i −0.304449 0.338596i
\(894\) 0 0
\(895\) 20.3843 + 7.41927i 0.681372 + 0.247999i
\(896\) 0 0
\(897\) −1.14626 0.961828i −0.0382726 0.0321145i
\(898\) 0 0
\(899\) 3.35590 19.0323i 0.111926 0.634761i
\(900\) 0 0
\(901\) 1.24551 + 2.15728i 0.0414938 + 0.0718695i
\(902\) 0 0
\(903\) 2.58211 0.939812i 0.0859273 0.0312750i
\(904\) 0 0
\(905\) 15.7777 27.3278i 0.524469 0.908407i
\(906\) 0 0
\(907\) −17.5958 + 14.7646i −0.584260 + 0.490252i −0.886343 0.463030i \(-0.846762\pi\)
0.302083 + 0.953282i \(0.402318\pi\)
\(908\) 0 0
\(909\) −1.39373 7.90423i −0.0462270 0.262167i
\(910\) 0 0
\(911\) −47.3993 −1.57041 −0.785205 0.619236i \(-0.787443\pi\)
−0.785205 + 0.619236i \(0.787443\pi\)
\(912\) 0 0
\(913\) 12.7639 0.422422
\(914\) 0 0
\(915\) 1.50351 + 8.52682i 0.0497045 + 0.281888i
\(916\) 0 0
\(917\) −1.73368 + 1.45473i −0.0572511 + 0.0480394i
\(918\) 0 0
\(919\) −5.27984 + 9.14494i −0.174166 + 0.301664i −0.939872 0.341526i \(-0.889056\pi\)
0.765707 + 0.643190i \(0.222390\pi\)
\(920\) 0 0
\(921\) 7.36824 2.68182i 0.242792 0.0883690i
\(922\) 0 0
\(923\) −0.733580 1.27060i −0.0241461 0.0418222i
\(924\) 0 0
\(925\) 0.102943 0.583821i 0.00338476 0.0191959i
\(926\) 0 0
\(927\) 2.81043 + 2.35823i 0.0923065 + 0.0774544i
\(928\) 0 0
\(929\) 32.3423 + 11.7716i 1.06112 + 0.386215i 0.812848 0.582476i \(-0.197916\pi\)
0.248269 + 0.968691i \(0.420138\pi\)
\(930\) 0 0
\(931\) 18.6666 23.8581i 0.611773 0.781918i
\(932\) 0 0
\(933\) 22.4181 + 8.15952i 0.733935 + 0.267131i
\(934\) 0 0
\(935\) −6.54025 5.48792i −0.213889 0.179474i
\(936\) 0 0
\(937\) 9.88978 56.0877i 0.323085 1.83231i −0.199719 0.979853i \(-0.564003\pi\)
0.522804 0.852453i \(-0.324886\pi\)
\(938\) 0 0
\(939\) −3.80296 6.58691i −0.124105 0.214956i
\(940\) 0 0
\(941\) 39.2466 14.2846i 1.27940 0.465664i 0.389167 0.921167i \(-0.372763\pi\)
0.890234 + 0.455503i \(0.150541\pi\)
\(942\) 0 0
\(943\) −0.131327 + 0.227464i −0.00427658 + 0.00740726i
\(944\) 0 0
\(945\) −0.236951 + 0.198825i −0.00770800 + 0.00646778i
\(946\) 0 0
\(947\) 0.135809 + 0.770213i 0.00441321 + 0.0250286i 0.986935 0.161120i \(-0.0515106\pi\)
−0.982522 + 0.186148i \(0.940399\pi\)
\(948\) 0 0
\(949\) 26.5983 0.863417
\(950\) 0 0
\(951\) 19.0049 0.616278
\(952\) 0 0
\(953\) 3.90927 + 22.1706i 0.126634 + 0.718175i 0.980324 + 0.197394i \(0.0632479\pi\)
−0.853691 + 0.520781i \(0.825641\pi\)
\(954\) 0 0
\(955\) −14.3250 + 12.0201i −0.463546 + 0.388961i
\(956\) 0 0
\(957\) 5.72403 9.91432i 0.185032 0.320484i
\(958\) 0 0
\(959\) −4.77094 + 1.73648i −0.154062 + 0.0560739i
\(960\) 0 0
\(961\) 12.4173 + 21.5074i 0.400559 + 0.693789i
\(962\) 0 0
\(963\) 0.591429 3.35416i 0.0190585 0.108086i
\(964\) 0 0
\(965\) −8.18906 6.87144i −0.263615 0.221199i
\(966\) 0 0
\(967\) 24.8352 + 9.03928i 0.798646 + 0.290684i 0.708925 0.705283i \(-0.249180\pi\)
0.0897210 + 0.995967i \(0.471402\pi\)
\(968\) 0 0
\(969\) 17.9590 3.80433i 0.576928 0.122213i
\(970\) 0 0
\(971\) 3.52810 + 1.28412i 0.113222 + 0.0412094i 0.398010 0.917381i \(-0.369701\pi\)
−0.284788 + 0.958591i \(0.591923\pi\)
\(972\) 0 0
\(973\) −1.00560 0.843802i −0.0322382 0.0270511i
\(974\) 0 0
\(975\) −2.54807 + 14.4508i −0.0816036 + 0.462797i
\(976\) 0 0
\(977\) 4.78572 + 8.28911i 0.153109 + 0.265192i 0.932369 0.361509i \(-0.117738\pi\)
−0.779260 + 0.626701i \(0.784405\pi\)
\(978\) 0 0
\(979\) −8.44833 + 3.07494i −0.270010 + 0.0982755i
\(980\) 0 0
\(981\) −1.52744 + 2.64561i −0.0487675 + 0.0844678i
\(982\) 0 0
\(983\) −1.23898 + 1.03963i −0.0395173 + 0.0331589i −0.662332 0.749210i \(-0.730433\pi\)
0.622815 + 0.782369i \(0.285989\pi\)
\(984\) 0 0
\(985\) −1.40762 7.98298i −0.0448504 0.254359i
\(986\) 0 0
\(987\) −0.700584 −0.0222998
\(988\) 0 0
\(989\) 3.87100 0.123091
\(990\) 0 0
\(991\) 3.71896 + 21.0913i 0.118137 + 0.669986i 0.985149 + 0.171700i \(0.0549259\pi\)
−0.867013 + 0.498286i \(0.833963\pi\)
\(992\) 0 0
\(993\) −12.7717 + 10.7167i −0.405298 + 0.340086i
\(994\) 0 0
\(995\) −11.5749 + 20.0482i −0.366948 + 0.635572i
\(996\) 0 0
\(997\) 3.26498 1.18836i 0.103403 0.0376356i −0.289801 0.957087i \(-0.593589\pi\)
0.393204 + 0.919451i \(0.371367\pi\)
\(998\) 0 0
\(999\) −0.0956047 0.165592i −0.00302480 0.00523911i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.2.bo.h.289.1 12
4.3 odd 2 456.2.bg.a.289.1 12
19.5 even 9 inner 912.2.bo.h.385.1 12
76.43 odd 18 456.2.bg.a.385.1 yes 12
76.47 odd 18 8664.2.a.bi.1.2 6
76.67 even 18 8664.2.a.bf.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.bg.a.289.1 12 4.3 odd 2
456.2.bg.a.385.1 yes 12 76.43 odd 18
912.2.bo.h.289.1 12 1.1 even 1 trivial
912.2.bo.h.385.1 12 19.5 even 9 inner
8664.2.a.bf.1.2 6 76.67 even 18
8664.2.a.bi.1.2 6 76.47 odd 18