Defining parameters
Level: | \( N \) | \(=\) | \( 91 = 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 91.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(91))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 10 | 7 | 3 |
Cusp forms | 7 | 7 | 0 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(7\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(91))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 7 | 13 | |||||||
91.2.a.a | $1$ | $0.727$ | \(\Q\) | None | \(-2\) | \(0\) | \(-3\) | \(-1\) | $+$ | $+$ | \(q-2q^{2}+2q^{4}-3q^{5}-q^{7}-3q^{9}+\cdots\) | |
91.2.a.b | $1$ | $0.727$ | \(\Q\) | None | \(0\) | \(-2\) | \(-3\) | \(1\) | $-$ | $-$ | \(q-2q^{3}-2q^{4}-3q^{5}+q^{7}+q^{9}+4q^{12}+\cdots\) | |
91.2.a.c | $2$ | $0.727$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(6\) | \(2\) | $-$ | $+$ | \(q+\beta q^{2}-\beta q^{3}+(3+\beta )q^{5}-2q^{6}+q^{7}+\cdots\) | |
91.2.a.d | $3$ | $0.727$ | 3.3.316.1 | None | \(1\) | \(-2\) | \(2\) | \(-3\) | $+$ | $-$ | \(q+\beta _{1}q^{2}+(-1+\beta _{1}-\beta _{2})q^{3}+(1+\beta _{2})q^{4}+\cdots\) |