Properties

Label 91.2.a
Level $91$
Weight $2$
Character orbit 91.a
Rep. character $\chi_{91}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $4$
Sturm bound $18$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(18\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(91))\).

Total New Old
Modular forms 10 7 3
Cusp forms 7 7 0
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(2\)
Minus space\(-\)\(5\)

Trace form

\( 7 q - q^{2} - 4 q^{3} + 3 q^{4} + 2 q^{5} - q^{7} + 3 q^{8} + 3 q^{9} + 2 q^{10} - 4 q^{11} - 8 q^{12} + q^{13} + q^{14} - 4 q^{15} - 9 q^{16} + 2 q^{17} - 9 q^{18} - 12 q^{19} - 2 q^{20} - 4 q^{22}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(91))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7 13
91.2.a.a 91.a 1.a $1$ $0.727$ \(\Q\) None 91.2.a.a \(-2\) \(0\) \(-3\) \(-1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+2q^{4}-3q^{5}-q^{7}-3q^{9}+\cdots\)
91.2.a.b 91.a 1.a $1$ $0.727$ \(\Q\) None 91.2.a.b \(0\) \(-2\) \(-3\) \(1\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}-2q^{4}-3q^{5}+q^{7}+q^{9}+4q^{12}+\cdots\)
91.2.a.c 91.a 1.a $2$ $0.727$ \(\Q(\sqrt{2}) \) None 91.2.a.c \(0\) \(0\) \(6\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-\beta q^{3}+(3+\beta )q^{5}-2q^{6}+q^{7}+\cdots\)
91.2.a.d 91.a 1.a $3$ $0.727$ 3.3.316.1 None 91.2.a.d \(1\) \(-2\) \(2\) \(-3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1+\beta _{1}-\beta _{2})q^{3}+(1+\beta _{2})q^{4}+\cdots\)