Properties

Label 9025.2.a.cb.1.8
Level $9025$
Weight $2$
Character 9025.1
Self dual yes
Analytic conductor $72.065$
Analytic rank $0$
Dimension $8$
CM discriminant -95
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9025,2,Mod(1,9025)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9025, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9025.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9025 = 5^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9025.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,16,0,0,0,0,24,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.0649878242\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.280944640000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 16x^{6} + 80x^{4} - 128x^{2} + 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 1805)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.8
Root \(2.79913\) of defining polynomial
Character \(\chi\) \(=\) 9025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.79913 q^{2} -1.12228 q^{3} +5.83513 q^{4} -3.14142 q^{6} +10.7350 q^{8} -1.74048 q^{9} +2.92978 q^{11} -6.54867 q^{12} +3.08876 q^{13} +18.3785 q^{16} -4.87183 q^{18} +8.20083 q^{22} -12.0477 q^{24} +8.64583 q^{26} +5.32016 q^{27} +29.9737 q^{32} -3.28804 q^{33} -10.1559 q^{36} +9.15124 q^{37} -3.46646 q^{39} +17.0956 q^{44} -20.6259 q^{48} -7.00000 q^{49} +18.0233 q^{52} -13.6404 q^{53} +14.8918 q^{54} +1.11908 q^{61} +47.1432 q^{64} -9.20366 q^{66} -13.7060 q^{67} -18.6841 q^{72} +25.6155 q^{74} -9.70308 q^{78} -0.749299 q^{81} +31.4512 q^{88} -33.6390 q^{96} +15.8849 q^{97} -19.5939 q^{98} -5.09921 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} + 24 q^{9} + 32 q^{16} + 8 q^{24} + 24 q^{26} - 8 q^{36} + 72 q^{44} - 56 q^{49} + 88 q^{54} + 64 q^{64} + 104 q^{66} + 72 q^{81} - 120 q^{96} + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.79913 1.97928 0.989642 0.143559i \(-0.0458545\pi\)
0.989642 + 0.143559i \(0.0458545\pi\)
\(3\) −1.12228 −0.647951 −0.323976 0.946065i \(-0.605020\pi\)
−0.323976 + 0.946065i \(0.605020\pi\)
\(4\) 5.83513 2.91756
\(5\) 0 0
\(6\) −3.14142 −1.28248
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 10.7350 3.79540
\(9\) −1.74048 −0.580159
\(10\) 0 0
\(11\) 2.92978 0.883361 0.441680 0.897172i \(-0.354382\pi\)
0.441680 + 0.897172i \(0.354382\pi\)
\(12\) −6.54867 −1.89044
\(13\) 3.08876 0.856667 0.428333 0.903621i \(-0.359101\pi\)
0.428333 + 0.903621i \(0.359101\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 18.3785 4.59461
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −4.87183 −1.14830
\(19\) 0 0
\(20\) 0 0
\(21\) 0 0
\(22\) 8.20083 1.74842
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −12.0477 −2.45924
\(25\) 0 0
\(26\) 8.64583 1.69559
\(27\) 5.32016 1.02387
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 29.9737 5.29864
\(33\) −3.28804 −0.572375
\(34\) 0 0
\(35\) 0 0
\(36\) −10.1559 −1.69265
\(37\) 9.15124 1.50445 0.752227 0.658904i \(-0.228980\pi\)
0.752227 + 0.658904i \(0.228980\pi\)
\(38\) 0 0
\(39\) −3.46646 −0.555078
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 17.0956 2.57726
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −20.6259 −2.97709
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 18.0233 2.49938
\(53\) −13.6404 −1.87365 −0.936825 0.349799i \(-0.886250\pi\)
−0.936825 + 0.349799i \(0.886250\pi\)
\(54\) 14.8918 2.02652
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 1.11908 0.143283 0.0716414 0.997430i \(-0.477176\pi\)
0.0716414 + 0.997430i \(0.477176\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 47.1432 5.89290
\(65\) 0 0
\(66\) −9.20366 −1.13289
\(67\) −13.7060 −1.67446 −0.837229 0.546853i \(-0.815826\pi\)
−0.837229 + 0.546853i \(0.815826\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) −18.6841 −2.20194
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 25.6155 2.97774
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) −9.70308 −1.09866
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −0.749299 −0.0832555
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 31.4512 3.35271
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −33.6390 −3.43326
\(97\) 15.8849 1.61287 0.806436 0.591322i \(-0.201394\pi\)
0.806436 + 0.591322i \(0.201394\pi\)
\(98\) −19.5939 −1.97928
\(99\) −5.09921 −0.512490
\(100\) 0 0
\(101\) 20.0810 1.99813 0.999067 0.0431977i \(-0.0137545\pi\)
0.999067 + 0.0431977i \(0.0137545\pi\)
\(102\) 0 0
\(103\) 19.8835 1.95918 0.979591 0.200999i \(-0.0644188\pi\)
0.979591 + 0.200999i \(0.0644188\pi\)
\(104\) 33.1579 3.25140
\(105\) 0 0
\(106\) −38.1812 −3.70848
\(107\) 3.66801 0.354600 0.177300 0.984157i \(-0.443264\pi\)
0.177300 + 0.984157i \(0.443264\pi\)
\(108\) 31.0438 2.98719
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −10.2703 −0.974813
\(112\) 0 0
\(113\) −1.93025 −0.181583 −0.0907914 0.995870i \(-0.528940\pi\)
−0.0907914 + 0.995870i \(0.528940\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −5.37591 −0.497003
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.41641 −0.219673
\(122\) 3.13244 0.283597
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −21.6693 −1.92284 −0.961421 0.275082i \(-0.911295\pi\)
−0.961421 + 0.275082i \(0.911295\pi\)
\(128\) 72.0127 6.36508
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) −19.1861 −1.66994
\(133\) 0 0
\(134\) −38.3649 −3.31423
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 21.8917 1.85683 0.928414 0.371546i \(-0.121172\pi\)
0.928414 + 0.371546i \(0.121172\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.04937 0.756746
\(144\) −31.9873 −2.66561
\(145\) 0 0
\(146\) 0 0
\(147\) 7.85599 0.647951
\(148\) 53.3986 4.38934
\(149\) 8.36188 0.685032 0.342516 0.939512i \(-0.388721\pi\)
0.342516 + 0.939512i \(0.388721\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −20.2272 −1.61948
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 15.3084 1.21403
\(160\) 0 0
\(161\) 0 0
\(162\) −2.09739 −0.164786
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.1802 1.32944 0.664721 0.747091i \(-0.268550\pi\)
0.664721 + 0.747091i \(0.268550\pi\)
\(168\) 0 0
\(169\) −3.45959 −0.266122
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −13.1268 −0.998010 −0.499005 0.866599i \(-0.666301\pi\)
−0.499005 + 0.866599i \(0.666301\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 53.8448 4.05870
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) −1.25592 −0.0928403
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.94427 −0.647185 −0.323592 0.946197i \(-0.604891\pi\)
−0.323592 + 0.946197i \(0.604891\pi\)
\(192\) −52.9081 −3.81831
\(193\) 2.41753 0.174018 0.0870089 0.996208i \(-0.472269\pi\)
0.0870089 + 0.996208i \(0.472269\pi\)
\(194\) 44.4640 3.19233
\(195\) 0 0
\(196\) −40.8459 −2.91756
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) −14.2734 −1.01436
\(199\) −26.8328 −1.90213 −0.951064 0.308994i \(-0.900008\pi\)
−0.951064 + 0.308994i \(0.900008\pi\)
\(200\) 0 0
\(201\) 15.3821 1.08497
\(202\) 56.2093 3.95487
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 55.6566 3.87778
\(207\) 0 0
\(208\) 56.7666 3.93605
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) −79.5933 −5.46649
\(213\) 0 0
\(214\) 10.2672 0.701854
\(215\) 0 0
\(216\) 57.1121 3.88598
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) −28.7479 −1.92943
\(223\) −14.9356 −1.00016 −0.500082 0.865978i \(-0.666697\pi\)
−0.500082 + 0.865978i \(0.666697\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −5.40302 −0.359404
\(227\) −18.7250 −1.24282 −0.621412 0.783484i \(-0.713441\pi\)
−0.621412 + 0.783484i \(0.713441\pi\)
\(228\) 0 0
\(229\) 29.5619 1.95351 0.976754 0.214362i \(-0.0687674\pi\)
0.976754 + 0.214362i \(0.0687674\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) −15.0479 −0.983711
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −6.76384 −0.434796
\(243\) −15.1196 −0.969920
\(244\) 6.52995 0.418037
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.8885 1.12911 0.564557 0.825394i \(-0.309047\pi\)
0.564557 + 0.825394i \(0.309047\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −60.6553 −3.80585
\(255\) 0 0
\(256\) 107.286 6.70540
\(257\) −20.3741 −1.27090 −0.635450 0.772142i \(-0.719185\pi\)
−0.635450 + 0.772142i \(0.719185\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 33.5896 2.07517
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) −35.2972 −2.17239
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −79.9764 −4.88534
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −24.1298 −1.46578 −0.732892 0.680345i \(-0.761830\pi\)
−0.732892 + 0.680345i \(0.761830\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 61.2777 3.67519
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 25.3304 1.49781
\(287\) 0 0
\(288\) −52.1685 −3.07406
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) −17.8274 −1.04506
\(292\) 0 0
\(293\) −0.172964 −0.0101047 −0.00505234 0.999987i \(-0.501608\pi\)
−0.00505234 + 0.999987i \(0.501608\pi\)
\(294\) 21.9899 1.28248
\(295\) 0 0
\(296\) 98.2387 5.71001
\(297\) 15.5869 0.904443
\(298\) 23.4060 1.35587
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −22.5366 −1.29469
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1.35100 0.0771055 0.0385528 0.999257i \(-0.487725\pi\)
0.0385528 + 0.999257i \(0.487725\pi\)
\(308\) 0 0
\(309\) −22.3150 −1.26945
\(310\) 0 0
\(311\) −31.3726 −1.77898 −0.889490 0.456955i \(-0.848940\pi\)
−0.889490 + 0.456955i \(0.848940\pi\)
\(312\) −37.2125 −2.10675
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −31.6593 −1.77816 −0.889082 0.457748i \(-0.848656\pi\)
−0.889082 + 0.457748i \(0.848656\pi\)
\(318\) 42.8501 2.40292
\(319\) 0 0
\(320\) 0 0
\(321\) −4.11655 −0.229763
\(322\) 0 0
\(323\) 0 0
\(324\) −4.37226 −0.242903
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) −15.9275 −0.872823
\(334\) 48.0896 2.63134
\(335\) 0 0
\(336\) 0 0
\(337\) −36.6783 −1.99800 −0.998998 0.0447653i \(-0.985746\pi\)
−0.998998 + 0.0447653i \(0.985746\pi\)
\(338\) −9.68383 −0.526731
\(339\) 2.16629 0.117657
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −36.7435 −1.97534
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 13.4164 0.718164 0.359082 0.933306i \(-0.383090\pi\)
0.359082 + 0.933306i \(0.383090\pi\)
\(350\) 0 0
\(351\) 16.4327 0.877112
\(352\) 87.8161 4.68061
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 25.5131 1.34653 0.673265 0.739401i \(-0.264891\pi\)
0.673265 + 0.739401i \(0.264891\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 2.71190 0.142338
\(364\) 0 0
\(365\) 0 0
\(366\) −3.51548 −0.183757
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −22.6186 −1.17115 −0.585575 0.810619i \(-0.699131\pi\)
−0.585575 + 0.810619i \(0.699131\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 24.3191 1.24591
\(382\) −25.0362 −1.28096
\(383\) −29.9215 −1.52892 −0.764460 0.644671i \(-0.776994\pi\)
−0.764460 + 0.644671i \(0.776994\pi\)
\(384\) −80.8187 −4.12426
\(385\) 0 0
\(386\) 6.76699 0.344431
\(387\) 0 0
\(388\) 92.6907 4.70566
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −75.1451 −3.79540
\(393\) −13.4674 −0.679341
\(394\) 0 0
\(395\) 0 0
\(396\) −29.7546 −1.49522
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) −75.1085 −3.76485
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 43.0564 2.14746
\(403\) 0 0
\(404\) 117.175 5.82968
\(405\) 0 0
\(406\) 0 0
\(407\) 26.8111 1.32898
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 116.023 5.71604
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 92.5813 4.53917
\(417\) −24.5687 −1.20313
\(418\) 0 0
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −146.430 −7.11125
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 21.4033 1.03457
\(429\) −10.1560 −0.490334
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 97.7764 4.70427
\(433\) 18.1458 0.872030 0.436015 0.899939i \(-0.356389\pi\)
0.436015 + 0.899939i \(0.356389\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 12.1833 0.580159
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) −59.9284 −2.84408
\(445\) 0 0
\(446\) −41.8067 −1.97961
\(447\) −9.38441 −0.443867
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −11.2633 −0.529779
\(453\) 0 0
\(454\) −52.4138 −2.45990
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 82.7477 3.86655
\(459\) 0 0
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) −31.3691 −1.45004
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 23.7408 1.08702
\(478\) 67.1791 3.07270
\(479\) −43.0918 −1.96891 −0.984456 0.175630i \(-0.943804\pi\)
−0.984456 + 0.175630i \(0.943804\pi\)
\(480\) 0 0
\(481\) 28.2659 1.28882
\(482\) 0 0
\(483\) 0 0
\(484\) −14.1000 −0.640911
\(485\) 0 0
\(486\) −42.3216 −1.91975
\(487\) 32.2386 1.46087 0.730434 0.682983i \(-0.239318\pi\)
0.730434 + 0.682983i \(0.239318\pi\)
\(488\) 12.0133 0.543816
\(489\) 0 0
\(490\) 0 0
\(491\) −35.7771 −1.61460 −0.807299 0.590143i \(-0.799071\pi\)
−0.807299 + 0.590143i \(0.799071\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.31303 0.193078 0.0965389 0.995329i \(-0.469223\pi\)
0.0965389 + 0.995329i \(0.469223\pi\)
\(500\) 0 0
\(501\) −19.2811 −0.861414
\(502\) 50.0724 2.23484
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.88264 0.172434
\(508\) −126.443 −5.61001
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 156.283 6.90681
\(513\) 0 0
\(514\) −57.0297 −2.51547
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 14.7320 0.646661
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −39.9718 −1.74784 −0.873922 0.486066i \(-0.838432\pi\)
−0.873922 + 0.486066i \(0.838432\pi\)
\(524\) 70.0215 3.05890
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −60.4291 −2.62984
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −147.134 −6.35524
\(537\) 0 0
\(538\) 0 0
\(539\) −20.5084 −0.883361
\(540\) 0 0
\(541\) −27.3238 −1.17474 −0.587371 0.809318i \(-0.699837\pi\)
−0.587371 + 0.809318i \(0.699837\pi\)
\(542\) −67.5426 −2.90120
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −46.7055 −1.99698 −0.998492 0.0549052i \(-0.982514\pi\)
−0.998492 + 0.0549052i \(0.982514\pi\)
\(548\) 0 0
\(549\) −1.94773 −0.0831269
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 127.741 5.41742
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 37.7272 1.59001 0.795007 0.606601i \(-0.207467\pi\)
0.795007 + 0.606601i \(0.207467\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −39.4704 −1.65178 −0.825891 0.563829i \(-0.809328\pi\)
−0.825891 + 0.563829i \(0.809328\pi\)
\(572\) 52.8042 2.20785
\(573\) 10.0380 0.419344
\(574\) 0 0
\(575\) 0 0
\(576\) −82.0518 −3.41882
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) −47.5852 −1.97928
\(579\) −2.71316 −0.112755
\(580\) 0 0
\(581\) 0 0
\(582\) −49.9013 −2.06847
\(583\) −39.9632 −1.65511
\(584\) 0 0
\(585\) 0 0
\(586\) −0.484149 −0.0200000
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 45.8407 1.89044
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 168.186 6.91239
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 43.6297 1.79015
\(595\) 0 0
\(596\) 48.7926 1.99862
\(597\) 30.1140 1.23249
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 23.8550 0.971452
\(604\) 0 0
\(605\) 0 0
\(606\) −63.0828 −2.56256
\(607\) −47.2956 −1.91967 −0.959834 0.280568i \(-0.909477\pi\)
−0.959834 + 0.280568i \(0.909477\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 3.78162 0.152614
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) −62.4625 −2.51261
\(619\) −34.9941 −1.40653 −0.703265 0.710928i \(-0.748275\pi\)
−0.703265 + 0.710928i \(0.748275\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −87.8161 −3.52111
\(623\) 0 0
\(624\) −63.7082 −2.55037
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 11.0275 0.438997 0.219499 0.975613i \(-0.429558\pi\)
0.219499 + 0.975613i \(0.429558\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −88.6185 −3.51949
\(635\) 0 0
\(636\) 89.3263 3.54202
\(637\) −21.6213 −0.856667
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) −11.5228 −0.454767
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −8.04374 −0.315988
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −44.5832 −1.72756
\(667\) 0 0
\(668\) 100.249 3.87873
\(669\) 16.7620 0.648057
\(670\) 0 0
\(671\) 3.27864 0.126571
\(672\) 0 0
\(673\) 11.9683 0.461343 0.230671 0.973032i \(-0.425908\pi\)
0.230671 + 0.973032i \(0.425908\pi\)
\(674\) −102.667 −3.95460
\(675\) 0 0
\(676\) −20.1871 −0.776428
\(677\) −27.1078 −1.04184 −0.520918 0.853607i \(-0.674410\pi\)
−0.520918 + 0.853607i \(0.674410\pi\)
\(678\) 6.06373 0.232876
\(679\) 0 0
\(680\) 0 0
\(681\) 21.0148 0.805289
\(682\) 0 0
\(683\) 51.1946 1.95891 0.979454 0.201667i \(-0.0646357\pi\)
0.979454 + 0.201667i \(0.0646357\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −33.1769 −1.26578
\(688\) 0 0
\(689\) −42.1318 −1.60509
\(690\) 0 0
\(691\) 52.5727 1.99996 0.999980 0.00630823i \(-0.00200798\pi\)
0.999980 + 0.00630823i \(0.00200798\pi\)
\(692\) −76.5964 −2.91176
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 37.5543 1.42145
\(699\) 0 0
\(700\) 0 0
\(701\) 48.5239 1.83272 0.916360 0.400354i \(-0.131113\pi\)
0.916360 + 0.400354i \(0.131113\pi\)
\(702\) 45.9972 1.73605
\(703\) 0 0
\(704\) 138.119 5.20556
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −40.2492 −1.51159 −0.755796 0.654808i \(-0.772750\pi\)
−0.755796 + 0.654808i \(0.772750\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −26.9348 −1.00590
\(718\) 71.4145 2.66516
\(719\) −13.7940 −0.514429 −0.257214 0.966354i \(-0.582805\pi\)
−0.257214 + 0.966354i \(0.582805\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 7.59095 0.281727
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 19.2163 0.711716
\(730\) 0 0
\(731\) 0 0
\(732\) −7.32845 −0.270867
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −40.1556 −1.47915
\(738\) 0 0
\(739\) 53.6656 1.97412 0.987061 0.160345i \(-0.0512606\pi\)
0.987061 + 0.160345i \(0.0512606\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 37.3813 1.37139 0.685693 0.727890i \(-0.259499\pi\)
0.685693 + 0.727890i \(0.259499\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −63.3125 −2.31804
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) −20.0760 −0.731611
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 54.3834 1.97140 0.985699 0.168518i \(-0.0538981\pi\)
0.985699 + 0.168518i \(0.0538981\pi\)
\(762\) 68.0724 2.46600
\(763\) 0 0
\(764\) −52.1910 −1.88820
\(765\) 0 0
\(766\) −83.7543 −3.02617
\(767\) 0 0
\(768\) −120.406 −4.34477
\(769\) 47.1406 1.69993 0.849967 0.526836i \(-0.176622\pi\)
0.849967 + 0.526836i \(0.176622\pi\)
\(770\) 0 0
\(771\) 22.8655 0.823481
\(772\) 14.1066 0.507708
\(773\) −54.0523 −1.94413 −0.972064 0.234717i \(-0.924584\pi\)
−0.972064 + 0.234717i \(0.924584\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 170.525 6.12150
\(777\) 0 0
\(778\) 16.7948 0.602122
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −128.649 −4.59461
\(785\) 0 0
\(786\) −37.6970 −1.34461
\(787\) 53.4392 1.90490 0.952451 0.304692i \(-0.0985534\pi\)
0.952451 + 0.304692i \(0.0985534\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −54.7402 −1.94511
\(793\) 3.45655 0.122746
\(794\) 0 0
\(795\) 0 0
\(796\) −156.573 −5.54958
\(797\) −54.7345 −1.93879 −0.969397 0.245499i \(-0.921048\pi\)
−0.969397 + 0.245499i \(0.921048\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 89.7562 3.16546
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 215.570 7.58372
\(809\) −22.3607 −0.786160 −0.393080 0.919504i \(-0.628590\pi\)
−0.393080 + 0.919504i \(0.628590\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 27.0805 0.949756
\(814\) 75.0477 2.63042
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −42.0000 −1.46581 −0.732905 0.680331i \(-0.761836\pi\)
−0.732905 + 0.680331i \(0.761836\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 213.450 7.43589
\(825\) 0 0
\(826\) 0 0
\(827\) −30.9935 −1.07775 −0.538875 0.842386i \(-0.681151\pi\)
−0.538875 + 0.842386i \(0.681151\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 145.614 5.04825
\(833\) 0 0
\(834\) −68.7710 −2.38134
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 100.769 3.48100
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −250.689 −8.60870
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 39.3761 1.34585
\(857\) −48.0008 −1.63967 −0.819837 0.572597i \(-0.805936\pi\)
−0.819837 + 0.572597i \(0.805936\pi\)
\(858\) −28.4278 −0.970511
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.71278 −0.126385 −0.0631923 0.998001i \(-0.520128\pi\)
−0.0631923 + 0.998001i \(0.520128\pi\)
\(864\) 159.465 5.42510
\(865\) 0 0
\(866\) 50.7924 1.72600
\(867\) 19.0788 0.647951
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −42.3346 −1.43445
\(872\) 0 0
\(873\) −27.6474 −0.935723
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −59.2236 −1.99984 −0.999919 0.0127028i \(-0.995956\pi\)
−0.999919 + 0.0127028i \(0.995956\pi\)
\(878\) 0 0
\(879\) 0.194115 0.00654733
\(880\) 0 0
\(881\) −9.21678 −0.310521 −0.155261 0.987874i \(-0.549622\pi\)
−0.155261 + 0.987874i \(0.549622\pi\)
\(882\) 34.1028 1.14830
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −52.3146 −1.75655 −0.878276 0.478154i \(-0.841306\pi\)
−0.878276 + 0.478154i \(0.841306\pi\)
\(888\) −110.252 −3.69981
\(889\) 0 0
\(890\) 0 0
\(891\) −2.19528 −0.0735446
\(892\) −87.1513 −2.91804
\(893\) 0 0
\(894\) −26.2682 −0.878539
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −20.7213 −0.689180
\(905\) 0 0
\(906\) 0 0
\(907\) −28.7630 −0.955061 −0.477531 0.878615i \(-0.658468\pi\)
−0.477531 + 0.878615i \(0.658468\pi\)
\(908\) −109.263 −3.62602
\(909\) −34.9505 −1.15924
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 172.498 5.69949
\(917\) 0 0
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) −1.51620 −0.0499606
\(922\) 50.3843 1.65932
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −34.6069 −1.13664
\(928\) 0 0
\(929\) −31.3050 −1.02708 −0.513541 0.858065i \(-0.671667\pi\)
−0.513541 + 0.858065i \(0.671667\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 35.2090 1.15269
\(934\) 0 0
\(935\) 0 0
\(936\) −57.7105 −1.88633
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 35.5307 1.15216
\(952\) 0 0
\(953\) −61.4682 −1.99115 −0.995575 0.0939754i \(-0.970043\pi\)
−0.995575 + 0.0939754i \(0.970043\pi\)
\(954\) 66.4535 2.15151
\(955\) 0 0
\(956\) 140.043 4.52932
\(957\) 0 0
\(958\) −120.619 −3.89704
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 79.1200 2.55093
\(963\) −6.38409 −0.205724
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) −25.9402 −0.833749
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) −88.2246 −2.82980
\(973\) 0 0
\(974\) 90.2399 2.89147
\(975\) 0 0
\(976\) 20.5669 0.658330
\(977\) 16.6023 0.531154 0.265577 0.964090i \(-0.414438\pi\)
0.265577 + 0.964090i \(0.414438\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −100.145 −3.19575
\(983\) 0.192493 0.00613957 0.00306979 0.999995i \(-0.499023\pi\)
0.00306979 + 0.999995i \(0.499023\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 12.0727 0.382156
\(999\) 48.6861 1.54036
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9025.2.a.cb.1.8 8
5.2 odd 4 1805.2.b.h.1084.8 yes 8
5.3 odd 4 1805.2.b.h.1084.1 8
5.4 even 2 inner 9025.2.a.cb.1.1 8
19.18 odd 2 inner 9025.2.a.cb.1.1 8
95.18 even 4 1805.2.b.h.1084.8 yes 8
95.37 even 4 1805.2.b.h.1084.1 8
95.94 odd 2 CM 9025.2.a.cb.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1805.2.b.h.1084.1 8 5.3 odd 4
1805.2.b.h.1084.1 8 95.37 even 4
1805.2.b.h.1084.8 yes 8 5.2 odd 4
1805.2.b.h.1084.8 yes 8 95.18 even 4
9025.2.a.cb.1.1 8 5.4 even 2 inner
9025.2.a.cb.1.1 8 19.18 odd 2 inner
9025.2.a.cb.1.8 8 1.1 even 1 trivial
9025.2.a.cb.1.8 8 95.94 odd 2 CM