Properties

Label 900.2.r.g.851.16
Level $900$
Weight $2$
Character 900.851
Analytic conductor $7.187$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(551,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.551"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,2,0,0,0,0,12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 851.16
Character \(\chi\) \(=\) 900.851
Dual form 900.2.r.g.551.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.645549 - 1.25828i) q^{2} +(-1.67915 - 0.424796i) q^{3} +(-1.16653 - 1.62456i) q^{4} +(-1.61849 + 1.83861i) q^{6} +(2.78632 - 1.60868i) q^{7} +(-2.79721 + 0.419091i) q^{8} +(2.63910 + 1.42659i) q^{9} +(-1.56397 - 2.70887i) q^{11} +(1.26868 + 3.22342i) q^{12} +(0.923481 - 1.59952i) q^{13} +(-0.225466 - 4.54445i) q^{14} +(-1.27840 + 3.79021i) q^{16} -5.85246i q^{17} +(3.49872 - 2.39978i) q^{18} +2.24186i q^{19} +(-5.36201 + 1.51760i) q^{21} +(-4.41814 + 0.219199i) q^{22} +(1.87409 - 3.24603i) q^{23} +(4.87496 + 0.484526i) q^{24} +(-1.41649 - 2.19456i) q^{26} +(-3.82543 - 3.51655i) q^{27} +(-5.86374 - 2.64996i) q^{28} +(-6.90237 + 3.98509i) q^{29} +(-1.03895 - 0.599838i) q^{31} +(3.94387 + 4.05535i) q^{32} +(1.47542 + 5.21298i) q^{33} +(-7.36403 - 3.77805i) q^{34} +(-0.761003 - 5.95154i) q^{36} -2.66428 q^{37} +(2.82088 + 1.44723i) q^{38} +(-2.23013 + 2.29354i) q^{39} +(-0.208259 - 0.120238i) q^{41} +(-1.55187 + 7.72659i) q^{42} +(-4.61084 + 2.66207i) q^{43} +(-2.57631 + 5.70075i) q^{44} +(-2.87459 - 4.45360i) q^{46} +(2.28989 + 3.96621i) q^{47} +(3.75669 - 5.82128i) q^{48} +(1.67571 - 2.90242i) q^{49} +(-2.48611 + 9.82717i) q^{51} +(-3.67578 + 0.365637i) q^{52} -13.0794i q^{53} +(-6.89430 + 2.54336i) q^{54} +(-7.11972 + 5.66754i) q^{56} +(0.952332 - 3.76441i) q^{57} +(0.558533 + 11.2577i) q^{58} +(-3.47411 + 6.01734i) q^{59} +(1.66785 + 2.88880i) q^{61} +(-1.42546 + 0.920065i) q^{62} +(9.64830 - 0.270519i) q^{63} +(7.64873 - 2.34457i) q^{64} +(7.51183 + 1.50874i) q^{66} +(7.48148 + 4.31943i) q^{67} +(-9.50769 + 6.82709i) q^{68} +(-4.52579 + 4.65446i) q^{69} -11.3298 q^{71} +(-7.97997 - 2.88446i) q^{72} -13.1688 q^{73} +(-1.71992 + 3.35240i) q^{74} +(3.64203 - 2.61520i) q^{76} +(-8.71543 - 5.03186i) q^{77} +(1.44625 + 4.28672i) q^{78} +(11.6449 - 6.72318i) q^{79} +(4.92966 + 7.52984i) q^{81} +(-0.285735 + 0.184428i) q^{82} +(-0.623311 - 1.07961i) q^{83} +(8.72040 + 6.94058i) q^{84} +(0.373105 + 7.52023i) q^{86} +(13.2830 - 3.75946i) q^{87} +(5.51001 + 6.92183i) q^{88} -14.3274i q^{89} -5.94235i q^{91} +(-7.45956 + 0.742017i) q^{92} +(1.48975 + 1.44856i) q^{93} +(6.46884 - 0.320942i) q^{94} +(-4.89966 - 8.48489i) q^{96} +(-3.32238 - 5.75453i) q^{97} +(-2.57030 - 3.98217i) q^{98} +(-0.263000 - 9.38013i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{4} + 12 q^{9} + 42 q^{14} + 30 q^{16} - 12 q^{21} + 6 q^{24} + 4 q^{34} + 96 q^{36} + 96 q^{41} + 4 q^{46} - 32 q^{49} + 30 q^{54} + 6 q^{56} + 8 q^{61} + 20 q^{64} + 36 q^{66} + 96 q^{69} - 72 q^{74}+ \cdots + 54 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.645549 1.25828i 0.456472 0.889738i
\(3\) −1.67915 0.424796i −0.969458 0.245256i
\(4\) −1.16653 1.62456i −0.583267 0.812281i
\(5\) 0 0
\(6\) −1.61849 + 1.83861i −0.660744 + 0.750611i
\(7\) 2.78632 1.60868i 1.05313 0.608024i 0.129606 0.991566i \(-0.458629\pi\)
0.923524 + 0.383541i \(0.125296\pi\)
\(8\) −2.79721 + 0.419091i −0.988962 + 0.148171i
\(9\) 2.63910 + 1.42659i 0.879699 + 0.475532i
\(10\) 0 0
\(11\) −1.56397 2.70887i −0.471554 0.816756i 0.527916 0.849297i \(-0.322974\pi\)
−0.999470 + 0.0325405i \(0.989640\pi\)
\(12\) 1.26868 + 3.22342i 0.366236 + 0.930522i
\(13\) 0.923481 1.59952i 0.256128 0.443626i −0.709074 0.705134i \(-0.750887\pi\)
0.965201 + 0.261509i \(0.0842200\pi\)
\(14\) −0.225466 4.54445i −0.0602584 1.21456i
\(15\) 0 0
\(16\) −1.27840 + 3.79021i −0.319600 + 0.947553i
\(17\) 5.85246i 1.41943i −0.704488 0.709715i \(-0.748823\pi\)
0.704488 0.709715i \(-0.251177\pi\)
\(18\) 3.49872 2.39978i 0.824656 0.565634i
\(19\) 2.24186i 0.514317i 0.966369 + 0.257158i \(0.0827862\pi\)
−0.966369 + 0.257158i \(0.917214\pi\)
\(20\) 0 0
\(21\) −5.36201 + 1.51760i −1.17009 + 0.331168i
\(22\) −4.41814 + 0.219199i −0.941950 + 0.0467335i
\(23\) 1.87409 3.24603i 0.390776 0.676843i −0.601776 0.798665i \(-0.705540\pi\)
0.992552 + 0.121821i \(0.0388735\pi\)
\(24\) 4.87496 + 0.484526i 0.995097 + 0.0989034i
\(25\) 0 0
\(26\) −1.41649 2.19456i −0.277796 0.430389i
\(27\) −3.82543 3.51655i −0.736204 0.676760i
\(28\) −5.86374 2.64996i −1.10814 0.500796i
\(29\) −6.90237 + 3.98509i −1.28174 + 0.740012i −0.977166 0.212478i \(-0.931847\pi\)
−0.304572 + 0.952489i \(0.598513\pi\)
\(30\) 0 0
\(31\) −1.03895 0.599838i −0.186601 0.107734i 0.403789 0.914852i \(-0.367693\pi\)
−0.590390 + 0.807118i \(0.701026\pi\)
\(32\) 3.94387 + 4.05535i 0.697185 + 0.716891i
\(33\) 1.47542 + 5.21298i 0.256838 + 0.907463i
\(34\) −7.36403 3.77805i −1.26292 0.647930i
\(35\) 0 0
\(36\) −0.761003 5.95154i −0.126834 0.991924i
\(37\) −2.66428 −0.438004 −0.219002 0.975724i \(-0.570280\pi\)
−0.219002 + 0.975724i \(0.570280\pi\)
\(38\) 2.82088 + 1.44723i 0.457607 + 0.234771i
\(39\) −2.23013 + 2.29354i −0.357107 + 0.367260i
\(40\) 0 0
\(41\) −0.208259 0.120238i −0.0325246 0.0187781i 0.483650 0.875262i \(-0.339311\pi\)
−0.516174 + 0.856484i \(0.672644\pi\)
\(42\) −1.55187 + 7.72659i −0.239459 + 1.19224i
\(43\) −4.61084 + 2.66207i −0.703147 + 0.405962i −0.808519 0.588471i \(-0.799730\pi\)
0.105371 + 0.994433i \(0.466397\pi\)
\(44\) −2.57631 + 5.70075i −0.388393 + 0.859421i
\(45\) 0 0
\(46\) −2.87459 4.45360i −0.423835 0.656648i
\(47\) 2.28989 + 3.96621i 0.334015 + 0.578532i 0.983295 0.182018i \(-0.0582629\pi\)
−0.649280 + 0.760550i \(0.724930\pi\)
\(48\) 3.75669 5.82128i 0.542232 0.840229i
\(49\) 1.67571 2.90242i 0.239388 0.414631i
\(50\) 0 0
\(51\) −2.48611 + 9.82717i −0.348124 + 1.37608i
\(52\) −3.67578 + 0.365637i −0.509739 + 0.0507048i
\(53\) 13.0794i 1.79659i −0.439391 0.898296i \(-0.644806\pi\)
0.439391 0.898296i \(-0.355194\pi\)
\(54\) −6.89430 + 2.54336i −0.938195 + 0.346107i
\(55\) 0 0
\(56\) −7.11972 + 5.66754i −0.951413 + 0.757356i
\(57\) 0.952332 3.76441i 0.126139 0.498609i
\(58\) 0.558533 + 11.2577i 0.0733390 + 1.47821i
\(59\) −3.47411 + 6.01734i −0.452291 + 0.783391i −0.998528 0.0542396i \(-0.982727\pi\)
0.546237 + 0.837631i \(0.316060\pi\)
\(60\) 0 0
\(61\) 1.66785 + 2.88880i 0.213546 + 0.369873i 0.952822 0.303530i \(-0.0981653\pi\)
−0.739276 + 0.673403i \(0.764832\pi\)
\(62\) −1.42546 + 0.920065i −0.181033 + 0.116848i
\(63\) 9.64830 0.270519i 1.21557 0.0340822i
\(64\) 7.64873 2.34457i 0.956091 0.293071i
\(65\) 0 0
\(66\) 7.51183 + 1.50874i 0.924643 + 0.185713i
\(67\) 7.48148 + 4.31943i 0.914008 + 0.527703i 0.881718 0.471776i \(-0.156387\pi\)
0.0322893 + 0.999479i \(0.489720\pi\)
\(68\) −9.50769 + 6.82709i −1.15298 + 0.827907i
\(69\) −4.52579 + 4.65446i −0.544841 + 0.560331i
\(70\) 0 0
\(71\) −11.3298 −1.34460 −0.672300 0.740278i \(-0.734694\pi\)
−0.672300 + 0.740278i \(0.734694\pi\)
\(72\) −7.97997 2.88446i −0.940448 0.339937i
\(73\) −13.1688 −1.54130 −0.770648 0.637261i \(-0.780067\pi\)
−0.770648 + 0.637261i \(0.780067\pi\)
\(74\) −1.71992 + 3.35240i −0.199937 + 0.389709i
\(75\) 0 0
\(76\) 3.64203 2.61520i 0.417770 0.299984i
\(77\) −8.71543 5.03186i −0.993215 0.573433i
\(78\) 1.44625 + 4.28672i 0.163756 + 0.485375i
\(79\) 11.6449 6.72318i 1.31015 0.756416i 0.328031 0.944667i \(-0.393615\pi\)
0.982121 + 0.188251i \(0.0602817\pi\)
\(80\) 0 0
\(81\) 4.92966 + 7.52984i 0.547740 + 0.836649i
\(82\) −0.285735 + 0.184428i −0.0315541 + 0.0203667i
\(83\) −0.623311 1.07961i −0.0684172 0.118502i 0.829788 0.558079i \(-0.188462\pi\)
−0.898205 + 0.439577i \(0.855128\pi\)
\(84\) 8.72040 + 6.94058i 0.951474 + 0.757280i
\(85\) 0 0
\(86\) 0.373105 + 7.52023i 0.0402330 + 0.810927i
\(87\) 13.2830 3.75946i 1.42408 0.403056i
\(88\) 5.51001 + 6.92183i 0.587369 + 0.737870i
\(89\) 14.3274i 1.51871i −0.650679 0.759353i \(-0.725516\pi\)
0.650679 0.759353i \(-0.274484\pi\)
\(90\) 0 0
\(91\) 5.94235i 0.622927i
\(92\) −7.45956 + 0.742017i −0.777713 + 0.0773607i
\(93\) 1.48975 + 1.44856i 0.154479 + 0.150209i
\(94\) 6.46884 0.320942i 0.667210 0.0331027i
\(95\) 0 0
\(96\) −4.89966 8.48489i −0.500070 0.865985i
\(97\) −3.32238 5.75453i −0.337337 0.584284i 0.646594 0.762834i \(-0.276193\pi\)
−0.983931 + 0.178550i \(0.942859\pi\)
\(98\) −2.57030 3.98217i −0.259640 0.402260i
\(99\) −0.263000 9.38013i −0.0264325 0.942738i
\(100\) 0 0
\(101\) 4.33548 2.50309i 0.431397 0.249067i −0.268545 0.963267i \(-0.586543\pi\)
0.699941 + 0.714200i \(0.253209\pi\)
\(102\) 10.7604 + 9.47213i 1.06544 + 0.937881i
\(103\) 12.8787 + 7.43554i 1.26898 + 0.732646i 0.974795 0.223103i \(-0.0716186\pi\)
0.294185 + 0.955749i \(0.404952\pi\)
\(104\) −1.91282 + 4.86120i −0.187568 + 0.476680i
\(105\) 0 0
\(106\) −16.4575 8.44338i −1.59850 0.820094i
\(107\) −2.95929 −0.286085 −0.143042 0.989717i \(-0.545689\pi\)
−0.143042 + 0.989717i \(0.545689\pi\)
\(108\) −1.25035 + 10.3168i −0.120315 + 0.992736i
\(109\) 3.71238 0.355582 0.177791 0.984068i \(-0.443105\pi\)
0.177791 + 0.984068i \(0.443105\pi\)
\(110\) 0 0
\(111\) 4.47372 + 1.13177i 0.424627 + 0.107423i
\(112\) 2.53521 + 12.6173i 0.239555 + 1.19222i
\(113\) −0.652093 0.376486i −0.0613437 0.0354168i 0.469014 0.883190i \(-0.344609\pi\)
−0.530358 + 0.847774i \(0.677943\pi\)
\(114\) −4.12191 3.62841i −0.386052 0.339832i
\(115\) 0 0
\(116\) 14.5259 + 6.56459i 1.34869 + 0.609507i
\(117\) 4.71902 2.90384i 0.436273 0.268460i
\(118\) 5.32879 + 8.25589i 0.490555 + 0.760017i
\(119\) −9.41475 16.3068i −0.863049 1.49484i
\(120\) 0 0
\(121\) 0.608004 1.05309i 0.0552731 0.0957358i
\(122\) 4.71159 0.233759i 0.426567 0.0211635i
\(123\) 0.298622 + 0.290366i 0.0269258 + 0.0261814i
\(124\) 0.237496 + 2.38757i 0.0213278 + 0.214410i
\(125\) 0 0
\(126\) 5.88806 12.3149i 0.524550 1.09710i
\(127\) 6.08119i 0.539619i −0.962914 0.269809i \(-0.913039\pi\)
0.962914 0.269809i \(-0.0869606\pi\)
\(128\) 1.98750 11.1378i 0.175672 0.984449i
\(129\) 8.87314 2.51135i 0.781237 0.221112i
\(130\) 0 0
\(131\) 4.89535 8.47899i 0.427709 0.740813i −0.568961 0.822365i \(-0.692654\pi\)
0.996669 + 0.0815519i \(0.0259876\pi\)
\(132\) 6.74767 8.47802i 0.587309 0.737917i
\(133\) 3.60643 + 6.24652i 0.312717 + 0.541642i
\(134\) 10.2647 6.62538i 0.886736 0.572346i
\(135\) 0 0
\(136\) 2.45272 + 16.3705i 0.210319 + 1.40376i
\(137\) 4.91309 2.83657i 0.419753 0.242345i −0.275218 0.961382i \(-0.588750\pi\)
0.694972 + 0.719037i \(0.255417\pi\)
\(138\) 2.93499 + 8.69939i 0.249843 + 0.740541i
\(139\) −7.99193 4.61414i −0.677866 0.391366i 0.121184 0.992630i \(-0.461331\pi\)
−0.799051 + 0.601264i \(0.794664\pi\)
\(140\) 0 0
\(141\) −2.16025 7.63261i −0.181925 0.642782i
\(142\) −7.31394 + 14.2561i −0.613773 + 1.19634i
\(143\) −5.77718 −0.483112
\(144\) −8.78091 + 8.17897i −0.731743 + 0.681581i
\(145\) 0 0
\(146\) −8.50113 + 16.5701i −0.703558 + 1.37135i
\(147\) −4.04671 + 4.16176i −0.333767 + 0.343257i
\(148\) 3.10797 + 4.32828i 0.255473 + 0.355782i
\(149\) 9.77937 + 5.64612i 0.801157 + 0.462548i 0.843876 0.536539i \(-0.180269\pi\)
−0.0427186 + 0.999087i \(0.513602\pi\)
\(150\) 0 0
\(151\) 18.6166 10.7483i 1.51500 0.874686i 0.515156 0.857096i \(-0.327734\pi\)
0.999845 0.0175900i \(-0.00559935\pi\)
\(152\) −0.939542 6.27093i −0.0762069 0.508640i
\(153\) 8.34909 15.4452i 0.674984 1.24867i
\(154\) −11.9577 + 7.71814i −0.963580 + 0.621945i
\(155\) 0 0
\(156\) 6.32752 + 0.947499i 0.506607 + 0.0758606i
\(157\) −0.597759 + 1.03535i −0.0477064 + 0.0826299i −0.888893 0.458116i \(-0.848525\pi\)
0.841186 + 0.540746i \(0.181858\pi\)
\(158\) −0.942293 18.9927i −0.0749648 1.51097i
\(159\) −5.55607 + 21.9623i −0.440625 + 1.74172i
\(160\) 0 0
\(161\) 12.0593i 0.950405i
\(162\) 12.6570 1.34200i 0.994426 0.105438i
\(163\) 12.8215i 1.00426i −0.864793 0.502128i \(-0.832550\pi\)
0.864793 0.502128i \(-0.167450\pi\)
\(164\) 0.0476065 + 0.478592i 0.00371744 + 0.0373717i
\(165\) 0 0
\(166\) −1.76082 + 0.0873607i −0.136666 + 0.00678050i
\(167\) 5.56047 9.63102i 0.430282 0.745271i −0.566615 0.823983i \(-0.691747\pi\)
0.996897 + 0.0787119i \(0.0250807\pi\)
\(168\) 14.3626 6.49222i 1.10810 0.500885i
\(169\) 4.79437 + 8.30409i 0.368797 + 0.638776i
\(170\) 0 0
\(171\) −3.19822 + 5.91647i −0.244574 + 0.452444i
\(172\) 9.70341 + 4.38520i 0.739878 + 0.334369i
\(173\) 0.663076 0.382827i 0.0504128 0.0291058i −0.474582 0.880211i \(-0.657401\pi\)
0.524995 + 0.851106i \(0.324067\pi\)
\(174\) 3.84436 19.1406i 0.291440 1.45105i
\(175\) 0 0
\(176\) 12.2666 2.46475i 0.924628 0.185787i
\(177\) 8.38971 8.62824i 0.630609 0.648538i
\(178\) −18.0279 9.24906i −1.35125 0.693247i
\(179\) 11.3200 0.846095 0.423048 0.906107i \(-0.360960\pi\)
0.423048 + 0.906107i \(0.360960\pi\)
\(180\) 0 0
\(181\) 3.20266 0.238052 0.119026 0.992891i \(-0.462023\pi\)
0.119026 + 0.992891i \(0.462023\pi\)
\(182\) −7.47713 3.83607i −0.554242 0.284349i
\(183\) −1.57342 5.55922i −0.116310 0.410950i
\(184\) −3.88185 + 9.86522i −0.286174 + 0.727274i
\(185\) 0 0
\(186\) 2.78440 0.939399i 0.204162 0.0688800i
\(187\) −15.8536 + 9.15307i −1.15933 + 0.669339i
\(188\) 3.77212 8.34679i 0.275110 0.608753i
\(189\) −16.3159 3.64432i −1.18680 0.265085i
\(190\) 0 0
\(191\) −0.889821 1.54121i −0.0643852 0.111518i 0.832036 0.554722i \(-0.187175\pi\)
−0.896421 + 0.443203i \(0.853842\pi\)
\(192\) −13.8393 + 0.687734i −0.998768 + 0.0496329i
\(193\) −7.07295 + 12.2507i −0.509122 + 0.881825i 0.490822 + 0.871260i \(0.336697\pi\)
−0.999944 + 0.0105656i \(0.996637\pi\)
\(194\) −9.38557 + 0.465651i −0.673845 + 0.0334318i
\(195\) 0 0
\(196\) −6.66993 + 0.663471i −0.476424 + 0.0473908i
\(197\) 8.50994i 0.606308i 0.952942 + 0.303154i \(0.0980396\pi\)
−0.952942 + 0.303154i \(0.901960\pi\)
\(198\) −11.9726 5.72440i −0.850855 0.406816i
\(199\) 3.02029i 0.214103i 0.994253 + 0.107052i \(0.0341410\pi\)
−0.994253 + 0.107052i \(0.965859\pi\)
\(200\) 0 0
\(201\) −10.7276 10.4311i −0.756670 0.735752i
\(202\) −0.350823 7.07112i −0.0246838 0.497522i
\(203\) −12.8215 + 22.2074i −0.899891 + 1.55866i
\(204\) 18.8650 7.42489i 1.32081 0.519846i
\(205\) 0 0
\(206\) 17.6698 11.4050i 1.23112 0.794627i
\(207\) 9.57668 5.89300i 0.665625 0.409592i
\(208\) 4.88192 + 5.54501i 0.338501 + 0.384477i
\(209\) 6.07290 3.50619i 0.420071 0.242528i
\(210\) 0 0
\(211\) 20.9510 + 12.0961i 1.44233 + 0.832729i 0.998005 0.0631364i \(-0.0201103\pi\)
0.444325 + 0.895866i \(0.353444\pi\)
\(212\) −21.2483 + 15.2575i −1.45934 + 1.04789i
\(213\) 19.0245 + 4.81286i 1.30353 + 0.329772i
\(214\) −1.91036 + 3.72361i −0.130590 + 0.254541i
\(215\) 0 0
\(216\) 12.1743 + 8.23330i 0.828354 + 0.560205i
\(217\) −3.85979 −0.262020
\(218\) 2.39652 4.67121i 0.162313 0.316374i
\(219\) 22.1125 + 5.59407i 1.49422 + 0.378012i
\(220\) 0 0
\(221\) −9.36111 5.40464i −0.629696 0.363555i
\(222\) 4.31209 4.89858i 0.289409 0.328771i
\(223\) −2.32763 + 1.34386i −0.155869 + 0.0899912i −0.575906 0.817516i \(-0.695351\pi\)
0.420037 + 0.907507i \(0.362017\pi\)
\(224\) 17.5127 + 4.95506i 1.17011 + 0.331074i
\(225\) 0 0
\(226\) −0.894682 + 0.577475i −0.0595134 + 0.0384130i
\(227\) −5.37905 9.31679i −0.357020 0.618377i 0.630441 0.776237i \(-0.282874\pi\)
−0.987462 + 0.157860i \(0.949541\pi\)
\(228\) −7.22645 + 2.84419i −0.478583 + 0.188361i
\(229\) −1.29262 + 2.23888i −0.0854185 + 0.147949i −0.905569 0.424198i \(-0.860556\pi\)
0.820151 + 0.572147i \(0.193889\pi\)
\(230\) 0 0
\(231\) 12.4970 + 12.1515i 0.822243 + 0.799512i
\(232\) 17.6372 14.0398i 1.15794 0.921760i
\(233\) 0.981108i 0.0642746i −0.999483 0.0321373i \(-0.989769\pi\)
0.999483 0.0321373i \(-0.0102314\pi\)
\(234\) −0.607491 7.81241i −0.0397129 0.510713i
\(235\) 0 0
\(236\) 13.8282 1.37552i 0.900140 0.0895387i
\(237\) −22.4095 + 6.34252i −1.45565 + 0.411991i
\(238\) −26.5962 + 1.31953i −1.72398 + 0.0855326i
\(239\) −3.85799 + 6.68223i −0.249552 + 0.432238i −0.963402 0.268062i \(-0.913617\pi\)
0.713849 + 0.700299i \(0.246950\pi\)
\(240\) 0 0
\(241\) 12.0087 + 20.7997i 0.773549 + 1.33983i 0.935606 + 0.353045i \(0.114854\pi\)
−0.162058 + 0.986781i \(0.551813\pi\)
\(242\) −0.932590 1.44486i −0.0599491 0.0928793i
\(243\) −5.07899 14.7378i −0.325817 0.945433i
\(244\) 2.74743 6.07940i 0.175886 0.389194i
\(245\) 0 0
\(246\) 0.558137 0.188304i 0.0355855 0.0120058i
\(247\) 3.58588 + 2.07031i 0.228164 + 0.131731i
\(248\) 3.15754 + 1.24246i 0.200504 + 0.0788961i
\(249\) 0.588020 + 2.07760i 0.0372643 + 0.131663i
\(250\) 0 0
\(251\) −18.6357 −1.17628 −0.588138 0.808761i \(-0.700139\pi\)
−0.588138 + 0.808761i \(0.700139\pi\)
\(252\) −11.6945 15.3587i −0.736687 0.967506i
\(253\) −11.7241 −0.737088
\(254\) −7.65184 3.92571i −0.480119 0.246321i
\(255\) 0 0
\(256\) −12.7314 9.69081i −0.795712 0.605675i
\(257\) 6.57278 + 3.79480i 0.409999 + 0.236713i 0.690789 0.723056i \(-0.257263\pi\)
−0.280790 + 0.959769i \(0.590597\pi\)
\(258\) 2.56807 12.7861i 0.159881 0.796027i
\(259\) −7.42352 + 4.28597i −0.461275 + 0.266317i
\(260\) 0 0
\(261\) −23.9011 + 0.670139i −1.47944 + 0.0414806i
\(262\) −7.50875 11.6333i −0.463892 0.718709i
\(263\) −6.69385 11.5941i −0.412760 0.714922i 0.582430 0.812881i \(-0.302102\pi\)
−0.995190 + 0.0979587i \(0.968769\pi\)
\(264\) −6.31177 13.9634i −0.388462 0.859390i
\(265\) 0 0
\(266\) 10.1880 0.505463i 0.624666 0.0309919i
\(267\) −6.08625 + 24.0579i −0.372472 + 1.47232i
\(268\) −1.71021 17.1929i −0.104468 1.05022i
\(269\) 3.84328i 0.234329i 0.993113 + 0.117164i \(0.0373805\pi\)
−0.993113 + 0.117164i \(0.962620\pi\)
\(270\) 0 0
\(271\) 8.94629i 0.543448i −0.962375 0.271724i \(-0.912406\pi\)
0.962375 0.271724i \(-0.0875939\pi\)
\(272\) 22.1821 + 7.48179i 1.34499 + 0.453650i
\(273\) −2.52429 + 9.97810i −0.152777 + 0.603902i
\(274\) −0.397562 8.01318i −0.0240176 0.484094i
\(275\) 0 0
\(276\) 12.8409 + 1.92284i 0.772934 + 0.115741i
\(277\) 5.53218 + 9.58202i 0.332396 + 0.575728i 0.982981 0.183706i \(-0.0588095\pi\)
−0.650585 + 0.759434i \(0.725476\pi\)
\(278\) −10.9651 + 7.07742i −0.657640 + 0.424476i
\(279\) −1.88616 3.06519i −0.112922 0.183508i
\(280\) 0 0
\(281\) 25.4234 14.6782i 1.51663 0.875628i 0.516822 0.856093i \(-0.327115\pi\)
0.999809 0.0195348i \(-0.00621853\pi\)
\(282\) −10.9985 2.20903i −0.654951 0.131546i
\(283\) 4.32753 + 2.49850i 0.257245 + 0.148520i 0.623077 0.782160i \(-0.285882\pi\)
−0.365832 + 0.930681i \(0.619216\pi\)
\(284\) 13.2166 + 18.4060i 0.784261 + 1.09219i
\(285\) 0 0
\(286\) −3.72945 + 7.26931i −0.220527 + 0.429843i
\(287\) −0.773702 −0.0456702
\(288\) 4.62292 + 16.3288i 0.272408 + 0.962182i
\(289\) −17.2513 −1.01478
\(290\) 0 0
\(291\) 3.13428 + 11.0741i 0.183734 + 0.649173i
\(292\) 15.3619 + 21.3936i 0.898986 + 1.25196i
\(293\) −8.15253 4.70687i −0.476276 0.274978i 0.242587 0.970130i \(-0.422004\pi\)
−0.718863 + 0.695151i \(0.755337\pi\)
\(294\) 2.62431 + 7.77852i 0.153053 + 0.453652i
\(295\) 0 0
\(296\) 7.45253 1.11657i 0.433169 0.0648996i
\(297\) −3.54303 + 15.8624i −0.205587 + 0.920428i
\(298\) 13.4175 8.66033i 0.777252 0.501679i
\(299\) −3.46138 5.99529i −0.200177 0.346716i
\(300\) 0 0
\(301\) −8.56485 + 14.8348i −0.493670 + 0.855062i
\(302\) −1.50644 30.3635i −0.0866860 1.74722i
\(303\) −8.34324 + 2.36137i −0.479306 + 0.135657i
\(304\) −8.49710 2.86599i −0.487342 0.164376i
\(305\) 0 0
\(306\) −14.0446 20.4761i −0.802879 1.17054i
\(307\) 18.3474i 1.04714i −0.851982 0.523571i \(-0.824600\pi\)
0.851982 0.523571i \(-0.175400\pi\)
\(308\) 1.99228 + 20.0286i 0.113521 + 1.14123i
\(309\) −18.4668 17.9562i −1.05054 1.02149i
\(310\) 0 0
\(311\) −15.6249 + 27.0632i −0.886009 + 1.53461i −0.0414569 + 0.999140i \(0.513200\pi\)
−0.844552 + 0.535473i \(0.820133\pi\)
\(312\) 5.27694 7.35012i 0.298748 0.416119i
\(313\) 2.56596 + 4.44437i 0.145037 + 0.251211i 0.929387 0.369108i \(-0.120337\pi\)
−0.784350 + 0.620318i \(0.787003\pi\)
\(314\) 0.916876 + 1.42052i 0.0517423 + 0.0801644i
\(315\) 0 0
\(316\) −24.5064 11.0750i −1.37859 0.623018i
\(317\) 12.8315 7.40826i 0.720688 0.416089i −0.0943181 0.995542i \(-0.530067\pi\)
0.815006 + 0.579453i \(0.196734\pi\)
\(318\) 24.0479 + 21.1688i 1.34854 + 1.18709i
\(319\) 21.5902 + 12.4651i 1.20882 + 0.697911i
\(320\) 0 0
\(321\) 4.96909 + 1.25709i 0.277347 + 0.0701641i
\(322\) −15.1740 7.78486i −0.845611 0.433833i
\(323\) 13.1204 0.730037
\(324\) 6.48208 16.7923i 0.360115 0.932908i
\(325\) 0 0
\(326\) −16.1330 8.27690i −0.893525 0.458415i
\(327\) −6.23365 1.57701i −0.344722 0.0872086i
\(328\) 0.632935 + 0.249052i 0.0349480 + 0.0137516i
\(329\) 12.7607 + 7.36742i 0.703523 + 0.406179i
\(330\) 0 0
\(331\) 22.0656 12.7396i 1.21283 0.700230i 0.249458 0.968386i \(-0.419747\pi\)
0.963376 + 0.268156i \(0.0864141\pi\)
\(332\) −1.02677 + 2.27200i −0.0563515 + 0.124692i
\(333\) −7.03128 3.80084i −0.385312 0.208285i
\(334\) −8.52896 13.2139i −0.466684 0.723033i
\(335\) 0 0
\(336\) 1.10276 22.2633i 0.0601607 1.21456i
\(337\) 2.38437 4.12986i 0.129885 0.224968i −0.793747 0.608248i \(-0.791872\pi\)
0.923632 + 0.383281i \(0.125206\pi\)
\(338\) 13.5439 0.671959i 0.736689 0.0365497i
\(339\) 0.935032 + 0.909183i 0.0507840 + 0.0493800i
\(340\) 0 0
\(341\) 3.75251i 0.203210i
\(342\) 5.37997 + 7.84362i 0.290915 + 0.424135i
\(343\) 11.7388i 0.633835i
\(344\) 11.7818 9.37873i 0.635234 0.505667i
\(345\) 0 0
\(346\) −0.0536555 1.08147i −0.00288454 0.0581401i
\(347\) −10.1960 + 17.6599i −0.547348 + 0.948035i 0.451107 + 0.892470i \(0.351029\pi\)
−0.998455 + 0.0555651i \(0.982304\pi\)
\(348\) −21.6025 17.1935i −1.15802 0.921667i
\(349\) −0.618705 1.07163i −0.0331185 0.0573630i 0.848991 0.528407i \(-0.177211\pi\)
−0.882110 + 0.471044i \(0.843877\pi\)
\(350\) 0 0
\(351\) −9.15748 + 2.87137i −0.488790 + 0.153262i
\(352\) 4.81733 17.0259i 0.256765 0.907483i
\(353\) −1.63238 + 0.942454i −0.0868827 + 0.0501617i −0.542812 0.839854i \(-0.682640\pi\)
0.455929 + 0.890016i \(0.349307\pi\)
\(354\) −5.44076 16.1265i −0.289173 0.857116i
\(355\) 0 0
\(356\) −23.2758 + 16.7134i −1.23362 + 0.885811i
\(357\) 8.88171 + 31.3810i 0.470070 + 1.66086i
\(358\) 7.30760 14.2437i 0.386219 0.752803i
\(359\) 9.20394 0.485766 0.242883 0.970056i \(-0.421907\pi\)
0.242883 + 0.970056i \(0.421907\pi\)
\(360\) 0 0
\(361\) 13.9741 0.735478
\(362\) 2.06747 4.02984i 0.108664 0.211804i
\(363\) −1.46828 + 1.51003i −0.0770648 + 0.0792558i
\(364\) −9.65371 + 6.93195i −0.505992 + 0.363333i
\(365\) 0 0
\(366\) −8.01077 1.60895i −0.418730 0.0841012i
\(367\) −22.5635 + 13.0271i −1.17781 + 0.680007i −0.955506 0.294971i \(-0.904690\pi\)
−0.222301 + 0.974978i \(0.571357\pi\)
\(368\) 9.90728 + 11.2529i 0.516453 + 0.586600i
\(369\) −0.378084 0.614422i −0.0196823 0.0319855i
\(370\) 0 0
\(371\) −21.0406 36.4433i −1.09237 1.89204i
\(372\) 0.615439 4.10998i 0.0319090 0.213092i
\(373\) 18.0286 31.2265i 0.933486 1.61685i 0.156175 0.987729i \(-0.450083\pi\)
0.777311 0.629117i \(-0.216583\pi\)
\(374\) 1.28286 + 25.8570i 0.0663349 + 1.33703i
\(375\) 0 0
\(376\) −8.06751 10.1346i −0.416050 0.522654i
\(377\) 14.7206i 0.758149i
\(378\) −15.1183 + 18.1773i −0.777599 + 0.934941i
\(379\) 32.4422i 1.66644i −0.552939 0.833222i \(-0.686494\pi\)
0.552939 0.833222i \(-0.313506\pi\)
\(380\) 0 0
\(381\) −2.58327 + 10.2112i −0.132345 + 0.523138i
\(382\) −2.51370 + 0.124714i −0.128612 + 0.00638090i
\(383\) 10.7400 18.6022i 0.548788 0.950528i −0.449570 0.893245i \(-0.648423\pi\)
0.998358 0.0572834i \(-0.0182438\pi\)
\(384\) −8.06860 + 17.8577i −0.411749 + 0.911297i
\(385\) 0 0
\(386\) 10.8489 + 16.8082i 0.552193 + 0.855514i
\(387\) −15.9662 + 0.447659i −0.811606 + 0.0227558i
\(388\) −5.47292 + 12.1103i −0.277846 + 0.614806i
\(389\) 0.812139 0.468889i 0.0411771 0.0237736i −0.479270 0.877667i \(-0.659099\pi\)
0.520447 + 0.853894i \(0.325765\pi\)
\(390\) 0 0
\(391\) −18.9973 10.9681i −0.960733 0.554679i
\(392\) −3.47094 + 8.82094i −0.175309 + 0.445525i
\(393\) −11.8219 + 12.1580i −0.596335 + 0.613289i
\(394\) 10.7079 + 5.49358i 0.539455 + 0.276763i
\(395\) 0 0
\(396\) −14.9318 + 11.3695i −0.750351 + 0.571338i
\(397\) −1.87601 −0.0941544 −0.0470772 0.998891i \(-0.514991\pi\)
−0.0470772 + 0.998891i \(0.514991\pi\)
\(398\) 3.80037 + 1.94975i 0.190496 + 0.0977320i
\(399\) −3.40224 12.0209i −0.170325 0.601795i
\(400\) 0 0
\(401\) 12.8578 + 7.42347i 0.642090 + 0.370711i 0.785419 0.618964i \(-0.212448\pi\)
−0.143329 + 0.989675i \(0.545781\pi\)
\(402\) −20.0504 + 6.76460i −1.00002 + 0.337388i
\(403\) −1.91890 + 1.10788i −0.0955873 + 0.0551873i
\(404\) −9.12391 4.12332i −0.453932 0.205143i
\(405\) 0 0
\(406\) 19.6663 + 30.4690i 0.976021 + 1.51215i
\(407\) 4.16684 + 7.21719i 0.206543 + 0.357743i
\(408\) 2.83567 28.5305i 0.140387 1.41247i
\(409\) −11.0678 + 19.1701i −0.547270 + 0.947899i 0.451191 + 0.892428i \(0.350999\pi\)
−0.998460 + 0.0554713i \(0.982334\pi\)
\(410\) 0 0
\(411\) −9.45478 + 2.67597i −0.466370 + 0.131996i
\(412\) −2.94398 29.5961i −0.145040 1.45810i
\(413\) 22.3550i 1.10002i
\(414\) −1.23283 15.8544i −0.0605903 0.779199i
\(415\) 0 0
\(416\) 10.1287 2.56325i 0.496600 0.125674i
\(417\) 11.4596 + 11.1428i 0.561178 + 0.545664i
\(418\) −0.491413 9.90483i −0.0240358 0.484461i
\(419\) −13.9401 + 24.1450i −0.681019 + 1.17956i 0.293652 + 0.955912i \(0.405129\pi\)
−0.974670 + 0.223646i \(0.928204\pi\)
\(420\) 0 0
\(421\) −2.65309 4.59530i −0.129304 0.223961i 0.794103 0.607783i \(-0.207941\pi\)
−0.923407 + 0.383822i \(0.874608\pi\)
\(422\) 28.7452 18.5537i 1.39929 0.903178i
\(423\) 0.385073 + 13.7340i 0.0187229 + 0.667768i
\(424\) 5.48145 + 36.5857i 0.266203 + 1.77676i
\(425\) 0 0
\(426\) 18.3371 20.8311i 0.888437 1.00927i
\(427\) 9.29431 + 5.36607i 0.449783 + 0.259682i
\(428\) 3.45211 + 4.80754i 0.166864 + 0.232381i
\(429\) 9.70076 + 2.45413i 0.468357 + 0.118486i
\(430\) 0 0
\(431\) 25.2887 1.21811 0.609056 0.793127i \(-0.291549\pi\)
0.609056 + 0.793127i \(0.291549\pi\)
\(432\) 18.2189 10.0036i 0.876556 0.481300i
\(433\) 24.8471 1.19408 0.597038 0.802213i \(-0.296344\pi\)
0.597038 + 0.802213i \(0.296344\pi\)
\(434\) −2.49169 + 4.85670i −0.119605 + 0.233129i
\(435\) 0 0
\(436\) −4.33062 6.03099i −0.207399 0.288832i
\(437\) 7.27712 + 4.20145i 0.348112 + 0.200983i
\(438\) 21.3136 24.2124i 1.01840 1.15691i
\(439\) −6.34768 + 3.66484i −0.302958 + 0.174913i −0.643771 0.765218i \(-0.722631\pi\)
0.340813 + 0.940131i \(0.389298\pi\)
\(440\) 0 0
\(441\) 8.56294 5.26920i 0.407759 0.250914i
\(442\) −12.8436 + 8.28993i −0.610908 + 0.394312i
\(443\) 17.5978 + 30.4803i 0.836097 + 1.44816i 0.893135 + 0.449790i \(0.148501\pi\)
−0.0570380 + 0.998372i \(0.518166\pi\)
\(444\) −3.38011 8.58809i −0.160413 0.407573i
\(445\) 0 0
\(446\) 0.188349 + 3.79633i 0.00891860 + 0.179761i
\(447\) −14.0226 13.6349i −0.663245 0.644910i
\(448\) 17.5401 18.8371i 0.828693 0.889968i
\(449\) 23.0398i 1.08732i −0.839307 0.543658i \(-0.817039\pi\)
0.839307 0.543658i \(-0.182961\pi\)
\(450\) 0 0
\(451\) 0.752197i 0.0354196i
\(452\) 0.149063 + 1.49855i 0.00701135 + 0.0704858i
\(453\) −35.8260 + 10.1398i −1.68325 + 0.476408i
\(454\) −15.1956 + 0.753906i −0.713163 + 0.0353825i
\(455\) 0 0
\(456\) −1.08624 + 10.9290i −0.0508677 + 0.511795i
\(457\) 17.3359 + 30.0267i 0.810940 + 1.40459i 0.912207 + 0.409729i \(0.134377\pi\)
−0.101267 + 0.994859i \(0.532290\pi\)
\(458\) 1.98269 + 3.07178i 0.0926449 + 0.143535i
\(459\) −20.5805 + 22.3882i −0.960614 + 1.04499i
\(460\) 0 0
\(461\) −23.2641 + 13.4315i −1.08352 + 0.625568i −0.931843 0.362863i \(-0.881799\pi\)
−0.151673 + 0.988431i \(0.548466\pi\)
\(462\) 23.3574 7.88032i 1.08669 0.366626i
\(463\) −7.51295 4.33760i −0.349156 0.201586i 0.315157 0.949039i \(-0.397943\pi\)
−0.664314 + 0.747454i \(0.731276\pi\)
\(464\) −6.28032 31.2560i −0.291557 1.45102i
\(465\) 0 0
\(466\) −1.23451 0.633353i −0.0571875 0.0293395i
\(467\) 14.3724 0.665077 0.332538 0.943090i \(-0.392095\pi\)
0.332538 + 0.943090i \(0.392095\pi\)
\(468\) −10.2224 4.27890i −0.472529 0.197792i
\(469\) 27.7944 1.28342
\(470\) 0 0
\(471\) 1.44354 1.48458i 0.0665149 0.0684059i
\(472\) 7.19600 18.2877i 0.331223 0.841760i
\(473\) 14.4224 + 8.32680i 0.663144 + 0.382866i
\(474\) −6.48576 + 32.2918i −0.297901 + 1.48321i
\(475\) 0 0
\(476\) −15.5088 + 34.3173i −0.710846 + 1.57293i
\(477\) 18.6590 34.5177i 0.854336 1.58046i
\(478\) 5.91759 + 9.16813i 0.270664 + 0.419341i
\(479\) −12.6519 21.9137i −0.578079 1.00126i −0.995700 0.0926401i \(-0.970469\pi\)
0.417621 0.908621i \(-0.362864\pi\)
\(480\) 0 0
\(481\) −2.46041 + 4.26155i −0.112185 + 0.194310i
\(482\) 33.9240 1.68309i 1.54520 0.0766627i
\(483\) −5.12274 + 20.2494i −0.233093 + 0.921378i
\(484\) −2.42007 + 0.240729i −0.110003 + 0.0109422i
\(485\) 0 0
\(486\) −21.8231 3.12321i −0.989914 0.141672i
\(487\) 1.60501i 0.0727298i 0.999339 + 0.0363649i \(0.0115779\pi\)
−0.999339 + 0.0363649i \(0.988422\pi\)
\(488\) −5.87598 7.38158i −0.265993 0.334149i
\(489\) −5.44652 + 21.5292i −0.246300 + 0.973585i
\(490\) 0 0
\(491\) −0.831852 + 1.44081i −0.0375410 + 0.0650229i −0.884185 0.467136i \(-0.845286\pi\)
0.846644 + 0.532159i \(0.178619\pi\)
\(492\) 0.123366 0.823851i 0.00556175 0.0371421i
\(493\) 23.3226 + 40.3959i 1.05040 + 1.81934i
\(494\) 4.91989 3.17556i 0.221356 0.142875i
\(495\) 0 0
\(496\) 3.60171 3.17101i 0.161721 0.142382i
\(497\) −31.5684 + 18.2261i −1.41604 + 0.817550i
\(498\) 2.99380 + 0.601300i 0.134155 + 0.0269449i
\(499\) 3.64109 + 2.10218i 0.162997 + 0.0941066i 0.579280 0.815129i \(-0.303334\pi\)
−0.416282 + 0.909235i \(0.636667\pi\)
\(500\) 0 0
\(501\) −13.4281 + 13.8099i −0.599923 + 0.616979i
\(502\) −12.0303 + 23.4489i −0.536937 + 1.04658i
\(503\) −4.66613 −0.208052 −0.104026 0.994575i \(-0.533173\pi\)
−0.104026 + 0.994575i \(0.533173\pi\)
\(504\) −26.8749 + 4.80021i −1.19710 + 0.213818i
\(505\) 0 0
\(506\) −7.56848 + 14.7522i −0.336460 + 0.655815i
\(507\) −4.52292 15.9804i −0.200870 0.709716i
\(508\) −9.87927 + 7.09391i −0.438322 + 0.314742i
\(509\) −10.7945 6.23218i −0.478456 0.276237i 0.241317 0.970446i \(-0.422421\pi\)
−0.719773 + 0.694210i \(0.755754\pi\)
\(510\) 0 0
\(511\) −36.6926 + 21.1845i −1.62318 + 0.937145i
\(512\) −20.4125 + 9.76375i −0.902112 + 0.431501i
\(513\) 7.88359 8.57606i 0.348069 0.378642i
\(514\) 9.01797 5.82067i 0.397766 0.256739i
\(515\) 0 0
\(516\) −14.4307 11.4854i −0.635275 0.505616i
\(517\) 7.16265 12.4061i 0.315013 0.545618i
\(518\) 0.600704 + 12.1077i 0.0263934 + 0.531980i
\(519\) −1.27603 + 0.361152i −0.0560115 + 0.0158528i
\(520\) 0 0
\(521\) 18.2767i 0.800716i −0.916359 0.400358i \(-0.868886\pi\)
0.916359 0.400358i \(-0.131114\pi\)
\(522\) −14.5861 + 30.5069i −0.638417 + 1.33525i
\(523\) 29.7140i 1.29930i −0.760233 0.649650i \(-0.774915\pi\)
0.760233 0.649650i \(-0.225085\pi\)
\(524\) −19.4852 + 1.93823i −0.851216 + 0.0846721i
\(525\) 0 0
\(526\) −18.9098 + 0.938183i −0.824507 + 0.0409067i
\(527\) −3.51053 + 6.08042i −0.152921 + 0.264867i
\(528\) −21.6444 1.07211i −0.941954 0.0466577i
\(529\) 4.47554 + 7.75186i 0.194589 + 0.337037i
\(530\) 0 0
\(531\) −17.7528 + 10.9242i −0.770407 + 0.474070i
\(532\) 5.94084 13.1456i 0.257568 0.569936i
\(533\) −0.384647 + 0.222076i −0.0166609 + 0.00961917i
\(534\) 26.3426 + 23.1888i 1.13996 + 1.00348i
\(535\) 0 0
\(536\) −22.7375 8.94692i −0.982109 0.386448i
\(537\) −19.0080 4.80869i −0.820254 0.207510i
\(538\) 4.83592 + 2.48103i 0.208491 + 0.106965i
\(539\) −10.4831 −0.451537
\(540\) 0 0
\(541\) −20.8938 −0.898295 −0.449147 0.893458i \(-0.648272\pi\)
−0.449147 + 0.893458i \(0.648272\pi\)
\(542\) −11.2569 5.77527i −0.483527 0.248069i
\(543\) −5.37775 1.36048i −0.230781 0.0583837i
\(544\) 23.7338 23.0814i 1.01758 0.989606i
\(545\) 0 0
\(546\) 10.9257 + 9.61761i 0.467576 + 0.411596i
\(547\) 27.6842 15.9835i 1.18369 0.683405i 0.226826 0.973935i \(-0.427165\pi\)
0.956866 + 0.290530i \(0.0938317\pi\)
\(548\) −10.3395 4.67266i −0.441680 0.199606i
\(549\) 0.280468 + 10.0032i 0.0119701 + 0.426924i
\(550\) 0 0
\(551\) −8.93399 15.4741i −0.380601 0.659220i
\(552\) 10.7089 14.9162i 0.455802 0.634876i
\(553\) 21.6309 37.4658i 0.919839 1.59321i
\(554\) 15.6281 0.775368i 0.663976 0.0329422i
\(555\) 0 0
\(556\) 1.82689 + 18.3659i 0.0774776 + 0.778889i
\(557\) 0.347675i 0.0147315i −0.999973 0.00736573i \(-0.997655\pi\)
0.999973 0.00736573i \(-0.00234460\pi\)
\(558\) −5.07448 + 0.394590i −0.214820 + 0.0167043i
\(559\) 9.83349i 0.415912i
\(560\) 0 0
\(561\) 30.5087 8.63484i 1.28808 0.364563i
\(562\) −2.05724 41.4652i −0.0867792 1.74910i
\(563\) 9.80425 16.9815i 0.413200 0.715683i −0.582038 0.813162i \(-0.697744\pi\)
0.995238 + 0.0974785i \(0.0310777\pi\)
\(564\) −9.87964 + 12.4131i −0.416008 + 0.522688i
\(565\) 0 0
\(566\) 5.93744 3.83234i 0.249569 0.161085i
\(567\) 25.8487 + 13.0503i 1.08554 + 0.548060i
\(568\) 31.6918 4.74822i 1.32976 0.199231i
\(569\) −6.42572 + 3.70989i −0.269380 + 0.155527i −0.628606 0.777724i \(-0.716374\pi\)
0.359226 + 0.933251i \(0.383041\pi\)
\(570\) 0 0
\(571\) −0.776486 0.448304i −0.0324949 0.0187610i 0.483665 0.875253i \(-0.339305\pi\)
−0.516159 + 0.856493i \(0.672639\pi\)
\(572\) 6.73927 + 9.38538i 0.281783 + 0.392423i
\(573\) 0.839441 + 2.96592i 0.0350681 + 0.123903i
\(574\) −0.499462 + 0.973533i −0.0208471 + 0.0406345i
\(575\) 0 0
\(576\) 23.5305 + 4.72409i 0.980436 + 0.196837i
\(577\) −2.59834 −0.108170 −0.0540852 0.998536i \(-0.517224\pi\)
−0.0540852 + 0.998536i \(0.517224\pi\)
\(578\) −11.1366 + 21.7070i −0.463221 + 0.902892i
\(579\) 17.0806 17.5662i 0.709846 0.730028i
\(580\) 0 0
\(581\) −3.47348 2.00542i −0.144104 0.0831987i
\(582\) 15.9576 + 3.20506i 0.661464 + 0.132854i
\(583\) −35.4304 + 20.4557i −1.46738 + 0.847190i
\(584\) 36.8359 5.51894i 1.52428 0.228375i
\(585\) 0 0
\(586\) −11.1854 + 7.21965i −0.462065 + 0.298241i
\(587\) −1.88410 3.26336i −0.0777651 0.134693i 0.824520 0.565832i \(-0.191445\pi\)
−0.902285 + 0.431139i \(0.858112\pi\)
\(588\) 11.4817 + 1.71930i 0.473496 + 0.0709026i
\(589\) 1.34475 2.32918i 0.0554095 0.0959720i
\(590\) 0 0
\(591\) 3.61499 14.2895i 0.148701 0.587790i
\(592\) 3.40601 10.0982i 0.139986 0.415032i
\(593\) 19.4602i 0.799135i 0.916704 + 0.399568i \(0.130840\pi\)
−0.916704 + 0.399568i \(0.869160\pi\)
\(594\) 17.6721 + 14.6981i 0.725095 + 0.603068i
\(595\) 0 0
\(596\) −2.23549 22.4736i −0.0915692 0.920553i
\(597\) 1.28301 5.07153i 0.0525101 0.207564i
\(598\) −9.77824 + 0.485133i −0.399862 + 0.0198386i
\(599\) 6.58019 11.3972i 0.268859 0.465678i −0.699708 0.714429i \(-0.746687\pi\)
0.968568 + 0.248751i \(0.0800200\pi\)
\(600\) 0 0
\(601\) −18.3619 31.8037i −0.748998 1.29730i −0.948304 0.317365i \(-0.897202\pi\)
0.199306 0.979937i \(-0.436131\pi\)
\(602\) 13.1372 + 20.3535i 0.535434 + 0.829548i
\(603\) 13.5823 + 22.0724i 0.553112 + 0.898859i
\(604\) −39.1783 17.7056i −1.59414 0.720431i
\(605\) 0 0
\(606\) −2.41470 + 12.0225i −0.0980905 + 0.488381i
\(607\) −13.0616 7.54110i −0.530152 0.306084i 0.210926 0.977502i \(-0.432352\pi\)
−0.741079 + 0.671418i \(0.765685\pi\)
\(608\) −9.09151 + 8.84160i −0.368709 + 0.358574i
\(609\) 30.9628 31.8431i 1.25468 1.29035i
\(610\) 0 0
\(611\) 8.45869 0.342202
\(612\) −34.8312 + 4.45374i −1.40797 + 0.180032i
\(613\) −46.5249 −1.87912 −0.939562 0.342379i \(-0.888767\pi\)
−0.939562 + 0.342379i \(0.888767\pi\)
\(614\) −23.0862 11.8441i −0.931682 0.477991i
\(615\) 0 0
\(616\) 26.4877 + 10.4226i 1.06722 + 0.419938i
\(617\) 6.02034 + 3.47584i 0.242370 + 0.139932i 0.616265 0.787539i \(-0.288645\pi\)
−0.373896 + 0.927471i \(0.621978\pi\)
\(618\) −34.5151 + 11.6447i −1.38840 + 0.468419i
\(619\) 0.274332 0.158386i 0.0110263 0.00636606i −0.494477 0.869191i \(-0.664640\pi\)
0.505503 + 0.862825i \(0.331307\pi\)
\(620\) 0 0
\(621\) −18.5840 + 5.82710i −0.745751 + 0.233834i
\(622\) 23.9664 + 37.1312i 0.960965 + 1.48882i
\(623\) −23.0483 39.9208i −0.923410 1.59939i
\(624\) −5.84199 11.3847i −0.233867 0.455754i
\(625\) 0 0
\(626\) 7.24871 0.359634i 0.289717 0.0143739i
\(627\) −11.6867 + 3.30768i −0.466723 + 0.132096i
\(628\) 2.37930 0.236673i 0.0949442 0.00944429i
\(629\) 15.5926i 0.621717i
\(630\) 0 0
\(631\) 15.4663i 0.615705i −0.951434 0.307852i \(-0.900390\pi\)
0.951434 0.307852i \(-0.0996103\pi\)
\(632\) −29.7555 + 23.6864i −1.18361 + 0.942194i
\(633\) −30.0416 29.2111i −1.19405 1.16104i
\(634\) −1.03831 20.9280i −0.0412366 0.831156i
\(635\) 0 0
\(636\) 42.1604 16.5935i 1.67177 0.657976i
\(637\) −3.09498 5.36066i −0.122627 0.212397i
\(638\) 29.6221 19.1196i 1.17275 0.756954i
\(639\) −29.9004 16.1630i −1.18284 0.639400i
\(640\) 0 0
\(641\) −5.66108 + 3.26843i −0.223599 + 0.129095i −0.607616 0.794231i \(-0.707874\pi\)
0.384017 + 0.923326i \(0.374541\pi\)
\(642\) 4.78956 5.44098i 0.189029 0.214739i
\(643\) −12.6430 7.29945i −0.498592 0.287862i 0.229540 0.973299i \(-0.426278\pi\)
−0.728132 + 0.685437i \(0.759611\pi\)
\(644\) −19.5911 + 14.0676i −0.771996 + 0.554340i
\(645\) 0 0
\(646\) 8.46985 16.5091i 0.333242 0.649542i
\(647\) −44.3589 −1.74393 −0.871965 0.489569i \(-0.837154\pi\)
−0.871965 + 0.489569i \(0.837154\pi\)
\(648\) −16.9450 18.9965i −0.665661 0.746255i
\(649\) 21.7336 0.853119
\(650\) 0 0
\(651\) 6.48118 + 1.63963i 0.254017 + 0.0642620i
\(652\) −20.8293 + 14.9567i −0.815738 + 0.585750i
\(653\) 24.9534 + 14.4068i 0.976501 + 0.563783i 0.901212 0.433378i \(-0.142679\pi\)
0.0752894 + 0.997162i \(0.476012\pi\)
\(654\) −6.00844 + 6.82564i −0.234949 + 0.266904i
\(655\) 0 0
\(656\) 0.721967 0.635633i 0.0281881 0.0248173i
\(657\) −34.7538 18.7866i −1.35588 0.732935i
\(658\) 17.5080 11.3006i 0.682531 0.440541i
\(659\) 3.09024 + 5.35245i 0.120379 + 0.208502i 0.919917 0.392113i \(-0.128256\pi\)
−0.799538 + 0.600615i \(0.794922\pi\)
\(660\) 0 0
\(661\) 8.95623 15.5127i 0.348357 0.603372i −0.637601 0.770367i \(-0.720073\pi\)
0.985958 + 0.166995i \(0.0534063\pi\)
\(662\) −1.78553 35.9887i −0.0693964 1.39874i
\(663\) 13.4228 + 13.0518i 0.521300 + 0.506889i
\(664\) 2.19598 + 2.75866i 0.0852206 + 0.107057i
\(665\) 0 0
\(666\) −9.32155 + 6.39369i −0.361203 + 0.247750i
\(667\) 29.8737i 1.15671i
\(668\) −22.1327 + 2.20158i −0.856338 + 0.0851816i
\(669\) 4.47930 1.26777i 0.173180 0.0490148i
\(670\) 0 0
\(671\) 5.21692 9.03598i 0.201397 0.348830i
\(672\) −27.3015 15.7596i −1.05318 0.607940i
\(673\) −10.6989 18.5311i −0.412413 0.714320i 0.582740 0.812659i \(-0.301981\pi\)
−0.995153 + 0.0983386i \(0.968647\pi\)
\(674\) −3.65728 5.66623i −0.140873 0.218255i
\(675\) 0 0
\(676\) 7.89771 17.4757i 0.303758 0.672144i
\(677\) −22.6311 + 13.0660i −0.869782 + 0.502169i −0.867276 0.497828i \(-0.834131\pi\)
−0.00250627 + 0.999997i \(0.500798\pi\)
\(678\) 1.74762 0.589609i 0.0671168 0.0226438i
\(679\) −18.5144 10.6893i −0.710518 0.410218i
\(680\) 0 0
\(681\) 5.07450 + 17.9293i 0.194455 + 0.687052i
\(682\) 4.72171 + 2.42243i 0.180804 + 0.0927596i
\(683\) 9.44413 0.361370 0.180685 0.983541i \(-0.442169\pi\)
0.180685 + 0.983541i \(0.442169\pi\)
\(684\) 13.3425 1.70606i 0.510163 0.0652328i
\(685\) 0 0
\(686\) 14.7707 + 7.57796i 0.563947 + 0.289328i
\(687\) 3.12157 3.21032i 0.119095 0.122481i
\(688\) −4.19531 20.8793i −0.159945 0.796015i
\(689\) −20.9207 12.0786i −0.797014 0.460156i
\(690\) 0 0
\(691\) −0.942002 + 0.543865i −0.0358354 + 0.0206896i −0.517811 0.855495i \(-0.673253\pi\)
0.481975 + 0.876185i \(0.339920\pi\)
\(692\) −1.39543 0.630627i −0.0530462 0.0239729i
\(693\) −15.8224 25.7129i −0.601045 0.976754i
\(694\) 15.6391 + 24.2297i 0.593654 + 0.919748i
\(695\) 0 0
\(696\) −35.5797 + 16.0828i −1.34864 + 0.609615i
\(697\) −0.703691 + 1.21883i −0.0266542 + 0.0461664i
\(698\) −1.74781 + 0.0867152i −0.0661557 + 0.00328222i
\(699\) −0.416771 + 1.64743i −0.0157637 + 0.0623115i
\(700\) 0 0
\(701\) 16.2662i 0.614367i 0.951650 + 0.307183i \(0.0993865\pi\)
−0.951650 + 0.307183i \(0.900614\pi\)
\(702\) −2.29862 + 13.3763i −0.0867556 + 0.504855i
\(703\) 5.97292i 0.225273i
\(704\) −18.3135 17.0526i −0.690216 0.642694i
\(705\) 0 0
\(706\) 0.132090 + 2.66239i 0.00497129 + 0.100200i
\(707\) 8.05336 13.9488i 0.302878 0.524600i
\(708\) −23.8040 3.56447i −0.894608 0.133961i
\(709\) −19.4225 33.6408i −0.729429 1.26341i −0.957125 0.289675i \(-0.906453\pi\)
0.227696 0.973732i \(-0.426881\pi\)
\(710\) 0 0
\(711\) 40.3232 1.13058i 1.51224 0.0424001i
\(712\) 6.00450 + 40.0768i 0.225028 + 1.50194i
\(713\) −3.89418 + 2.24831i −0.145838 + 0.0841998i
\(714\) 45.2196 + 9.08228i 1.69230 + 0.339896i
\(715\) 0 0
\(716\) −13.2051 18.3900i −0.493499 0.687267i
\(717\) 9.31673 9.58161i 0.347940 0.357832i
\(718\) 5.94159 11.5811i 0.221738 0.432204i
\(719\) 10.3797 0.387099 0.193549 0.981091i \(-0.438000\pi\)
0.193549 + 0.981091i \(0.438000\pi\)
\(720\) 0 0
\(721\) 47.8457 1.78187
\(722\) 9.02095 17.5833i 0.335725 0.654383i
\(723\) −11.3288 40.0271i −0.421323 1.48862i
\(724\) −3.73601 5.20291i −0.138848 0.193365i
\(725\) 0 0
\(726\) 0.952187 + 2.82230i 0.0353390 + 0.104745i
\(727\) 9.07598 5.24002i 0.336610 0.194342i −0.322162 0.946684i \(-0.604410\pi\)
0.658772 + 0.752343i \(0.271076\pi\)
\(728\) 2.49038 + 16.6220i 0.0922998 + 0.616051i
\(729\) 2.26781 + 26.9046i 0.0839929 + 0.996466i
\(730\) 0 0
\(731\) 15.5797 + 26.9848i 0.576235 + 0.998069i
\(732\) −7.19585 + 9.04113i −0.265966 + 0.334170i
\(733\) 13.6872 23.7069i 0.505548 0.875635i −0.494431 0.869217i \(-0.664624\pi\)
0.999979 0.00641848i \(-0.00204308\pi\)
\(734\) 1.82582 + 36.8008i 0.0673922 + 1.35834i
\(735\) 0 0
\(736\) 20.5550 5.20181i 0.757666 0.191741i
\(737\) 27.0218i 0.995362i
\(738\) −1.01719 + 0.0790961i −0.0374432 + 0.00291157i
\(739\) 1.76648i 0.0649812i 0.999472 + 0.0324906i \(0.0103439\pi\)
−0.999472 + 0.0324906i \(0.989656\pi\)
\(740\) 0 0
\(741\) −5.14178 4.99963i −0.188888 0.183666i
\(742\) −59.4386 + 2.94896i −2.18206 + 0.108260i
\(743\) 2.56338 4.43990i 0.0940412 0.162884i −0.815167 0.579226i \(-0.803355\pi\)
0.909208 + 0.416342i \(0.136688\pi\)
\(744\) −4.77420 3.42759i −0.175031 0.125661i
\(745\) 0 0
\(746\) −27.6533 42.8433i −1.01246 1.56860i
\(747\) −0.104817 3.73840i −0.00383506 0.136781i
\(748\) 33.3635 + 15.0778i 1.21989 + 0.551297i
\(749\) −8.24551 + 4.76055i −0.301284 + 0.173947i
\(750\) 0 0
\(751\) 12.8068 + 7.39403i 0.467328 + 0.269812i 0.715120 0.699001i \(-0.246372\pi\)
−0.247793 + 0.968813i \(0.579705\pi\)
\(752\) −17.9602 + 3.60878i −0.654940 + 0.131599i
\(753\) 31.2922 + 7.91639i 1.14035 + 0.288489i
\(754\) 18.5226 + 9.50287i 0.674554 + 0.346074i
\(755\) 0 0
\(756\) 13.1126 + 30.7573i 0.476900 + 1.11863i
\(757\) 11.6783 0.424454 0.212227 0.977220i \(-0.431928\pi\)
0.212227 + 0.977220i \(0.431928\pi\)
\(758\) −40.8213 20.9430i −1.48270 0.760685i
\(759\) 19.6865 + 4.98036i 0.714576 + 0.180775i
\(760\) 0 0
\(761\) 32.0963 + 18.5308i 1.16349 + 0.671741i 0.952138 0.305670i \(-0.0988803\pi\)
0.211351 + 0.977410i \(0.432214\pi\)
\(762\) 11.1810 + 9.84233i 0.405044 + 0.356550i
\(763\) 10.3439 5.97204i 0.374473 0.216202i
\(764\) −1.46579 + 3.24345i −0.0530305 + 0.117344i
\(765\) 0 0
\(766\) −16.4736 25.5225i −0.595215 0.922167i
\(767\) 6.41656 + 11.1138i 0.231688 + 0.401296i
\(768\) 17.2613 + 21.6806i 0.622864 + 0.782330i
\(769\) 24.6940 42.7713i 0.890490 1.54237i 0.0512015 0.998688i \(-0.483695\pi\)
0.839289 0.543686i \(-0.182972\pi\)
\(770\) 0 0
\(771\) −9.42468 9.16413i −0.339422 0.330038i
\(772\) 28.1529 2.80042i 1.01324 0.100789i
\(773\) 36.5028i 1.31291i 0.754363 + 0.656457i \(0.227946\pi\)
−0.754363 + 0.656457i \(0.772054\pi\)
\(774\) −9.74366 + 20.3789i −0.350228 + 0.732504i
\(775\) 0 0
\(776\) 11.7051 + 14.7042i 0.420187 + 0.527851i
\(777\) 14.2859 4.04331i 0.512503 0.145053i
\(778\) −0.0657175 1.32459i −0.00235609 0.0474888i
\(779\) 0.269557 0.466887i 0.00965789 0.0167280i
\(780\) 0 0
\(781\) 17.7195 + 30.6910i 0.634052 + 1.09821i
\(782\) −26.0646 + 16.8234i −0.932067 + 0.601605i
\(783\) 40.4183 + 9.02784i 1.44443 + 0.322629i
\(784\) 8.85855 + 10.0618i 0.316377 + 0.359348i
\(785\) 0 0
\(786\) 7.66654 + 22.7238i 0.273456 + 0.810531i
\(787\) −16.0875 9.28811i −0.573457 0.331086i 0.185072 0.982725i \(-0.440748\pi\)
−0.758529 + 0.651639i \(0.774082\pi\)
\(788\) 13.8249 9.92713i 0.492492 0.353639i
\(789\) 6.31486 + 22.3117i 0.224815 + 0.794319i
\(790\) 0 0
\(791\) −2.42258 −0.0861371
\(792\) 4.66679 + 26.1279i 0.165827 + 0.928415i
\(793\) 6.16090 0.218780
\(794\) −1.21106 + 2.36055i −0.0429789 + 0.0837728i
\(795\) 0 0
\(796\) 4.90665 3.52327i 0.173912 0.124879i
\(797\) 21.3916 + 12.3505i 0.757730 + 0.437476i 0.828480 0.560019i \(-0.189206\pi\)
−0.0707502 + 0.997494i \(0.522539\pi\)
\(798\) −17.3219 3.47908i −0.613189 0.123158i
\(799\) 23.2121 13.4015i 0.821186 0.474112i
\(800\) 0 0
\(801\) 20.4395 37.8115i 0.722192 1.33600i
\(802\) 17.6412 11.3865i 0.622931 0.402072i
\(803\) 20.5956 + 35.6727i 0.726804 + 1.25886i
\(804\) −4.43177 + 29.5959i −0.156297 + 1.04377i
\(805\) 0 0
\(806\) 0.155276 + 3.12970i 0.00546935 + 0.110239i
\(807\) 1.63261 6.45345i 0.0574707 0.227172i
\(808\) −11.0782 + 8.81863i −0.389730 + 0.310238i
\(809\) 39.1203i 1.37540i 0.725997 + 0.687698i \(0.241379\pi\)
−0.725997 + 0.687698i \(0.758621\pi\)
\(810\) 0 0
\(811\) 29.6949i 1.04273i 0.853334 + 0.521365i \(0.174577\pi\)
−0.853334 + 0.521365i \(0.825423\pi\)
\(812\) 51.0340 5.07645i 1.79094 0.178149i
\(813\) −3.80035 + 15.0222i −0.133284 + 0.526851i
\(814\) 11.7711 0.584008i 0.412578 0.0204695i
\(815\) 0 0
\(816\) −34.0688 21.9859i −1.19265 0.769661i
\(817\) −5.96798 10.3368i −0.208793 0.361641i
\(818\) 16.9765 + 26.3017i 0.593568 + 0.919616i
\(819\) 8.47732 15.6824i 0.296222 0.547988i
\(820\) 0 0
\(821\) −23.3953 + 13.5073i −0.816503 + 0.471408i −0.849209 0.528057i \(-0.822921\pi\)
0.0327064 + 0.999465i \(0.489587\pi\)
\(822\) −2.73640 + 13.6242i −0.0954430 + 0.475199i
\(823\) 25.5552 + 14.7543i 0.890800 + 0.514304i 0.874204 0.485559i \(-0.161384\pi\)
0.0165959 + 0.999862i \(0.494717\pi\)
\(824\) −39.1406 15.4014i −1.36353 0.536532i
\(825\) 0 0
\(826\) 28.1288 + 14.4312i 0.978726 + 0.502127i
\(827\) 47.9246 1.66650 0.833251 0.552896i \(-0.186477\pi\)
0.833251 + 0.552896i \(0.186477\pi\)
\(828\) −20.7451 8.68352i −0.720941 0.301773i
\(829\) −46.1027 −1.60121 −0.800607 0.599190i \(-0.795489\pi\)
−0.800607 + 0.599190i \(0.795489\pi\)
\(830\) 0 0
\(831\) −5.21896 18.4397i −0.181044 0.639666i
\(832\) 3.31328 14.3994i 0.114867 0.499210i
\(833\) −16.9863 9.80705i −0.588541 0.339794i
\(834\) 21.4185 7.22614i 0.741660 0.250221i
\(835\) 0 0
\(836\) −12.7803 5.77571i −0.442015 0.199757i
\(837\) 1.86507 + 5.94815i 0.0644663 + 0.205598i
\(838\) 21.3821 + 33.1273i 0.738632 + 1.14436i
\(839\) 23.3203 + 40.3919i 0.805105 + 1.39448i 0.916220 + 0.400675i \(0.131224\pi\)
−0.111116 + 0.993807i \(0.535442\pi\)
\(840\) 0 0
\(841\) 17.2618 29.8983i 0.595235 1.03098i
\(842\) −7.49487 + 0.371847i −0.258290 + 0.0128147i
\(843\) −48.9249 + 13.8471i −1.68506 + 0.476921i
\(844\) −4.78925 48.1468i −0.164853 1.65728i
\(845\) 0 0
\(846\) 17.5298 + 8.38142i 0.602685 + 0.288159i
\(847\) 3.91234i 0.134430i
\(848\) 49.5736 + 16.7207i 1.70236 + 0.574190i
\(849\) −6.20522 6.03368i −0.212963 0.207075i
\(850\) 0 0
\(851\) −4.99311 + 8.64831i −0.171161 + 0.296460i
\(852\) −14.3739 36.5208i −0.492441 1.25118i
\(853\) 4.29583 + 7.44060i 0.147086 + 0.254761i 0.930149 0.367181i \(-0.119677\pi\)
−0.783063 + 0.621942i \(0.786344\pi\)
\(854\) 12.7520 8.23078i 0.436363 0.281651i
\(855\) 0 0
\(856\) 8.27773 1.24021i 0.282927 0.0423895i
\(857\) 26.1333 15.0880i 0.892695 0.515398i 0.0178719 0.999840i \(-0.494311\pi\)
0.874823 + 0.484443i \(0.160978\pi\)
\(858\) 9.35029 10.6220i 0.319214 0.362629i
\(859\) 32.8056 + 18.9403i 1.11931 + 0.646236i 0.941225 0.337779i \(-0.109676\pi\)
0.178088 + 0.984015i \(0.443009\pi\)
\(860\) 0 0
\(861\) 1.29916 + 0.328666i 0.0442753 + 0.0112009i
\(862\) 16.3251 31.8202i 0.556034 1.08380i
\(863\) −30.4048 −1.03499 −0.517495 0.855686i \(-0.673136\pi\)
−0.517495 + 0.855686i \(0.673136\pi\)
\(864\) −0.826184 29.3823i −0.0281074 0.999605i
\(865\) 0 0
\(866\) 16.0400 31.2646i 0.545062 1.06241i
\(867\) 28.9676 + 7.32830i 0.983791 + 0.248882i
\(868\) 4.50258 + 6.27047i 0.152828 + 0.212834i
\(869\) −36.4245 21.0297i −1.23562 0.713383i
\(870\) 0 0
\(871\) 13.8180 7.97783i 0.468205 0.270318i
\(872\) −10.3843 + 1.55583i −0.351657 + 0.0526869i
\(873\) −0.558698 19.9265i −0.0189091 0.674408i
\(874\) 9.98434 6.44441i 0.337725 0.217986i
\(875\) 0 0
\(876\) −16.7070 42.4487i −0.564478 1.43421i
\(877\) 4.27655 7.40720i 0.144409 0.250123i −0.784743 0.619821i \(-0.787205\pi\)
0.929152 + 0.369697i \(0.120539\pi\)
\(878\) 0.513648 + 10.3530i 0.0173348 + 0.349396i
\(879\) 11.6899 + 11.3667i 0.394290 + 0.383390i
\(880\) 0 0
\(881\) 18.8765i 0.635964i −0.948097 0.317982i \(-0.896995\pi\)
0.948097 0.317982i \(-0.103005\pi\)
\(882\) −1.10233 14.1761i −0.0371174 0.477334i
\(883\) 52.8298i 1.77787i −0.458038 0.888933i \(-0.651448\pi\)
0.458038 0.888933i \(-0.348552\pi\)
\(884\) 2.13988 + 21.5124i 0.0719719 + 0.723540i
\(885\) 0 0
\(886\) 49.7129 2.46644i 1.67014 0.0828615i
\(887\) 7.71917 13.3700i 0.259184 0.448921i −0.706839 0.707374i \(-0.749880\pi\)
0.966024 + 0.258454i \(0.0832129\pi\)
\(888\) −12.9882 1.29091i −0.435857 0.0433201i
\(889\) −9.78270 16.9441i −0.328101 0.568288i
\(890\) 0 0
\(891\) 12.6876 25.1302i 0.425049 0.841895i
\(892\) 4.89843 + 2.21372i 0.164012 + 0.0741208i
\(893\) −8.89168 + 5.13361i −0.297549 + 0.171790i
\(894\) −26.2088 + 8.84231i −0.876554 + 0.295731i
\(895\) 0 0
\(896\) −12.3793 34.2306i −0.413563 1.14356i
\(897\) 3.26540 + 11.5374i 0.109029 + 0.385222i
\(898\) −28.9905 14.8733i −0.967427 0.496330i
\(899\) 9.56163 0.318898
\(900\) 0 0
\(901\) −76.5466 −2.55014
\(902\) 0.946473 + 0.485580i 0.0315141 + 0.0161680i
\(903\) 20.6834 21.2715i 0.688302 0.707871i
\(904\) 1.98182 + 0.779822i 0.0659143 + 0.0259365i
\(905\) 0 0
\(906\) −10.3688 + 51.6249i −0.344479 + 1.71512i
\(907\) 31.0477 17.9254i 1.03092 0.595203i 0.113674 0.993518i \(-0.463738\pi\)
0.917249 + 0.398315i \(0.130405\pi\)
\(908\) −8.86085 + 19.6069i −0.294058 + 0.650679i
\(909\) 15.0127 0.420925i 0.497938 0.0139612i
\(910\) 0 0
\(911\) 26.3466 + 45.6336i 0.872900 + 1.51191i 0.858983 + 0.512005i \(0.171097\pi\)
0.0139176 + 0.999903i \(0.495570\pi\)
\(912\) 13.0505 + 8.42196i 0.432144 + 0.278879i
\(913\) −1.94968 + 3.37694i −0.0645249 + 0.111760i
\(914\) 48.9731 2.42973i 1.61989 0.0803683i
\(915\) 0 0
\(916\) 5.14508 0.511791i 0.169998 0.0169100i
\(917\) 31.5002i 1.04023i
\(918\) 14.8849 + 40.3486i 0.491275 + 1.33170i
\(919\) 43.1318i 1.42279i 0.702795 + 0.711393i \(0.251935\pi\)
−0.702795 + 0.711393i \(0.748065\pi\)
\(920\) 0 0
\(921\) −7.79391 + 30.8081i −0.256818 + 1.01516i
\(922\) 1.88251 + 37.9434i 0.0619970 + 1.24960i
\(923\) −10.4629 + 18.1222i −0.344389 + 0.596500i
\(924\) 5.16273 34.4773i 0.169841 1.13422i
\(925\) 0 0
\(926\) −10.3079 + 6.65325i −0.338738 + 0.218639i
\(927\) 23.3807 + 37.9958i 0.767924 + 1.24795i
\(928\) −43.3830 12.2749i −1.42412 0.402942i
\(929\) 0.278475 0.160777i 0.00913645 0.00527493i −0.495425 0.868651i \(-0.664988\pi\)
0.504561 + 0.863376i \(0.331654\pi\)
\(930\) 0 0
\(931\) 6.50681 + 3.75671i 0.213252 + 0.123121i
\(932\) −1.59387 + 1.14450i −0.0522090 + 0.0374892i
\(933\) 37.7330 38.8058i 1.23532 1.27044i
\(934\) 9.27810 18.0845i 0.303589 0.591744i
\(935\) 0 0
\(936\) −11.9831 + 10.1003i −0.391679 + 0.330140i
\(937\) −28.1917 −0.920983 −0.460492 0.887664i \(-0.652327\pi\)
−0.460492 + 0.887664i \(0.652327\pi\)
\(938\) 17.9426 34.9731i 0.585847 1.14191i
\(939\) −2.42068 8.55278i −0.0789959 0.279109i
\(940\) 0 0
\(941\) −23.0237 13.2927i −0.750551 0.433331i 0.0753418 0.997158i \(-0.475995\pi\)
−0.825893 + 0.563827i \(0.809329\pi\)
\(942\) −0.936143 2.77475i −0.0305012 0.0904062i
\(943\) −0.780595 + 0.450676i −0.0254197 + 0.0146760i
\(944\) −18.3657 20.8602i −0.597752 0.678941i
\(945\) 0 0
\(946\) 19.7878 12.7721i 0.643358 0.415257i
\(947\) −7.97563 13.8142i −0.259173 0.448901i 0.706848 0.707366i \(-0.250117\pi\)
−0.966021 + 0.258465i \(0.916783\pi\)
\(948\) 36.4452 + 29.0068i 1.18369 + 0.942098i
\(949\) −12.1612 + 21.0638i −0.394768 + 0.683758i
\(950\) 0 0
\(951\) −24.6930 + 6.98882i −0.800725 + 0.226628i
\(952\) 33.1690 + 41.6679i 1.07501 + 1.35046i
\(953\) 47.3090i 1.53249i −0.642550 0.766244i \(-0.722123\pi\)
0.642550 0.766244i \(-0.277877\pi\)
\(954\) −31.3877 45.7611i −1.01621 1.48157i
\(955\) 0 0
\(956\) 15.3562 1.52751i 0.496654 0.0494031i
\(957\) −30.9580 30.1022i −1.00073 0.973066i
\(958\) −35.7409 + 1.77323i −1.15474 + 0.0572906i
\(959\) 9.12628 15.8072i 0.294703 0.510441i
\(960\) 0 0
\(961\) −14.7804 25.6004i −0.476787 0.825819i
\(962\) 3.77391 + 5.84692i 0.121676 + 0.188512i
\(963\) −7.80984 4.22170i −0.251669 0.136042i
\(964\) 19.7818 43.7724i 0.637129 1.40981i
\(965\) 0 0
\(966\) 22.1724 + 19.5178i 0.713384 + 0.627975i
\(967\) −7.40354 4.27444i −0.238082 0.137457i 0.376213 0.926533i \(-0.377226\pi\)
−0.614295 + 0.789077i \(0.710559\pi\)
\(968\) −1.25937 + 3.20053i −0.0404777 + 0.102869i
\(969\) −22.0311 5.57349i −0.707741 0.179046i
\(970\) 0 0
\(971\) 57.5120 1.84565 0.922823 0.385224i \(-0.125876\pi\)
0.922823 + 0.385224i \(0.125876\pi\)
\(972\) −18.0177 + 25.4433i −0.577918 + 0.816095i
\(973\) −29.6907 −0.951841
\(974\) 2.01955 + 1.03611i 0.0647105 + 0.0331991i
\(975\) 0 0
\(976\) −13.0813 + 2.62846i −0.418723 + 0.0841349i
\(977\) −30.4604 17.5863i −0.974514 0.562636i −0.0739049 0.997265i \(-0.523546\pi\)
−0.900610 + 0.434629i \(0.856879\pi\)
\(978\) 23.5738 + 20.7514i 0.753806 + 0.663557i
\(979\) −38.8112 + 22.4077i −1.24041 + 0.716152i
\(980\) 0 0
\(981\) 9.79733 + 5.29606i 0.312805 + 0.169090i
\(982\) 1.27594 + 1.97682i 0.0407169 + 0.0630827i
\(983\) 25.6002 + 44.3409i 0.816520 + 1.41425i 0.908231 + 0.418469i \(0.137433\pi\)
−0.0917112 + 0.995786i \(0.529234\pi\)
\(984\) −0.956996 0.687065i −0.0305079 0.0219028i
\(985\) 0 0
\(986\) 65.8851 3.26880i 2.09821 0.104100i
\(987\) −18.2976 17.7917i −0.582418 0.566317i
\(988\) −0.819706 8.24057i −0.0260783 0.262168i
\(989\) 19.9559i 0.634561i
\(990\) 0 0
\(991\) 37.0240i 1.17611i 0.808822 + 0.588053i \(0.200105\pi\)
−0.808822 + 0.588053i \(0.799895\pi\)
\(992\) −1.66494 6.57899i −0.0528617 0.208883i
\(993\) −42.4632 + 12.0183i −1.34753 + 0.381389i
\(994\) 2.55449 + 51.4877i 0.0810235 + 1.63309i
\(995\) 0 0
\(996\) 2.68925 3.37887i 0.0852120 0.107063i
\(997\) −21.6016 37.4150i −0.684128 1.18494i −0.973710 0.227791i \(-0.926850\pi\)
0.289582 0.957153i \(-0.406484\pi\)
\(998\) 4.99563 3.22444i 0.158134 0.102068i
\(999\) 10.1920 + 9.36905i 0.322461 + 0.296424i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.r.g.851.16 48
4.3 odd 2 inner 900.2.r.g.851.23 48
5.2 odd 4 180.2.n.d.59.21 yes 48
5.3 odd 4 180.2.n.d.59.4 48
5.4 even 2 inner 900.2.r.g.851.9 48
9.2 odd 6 inner 900.2.r.g.551.23 48
15.2 even 4 540.2.n.d.179.4 48
15.8 even 4 540.2.n.d.179.21 48
20.3 even 4 180.2.n.d.59.14 yes 48
20.7 even 4 180.2.n.d.59.11 yes 48
20.19 odd 2 inner 900.2.r.g.851.2 48
36.11 even 6 inner 900.2.r.g.551.16 48
45.2 even 12 180.2.n.d.119.14 yes 48
45.7 odd 12 540.2.n.d.359.11 48
45.29 odd 6 inner 900.2.r.g.551.2 48
45.38 even 12 180.2.n.d.119.11 yes 48
45.43 odd 12 540.2.n.d.359.14 48
60.23 odd 4 540.2.n.d.179.11 48
60.47 odd 4 540.2.n.d.179.14 48
180.7 even 12 540.2.n.d.359.21 48
180.43 even 12 540.2.n.d.359.4 48
180.47 odd 12 180.2.n.d.119.4 yes 48
180.83 odd 12 180.2.n.d.119.21 yes 48
180.119 even 6 inner 900.2.r.g.551.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.4 48 5.3 odd 4
180.2.n.d.59.11 yes 48 20.7 even 4
180.2.n.d.59.14 yes 48 20.3 even 4
180.2.n.d.59.21 yes 48 5.2 odd 4
180.2.n.d.119.4 yes 48 180.47 odd 12
180.2.n.d.119.11 yes 48 45.38 even 12
180.2.n.d.119.14 yes 48 45.2 even 12
180.2.n.d.119.21 yes 48 180.83 odd 12
540.2.n.d.179.4 48 15.2 even 4
540.2.n.d.179.11 48 60.23 odd 4
540.2.n.d.179.14 48 60.47 odd 4
540.2.n.d.179.21 48 15.8 even 4
540.2.n.d.359.4 48 180.43 even 12
540.2.n.d.359.11 48 45.7 odd 12
540.2.n.d.359.14 48 45.43 odd 12
540.2.n.d.359.21 48 180.7 even 12
900.2.r.g.551.2 48 45.29 odd 6 inner
900.2.r.g.551.9 48 180.119 even 6 inner
900.2.r.g.551.16 48 36.11 even 6 inner
900.2.r.g.551.23 48 9.2 odd 6 inner
900.2.r.g.851.2 48 20.19 odd 2 inner
900.2.r.g.851.9 48 5.4 even 2 inner
900.2.r.g.851.16 48 1.1 even 1 trivial
900.2.r.g.851.23 48 4.3 odd 2 inner