Properties

Label 900.2.o.b.599.5
Level $900$
Weight $2$
Character 900.599
Analytic conductor $7.187$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(299,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.299"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,6,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 599.5
Character \(\chi\) \(=\) 900.599
Dual form 900.2.o.b.299.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.19709 + 0.752973i) q^{2} +(0.425108 - 1.67907i) q^{3} +(0.866065 - 1.80276i) q^{4} +(0.755401 + 2.33010i) q^{6} +(1.08216 + 1.87435i) q^{7} +(0.320666 + 2.81019i) q^{8} +(-2.63857 - 1.42758i) q^{9} +(-1.44632 - 2.50510i) q^{11} +(-2.65879 - 2.22055i) q^{12} +(5.72095 + 3.30299i) q^{13} +(-2.70678 - 1.42894i) q^{14} +(-2.49986 - 3.12261i) q^{16} +5.08829 q^{17} +(4.23353 - 0.277827i) q^{18} +4.66790i q^{19} +(3.60721 - 1.02022i) q^{21} +(3.61766 + 1.90980i) q^{22} +(-2.50662 - 1.44720i) q^{23} +(4.85483 + 0.656214i) q^{24} +(-9.33557 + 0.353728i) q^{26} +(-3.51868 + 3.82347i) q^{27} +(4.31623 - 0.327557i) q^{28} +(5.99593 - 3.46175i) q^{29} +(4.51887 + 2.60897i) q^{31} +(5.34381 + 1.85572i) q^{32} +(-4.82109 + 1.36354i) q^{33} +(-6.09115 + 3.83134i) q^{34} +(-4.85874 + 3.52032i) q^{36} +4.58347i q^{37} +(-3.51480 - 5.58792i) q^{38} +(7.97798 - 8.20175i) q^{39} +(-4.18802 - 2.41795i) q^{41} +(-3.54997 + 3.93743i) q^{42} +(-2.20241 - 3.81468i) q^{43} +(-5.76870 + 0.437785i) q^{44} +(4.09035 - 0.154985i) q^{46} +(0.0167877 - 0.00969237i) q^{47} +(-6.30580 + 2.87000i) q^{48} +(1.15786 - 2.00548i) q^{49} +(2.16307 - 8.54360i) q^{51} +(10.9092 - 7.45287i) q^{52} +3.21239 q^{53} +(1.33322 - 7.22652i) q^{54} +(-4.92028 + 3.64212i) q^{56} +(7.83775 + 1.98436i) q^{57} +(-4.57108 + 8.65881i) q^{58} +(4.02651 - 6.97412i) q^{59} +(-0.321400 - 0.556681i) q^{61} +(-7.37400 + 0.279404i) q^{62} +(-0.179566 - 6.49047i) q^{63} +(-7.79435 + 1.80227i) q^{64} +(4.74459 - 5.26243i) q^{66} +(4.73363 - 8.19888i) q^{67} +(4.40678 - 9.17294i) q^{68} +(-3.49553 + 3.59357i) q^{69} -1.17635 q^{71} +(3.16566 - 7.87265i) q^{72} -2.32539i q^{73} +(-3.45123 - 5.48685i) q^{74} +(8.41509 + 4.04271i) q^{76} +(3.13030 - 5.42184i) q^{77} +(-3.37469 + 15.8255i) q^{78} +(14.6983 - 8.48606i) q^{79} +(4.92406 + 7.53350i) q^{81} +(6.83410 - 0.258947i) q^{82} +(1.64651 - 0.950613i) q^{83} +(1.28487 - 7.38650i) q^{84} +(5.50883 + 2.90817i) q^{86} +(-3.26361 - 11.5392i) q^{87} +(6.57603 - 4.86774i) q^{88} -3.72649i q^{89} +14.2974i q^{91} +(-4.77983 + 3.26545i) q^{92} +(6.30166 - 6.47842i) q^{93} +(-0.0127983 + 0.0242433i) q^{94} +(5.38759 - 8.18375i) q^{96} +(-10.0127 + 5.78082i) q^{97} +(0.123999 + 3.27258i) q^{98} +(0.239992 + 8.67461i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 6 q^{6} - 12 q^{8} - 4 q^{9} - 28 q^{12} + 30 q^{14} + 18 q^{18} - 4 q^{21} + 42 q^{22} + 28 q^{24} + 12 q^{29} + 48 q^{33} + 6 q^{34} + 42 q^{36} + 6 q^{38} - 60 q^{41} - 16 q^{42} - 12 q^{46} + 74 q^{48}+ \cdots - 84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.19709 + 0.752973i −0.846473 + 0.532432i
\(3\) 0.425108 1.67907i 0.245436 0.969413i
\(4\) 0.866065 1.80276i 0.433032 0.901378i
\(5\) 0 0
\(6\) 0.755401 + 2.33010i 0.308391 + 0.951260i
\(7\) 1.08216 + 1.87435i 0.409018 + 0.708440i 0.994780 0.102043i \(-0.0325381\pi\)
−0.585762 + 0.810483i \(0.699205\pi\)
\(8\) 0.320666 + 2.81019i 0.113373 + 0.993553i
\(9\) −2.63857 1.42758i −0.879522 0.475858i
\(10\) 0 0
\(11\) −1.44632 2.50510i −0.436083 0.755317i 0.561301 0.827612i \(-0.310301\pi\)
−0.997383 + 0.0722948i \(0.976968\pi\)
\(12\) −2.65879 2.22055i −0.767526 0.641018i
\(13\) 5.72095 + 3.30299i 1.58671 + 0.916085i 0.993845 + 0.110779i \(0.0353346\pi\)
0.592860 + 0.805306i \(0.297999\pi\)
\(14\) −2.70678 1.42894i −0.723418 0.381901i
\(15\) 0 0
\(16\) −2.49986 3.12261i −0.624966 0.780652i
\(17\) 5.08829 1.23409 0.617045 0.786928i \(-0.288330\pi\)
0.617045 + 0.786928i \(0.288330\pi\)
\(18\) 4.23353 0.277827i 0.997854 0.0654844i
\(19\) 4.66790i 1.07089i 0.844570 + 0.535445i \(0.179856\pi\)
−0.844570 + 0.535445i \(0.820144\pi\)
\(20\) 0 0
\(21\) 3.60721 1.02022i 0.787158 0.222630i
\(22\) 3.61766 + 1.90980i 0.771287 + 0.407171i
\(23\) −2.50662 1.44720i −0.522666 0.301761i 0.215359 0.976535i \(-0.430908\pi\)
−0.738025 + 0.674774i \(0.764241\pi\)
\(24\) 4.85483 + 0.656214i 0.990988 + 0.133949i
\(25\) 0 0
\(26\) −9.33557 + 0.353728i −1.83086 + 0.0693718i
\(27\) −3.51868 + 3.82347i −0.677170 + 0.735827i
\(28\) 4.31623 0.327557i 0.815690 0.0619025i
\(29\) 5.99593 3.46175i 1.11342 0.642831i 0.173704 0.984798i \(-0.444427\pi\)
0.939712 + 0.341967i \(0.111093\pi\)
\(30\) 0 0
\(31\) 4.51887 + 2.60897i 0.811613 + 0.468585i 0.847516 0.530770i \(-0.178097\pi\)
−0.0359024 + 0.999355i \(0.511431\pi\)
\(32\) 5.34381 + 1.85572i 0.944661 + 0.328049i
\(33\) −4.82109 + 1.36354i −0.839245 + 0.237362i
\(34\) −6.09115 + 3.83134i −1.04462 + 0.657069i
\(35\) 0 0
\(36\) −4.85874 + 3.52032i −0.809790 + 0.586720i
\(37\) 4.58347i 0.753518i 0.926311 + 0.376759i \(0.122962\pi\)
−0.926311 + 0.376759i \(0.877038\pi\)
\(38\) −3.51480 5.58792i −0.570176 0.906480i
\(39\) 7.97798 8.20175i 1.27750 1.31333i
\(40\) 0 0
\(41\) −4.18802 2.41795i −0.654059 0.377621i 0.135951 0.990716i \(-0.456591\pi\)
−0.790009 + 0.613095i \(0.789924\pi\)
\(42\) −3.54997 + 3.93743i −0.547773 + 0.607559i
\(43\) −2.20241 3.81468i −0.335864 0.581733i 0.647787 0.761822i \(-0.275695\pi\)
−0.983650 + 0.180089i \(0.942361\pi\)
\(44\) −5.76870 + 0.437785i −0.869664 + 0.0659986i
\(45\) 0 0
\(46\) 4.09035 0.154985i 0.603089 0.0228513i
\(47\) 0.0167877 0.00969237i 0.00244874 0.00141378i −0.498775 0.866731i \(-0.666217\pi\)
0.501224 + 0.865318i \(0.332883\pi\)
\(48\) −6.30580 + 2.87000i −0.910163 + 0.414249i
\(49\) 1.15786 2.00548i 0.165409 0.286497i
\(50\) 0 0
\(51\) 2.16307 8.54360i 0.302891 1.19634i
\(52\) 10.9092 7.45287i 1.51283 1.03353i
\(53\) 3.21239 0.441256 0.220628 0.975358i \(-0.429189\pi\)
0.220628 + 0.975358i \(0.429189\pi\)
\(54\) 1.33322 7.22652i 0.181428 0.983404i
\(55\) 0 0
\(56\) −4.92028 + 3.64212i −0.657501 + 0.486698i
\(57\) 7.83775 + 1.98436i 1.03813 + 0.262836i
\(58\) −4.57108 + 8.65881i −0.600212 + 1.13696i
\(59\) 4.02651 6.97412i 0.524207 0.907953i −0.475396 0.879772i \(-0.657695\pi\)
0.999603 0.0281811i \(-0.00897150\pi\)
\(60\) 0 0
\(61\) −0.321400 0.556681i −0.0411510 0.0712757i 0.844716 0.535214i \(-0.179769\pi\)
−0.885867 + 0.463939i \(0.846436\pi\)
\(62\) −7.37400 + 0.279404i −0.936499 + 0.0354843i
\(63\) −0.179566 6.49047i −0.0226232 0.817723i
\(64\) −7.79435 + 1.80227i −0.974293 + 0.225283i
\(65\) 0 0
\(66\) 4.74459 5.26243i 0.584019 0.647761i
\(67\) 4.73363 8.19888i 0.578304 1.00165i −0.417370 0.908737i \(-0.637048\pi\)
0.995674 0.0929158i \(-0.0296187\pi\)
\(68\) 4.40678 9.17294i 0.534401 1.11238i
\(69\) −3.49553 + 3.59357i −0.420812 + 0.432615i
\(70\) 0 0
\(71\) −1.17635 −0.139607 −0.0698035 0.997561i \(-0.522237\pi\)
−0.0698035 + 0.997561i \(0.522237\pi\)
\(72\) 3.16566 7.87265i 0.373077 0.927801i
\(73\) 2.32539i 0.272166i −0.990697 0.136083i \(-0.956549\pi\)
0.990697 0.136083i \(-0.0434514\pi\)
\(74\) −3.45123 5.48685i −0.401197 0.637833i
\(75\) 0 0
\(76\) 8.41509 + 4.04271i 0.965278 + 0.463730i
\(77\) 3.13030 5.42184i 0.356731 0.617876i
\(78\) −3.37469 + 15.8255i −0.382109 + 1.79188i
\(79\) 14.6983 8.48606i 1.65369 0.954756i 0.678148 0.734926i \(-0.262783\pi\)
0.975538 0.219830i \(-0.0705503\pi\)
\(80\) 0 0
\(81\) 4.92406 + 7.53350i 0.547118 + 0.837056i
\(82\) 6.83410 0.258947i 0.754700 0.0285959i
\(83\) 1.64651 0.950613i 0.180728 0.104343i −0.406907 0.913470i \(-0.633393\pi\)
0.587635 + 0.809126i \(0.300059\pi\)
\(84\) 1.28487 7.38650i 0.140191 0.805933i
\(85\) 0 0
\(86\) 5.50883 + 2.90817i 0.594033 + 0.313597i
\(87\) −3.26361 11.5392i −0.349896 1.23713i
\(88\) 6.57603 4.86774i 0.701007 0.518903i
\(89\) 3.72649i 0.395007i −0.980302 0.197503i \(-0.936717\pi\)
0.980302 0.197503i \(-0.0632834\pi\)
\(90\) 0 0
\(91\) 14.2974i 1.49878i
\(92\) −4.77983 + 3.26545i −0.498332 + 0.340447i
\(93\) 6.30166 6.47842i 0.653452 0.671780i
\(94\) −0.0127983 + 0.0242433i −0.00132005 + 0.00250051i
\(95\) 0 0
\(96\) 5.38759 8.18375i 0.549869 0.835251i
\(97\) −10.0127 + 5.78082i −1.01663 + 0.586953i −0.913127 0.407675i \(-0.866339\pi\)
−0.103506 + 0.994629i \(0.533006\pi\)
\(98\) 0.123999 + 3.27258i 0.0125258 + 0.330581i
\(99\) 0.239992 + 8.67461i 0.0241201 + 0.871831i
\(100\) 0 0
\(101\) −9.46327 + 5.46362i −0.941630 + 0.543650i −0.890471 0.455040i \(-0.849625\pi\)
−0.0511591 + 0.998691i \(0.516292\pi\)
\(102\) 3.84369 + 11.8562i 0.380582 + 1.17394i
\(103\) −0.317664 + 0.550211i −0.0313004 + 0.0542139i −0.881251 0.472648i \(-0.843298\pi\)
0.849951 + 0.526862i \(0.176632\pi\)
\(104\) −7.44752 + 17.1361i −0.730289 + 1.68033i
\(105\) 0 0
\(106\) −3.84553 + 2.41884i −0.373511 + 0.234939i
\(107\) 18.8050i 1.81795i 0.416850 + 0.908975i \(0.363134\pi\)
−0.416850 + 0.908975i \(0.636866\pi\)
\(108\) 3.84538 + 9.65469i 0.370022 + 0.929023i
\(109\) 3.39053 0.324754 0.162377 0.986729i \(-0.448084\pi\)
0.162377 + 0.986729i \(0.448084\pi\)
\(110\) 0 0
\(111\) 7.69598 + 1.94847i 0.730470 + 0.184941i
\(112\) 3.14763 8.06479i 0.297423 0.762051i
\(113\) −0.499103 + 0.864471i −0.0469516 + 0.0813226i −0.888546 0.458787i \(-0.848284\pi\)
0.841595 + 0.540110i \(0.181617\pi\)
\(114\) −10.8767 + 3.52614i −1.01869 + 0.330253i
\(115\) 0 0
\(116\) −1.04783 13.8073i −0.0972888 1.28198i
\(117\) −10.3798 16.8822i −0.959615 1.56076i
\(118\) 0.431213 + 11.3805i 0.0396963 + 1.04766i
\(119\) 5.50634 + 9.53725i 0.504765 + 0.874279i
\(120\) 0 0
\(121\) 1.31630 2.27991i 0.119664 0.207264i
\(122\) 0.803911 + 0.424394i 0.0727827 + 0.0384228i
\(123\) −5.84028 + 6.00409i −0.526600 + 0.541371i
\(124\) 8.61698 5.88689i 0.773828 0.528658i
\(125\) 0 0
\(126\) 5.10210 + 7.63449i 0.454532 + 0.680135i
\(127\) 8.78450 0.779498 0.389749 0.920921i \(-0.372562\pi\)
0.389749 + 0.920921i \(0.372562\pi\)
\(128\) 7.97350 8.02641i 0.704765 0.709441i
\(129\) −7.34138 + 2.07635i −0.646372 + 0.182812i
\(130\) 0 0
\(131\) −7.06346 + 12.2343i −0.617137 + 1.06891i 0.372868 + 0.927884i \(0.378374\pi\)
−0.990005 + 0.141029i \(0.954959\pi\)
\(132\) −1.71725 + 9.87217i −0.149467 + 0.859262i
\(133\) −8.74931 + 5.05142i −0.758661 + 0.438013i
\(134\) 0.506940 + 13.3791i 0.0437929 + 1.15578i
\(135\) 0 0
\(136\) 1.63164 + 14.2991i 0.139912 + 1.22613i
\(137\) 7.60127 + 13.1658i 0.649420 + 1.12483i 0.983262 + 0.182200i \(0.0583217\pi\)
−0.333841 + 0.942629i \(0.608345\pi\)
\(138\) 1.47861 6.93388i 0.125868 0.590251i
\(139\) −2.20036 1.27038i −0.186632 0.107752i 0.403773 0.914859i \(-0.367699\pi\)
−0.590405 + 0.807107i \(0.701032\pi\)
\(140\) 0 0
\(141\) −0.00913761 0.0323080i −0.000769525 0.00272083i
\(142\) 1.40820 0.885759i 0.118174 0.0743312i
\(143\) 19.1087i 1.59795i
\(144\) 2.13830 + 11.8080i 0.178191 + 0.983996i
\(145\) 0 0
\(146\) 1.75095 + 2.78371i 0.144910 + 0.230381i
\(147\) −2.87512 2.79668i −0.237136 0.230666i
\(148\) 8.26289 + 3.96959i 0.679205 + 0.326298i
\(149\) −5.98481 3.45533i −0.490294 0.283072i 0.234402 0.972140i \(-0.424687\pi\)
−0.724697 + 0.689068i \(0.758020\pi\)
\(150\) 0 0
\(151\) 18.4571 10.6562i 1.50202 0.867191i 0.502021 0.864855i \(-0.332590\pi\)
0.999997 0.00233576i \(-0.000743497\pi\)
\(152\) −13.1177 + 1.49684i −1.06399 + 0.121410i
\(153\) −13.4258 7.26391i −1.08541 0.587252i
\(154\) 0.335235 + 8.84748i 0.0270140 + 0.712950i
\(155\) 0 0
\(156\) −7.87632 21.4856i −0.630610 1.72023i
\(157\) −10.1062 5.83484i −0.806566 0.465671i 0.0391957 0.999232i \(-0.487520\pi\)
−0.845762 + 0.533560i \(0.820854\pi\)
\(158\) −11.2054 + 21.2260i −0.891457 + 1.68865i
\(159\) 1.36561 5.39384i 0.108300 0.427759i
\(160\) 0 0
\(161\) 6.26438i 0.493703i
\(162\) −11.5671 5.31062i −0.908795 0.417242i
\(163\) 0.438006 0.0343073 0.0171536 0.999853i \(-0.494540\pi\)
0.0171536 + 0.999853i \(0.494540\pi\)
\(164\) −7.98608 + 5.45587i −0.623608 + 0.426032i
\(165\) 0 0
\(166\) −1.25524 + 2.37775i −0.0974256 + 0.184549i
\(167\) 3.60751 + 2.08280i 0.279157 + 0.161172i 0.633042 0.774118i \(-0.281806\pi\)
−0.353884 + 0.935289i \(0.615139\pi\)
\(168\) 4.02372 + 9.80980i 0.310437 + 0.756843i
\(169\) 15.3195 + 26.5341i 1.17842 + 2.04109i
\(170\) 0 0
\(171\) 6.66378 12.3166i 0.509592 0.941872i
\(172\) −8.78436 + 0.666643i −0.669801 + 0.0508311i
\(173\) −4.47638 7.75332i −0.340333 0.589474i 0.644162 0.764889i \(-0.277206\pi\)
−0.984494 + 0.175416i \(0.943873\pi\)
\(174\) 12.5956 + 11.3561i 0.954866 + 0.860904i
\(175\) 0 0
\(176\) −4.20685 + 10.7787i −0.317103 + 0.812476i
\(177\) −9.99835 9.72556i −0.751522 0.731018i
\(178\) 2.80594 + 4.46095i 0.210314 + 0.334363i
\(179\) −10.5263 −0.786776 −0.393388 0.919373i \(-0.628697\pi\)
−0.393388 + 0.919373i \(0.628697\pi\)
\(180\) 0 0
\(181\) −9.50854 −0.706765 −0.353382 0.935479i \(-0.614968\pi\)
−0.353382 + 0.935479i \(0.614968\pi\)
\(182\) −10.7656 17.1154i −0.797998 1.26868i
\(183\) −1.07134 + 0.303004i −0.0791955 + 0.0223987i
\(184\) 3.26311 7.50814i 0.240560 0.553507i
\(185\) 0 0
\(186\) −2.66561 + 12.5002i −0.195452 + 0.916563i
\(187\) −7.35930 12.7467i −0.538165 0.932130i
\(188\) −0.00293377 0.0386583i −0.000213967 0.00281945i
\(189\) −10.9743 2.45765i −0.798263 0.178768i
\(190\) 0 0
\(191\) −6.08040 10.5316i −0.439963 0.762038i 0.557723 0.830027i \(-0.311675\pi\)
−0.997686 + 0.0679893i \(0.978342\pi\)
\(192\) −0.287309 + 13.8534i −0.0207347 + 0.999785i
\(193\) −12.1493 7.01439i −0.874525 0.504907i −0.00567551 0.999984i \(-0.501807\pi\)
−0.868849 + 0.495077i \(0.835140\pi\)
\(194\) 7.63331 14.4595i 0.548040 1.03813i
\(195\) 0 0
\(196\) −2.61260 3.82422i −0.186614 0.273158i
\(197\) 7.21555 0.514086 0.257043 0.966400i \(-0.417252\pi\)
0.257043 + 0.966400i \(0.417252\pi\)
\(198\) −6.81904 10.2036i −0.484608 0.725139i
\(199\) 8.63093i 0.611830i 0.952059 + 0.305915i \(0.0989624\pi\)
−0.952059 + 0.305915i \(0.901038\pi\)
\(200\) 0 0
\(201\) −11.7542 11.4335i −0.829078 0.806458i
\(202\) 7.21446 13.6660i 0.507607 0.961539i
\(203\) 12.9771 + 7.49233i 0.910814 + 0.525858i
\(204\) −13.5287 11.2988i −0.947196 0.791074i
\(205\) 0 0
\(206\) −0.0340198 0.897846i −0.00237027 0.0625559i
\(207\) 4.54789 + 7.39690i 0.316100 + 0.514120i
\(208\) −3.98764 26.1213i −0.276493 1.81119i
\(209\) 11.6936 6.75129i 0.808862 0.466997i
\(210\) 0 0
\(211\) −16.1103 9.30130i −1.10908 0.640328i −0.170490 0.985359i \(-0.554535\pi\)
−0.938591 + 0.345031i \(0.887868\pi\)
\(212\) 2.78214 5.79116i 0.191078 0.397739i
\(213\) −0.500076 + 1.97518i −0.0342647 + 0.135337i
\(214\) −14.1597 22.5114i −0.967935 1.53885i
\(215\) 0 0
\(216\) −11.8730 8.66210i −0.807855 0.589381i
\(217\) 11.2933i 0.766639i
\(218\) −4.05878 + 2.55298i −0.274895 + 0.172909i
\(219\) −3.90450 0.988543i −0.263841 0.0667995i
\(220\) 0 0
\(221\) 29.1098 + 16.8066i 1.95814 + 1.13053i
\(222\) −10.6800 + 3.46236i −0.716792 + 0.232378i
\(223\) −6.17187 10.6900i −0.413299 0.715854i 0.581949 0.813225i \(-0.302290\pi\)
−0.995248 + 0.0973706i \(0.968957\pi\)
\(224\) 2.30457 + 12.0244i 0.153980 + 0.803413i
\(225\) 0 0
\(226\) −0.0534506 1.41066i −0.00355548 0.0938359i
\(227\) 0.644365 0.372024i 0.0427680 0.0246921i −0.478464 0.878107i \(-0.658806\pi\)
0.521232 + 0.853415i \(0.325473\pi\)
\(228\) 10.3653 12.4110i 0.686460 0.821936i
\(229\) −13.0783 + 22.6523i −0.864238 + 1.49690i 0.00356308 + 0.999994i \(0.498866\pi\)
−0.867801 + 0.496911i \(0.834468\pi\)
\(230\) 0 0
\(231\) −7.77295 7.56087i −0.511422 0.497469i
\(232\) 11.6509 + 15.7396i 0.764917 + 1.03336i
\(233\) 25.8264 1.69195 0.845973 0.533226i \(-0.179021\pi\)
0.845973 + 0.533226i \(0.179021\pi\)
\(234\) 25.1375 + 12.3939i 1.64329 + 0.810214i
\(235\) 0 0
\(236\) −9.08542 13.2989i −0.591411 0.865682i
\(237\) −8.00034 28.2870i −0.519678 1.83744i
\(238\) −13.7729 7.27086i −0.892764 0.471300i
\(239\) −4.11600 + 7.12913i −0.266242 + 0.461145i −0.967888 0.251381i \(-0.919115\pi\)
0.701646 + 0.712526i \(0.252449\pi\)
\(240\) 0 0
\(241\) 0.0705544 + 0.122204i 0.00454481 + 0.00787184i 0.868289 0.496059i \(-0.165220\pi\)
−0.863744 + 0.503931i \(0.831887\pi\)
\(242\) 0.140967 + 3.72040i 0.00906173 + 0.239156i
\(243\) 14.7426 5.06529i 0.945735 0.324939i
\(244\) −1.28191 + 0.0972841i −0.0820661 + 0.00622797i
\(245\) 0 0
\(246\) 2.47044 11.5850i 0.157510 0.738634i
\(247\) −15.4180 + 26.7048i −0.981026 + 1.69919i
\(248\) −5.88266 + 13.5355i −0.373549 + 0.859505i
\(249\) −0.896202 3.16872i −0.0567945 0.200810i
\(250\) 0 0
\(251\) −9.50499 −0.599950 −0.299975 0.953947i \(-0.596978\pi\)
−0.299975 + 0.953947i \(0.596978\pi\)
\(252\) −11.8563 5.29746i −0.746874 0.333708i
\(253\) 8.37244i 0.526371i
\(254\) −10.5159 + 6.61449i −0.659824 + 0.415030i
\(255\) 0 0
\(256\) −3.50136 + 15.6122i −0.218835 + 0.975762i
\(257\) −12.9923 + 22.5033i −0.810436 + 1.40372i 0.102123 + 0.994772i \(0.467436\pi\)
−0.912559 + 0.408945i \(0.865897\pi\)
\(258\) 7.22489 8.01344i 0.449802 0.498895i
\(259\) −8.59106 + 4.96005i −0.533822 + 0.308202i
\(260\) 0 0
\(261\) −20.7626 + 0.574418i −1.28517 + 0.0355556i
\(262\) −0.756450 19.9642i −0.0467336 1.23339i
\(263\) −23.2758 + 13.4383i −1.43525 + 0.828640i −0.997514 0.0704654i \(-0.977552\pi\)
−0.437732 + 0.899105i \(0.644218\pi\)
\(264\) −5.37776 13.1110i −0.330979 0.806923i
\(265\) 0 0
\(266\) 6.67016 12.6350i 0.408974 0.774702i
\(267\) −6.25704 1.58416i −0.382925 0.0969491i
\(268\) −10.6810 15.6343i −0.652443 0.955019i
\(269\) 16.4030i 1.00011i −0.865995 0.500053i \(-0.833314\pi\)
0.865995 0.500053i \(-0.166686\pi\)
\(270\) 0 0
\(271\) 16.0484i 0.974873i 0.873158 + 0.487437i \(0.162068\pi\)
−0.873158 + 0.487437i \(0.837932\pi\)
\(272\) −12.7200 15.8887i −0.771264 0.963395i
\(273\) 24.0064 + 6.07796i 1.45294 + 0.367855i
\(274\) −19.0129 10.0371i −1.14861 0.606365i
\(275\) 0 0
\(276\) 3.45098 + 9.41386i 0.207725 + 0.566647i
\(277\) −21.0720 + 12.1659i −1.26609 + 0.730978i −0.974246 0.225488i \(-0.927602\pi\)
−0.291845 + 0.956466i \(0.594269\pi\)
\(278\) 3.59060 0.136049i 0.215350 0.00815969i
\(279\) −8.19884 13.3350i −0.490852 0.798344i
\(280\) 0 0
\(281\) 9.04166 5.22020i 0.539380 0.311411i −0.205448 0.978668i \(-0.565865\pi\)
0.744828 + 0.667257i \(0.232532\pi\)
\(282\) 0.0352656 + 0.0317954i 0.00210004 + 0.00189339i
\(283\) −7.44455 + 12.8943i −0.442533 + 0.766489i −0.997877 0.0651317i \(-0.979253\pi\)
0.555344 + 0.831621i \(0.312587\pi\)
\(284\) −1.01880 + 2.12067i −0.0604544 + 0.125839i
\(285\) 0 0
\(286\) 14.3884 + 22.8750i 0.850802 + 1.35262i
\(287\) 10.4664i 0.617815i
\(288\) −11.4508 12.5251i −0.674745 0.738051i
\(289\) 8.89065 0.522979
\(290\) 0 0
\(291\) 5.44994 + 19.2695i 0.319481 + 1.12960i
\(292\) −4.19211 2.01394i −0.245325 0.117857i
\(293\) −13.0589 + 22.6187i −0.762911 + 1.32140i 0.178433 + 0.983952i \(0.442897\pi\)
−0.941344 + 0.337449i \(0.890436\pi\)
\(294\) 5.54761 + 1.18300i 0.323543 + 0.0689938i
\(295\) 0 0
\(296\) −12.8804 + 1.46976i −0.748660 + 0.0854283i
\(297\) 14.6673 + 3.28469i 0.851084 + 0.190597i
\(298\) 9.76614 0.370043i 0.565737 0.0214360i
\(299\) −9.56014 16.5587i −0.552877 0.957612i
\(300\) 0 0
\(301\) 4.76671 8.25618i 0.274748 0.475878i
\(302\) −14.0710 + 26.6542i −0.809698 + 1.53378i
\(303\) 5.15090 + 18.2121i 0.295911 + 1.04626i
\(304\) 14.5760 11.6691i 0.835993 0.669270i
\(305\) 0 0
\(306\) 21.5414 1.41366i 1.23144 0.0808137i
\(307\) 28.5542 1.62967 0.814837 0.579690i \(-0.196826\pi\)
0.814837 + 0.579690i \(0.196826\pi\)
\(308\) −7.06322 10.3388i −0.402464 0.589110i
\(309\) 0.788802 + 0.767281i 0.0448734 + 0.0436491i
\(310\) 0 0
\(311\) 0.0440224 0.0762490i 0.00249628 0.00432369i −0.864775 0.502160i \(-0.832539\pi\)
0.867271 + 0.497837i \(0.165872\pi\)
\(312\) 25.6068 + 19.7896i 1.44970 + 1.12037i
\(313\) −13.1775 + 7.60804i −0.744837 + 0.430032i −0.823825 0.566844i \(-0.808164\pi\)
0.0789885 + 0.996876i \(0.474831\pi\)
\(314\) 16.4916 0.624873i 0.930675 0.0352636i
\(315\) 0 0
\(316\) −2.56863 33.8469i −0.144497 1.90404i
\(317\) 3.58277 + 6.20554i 0.201228 + 0.348538i 0.948925 0.315503i \(-0.102173\pi\)
−0.747696 + 0.664041i \(0.768840\pi\)
\(318\) 2.42664 + 7.48520i 0.136079 + 0.419749i
\(319\) −17.3441 10.0136i −0.971082 0.560655i
\(320\) 0 0
\(321\) 31.5750 + 7.99417i 1.76234 + 0.446191i
\(322\) 4.71691 + 7.49905i 0.262863 + 0.417906i
\(323\) 23.7516i 1.32158i
\(324\) 17.8456 2.35238i 0.991424 0.130688i
\(325\) 0 0
\(326\) −0.524334 + 0.329807i −0.0290402 + 0.0182663i
\(327\) 1.44134 5.69295i 0.0797065 0.314821i
\(328\) 5.45196 12.5445i 0.301034 0.692653i
\(329\) 0.0363339 + 0.0209774i 0.00200315 + 0.00115652i
\(330\) 0 0
\(331\) −0.709837 + 0.409824i −0.0390161 + 0.0225260i −0.519381 0.854543i \(-0.673838\pi\)
0.480365 + 0.877069i \(0.340504\pi\)
\(332\) −0.287740 3.79155i −0.0157918 0.208088i
\(333\) 6.54325 12.0938i 0.358568 0.662736i
\(334\) −5.88681 + 0.223054i −0.322112 + 0.0122050i
\(335\) 0 0
\(336\) −12.2033 8.71350i −0.665744 0.475360i
\(337\) 2.65680 + 1.53390i 0.144725 + 0.0835571i 0.570614 0.821218i \(-0.306705\pi\)
−0.425889 + 0.904775i \(0.640039\pi\)
\(338\) −38.3183 20.2287i −2.08424 1.10029i
\(339\) 1.23934 + 1.20552i 0.0673115 + 0.0654750i
\(340\) 0 0
\(341\) 15.0937i 0.817367i
\(342\) 1.29687 + 19.7617i 0.0701266 + 1.06859i
\(343\) 20.1622 1.08866
\(344\) 10.0137 7.41242i 0.539904 0.399651i
\(345\) 0 0
\(346\) 11.1967 + 5.91085i 0.601937 + 0.317769i
\(347\) −19.3234 11.1564i −1.03734 0.598906i −0.118258 0.992983i \(-0.537731\pi\)
−0.919078 + 0.394077i \(0.871064\pi\)
\(348\) −23.6289 4.11021i −1.26664 0.220330i
\(349\) −5.01965 8.69429i −0.268696 0.465395i 0.699829 0.714310i \(-0.253259\pi\)
−0.968525 + 0.248915i \(0.919926\pi\)
\(350\) 0 0
\(351\) −32.7590 + 10.2517i −1.74855 + 0.547195i
\(352\) −3.08009 16.0708i −0.164169 0.856575i
\(353\) 6.36616 + 11.0265i 0.338836 + 0.586882i 0.984214 0.176982i \(-0.0566334\pi\)
−0.645378 + 0.763864i \(0.723300\pi\)
\(354\) 19.2920 + 4.11392i 1.02536 + 0.218652i
\(355\) 0 0
\(356\) −6.71795 3.22738i −0.356051 0.171051i
\(357\) 18.3545 5.19117i 0.971424 0.274746i
\(358\) 12.6010 7.92605i 0.665984 0.418905i
\(359\) 5.93304 0.313134 0.156567 0.987667i \(-0.449957\pi\)
0.156567 + 0.987667i \(0.449957\pi\)
\(360\) 0 0
\(361\) −2.78932 −0.146806
\(362\) 11.3826 7.15967i 0.598257 0.376304i
\(363\) −3.26855 3.17938i −0.171555 0.166874i
\(364\) 25.7748 + 12.3825i 1.35097 + 0.649020i
\(365\) 0 0
\(366\) 1.05434 1.16941i 0.0551111 0.0611261i
\(367\) −13.3004 23.0370i −0.694277 1.20252i −0.970424 0.241407i \(-0.922391\pi\)
0.276147 0.961115i \(-0.410942\pi\)
\(368\) 1.74717 + 11.4450i 0.0910777 + 0.596610i
\(369\) 7.59855 + 12.3586i 0.395565 + 0.643365i
\(370\) 0 0
\(371\) 3.47632 + 6.02116i 0.180482 + 0.312603i
\(372\) −6.22136 16.9711i −0.322563 0.879910i
\(373\) −22.9141 13.2294i −1.18645 0.684995i −0.228949 0.973438i \(-0.573529\pi\)
−0.957497 + 0.288444i \(0.906862\pi\)
\(374\) 18.4077 + 9.71762i 0.951838 + 0.502486i
\(375\) 0 0
\(376\) 0.0326207 + 0.0440686i 0.00168228 + 0.00227266i
\(377\) 45.7365 2.35555
\(378\) 14.9878 5.32131i 0.770890 0.273699i
\(379\) 21.3357i 1.09594i 0.836497 + 0.547972i \(0.184600\pi\)
−0.836497 + 0.547972i \(0.815400\pi\)
\(380\) 0 0
\(381\) 3.73436 14.7498i 0.191317 0.755655i
\(382\) 15.2088 + 8.02889i 0.778150 + 0.410794i
\(383\) −2.73103 1.57676i −0.139549 0.0805688i 0.428600 0.903494i \(-0.359007\pi\)
−0.568149 + 0.822926i \(0.692340\pi\)
\(384\) −10.0873 16.8002i −0.514766 0.857331i
\(385\) 0 0
\(386\) 19.8255 0.751195i 1.00909 0.0382348i
\(387\) 0.365451 + 13.2094i 0.0185769 + 0.671470i
\(388\) 1.74979 + 23.0570i 0.0888321 + 1.17054i
\(389\) −12.9948 + 7.50253i −0.658860 + 0.380393i −0.791843 0.610725i \(-0.790878\pi\)
0.132982 + 0.991118i \(0.457545\pi\)
\(390\) 0 0
\(391\) −12.7544 7.36374i −0.645017 0.372400i
\(392\) 6.00706 + 2.61073i 0.303402 + 0.131862i
\(393\) 17.5395 + 17.0610i 0.884750 + 0.860611i
\(394\) −8.63768 + 5.43311i −0.435160 + 0.273716i
\(395\) 0 0
\(396\) 15.8461 + 7.08013i 0.796295 + 0.355790i
\(397\) 10.0474i 0.504266i −0.967693 0.252133i \(-0.918868\pi\)
0.967693 0.252133i \(-0.0811320\pi\)
\(398\) −6.49885 10.3320i −0.325758 0.517898i
\(399\) 4.76229 + 16.8381i 0.238412 + 0.842960i
\(400\) 0 0
\(401\) −6.85153 3.95573i −0.342149 0.197540i 0.319073 0.947730i \(-0.396629\pi\)
−0.661222 + 0.750190i \(0.729962\pi\)
\(402\) 22.6800 + 4.83639i 1.13118 + 0.241217i
\(403\) 17.2348 + 29.8516i 0.858527 + 1.48701i
\(404\) 1.65378 + 21.7918i 0.0822784 + 1.08418i
\(405\) 0 0
\(406\) −21.1763 + 0.802379i −1.05096 + 0.0398214i
\(407\) 11.4821 6.62918i 0.569145 0.328596i
\(408\) 24.7028 + 3.33901i 1.22297 + 0.165305i
\(409\) 13.5824 23.5255i 0.671608 1.16326i −0.305840 0.952083i \(-0.598937\pi\)
0.977448 0.211177i \(-0.0677295\pi\)
\(410\) 0 0
\(411\) 25.3377 7.16619i 1.24981 0.353482i
\(412\) 0.716778 + 1.04919i 0.0353131 + 0.0516899i
\(413\) 17.4293 0.857640
\(414\) −11.0139 5.43035i −0.541304 0.266887i
\(415\) 0 0
\(416\) 24.4422 + 28.2670i 1.19838 + 1.38591i
\(417\) −3.06845 + 3.15452i −0.150263 + 0.154477i
\(418\) −8.91477 + 16.8869i −0.436036 + 0.825964i
\(419\) −4.28527 + 7.42230i −0.209349 + 0.362603i −0.951510 0.307619i \(-0.900468\pi\)
0.742161 + 0.670222i \(0.233801\pi\)
\(420\) 0 0
\(421\) 3.41504 + 5.91502i 0.166439 + 0.288280i 0.937165 0.348886i \(-0.113440\pi\)
−0.770727 + 0.637166i \(0.780107\pi\)
\(422\) 26.2892 0.996108i 1.27974 0.0484898i
\(423\) −0.0581320 + 0.00160828i −0.00282647 + 7.81974e-5i
\(424\) 1.03010 + 9.02743i 0.0500263 + 0.438411i
\(425\) 0 0
\(426\) −0.888615 2.74101i −0.0430536 0.132803i
\(427\) 0.695612 1.20483i 0.0336630 0.0583060i
\(428\) 33.9009 + 16.2864i 1.63866 + 0.787231i
\(429\) −32.0850 8.12329i −1.54908 0.392196i
\(430\) 0 0
\(431\) 26.5552 1.27912 0.639559 0.768742i \(-0.279117\pi\)
0.639559 + 0.768742i \(0.279117\pi\)
\(432\) 20.7354 + 1.42930i 0.997633 + 0.0687674i
\(433\) 12.4714i 0.599339i 0.954043 + 0.299669i \(0.0968763\pi\)
−0.954043 + 0.299669i \(0.903124\pi\)
\(434\) −8.50354 13.5191i −0.408183 0.648939i
\(435\) 0 0
\(436\) 2.93642 6.11230i 0.140629 0.292726i
\(437\) 6.75537 11.7006i 0.323153 0.559718i
\(438\) 5.41839 1.75660i 0.258901 0.0839337i
\(439\) −12.8412 + 7.41389i −0.612879 + 0.353846i −0.774091 0.633074i \(-0.781793\pi\)
0.161212 + 0.986920i \(0.448460\pi\)
\(440\) 0 0
\(441\) −5.91806 + 3.63865i −0.281813 + 0.173269i
\(442\) −47.5020 + 1.79987i −2.25944 + 0.0856111i
\(443\) 34.2297 19.7625i 1.62630 0.938945i 0.641117 0.767444i \(-0.278472\pi\)
0.985184 0.171501i \(-0.0548618\pi\)
\(444\) 10.1778 12.1865i 0.483019 0.578345i
\(445\) 0 0
\(446\) 15.4376 + 8.14966i 0.730990 + 0.385898i
\(447\) −8.34594 + 8.58003i −0.394749 + 0.405822i
\(448\) −11.8128 12.6590i −0.558103 0.598083i
\(449\) 22.8395i 1.07786i −0.842349 0.538932i \(-0.818828\pi\)
0.842349 0.538932i \(-0.181172\pi\)
\(450\) 0 0
\(451\) 13.9886i 0.658695i
\(452\) 1.12618 + 1.64845i 0.0529709 + 0.0775365i
\(453\) −10.0463 35.5209i −0.472016 1.66892i
\(454\) −0.491241 + 0.930537i −0.0230551 + 0.0436723i
\(455\) 0 0
\(456\) −3.06315 + 22.6619i −0.143445 + 1.06124i
\(457\) 0.720950 0.416241i 0.0337246 0.0194709i −0.483043 0.875597i \(-0.660468\pi\)
0.516768 + 0.856126i \(0.327135\pi\)
\(458\) −1.40060 36.9645i −0.0654457 1.72724i
\(459\) −17.9040 + 19.4549i −0.835689 + 0.908077i
\(460\) 0 0
\(461\) −30.9887 + 17.8913i −1.44329 + 0.833281i −0.998067 0.0621408i \(-0.980207\pi\)
−0.445218 + 0.895422i \(0.646874\pi\)
\(462\) 14.9981 + 3.19826i 0.697773 + 0.148796i
\(463\) 4.16373 7.21179i 0.193505 0.335160i −0.752904 0.658130i \(-0.771348\pi\)
0.946409 + 0.322969i \(0.104681\pi\)
\(464\) −25.7987 10.0690i −1.19767 0.467443i
\(465\) 0 0
\(466\) −30.9166 + 19.4466i −1.43219 + 0.900846i
\(467\) 16.8607i 0.780220i −0.920768 0.390110i \(-0.872437\pi\)
0.920768 0.390110i \(-0.127563\pi\)
\(468\) −39.4242 + 4.09119i −1.82238 + 0.189115i
\(469\) 20.4901 0.946147
\(470\) 0 0
\(471\) −14.0934 + 14.4887i −0.649388 + 0.667603i
\(472\) 20.8898 + 9.07890i 0.961530 + 0.417890i
\(473\) −6.37077 + 11.0345i −0.292929 + 0.507367i
\(474\) 30.8765 + 27.8381i 1.41820 + 1.27865i
\(475\) 0 0
\(476\) 21.9622 1.66671i 1.00664 0.0763933i
\(477\) −8.47611 4.58593i −0.388094 0.209975i
\(478\) −0.440797 11.6335i −0.0201616 0.532102i
\(479\) 2.64691 + 4.58458i 0.120940 + 0.209475i 0.920139 0.391593i \(-0.128076\pi\)
−0.799198 + 0.601067i \(0.794742\pi\)
\(480\) 0 0
\(481\) −15.1392 + 26.2218i −0.690287 + 1.19561i
\(482\) −0.176476 0.0931638i −0.00803828 0.00424350i
\(483\) −10.5184 2.66304i −0.478602 0.121173i
\(484\) −2.97011 4.34752i −0.135005 0.197615i
\(485\) 0 0
\(486\) −13.8342 + 17.1644i −0.627531 + 0.778591i
\(487\) −19.8270 −0.898449 −0.449225 0.893419i \(-0.648300\pi\)
−0.449225 + 0.893419i \(0.648300\pi\)
\(488\) 1.46132 1.08170i 0.0661507 0.0489664i
\(489\) 0.186200 0.735444i 0.00842026 0.0332579i
\(490\) 0 0
\(491\) 14.2239 24.6365i 0.641916 1.11183i −0.343089 0.939303i \(-0.611473\pi\)
0.985005 0.172528i \(-0.0551934\pi\)
\(492\) 5.76586 + 15.7285i 0.259945 + 0.709097i
\(493\) 30.5090 17.6144i 1.37406 0.793311i
\(494\) −1.65117 43.5775i −0.0742896 1.96065i
\(495\) 0 0
\(496\) −3.14977 20.6327i −0.141429 0.926438i
\(497\) −1.27300 2.20490i −0.0571018 0.0989031i
\(498\) 3.45880 + 3.11844i 0.154992 + 0.139741i
\(499\) −4.89300 2.82497i −0.219041 0.126463i 0.386465 0.922304i \(-0.373696\pi\)
−0.605506 + 0.795841i \(0.707029\pi\)
\(500\) 0 0
\(501\) 5.03075 5.17185i 0.224757 0.231061i
\(502\) 11.3784 7.15700i 0.507841 0.319433i
\(503\) 32.7730i 1.46128i 0.682765 + 0.730638i \(0.260777\pi\)
−0.682765 + 0.730638i \(0.739223\pi\)
\(504\) 18.1819 2.58589i 0.809886 0.115185i
\(505\) 0 0
\(506\) −6.30422 10.0226i −0.280257 0.445559i
\(507\) 51.0652 14.4426i 2.26788 0.641420i
\(508\) 7.60794 15.8363i 0.337548 0.702623i
\(509\) 10.8656 + 6.27327i 0.481610 + 0.278058i 0.721087 0.692844i \(-0.243643\pi\)
−0.239477 + 0.970902i \(0.576976\pi\)
\(510\) 0 0
\(511\) 4.35861 2.51644i 0.192813 0.111321i
\(512\) −7.56409 21.3257i −0.334289 0.942471i
\(513\) −17.8476 16.4248i −0.787990 0.725175i
\(514\) −1.39139 36.7214i −0.0613715 1.61971i
\(515\) 0 0
\(516\) −2.61496 + 15.0330i −0.115117 + 0.661790i
\(517\) −0.0485608 0.0280366i −0.00213570 0.00123305i
\(518\) 6.54952 12.4065i 0.287769 0.545109i
\(519\) −14.9213 + 4.22016i −0.654974 + 0.185245i
\(520\) 0 0
\(521\) 11.7475i 0.514665i 0.966323 + 0.257333i \(0.0828436\pi\)
−0.966323 + 0.257333i \(0.917156\pi\)
\(522\) 24.4222 16.3213i 1.06893 0.714362i
\(523\) −20.5196 −0.897261 −0.448630 0.893717i \(-0.648088\pi\)
−0.448630 + 0.893717i \(0.648088\pi\)
\(524\) 15.9380 + 23.3294i 0.696255 + 1.01915i
\(525\) 0 0
\(526\) 17.7446 33.6129i 0.773703 1.46559i
\(527\) 22.9933 + 13.2752i 1.00160 + 0.578277i
\(528\) 16.3099 + 11.6457i 0.709796 + 0.506815i
\(529\) −7.31125 12.6635i −0.317881 0.550585i
\(530\) 0 0
\(531\) −20.5803 + 12.6535i −0.893109 + 0.549116i
\(532\) 1.52901 + 20.1477i 0.0662908 + 0.873515i
\(533\) −15.9730 27.6660i −0.691865 1.19835i
\(534\) 8.68309 2.81499i 0.375754 0.121817i
\(535\) 0 0
\(536\) 24.5583 + 10.6733i 1.06076 + 0.461016i
\(537\) −4.47484 + 17.6745i −0.193104 + 0.762711i
\(538\) 12.3510 + 19.6359i 0.532488 + 0.846562i
\(539\) −6.69857 −0.288528
\(540\) 0 0
\(541\) 19.0464 0.818871 0.409435 0.912339i \(-0.365726\pi\)
0.409435 + 0.912339i \(0.365726\pi\)
\(542\) −12.0840 19.2115i −0.519054 0.825204i
\(543\) −4.04216 + 15.9655i −0.173466 + 0.685147i
\(544\) 27.1908 + 9.44246i 1.16580 + 0.404842i
\(545\) 0 0
\(546\) −33.3145 + 10.8003i −1.42573 + 0.462210i
\(547\) 12.5453 + 21.7291i 0.536399 + 0.929071i 0.999094 + 0.0425534i \(0.0135493\pi\)
−0.462695 + 0.886518i \(0.653117\pi\)
\(548\) 30.3179 2.30082i 1.29512 0.0982861i
\(549\) 0.0533308 + 1.92766i 0.00227610 + 0.0822706i
\(550\) 0 0
\(551\) 16.1591 + 27.9884i 0.688401 + 1.19235i
\(552\) −11.2195 8.67077i −0.477535 0.369052i
\(553\) 31.8118 + 18.3665i 1.35277 + 0.781024i
\(554\) 16.0645 30.4303i 0.682515 1.29286i
\(555\) 0 0
\(556\) −4.19584 + 2.86649i −0.177943 + 0.121566i
\(557\) −4.13922 −0.175384 −0.0876922 0.996148i \(-0.527949\pi\)
−0.0876922 + 0.996148i \(0.527949\pi\)
\(558\) 19.8556 + 9.78971i 0.840556 + 0.414431i
\(559\) 29.0981i 1.23072i
\(560\) 0 0
\(561\) −24.5311 + 6.93807i −1.03570 + 0.292926i
\(562\) −6.89304 + 13.0572i −0.290765 + 0.550784i
\(563\) −25.8656 14.9335i −1.09010 0.629372i −0.156500 0.987678i \(-0.550021\pi\)
−0.933604 + 0.358306i \(0.883354\pi\)
\(564\) −0.0661573 0.0115080i −0.00278572 0.000484573i
\(565\) 0 0
\(566\) −0.797262 21.0413i −0.0335114 0.884431i
\(567\) −8.79184 + 17.3819i −0.369223 + 0.729970i
\(568\) −0.377215 3.30577i −0.0158276 0.138707i
\(569\) 35.2116 20.3294i 1.47615 0.852253i 0.476507 0.879170i \(-0.341903\pi\)
0.999638 + 0.0269176i \(0.00856919\pi\)
\(570\) 0 0
\(571\) −34.7953 20.0891i −1.45614 0.840702i −0.457320 0.889302i \(-0.651191\pi\)
−0.998818 + 0.0486002i \(0.984524\pi\)
\(572\) −34.4484 16.5494i −1.44036 0.691966i
\(573\) −20.2681 + 5.73238i −0.846712 + 0.239474i
\(574\) 7.88094 + 12.5293i 0.328944 + 0.522963i
\(575\) 0 0
\(576\) 23.1388 + 6.37162i 0.964115 + 0.265484i
\(577\) 33.5865i 1.39822i 0.715013 + 0.699112i \(0.246421\pi\)
−0.715013 + 0.699112i \(0.753579\pi\)
\(578\) −10.6429 + 6.69441i −0.442688 + 0.278451i
\(579\) −16.9424 + 17.4176i −0.704104 + 0.723853i
\(580\) 0 0
\(581\) 3.56357 + 2.05743i 0.147842 + 0.0853565i
\(582\) −21.0335 18.9637i −0.871866 0.786071i
\(583\) −4.64615 8.04737i −0.192424 0.333288i
\(584\) 6.53479 0.745674i 0.270412 0.0308562i
\(585\) 0 0
\(586\) −1.39853 36.9098i −0.0577726 1.52473i
\(587\) −32.3717 + 18.6898i −1.33612 + 0.771410i −0.986230 0.165380i \(-0.947115\pi\)
−0.349892 + 0.936790i \(0.613782\pi\)
\(588\) −7.53177 + 2.76104i −0.310605 + 0.113863i
\(589\) −12.1784 + 21.0937i −0.501803 + 0.869149i
\(590\) 0 0
\(591\) 3.06739 12.1154i 0.126176 0.498362i
\(592\) 14.3124 11.4581i 0.588236 0.470923i
\(593\) −11.3789 −0.467275 −0.233638 0.972324i \(-0.575063\pi\)
−0.233638 + 0.972324i \(0.575063\pi\)
\(594\) −20.0314 + 7.11202i −0.821900 + 0.291810i
\(595\) 0 0
\(596\) −11.4123 + 7.79661i −0.467468 + 0.319362i
\(597\) 14.4920 + 3.66908i 0.593116 + 0.150165i
\(598\) 23.9126 + 12.6237i 0.977859 + 0.516223i
\(599\) −1.12135 + 1.94223i −0.0458170 + 0.0793574i −0.888024 0.459796i \(-0.847922\pi\)
0.842207 + 0.539154i \(0.181256\pi\)
\(600\) 0 0
\(601\) −8.67140 15.0193i −0.353714 0.612650i 0.633183 0.774002i \(-0.281748\pi\)
−0.986897 + 0.161352i \(0.948415\pi\)
\(602\) 0.510483 + 13.4726i 0.0208057 + 0.549103i
\(603\) −24.1945 + 14.8757i −0.985276 + 0.605784i
\(604\) −3.22552 42.5027i −0.131244 1.72941i
\(605\) 0 0
\(606\) −19.8793 17.9231i −0.807543 0.728078i
\(607\) −8.50549 + 14.7319i −0.345227 + 0.597951i −0.985395 0.170284i \(-0.945531\pi\)
0.640168 + 0.768235i \(0.278865\pi\)
\(608\) −8.66234 + 24.9444i −0.351304 + 1.01163i
\(609\) 18.0968 18.6044i 0.733321 0.753889i
\(610\) 0 0
\(611\) 0.128055 0.00518056
\(612\) −24.7227 + 17.9124i −0.999354 + 0.724065i
\(613\) 6.23696i 0.251908i −0.992036 0.125954i \(-0.959801\pi\)
0.992036 0.125954i \(-0.0401992\pi\)
\(614\) −34.1821 + 21.5005i −1.37948 + 0.867691i
\(615\) 0 0
\(616\) 16.2402 + 7.05815i 0.654336 + 0.284381i
\(617\) 4.18992 7.25716i 0.168680 0.292162i −0.769276 0.638917i \(-0.779383\pi\)
0.937956 + 0.346754i \(0.112716\pi\)
\(618\) −1.52201 0.324560i −0.0612242 0.0130557i
\(619\) 31.5019 18.1876i 1.26617 0.731021i 0.291906 0.956447i \(-0.405711\pi\)
0.974260 + 0.225426i \(0.0723773\pi\)
\(620\) 0 0
\(621\) 14.3533 4.49175i 0.575977 0.180248i
\(622\) 0.00471451 + 0.124425i 0.000189034 + 0.00498898i
\(623\) 6.98476 4.03265i 0.279839 0.161565i
\(624\) −45.5547 4.40884i −1.82365 0.176495i
\(625\) 0 0
\(626\) 10.0461 19.0298i 0.401521 0.760585i
\(627\) −6.36487 22.5044i −0.254188 0.898739i
\(628\) −19.2715 + 13.1658i −0.769015 + 0.525371i
\(629\) 23.3220i 0.929910i
\(630\) 0 0
\(631\) 42.3747i 1.68691i −0.537199 0.843455i \(-0.680518\pi\)
0.537199 0.843455i \(-0.319482\pi\)
\(632\) 28.5607 + 38.5838i 1.13608 + 1.53478i
\(633\) −22.4662 + 23.0963i −0.892951 + 0.917997i
\(634\) −8.96151 4.73088i −0.355907 0.187887i
\(635\) 0 0
\(636\) −8.54107 7.13328i −0.338675 0.282853i
\(637\) 13.2481 7.64881i 0.524910 0.303057i
\(638\) 28.3025 1.07239i 1.12051 0.0424564i
\(639\) 3.10388 + 1.67933i 0.122787 + 0.0664332i
\(640\) 0 0
\(641\) −9.58349 + 5.53303i −0.378525 + 0.218542i −0.677176 0.735821i \(-0.736797\pi\)
0.298651 + 0.954362i \(0.403463\pi\)
\(642\) −43.8176 + 14.2053i −1.72934 + 0.560640i
\(643\) 6.09436 10.5557i 0.240338 0.416278i −0.720472 0.693484i \(-0.756075\pi\)
0.960811 + 0.277206i \(0.0894083\pi\)
\(644\) −11.2932 5.42536i −0.445013 0.213789i
\(645\) 0 0
\(646\) −17.8843 28.4329i −0.703649 1.11868i
\(647\) 13.5692i 0.533460i −0.963771 0.266730i \(-0.914057\pi\)
0.963771 0.266730i \(-0.0859432\pi\)
\(648\) −19.5916 + 16.2533i −0.769631 + 0.638489i
\(649\) −23.2945 −0.914390
\(650\) 0 0
\(651\) 18.9623 + 4.80087i 0.743189 + 0.188161i
\(652\) 0.379342 0.789619i 0.0148562 0.0309239i
\(653\) 5.73470 9.93280i 0.224416 0.388700i −0.731728 0.681597i \(-0.761286\pi\)
0.956144 + 0.292896i \(0.0946191\pi\)
\(654\) 2.56121 + 7.90028i 0.100151 + 0.308925i
\(655\) 0 0
\(656\) 2.91915 + 19.1221i 0.113974 + 0.746592i
\(657\) −3.31967 + 6.13569i −0.129513 + 0.239376i
\(658\) −0.0592905 + 0.00224654i −0.00231138 + 8.75792e-5i
\(659\) 8.46548 + 14.6626i 0.329768 + 0.571175i 0.982466 0.186443i \(-0.0596961\pi\)
−0.652698 + 0.757619i \(0.726363\pi\)
\(660\) 0 0
\(661\) 6.92555 11.9954i 0.269373 0.466567i −0.699327 0.714802i \(-0.746517\pi\)
0.968700 + 0.248234i \(0.0798503\pi\)
\(662\) 0.541154 1.02509i 0.0210326 0.0398411i
\(663\) 40.5942 41.7329i 1.57655 1.62077i
\(664\) 3.19938 + 4.32218i 0.124160 + 0.167733i
\(665\) 0 0
\(666\) 1.27341 + 19.4043i 0.0493437 + 0.751901i
\(667\) −20.0393 −0.775925
\(668\) 6.87911 4.69962i 0.266161 0.181834i
\(669\) −20.5730 + 5.81860i −0.795397 + 0.224960i
\(670\) 0 0
\(671\) −0.929695 + 1.61028i −0.0358905 + 0.0621642i
\(672\) 21.1695 + 1.24213i 0.816631 + 0.0479164i
\(673\) 13.3158 7.68786i 0.513285 0.296345i −0.220898 0.975297i \(-0.570899\pi\)
0.734183 + 0.678952i \(0.237565\pi\)
\(674\) −4.33542 + 0.164271i −0.166994 + 0.00632748i
\(675\) 0 0
\(676\) 61.1022 4.63703i 2.35009 0.178347i
\(677\) −19.8641 34.4057i −0.763441 1.32232i −0.941067 0.338221i \(-0.890175\pi\)
0.177626 0.984098i \(-0.443158\pi\)
\(678\) −2.39133 0.509937i −0.0918384 0.0195840i
\(679\) −21.6706 12.5115i −0.831642 0.480149i
\(680\) 0 0
\(681\) −0.350731 1.24009i −0.0134400 0.0475202i
\(682\) 11.3651 + 18.0685i 0.435193 + 0.691879i
\(683\) 21.6572i 0.828690i −0.910120 0.414345i \(-0.864011\pi\)
0.910120 0.414345i \(-0.135989\pi\)
\(684\) −16.4325 22.6801i −0.628313 0.867196i
\(685\) 0 0
\(686\) −24.1360 + 15.1816i −0.921518 + 0.579635i
\(687\) 32.4751 + 31.5891i 1.23900 + 1.20520i
\(688\) −6.40603 + 16.4134i −0.244228 + 0.625756i
\(689\) 18.3779 + 10.6105i 0.700143 + 0.404228i
\(690\) 0 0
\(691\) 15.3770 8.87791i 0.584968 0.337732i −0.178137 0.984006i \(-0.557007\pi\)
0.763105 + 0.646274i \(0.223674\pi\)
\(692\) −17.8542 + 1.35495i −0.678714 + 0.0515075i
\(693\) −15.9996 + 9.83715i −0.607774 + 0.373682i
\(694\) 31.5324 1.19477i 1.19695 0.0453530i
\(695\) 0 0
\(696\) 31.3809 12.8716i 1.18949 0.487897i
\(697\) −21.3098 12.3032i −0.807167 0.466018i
\(698\) 12.5556 + 6.62822i 0.475235 + 0.250882i
\(699\) 10.9790 43.3644i 0.415265 1.64019i
\(700\) 0 0
\(701\) 38.3642i 1.44900i −0.689277 0.724498i \(-0.742072\pi\)
0.689277 0.724498i \(-0.257928\pi\)
\(702\) 31.4964 36.9389i 1.18875 1.39417i
\(703\) −21.3952 −0.806936
\(704\) 15.7880 + 16.9190i 0.595033 + 0.637658i
\(705\) 0 0
\(706\) −15.9235 8.40622i −0.599290 0.316372i
\(707\) −20.4815 11.8250i −0.770287 0.444725i
\(708\) −26.1920 + 9.60162i −0.984357 + 0.360851i
\(709\) 1.96851 + 3.40955i 0.0739288 + 0.128049i 0.900620 0.434608i \(-0.143113\pi\)
−0.826691 + 0.562656i \(0.809780\pi\)
\(710\) 0 0
\(711\) −50.8969 + 1.40812i −1.90878 + 0.0528085i
\(712\) 10.4721 1.19496i 0.392460 0.0447829i
\(713\) −7.55138 13.0794i −0.282802 0.489827i
\(714\) −18.0633 + 20.0348i −0.676001 + 0.749782i
\(715\) 0 0
\(716\) −9.11650 + 18.9764i −0.340699 + 0.709183i
\(717\) 10.2206 + 9.94172i 0.381694 + 0.371280i
\(718\) −7.10240 + 4.46742i −0.265059 + 0.166722i
\(719\) 25.9983 0.969573 0.484787 0.874632i \(-0.338897\pi\)
0.484787 + 0.874632i \(0.338897\pi\)
\(720\) 0 0
\(721\) −1.37505 −0.0512097
\(722\) 3.33908 2.10028i 0.124268 0.0781644i
\(723\) 0.235182 0.0665161i 0.00874652 0.00247376i
\(724\) −8.23501 + 17.1416i −0.306052 + 0.637062i
\(725\) 0 0
\(726\) 6.30675 + 1.34488i 0.234065 + 0.0499132i
\(727\) −13.4108 23.2282i −0.497379 0.861486i 0.502616 0.864510i \(-0.332371\pi\)
−0.999995 + 0.00302389i \(0.999037\pi\)
\(728\) −40.1786 + 4.58470i −1.48912 + 0.169920i
\(729\) −2.23781 26.9071i −0.0828818 0.996559i
\(730\) 0 0
\(731\) −11.2065 19.4102i −0.414486 0.717911i
\(732\) −0.381605 + 2.19378i −0.0141045 + 0.0810845i
\(733\) 13.8581 + 8.00096i 0.511859 + 0.295522i 0.733598 0.679584i \(-0.237840\pi\)
−0.221738 + 0.975106i \(0.571173\pi\)
\(734\) 33.2681 + 17.5626i 1.22795 + 0.648248i
\(735\) 0 0
\(736\) −10.7093 12.3851i −0.394749 0.456522i
\(737\) −27.3854 −1.00875
\(738\) −18.4019 9.07295i −0.677383 0.333980i
\(739\) 2.17451i 0.0799905i 0.999200 + 0.0399952i \(0.0127343\pi\)
−0.999200 + 0.0399952i \(0.987266\pi\)
\(740\) 0 0
\(741\) 38.2850 + 37.2404i 1.40643 + 1.36806i
\(742\) −8.69525 4.59032i −0.319213 0.168516i
\(743\) 15.8760 + 9.16604i 0.582436 + 0.336269i 0.762101 0.647458i \(-0.224168\pi\)
−0.179665 + 0.983728i \(0.557501\pi\)
\(744\) 20.2263 + 15.6315i 0.741533 + 0.573077i
\(745\) 0 0
\(746\) 37.3917 1.41679i 1.36901 0.0518722i
\(747\) −5.70150 + 0.157738i −0.208607 + 0.00577133i
\(748\) −29.3528 + 2.22758i −1.07324 + 0.0814483i
\(749\) −35.2473 + 20.3500i −1.28791 + 0.743574i
\(750\) 0 0
\(751\) −23.9363 13.8196i −0.873449 0.504286i −0.00495598 0.999988i \(-0.501578\pi\)
−0.868493 + 0.495702i \(0.834911\pi\)
\(752\) −0.0722324 0.0281917i −0.00263404 0.00102805i
\(753\) −4.04065 + 15.9596i −0.147250 + 0.581599i
\(754\) −54.7509 + 34.4383i −1.99391 + 1.25417i
\(755\) 0 0
\(756\) −13.9350 + 17.6555i −0.506811 + 0.642125i
\(757\) 47.4098i 1.72314i −0.507640 0.861570i \(-0.669482\pi\)
0.507640 0.861570i \(-0.330518\pi\)
\(758\) −16.0652 25.5409i −0.583515 0.927686i
\(759\) 14.0579 + 3.55920i 0.510271 + 0.129191i
\(760\) 0 0
\(761\) −19.6920 11.3692i −0.713834 0.412132i 0.0986449 0.995123i \(-0.468549\pi\)
−0.812479 + 0.582990i \(0.801883\pi\)
\(762\) 6.63582 + 20.4688i 0.240390 + 0.741505i
\(763\) 3.66910 + 6.35506i 0.132830 + 0.230069i
\(764\) −24.2519 + 1.84047i −0.877402 + 0.0665858i
\(765\) 0 0
\(766\) 4.45656 0.168861i 0.161022 0.00610119i
\(767\) 46.0709 26.5990i 1.66352 0.960436i
\(768\) 24.7255 + 12.5159i 0.892206 + 0.451629i
\(769\) 17.4807 30.2775i 0.630371 1.09183i −0.357105 0.934064i \(-0.616236\pi\)
0.987476 0.157770i \(-0.0504305\pi\)
\(770\) 0 0
\(771\) 32.2615 + 31.3813i 1.16187 + 1.13017i
\(772\) −23.1673 + 15.8273i −0.833810 + 0.569637i
\(773\) −5.74824 −0.206750 −0.103375 0.994642i \(-0.532964\pi\)
−0.103375 + 0.994642i \(0.532964\pi\)
\(774\) −10.3838 15.5377i −0.373237 0.558490i
\(775\) 0 0
\(776\) −19.4559 26.2838i −0.698427 0.943534i
\(777\) 4.67615 + 16.5336i 0.167756 + 0.593138i
\(778\) 9.90674 18.7659i 0.355174 0.672791i
\(779\) 11.2868 19.5493i 0.404391 0.700425i
\(780\) 0 0
\(781\) 1.70138 + 2.94688i 0.0608802 + 0.105448i
\(782\) 20.8129 0.788608i 0.744267 0.0282006i
\(783\) −7.86185 + 35.1060i −0.280959 + 1.25459i
\(784\) −9.15681 + 1.39787i −0.327029 + 0.0499238i
\(785\) 0 0
\(786\) −33.8428 7.21680i −1.20713 0.257415i
\(787\) −26.5020 + 45.9027i −0.944693 + 1.63626i −0.188327 + 0.982106i \(0.560306\pi\)
−0.756366 + 0.654149i \(0.773027\pi\)
\(788\) 6.24913 13.0079i 0.222616 0.463386i
\(789\) 12.6691 + 44.7944i 0.451032 + 1.59472i
\(790\) 0 0
\(791\) −2.16043 −0.0768162
\(792\) −24.3004 + 3.45608i −0.863476 + 0.122806i
\(793\) 4.24632i 0.150791i
\(794\) 7.56543 + 12.0277i 0.268487 + 0.426847i
\(795\) 0 0
\(796\) 15.5595 + 7.47494i 0.551491 + 0.264942i
\(797\) −6.93917 + 12.0190i −0.245798 + 0.425735i −0.962356 0.271793i \(-0.912383\pi\)
0.716558 + 0.697528i \(0.245717\pi\)
\(798\) −18.3795 16.5709i −0.650629 0.586604i
\(799\) 0.0854205 0.0493176i 0.00302196 0.00174473i
\(800\) 0 0
\(801\) −5.31984 + 9.83258i −0.187967 + 0.347417i
\(802\) 11.1805 0.423633i 0.394796 0.0149590i
\(803\) −5.82534 + 3.36326i −0.205572 + 0.118687i
\(804\) −30.7917 + 11.2878i −1.08594 + 0.398090i
\(805\) 0 0
\(806\) −43.1091 22.7578i −1.51845 0.801609i
\(807\) −27.5417 6.97303i −0.969515 0.245462i
\(808\) −18.3884 24.8416i −0.646900 0.873924i
\(809\) 46.1210i 1.62153i 0.585372 + 0.810765i \(0.300948\pi\)
−0.585372 + 0.810765i \(0.699052\pi\)
\(810\) 0 0
\(811\) 31.7719i 1.11566i 0.829954 + 0.557832i \(0.188367\pi\)
−0.829954 + 0.557832i \(0.811633\pi\)
\(812\) 24.7459 16.9057i 0.868409 0.593274i
\(813\) 26.9465 + 6.82233i 0.945055 + 0.239269i
\(814\) −8.75353 + 16.5814i −0.306811 + 0.581179i
\(815\) 0 0
\(816\) −32.0857 + 14.6034i −1.12322 + 0.511221i
\(817\) 17.8065 10.2806i 0.622972 0.359673i
\(818\) 1.45459 + 38.3894i 0.0508585 + 1.34225i
\(819\) 20.4107 37.7247i 0.713207 1.31821i
\(820\) 0 0
\(821\) 11.7695 6.79511i 0.410758 0.237151i −0.280358 0.959896i \(-0.590453\pi\)
0.691115 + 0.722745i \(0.257120\pi\)
\(822\) −24.9356 + 27.6572i −0.869729 + 0.964655i
\(823\) 14.8238 25.6756i 0.516725 0.894995i −0.483086 0.875573i \(-0.660484\pi\)
0.999811 0.0194217i \(-0.00618250\pi\)
\(824\) −1.64806 0.716264i −0.0574129 0.0249522i
\(825\) 0 0
\(826\) −20.8645 + 13.1238i −0.725969 + 0.456635i
\(827\) 24.1020i 0.838110i −0.907961 0.419055i \(-0.862361\pi\)
0.907961 0.419055i \(-0.137639\pi\)
\(828\) 17.2736 1.79254i 0.600299 0.0622952i
\(829\) −42.6555 −1.48149 −0.740743 0.671789i \(-0.765526\pi\)
−0.740743 + 0.671789i \(0.765526\pi\)
\(830\) 0 0
\(831\) 11.4696 + 40.5532i 0.397874 + 1.40677i
\(832\) −50.5439 15.4340i −1.75229 0.535077i
\(833\) 5.89153 10.2044i 0.204130 0.353563i
\(834\) 1.29796 6.08671i 0.0449446 0.210766i
\(835\) 0 0
\(836\) −2.04354 26.9277i −0.0706773 0.931315i
\(837\) −25.8758 + 8.09763i −0.894398 + 0.279895i
\(838\) −0.458924 12.1119i −0.0158533 0.418398i
\(839\) −9.56807 16.5724i −0.330327 0.572142i 0.652249 0.758005i \(-0.273826\pi\)
−0.982576 + 0.185862i \(0.940492\pi\)
\(840\) 0 0
\(841\) 9.46742 16.3981i 0.326463 0.565450i
\(842\) −8.54196 4.50940i −0.294376 0.155404i
\(843\) −4.92141 17.4007i −0.169502 0.599314i
\(844\) −30.7206 + 20.9875i −1.05745 + 0.722419i
\(845\) 0 0
\(846\) 0.0683784 0.0456971i 0.00235090 0.00157110i
\(847\) 5.69781 0.195779
\(848\) −8.03054 10.0310i −0.275770 0.344467i
\(849\) 18.4858 + 17.9814i 0.634430 + 0.617121i
\(850\) 0 0
\(851\) 6.63318 11.4890i 0.227383 0.393838i
\(852\) 3.12766 + 2.61215i 0.107152 + 0.0894906i
\(853\) −25.0942 + 14.4881i −0.859207 + 0.496064i −0.863747 0.503926i \(-0.831888\pi\)
0.00453935 + 0.999990i \(0.498555\pi\)
\(854\) 0.0744954 + 1.96608i 0.00254918 + 0.0672777i
\(855\) 0 0
\(856\) −52.8457 + 6.03013i −1.80623 + 0.206106i
\(857\) −8.12743 14.0771i −0.277628 0.480865i 0.693167 0.720777i \(-0.256215\pi\)
−0.970795 + 0.239912i \(0.922882\pi\)
\(858\) 44.5253 14.4348i 1.52007 0.492795i
\(859\) 39.4268 + 22.7631i 1.34523 + 0.776666i 0.987569 0.157187i \(-0.0502425\pi\)
0.357657 + 0.933853i \(0.383576\pi\)
\(860\) 0 0
\(861\) −17.5739 4.44937i −0.598917 0.151634i
\(862\) −31.7890 + 19.9953i −1.08274 + 0.681043i
\(863\) 14.4497i 0.491875i −0.969286 0.245937i \(-0.920904\pi\)
0.969286 0.245937i \(-0.0790957\pi\)
\(864\) −25.8984 + 13.9022i −0.881083 + 0.472962i
\(865\) 0 0
\(866\) −9.39064 14.9295i −0.319107 0.507324i
\(867\) 3.77949 14.9280i 0.128358 0.506983i
\(868\) 20.3591 + 9.78072i 0.691032 + 0.331979i
\(869\) −42.5169 24.5471i −1.44229 0.832705i
\(870\) 0 0
\(871\) 54.1616 31.2702i 1.83520 1.05955i
\(872\) 1.08723 + 9.52804i 0.0368182 + 0.322660i
\(873\) 34.6717 0.959228i 1.17346 0.0324650i
\(874\) 0.723455 + 19.0934i 0.0244712 + 0.645843i
\(875\) 0 0
\(876\) −5.16365 + 6.18272i −0.174464 + 0.208895i
\(877\) 20.7046 + 11.9538i 0.699144 + 0.403651i 0.807029 0.590512i \(-0.201074\pi\)
−0.107885 + 0.994163i \(0.534408\pi\)
\(878\) 9.78970 18.5442i 0.330386 0.625837i
\(879\) 32.4270 + 31.5423i 1.09374 + 1.06390i
\(880\) 0 0
\(881\) 51.7852i 1.74469i 0.488893 + 0.872344i \(0.337401\pi\)
−0.488893 + 0.872344i \(0.662599\pi\)
\(882\) 4.34467 8.81194i 0.146293 0.296713i
\(883\) −17.1884 −0.578436 −0.289218 0.957263i \(-0.593395\pi\)
−0.289218 + 0.957263i \(0.593395\pi\)
\(884\) 55.5091 37.9223i 1.86697 1.27547i
\(885\) 0 0
\(886\) −26.0955 + 49.4316i −0.876695 + 1.66069i
\(887\) 15.4564 + 8.92377i 0.518976 + 0.299631i 0.736515 0.676421i \(-0.236470\pi\)
−0.217540 + 0.976051i \(0.569803\pi\)
\(888\) −3.00774 + 22.2520i −0.100933 + 0.746728i
\(889\) 9.50623 + 16.4653i 0.318829 + 0.552227i
\(890\) 0 0
\(891\) 11.7504 23.2311i 0.393654 0.778273i
\(892\) −24.6167 + 1.86815i −0.824227 + 0.0625504i
\(893\) 0.0452431 + 0.0783633i 0.00151400 + 0.00262233i
\(894\) 3.53034 16.5554i 0.118072 0.553694i
\(895\) 0 0
\(896\) 23.6729 + 6.25932i 0.790857 + 0.209109i
\(897\) −31.8673 + 9.01295i −1.06402 + 0.300934i
\(898\) 17.1975 + 27.3411i 0.573890 + 0.912383i
\(899\) 36.1264 1.20488
\(900\) 0 0
\(901\) 16.3456 0.544550
\(902\) −10.5330 16.7456i −0.350711 0.557568i
\(903\) −11.8364 11.5134i −0.393889 0.383142i
\(904\) −2.58937 1.12537i −0.0861213 0.0374292i
\(905\) 0 0
\(906\) 38.7726 + 34.9572i 1.28813 + 1.16138i
\(907\) 1.17993 + 2.04370i 0.0391790 + 0.0678600i 0.884950 0.465686i \(-0.154192\pi\)
−0.845771 + 0.533546i \(0.820859\pi\)
\(908\) −0.112608 1.48383i −0.00373701 0.0492427i
\(909\) 32.7692 0.906594i 1.08688 0.0300698i
\(910\) 0 0
\(911\) 18.6895 + 32.3712i 0.619212 + 1.07251i 0.989630 + 0.143641i \(0.0458810\pi\)
−0.370418 + 0.928865i \(0.620786\pi\)
\(912\) −13.3969 29.4349i −0.443616 0.974685i
\(913\) −4.76277 2.74978i −0.157625 0.0910046i
\(914\) −0.549626 + 1.04113i −0.0181800 + 0.0344377i
\(915\) 0 0
\(916\) 29.5099 + 43.1953i 0.975034 + 1.42721i
\(917\) −30.5752 −1.00968
\(918\) 6.78380 36.7706i 0.223899 1.21361i
\(919\) 4.73062i 0.156049i 0.996951 + 0.0780243i \(0.0248612\pi\)
−0.996951 + 0.0780243i \(0.975139\pi\)
\(920\) 0 0
\(921\) 12.1386 47.9446i 0.399982 1.57983i
\(922\) 23.6246 44.7512i 0.778036 1.47380i
\(923\) −6.72983 3.88547i −0.221515 0.127892i
\(924\) −20.3623 + 7.46452i −0.669870 + 0.245565i
\(925\) 0 0
\(926\) 0.445908 + 11.7684i 0.0146534 + 0.386732i
\(927\) 1.62365 0.998278i 0.0533275 0.0327877i
\(928\) 38.4651 7.37214i 1.26268 0.242002i
\(929\) −25.4661 + 14.7029i −0.835517 + 0.482386i −0.855738 0.517410i \(-0.826896\pi\)
0.0202209 + 0.999796i \(0.493563\pi\)
\(930\) 0 0
\(931\) 9.36137 + 5.40479i 0.306806 + 0.177135i
\(932\) 22.3674 46.5588i 0.732667 1.52508i
\(933\) −0.109313 0.106331i −0.00357876 0.00348112i
\(934\) 12.6956 + 20.1838i 0.415414 + 0.660435i
\(935\) 0 0
\(936\) 44.1139 34.5829i 1.44191 1.13038i
\(937\) 20.2810i 0.662551i 0.943534 + 0.331276i \(0.107479\pi\)
−0.943534 + 0.331276i \(0.892521\pi\)
\(938\) −24.5286 + 15.4285i −0.800888 + 0.503759i
\(939\) 7.17257 + 25.3602i 0.234068 + 0.827600i
\(940\) 0 0
\(941\) −7.09878 4.09848i −0.231413 0.133607i 0.379810 0.925064i \(-0.375989\pi\)
−0.611224 + 0.791458i \(0.709323\pi\)
\(942\) 5.96151 27.9562i 0.194236 0.910863i
\(943\) 6.99850 + 12.1218i 0.227903 + 0.394739i
\(944\) −31.8432 + 4.86114i −1.03641 + 0.158217i
\(945\) 0 0
\(946\) −0.682268 18.0064i −0.0221824 0.585437i
\(947\) −36.4493 + 21.0440i −1.18444 + 0.683839i −0.957038 0.289962i \(-0.906357\pi\)
−0.227405 + 0.973800i \(0.573024\pi\)
\(948\) −57.9233 10.0757i −1.88126 0.327243i
\(949\) 7.68074 13.3034i 0.249327 0.431848i
\(950\) 0 0
\(951\) 11.9426 3.37770i 0.387266 0.109530i
\(952\) −25.0358 + 18.5321i −0.811415 + 0.600630i
\(953\) −17.5687 −0.569106 −0.284553 0.958660i \(-0.591845\pi\)
−0.284553 + 0.958660i \(0.591845\pi\)
\(954\) 13.5998 0.892488i 0.440309 0.0288954i
\(955\) 0 0
\(956\) 9.28735 + 13.5944i 0.300375 + 0.439675i
\(957\) −24.1867 + 24.8651i −0.781845 + 0.803774i
\(958\) −6.62065 3.49512i −0.213904 0.112922i
\(959\) −16.4516 + 28.4950i −0.531249 + 0.920150i
\(960\) 0 0
\(961\) −1.88653 3.26756i −0.0608557 0.105405i
\(962\) −1.62130 42.7893i −0.0522730 1.37958i
\(963\) 26.8456 49.6183i 0.865087 1.59893i
\(964\) 0.281408 0.0213560i 0.00906356 0.000687831i
\(965\) 0 0
\(966\) 14.5966 4.73212i 0.469639 0.152253i
\(967\) 11.6316 20.1466i 0.374048 0.647870i −0.616136 0.787640i \(-0.711303\pi\)
0.990184 + 0.139770i \(0.0446362\pi\)
\(968\) 6.82907 + 2.96798i 0.219495 + 0.0953944i
\(969\) 39.8807 + 10.0970i 1.28115 + 0.324363i
\(970\) 0 0
\(971\) −25.2618 −0.810688 −0.405344 0.914164i \(-0.632848\pi\)
−0.405344 + 0.914164i \(0.632848\pi\)
\(972\) 3.63651 30.9641i 0.116641 0.993174i
\(973\) 5.49901i 0.176290i
\(974\) 23.7348 14.9292i 0.760513 0.478363i
\(975\) 0 0
\(976\) −0.934840 + 2.39523i −0.0299235 + 0.0766695i
\(977\) −12.4595 + 21.5806i −0.398616 + 0.690423i −0.993555 0.113347i \(-0.963843\pi\)
0.594939 + 0.803771i \(0.297176\pi\)
\(978\) 0.330870 + 1.02060i 0.0105801 + 0.0326351i
\(979\) −9.33524 + 5.38970i −0.298355 + 0.172256i
\(980\) 0 0
\(981\) −8.94614 4.84024i −0.285628 0.154537i
\(982\) 1.52329 + 40.2024i 0.0486100 + 1.28291i
\(983\) −13.8502 + 7.99642i −0.441753 + 0.255046i −0.704341 0.709862i \(-0.748757\pi\)
0.262588 + 0.964908i \(0.415424\pi\)
\(984\) −18.7454 14.4870i −0.597582 0.461828i
\(985\) 0 0
\(986\) −23.2590 + 44.0585i −0.740716 + 1.40311i
\(987\) 0.0506684 0.0520896i 0.00161279 0.00165803i
\(988\) 34.7893 + 50.9231i 1.10679 + 1.62008i
\(989\) 12.7492i 0.405402i
\(990\) 0 0
\(991\) 29.4708i 0.936171i 0.883683 + 0.468085i \(0.155056\pi\)
−0.883683 + 0.468085i \(0.844944\pi\)
\(992\) 19.3065 + 22.3276i 0.612981 + 0.708903i
\(993\) 0.386367 + 1.36609i 0.0122610 + 0.0433514i
\(994\) 3.18412 + 1.68093i 0.100994 + 0.0533160i
\(995\) 0 0
\(996\) −6.48860 1.12868i −0.205599 0.0357637i
\(997\) 33.5185 19.3519i 1.06154 0.612881i 0.135683 0.990752i \(-0.456677\pi\)
0.925858 + 0.377871i \(0.123344\pi\)
\(998\) 7.98451 0.302536i 0.252745 0.00957661i
\(999\) −17.5248 16.1278i −0.554459 0.510260i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.o.b.599.5 48
4.3 odd 2 inner 900.2.o.b.599.21 48
5.2 odd 4 900.2.r.f.851.8 48
5.3 odd 4 180.2.q.a.131.17 yes 48
5.4 even 2 900.2.o.c.599.20 48
9.2 odd 6 900.2.o.c.299.4 48
15.8 even 4 540.2.q.a.71.8 48
20.3 even 4 180.2.q.a.131.9 yes 48
20.7 even 4 900.2.r.f.851.16 48
20.19 odd 2 900.2.o.c.599.4 48
36.11 even 6 900.2.o.c.299.20 48
45.2 even 12 900.2.r.f.551.16 48
45.13 odd 12 1620.2.e.b.971.2 48
45.23 even 12 1620.2.e.b.971.47 48
45.29 odd 6 inner 900.2.o.b.299.21 48
45.38 even 12 180.2.q.a.11.9 48
45.43 odd 12 540.2.q.a.251.16 48
60.23 odd 4 540.2.q.a.71.16 48
180.23 odd 12 1620.2.e.b.971.1 48
180.43 even 12 540.2.q.a.251.8 48
180.47 odd 12 900.2.r.f.551.8 48
180.83 odd 12 180.2.q.a.11.17 yes 48
180.103 even 12 1620.2.e.b.971.48 48
180.119 even 6 inner 900.2.o.b.299.5 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.q.a.11.9 48 45.38 even 12
180.2.q.a.11.17 yes 48 180.83 odd 12
180.2.q.a.131.9 yes 48 20.3 even 4
180.2.q.a.131.17 yes 48 5.3 odd 4
540.2.q.a.71.8 48 15.8 even 4
540.2.q.a.71.16 48 60.23 odd 4
540.2.q.a.251.8 48 180.43 even 12
540.2.q.a.251.16 48 45.43 odd 12
900.2.o.b.299.5 48 180.119 even 6 inner
900.2.o.b.299.21 48 45.29 odd 6 inner
900.2.o.b.599.5 48 1.1 even 1 trivial
900.2.o.b.599.21 48 4.3 odd 2 inner
900.2.o.c.299.4 48 9.2 odd 6
900.2.o.c.299.20 48 36.11 even 6
900.2.o.c.599.4 48 20.19 odd 2
900.2.o.c.599.20 48 5.4 even 2
900.2.r.f.551.8 48 180.47 odd 12
900.2.r.f.551.16 48 45.2 even 12
900.2.r.f.851.8 48 5.2 odd 4
900.2.r.f.851.16 48 20.7 even 4
1620.2.e.b.971.1 48 180.23 odd 12
1620.2.e.b.971.2 48 45.13 odd 12
1620.2.e.b.971.47 48 45.23 even 12
1620.2.e.b.971.48 48 180.103 even 12