Properties

Label 900.2.bj.f.487.3
Level $900$
Weight $2$
Character 900.487
Analytic conductor $7.187$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(127,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([10, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [240,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 300)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 487.3
Character \(\chi\) \(=\) 900.487
Dual form 900.2.bj.f.523.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36565 - 0.367425i) q^{2} +(1.73000 + 1.00355i) q^{4} +(-1.83777 + 1.27382i) q^{5} +(-0.338407 + 0.338407i) q^{7} +(-1.99384 - 2.00614i) q^{8} +(2.97778 - 1.06435i) q^{10} +(0.00542328 - 0.00746451i) q^{11} +(0.444902 - 2.80900i) q^{13} +(0.586484 - 0.337806i) q^{14} +(1.98578 + 3.47227i) q^{16} +(3.79071 - 1.93146i) q^{17} +(-2.23243 + 6.87071i) q^{19} +(-4.45767 + 0.359416i) q^{20} +(-0.0101489 + 0.00820125i) q^{22} +(0.917368 + 5.79204i) q^{23} +(1.75477 - 4.68196i) q^{25} +(-1.63968 + 3.67265i) q^{26} +(-0.925050 + 0.245835i) q^{28} +(-3.22482 + 1.04781i) q^{29} +(-4.34142 - 1.41061i) q^{31} +(-1.43608 - 5.47153i) q^{32} +(-5.88645 + 1.24490i) q^{34} +(0.190844 - 1.05298i) q^{35} +(-6.42204 - 1.01715i) q^{37} +(5.57319 - 8.56273i) q^{38} +(6.21967 + 1.14702i) q^{40} +(-5.70832 + 4.14734i) q^{41} +(-6.48875 - 6.48875i) q^{43} +(0.0168733 - 0.00747105i) q^{44} +(0.875337 - 8.24696i) q^{46} +(-3.91751 - 1.99607i) q^{47} +6.77096i q^{49} +(-4.11667 + 5.74917i) q^{50} +(3.58865 - 4.41309i) q^{52} +(0.604811 + 0.308167i) q^{53} +(-0.000458296 + 0.0206263i) q^{55} +(1.35362 + 0.00416215i) q^{56} +(4.78896 - 0.246057i) q^{58} +(-2.04303 + 1.48435i) q^{59} +(-7.27946 - 5.28884i) q^{61} +(5.41056 + 3.52155i) q^{62} +(-0.0491968 + 7.99985i) q^{64} +(2.76053 + 5.72902i) q^{65} +(-4.59556 - 9.01929i) q^{67} +(8.49624 + 0.462735i) q^{68} +(-0.647517 + 1.36788i) q^{70} +(-6.68849 + 2.17322i) q^{71} +(2.91467 - 0.461638i) q^{73} +(8.39652 + 3.74869i) q^{74} +(-10.7572 + 9.64596i) q^{76} +(0.000690764 + 0.00436131i) q^{77} +(-0.730993 - 2.24976i) q^{79} +(-8.07245 - 3.85170i) q^{80} +(9.31941 - 3.56643i) q^{82} +(-3.36914 + 1.71666i) q^{83} +(-4.50611 + 8.37826i) q^{85} +(6.47723 + 11.2455i) q^{86} +(-0.0257880 + 0.00400318i) q^{88} +(9.05282 - 12.4601i) q^{89} +(0.800028 + 1.10114i) q^{91} +(-4.22554 + 10.9408i) q^{92} +(4.61654 + 4.16533i) q^{94} +(-4.64936 - 15.4705i) q^{95} +(-8.12690 + 15.9499i) q^{97} +(2.48782 - 9.24676i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 12 q^{8} + 8 q^{10} + 4 q^{13} - 20 q^{17} + 20 q^{20} - 12 q^{22} + 20 q^{25} + 4 q^{28} + 20 q^{32} - 4 q^{37} + 76 q^{38} - 92 q^{40} + 140 q^{44} + 164 q^{50} - 172 q^{52} + 4 q^{53} - 120 q^{58}+ \cdots - 256 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{9}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36565 0.367425i −0.965660 0.259809i
\(3\) 0 0
\(4\) 1.73000 + 1.00355i 0.864999 + 0.501774i
\(5\) −1.83777 + 1.27382i −0.821874 + 0.569669i
\(6\) 0 0
\(7\) −0.338407 + 0.338407i −0.127906 + 0.127906i −0.768162 0.640256i \(-0.778828\pi\)
0.640256 + 0.768162i \(0.278828\pi\)
\(8\) −1.99384 2.00614i −0.704929 0.709278i
\(9\) 0 0
\(10\) 2.97778 1.06435i 0.941656 0.336576i
\(11\) 0.00542328 0.00746451i 0.00163518 0.00225063i −0.808199 0.588910i \(-0.799557\pi\)
0.809834 + 0.586659i \(0.199557\pi\)
\(12\) 0 0
\(13\) 0.444902 2.80900i 0.123394 0.779077i −0.845931 0.533293i \(-0.820954\pi\)
0.969324 0.245785i \(-0.0790456\pi\)
\(14\) 0.586484 0.337806i 0.156744 0.0902824i
\(15\) 0 0
\(16\) 1.98578 + 3.47227i 0.496445 + 0.868068i
\(17\) 3.79071 1.93146i 0.919383 0.468449i 0.0707875 0.997491i \(-0.477449\pi\)
0.848595 + 0.529042i \(0.177449\pi\)
\(18\) 0 0
\(19\) −2.23243 + 6.87071i −0.512154 + 1.57625i 0.276246 + 0.961087i \(0.410910\pi\)
−0.788400 + 0.615162i \(0.789090\pi\)
\(20\) −4.45767 + 0.359416i −0.996765 + 0.0803678i
\(21\) 0 0
\(22\) −0.0101489 + 0.00820125i −0.00216376 + 0.00174851i
\(23\) 0.917368 + 5.79204i 0.191285 + 1.20772i 0.877230 + 0.480070i \(0.159389\pi\)
−0.685946 + 0.727653i \(0.740611\pi\)
\(24\) 0 0
\(25\) 1.75477 4.68196i 0.350954 0.936393i
\(26\) −1.63968 + 3.67265i −0.321568 + 0.720265i
\(27\) 0 0
\(28\) −0.925050 + 0.245835i −0.174818 + 0.0464585i
\(29\) −3.22482 + 1.04781i −0.598834 + 0.194573i −0.592720 0.805409i \(-0.701946\pi\)
−0.00611340 + 0.999981i \(0.501946\pi\)
\(30\) 0 0
\(31\) −4.34142 1.41061i −0.779742 0.253353i −0.108012 0.994150i \(-0.534448\pi\)
−0.671730 + 0.740796i \(0.734448\pi\)
\(32\) −1.43608 5.47153i −0.253866 0.967240i
\(33\) 0 0
\(34\) −5.88645 + 1.24490i −1.00952 + 0.213499i
\(35\) 0.190844 1.05298i 0.0322585 0.177986i
\(36\) 0 0
\(37\) −6.42204 1.01715i −1.05578 0.167219i −0.395671 0.918392i \(-0.629488\pi\)
−0.660105 + 0.751174i \(0.729488\pi\)
\(38\) 5.57319 8.56273i 0.904091 1.38906i
\(39\) 0 0
\(40\) 6.21967 + 1.14702i 0.983417 + 0.181361i
\(41\) −5.70832 + 4.14734i −0.891490 + 0.647706i −0.936266 0.351291i \(-0.885743\pi\)
0.0447759 + 0.998997i \(0.485743\pi\)
\(42\) 0 0
\(43\) −6.48875 6.48875i −0.989526 0.989526i 0.0104199 0.999946i \(-0.496683\pi\)
−0.999946 + 0.0104199i \(0.996683\pi\)
\(44\) 0.0168733 0.00747105i 0.00254374 0.00112630i
\(45\) 0 0
\(46\) 0.875337 8.24696i 0.129061 1.21595i
\(47\) −3.91751 1.99607i −0.571428 0.291157i 0.144303 0.989534i \(-0.453906\pi\)
−0.715731 + 0.698376i \(0.753906\pi\)
\(48\) 0 0
\(49\) 6.77096i 0.967280i
\(50\) −4.11667 + 5.74917i −0.582186 + 0.813056i
\(51\) 0 0
\(52\) 3.58865 4.41309i 0.497656 0.611985i
\(53\) 0.604811 + 0.308167i 0.0830772 + 0.0423299i 0.495035 0.868873i \(-0.335155\pi\)
−0.411958 + 0.911203i \(0.635155\pi\)
\(54\) 0 0
\(55\) −0.000458296 0.0206263i −6.17966e−5 0.00278125i
\(56\) 1.35362 + 0.00416215i 0.180885 + 0.000556191i
\(57\) 0 0
\(58\) 4.78896 0.246057i 0.628821 0.0323089i
\(59\) −2.04303 + 1.48435i −0.265979 + 0.193245i −0.712779 0.701389i \(-0.752564\pi\)
0.446800 + 0.894634i \(0.352564\pi\)
\(60\) 0 0
\(61\) −7.27946 5.28884i −0.932039 0.677166i 0.0144522 0.999896i \(-0.495400\pi\)
−0.946491 + 0.322730i \(0.895400\pi\)
\(62\) 5.41056 + 3.52155i 0.687142 + 0.447237i
\(63\) 0 0
\(64\) −0.0491968 + 7.99985i −0.00614960 + 0.999981i
\(65\) 2.76053 + 5.72902i 0.342402 + 0.710597i
\(66\) 0 0
\(67\) −4.59556 9.01929i −0.561437 1.10188i −0.980973 0.194143i \(-0.937807\pi\)
0.419537 0.907738i \(-0.362193\pi\)
\(68\) 8.49624 + 0.462735i 1.03032 + 0.0561149i
\(69\) 0 0
\(70\) −0.647517 + 1.36788i −0.0773931 + 0.163493i
\(71\) −6.68849 + 2.17322i −0.793777 + 0.257914i −0.677712 0.735328i \(-0.737028\pi\)
−0.116066 + 0.993242i \(0.537028\pi\)
\(72\) 0 0
\(73\) 2.91467 0.461638i 0.341136 0.0540306i 0.0164838 0.999864i \(-0.494753\pi\)
0.324652 + 0.945834i \(0.394753\pi\)
\(74\) 8.39652 + 3.74869i 0.976076 + 0.435776i
\(75\) 0 0
\(76\) −10.7572 + 9.64596i −1.23393 + 1.10647i
\(77\) 0.000690764 0.00436131i 7.87199e−5 0.000497018i
\(78\) 0 0
\(79\) −0.730993 2.24976i −0.0822431 0.253118i 0.901477 0.432828i \(-0.142484\pi\)
−0.983720 + 0.179710i \(0.942484\pi\)
\(80\) −8.07245 3.85170i −0.902527 0.430633i
\(81\) 0 0
\(82\) 9.31941 3.56643i 1.02916 0.393846i
\(83\) −3.36914 + 1.71666i −0.369811 + 0.188428i −0.629013 0.777395i \(-0.716541\pi\)
0.259201 + 0.965823i \(0.416541\pi\)
\(84\) 0 0
\(85\) −4.50611 + 8.37826i −0.488756 + 0.908750i
\(86\) 6.47723 + 11.2455i 0.698458 + 1.21263i
\(87\) 0 0
\(88\) −0.0257880 + 0.00400318i −0.00274901 + 0.000426740i
\(89\) 9.05282 12.4601i 0.959597 1.32077i 0.0124672 0.999922i \(-0.496031\pi\)
0.947130 0.320850i \(-0.103969\pi\)
\(90\) 0 0
\(91\) 0.800028 + 1.10114i 0.0838657 + 0.115431i
\(92\) −4.22554 + 10.9408i −0.440543 + 1.14066i
\(93\) 0 0
\(94\) 4.61654 + 4.16533i 0.476160 + 0.429621i
\(95\) −4.64936 15.4705i −0.477014 1.58724i
\(96\) 0 0
\(97\) −8.12690 + 15.9499i −0.825162 + 1.61947i −0.0407999 + 0.999167i \(0.512991\pi\)
−0.784362 + 0.620304i \(0.787009\pi\)
\(98\) 2.48782 9.24676i 0.251308 0.934064i
\(99\) 0 0
\(100\) 7.73433 6.33879i 0.773433 0.633879i
\(101\) −18.2367 −1.81462 −0.907310 0.420462i \(-0.861868\pi\)
−0.907310 + 0.420462i \(0.861868\pi\)
\(102\) 0 0
\(103\) −4.91489 + 9.64602i −0.484279 + 0.950451i 0.511554 + 0.859251i \(0.329070\pi\)
−0.995833 + 0.0911996i \(0.970930\pi\)
\(104\) −6.52232 + 4.70817i −0.639566 + 0.461674i
\(105\) 0 0
\(106\) −0.712731 0.643070i −0.0692266 0.0624605i
\(107\) −3.97407 + 3.97407i −0.384188 + 0.384188i −0.872608 0.488421i \(-0.837573\pi\)
0.488421 + 0.872608i \(0.337573\pi\)
\(108\) 0 0
\(109\) 9.21485 + 12.6831i 0.882622 + 1.21483i 0.975688 + 0.219165i \(0.0703333\pi\)
−0.0930657 + 0.995660i \(0.529667\pi\)
\(110\) 0.00820449 0.0279999i 0.000782268 0.00266969i
\(111\) 0 0
\(112\) −1.84704 0.503038i −0.174529 0.0475327i
\(113\) 0.776105 4.90013i 0.0730098 0.460966i −0.923915 0.382598i \(-0.875029\pi\)
0.996925 0.0783672i \(-0.0249707\pi\)
\(114\) 0 0
\(115\) −9.06391 9.47585i −0.845214 0.883627i
\(116\) −6.63045 1.42356i −0.615622 0.132174i
\(117\) 0 0
\(118\) 3.33544 1.27644i 0.307052 0.117505i
\(119\) −0.629182 + 1.93642i −0.0576770 + 0.177512i
\(120\) 0 0
\(121\) 3.39916 + 10.4615i 0.309015 + 0.951049i
\(122\) 7.99794 + 9.89735i 0.724099 + 0.896064i
\(123\) 0 0
\(124\) −6.09502 6.79718i −0.547349 0.610405i
\(125\) 2.73911 + 10.8396i 0.244994 + 0.969525i
\(126\) 0 0
\(127\) 3.89805 0.617390i 0.345896 0.0547845i 0.0189303 0.999821i \(-0.493974\pi\)
0.326965 + 0.945036i \(0.393974\pi\)
\(128\) 3.00653 10.9069i 0.265742 0.964044i
\(129\) 0 0
\(130\) −1.66494 8.83812i −0.146025 0.775154i
\(131\) 4.49851 + 1.46166i 0.393037 + 0.127705i 0.498866 0.866679i \(-0.333750\pi\)
−0.105830 + 0.994384i \(0.533750\pi\)
\(132\) 0 0
\(133\) −1.56963 3.08056i −0.136104 0.267119i
\(134\) 2.96201 + 14.0057i 0.255878 + 1.20991i
\(135\) 0 0
\(136\) −11.4329 3.75367i −0.980360 0.321874i
\(137\) −2.52679 0.400204i −0.215878 0.0341917i 0.0475584 0.998868i \(-0.484856\pi\)
−0.263437 + 0.964677i \(0.584856\pi\)
\(138\) 0 0
\(139\) 9.10494 + 6.61513i 0.772271 + 0.561088i 0.902649 0.430377i \(-0.141619\pi\)
−0.130378 + 0.991464i \(0.541619\pi\)
\(140\) 1.38688 1.63013i 0.117212 0.137771i
\(141\) 0 0
\(142\) 9.93262 0.510339i 0.833527 0.0428267i
\(143\) −0.0185550 0.0185550i −0.00155165 0.00155165i
\(144\) 0 0
\(145\) 4.59174 6.03346i 0.381324 0.501051i
\(146\) −4.15003 0.440487i −0.343459 0.0364549i
\(147\) 0 0
\(148\) −10.0893 8.20449i −0.829339 0.674405i
\(149\) 1.04684i 0.0857604i 0.999080 + 0.0428802i \(0.0136534\pi\)
−0.999080 + 0.0428802i \(0.986347\pi\)
\(150\) 0 0
\(151\) 2.66118i 0.216564i 0.994120 + 0.108282i \(0.0345349\pi\)
−0.994120 + 0.108282i \(0.965465\pi\)
\(152\) 18.2347 9.22054i 1.47903 0.747885i
\(153\) 0 0
\(154\) 0.000659115 0.00620983i 5.31130e−5 0.000500402i
\(155\) 9.77538 2.93780i 0.785177 0.235970i
\(156\) 0 0
\(157\) 3.72092 + 3.72092i 0.296962 + 0.296962i 0.839823 0.542861i \(-0.182659\pi\)
−0.542861 + 0.839823i \(0.682659\pi\)
\(158\) 0.171660 + 3.34098i 0.0136565 + 0.265794i
\(159\) 0 0
\(160\) 9.60892 + 8.22609i 0.759652 + 0.650330i
\(161\) −2.27051 1.64962i −0.178941 0.130008i
\(162\) 0 0
\(163\) −18.2514 2.89074i −1.42956 0.226420i −0.606821 0.794838i \(-0.707556\pi\)
−0.822740 + 0.568418i \(0.807556\pi\)
\(164\) −14.0374 + 1.44631i −1.09614 + 0.112938i
\(165\) 0 0
\(166\) 5.23181 1.10645i 0.406068 0.0858774i
\(167\) −9.01487 17.6927i −0.697592 1.36910i −0.919132 0.393950i \(-0.871108\pi\)
0.221540 0.975151i \(-0.428892\pi\)
\(168\) 0 0
\(169\) 4.67117 + 1.51776i 0.359321 + 0.116750i
\(170\) 9.23215 9.78611i 0.708074 0.750560i
\(171\) 0 0
\(172\) −4.71375 17.7373i −0.359420 1.35246i
\(173\) 5.74053 0.909210i 0.436444 0.0691260i 0.0656537 0.997842i \(-0.479087\pi\)
0.370791 + 0.928716i \(0.379087\pi\)
\(174\) 0 0
\(175\) 0.990581 + 2.17823i 0.0748809 + 0.164659i
\(176\) 0.0366882 + 0.00400823i 0.00276548 + 0.000302132i
\(177\) 0 0
\(178\) −16.9412 + 13.6899i −1.26979 + 1.02611i
\(179\) 7.03355 + 21.6470i 0.525712 + 1.61798i 0.762903 + 0.646513i \(0.223774\pi\)
−0.237190 + 0.971463i \(0.576226\pi\)
\(180\) 0 0
\(181\) 1.43751 4.42421i 0.106849 0.328849i −0.883311 0.468788i \(-0.844691\pi\)
0.990160 + 0.139939i \(0.0446908\pi\)
\(182\) −0.687969 1.79773i −0.0509957 0.133256i
\(183\) 0 0
\(184\) 9.79055 13.3888i 0.721769 0.987033i
\(185\) 13.0979 6.31122i 0.962974 0.464010i
\(186\) 0 0
\(187\) 0.00614067 0.0387707i 0.000449050 0.00283519i
\(188\) −4.77413 7.38461i −0.348189 0.538578i
\(189\) 0 0
\(190\) 0.665150 + 22.8355i 0.0482550 + 1.65666i
\(191\) −13.5285 18.6203i −0.978885 1.34732i −0.937428 0.348179i \(-0.886800\pi\)
−0.0414563 0.999140i \(-0.513200\pi\)
\(192\) 0 0
\(193\) 16.4997 16.4997i 1.18767 1.18767i 0.209964 0.977709i \(-0.432665\pi\)
0.977709 0.209964i \(-0.0673347\pi\)
\(194\) 16.9589 18.7960i 1.21758 1.34947i
\(195\) 0 0
\(196\) −6.79499 + 11.7137i −0.485356 + 0.836696i
\(197\) 3.30435 6.48515i 0.235425 0.462048i −0.742823 0.669488i \(-0.766513\pi\)
0.978248 + 0.207441i \(0.0665134\pi\)
\(198\) 0 0
\(199\) 18.5916 1.31793 0.658963 0.752175i \(-0.270995\pi\)
0.658963 + 0.752175i \(0.270995\pi\)
\(200\) −12.8914 + 5.81477i −0.911560 + 0.411167i
\(201\) 0 0
\(202\) 24.9050 + 6.70063i 1.75231 + 0.471455i
\(203\) 0.736715 1.44588i 0.0517072 0.101481i
\(204\) 0 0
\(205\) 5.20761 14.8932i 0.363715 1.04019i
\(206\) 10.2562 11.3672i 0.714584 0.791992i
\(207\) 0 0
\(208\) 10.6371 4.03324i 0.737550 0.279655i
\(209\) 0.0391794 + 0.0539258i 0.00271009 + 0.00373012i
\(210\) 0 0
\(211\) 14.5423 20.0157i 1.00113 1.37794i 0.0765018 0.997069i \(-0.475625\pi\)
0.924629 0.380869i \(-0.124375\pi\)
\(212\) 0.737061 + 1.14008i 0.0506216 + 0.0783013i
\(213\) 0 0
\(214\) 6.88736 3.96701i 0.470810 0.271179i
\(215\) 20.1903 + 3.65932i 1.37697 + 0.249563i
\(216\) 0 0
\(217\) 1.94653 0.991804i 0.132139 0.0673281i
\(218\) −7.92414 20.7065i −0.536690 1.40242i
\(219\) 0 0
\(220\) −0.0214923 + 0.0352235i −0.00144901 + 0.00237477i
\(221\) −3.73899 11.5074i −0.251512 0.774074i
\(222\) 0 0
\(223\) 1.09479 + 6.91226i 0.0733129 + 0.462879i 0.996846 + 0.0793606i \(0.0252879\pi\)
−0.923533 + 0.383519i \(0.874712\pi\)
\(224\) 2.33758 + 1.36562i 0.156186 + 0.0912446i
\(225\) 0 0
\(226\) −2.86032 + 6.40670i −0.190266 + 0.426167i
\(227\) 14.5565 2.30553i 0.966151 0.153023i 0.346629 0.938002i \(-0.387326\pi\)
0.619522 + 0.784979i \(0.287326\pi\)
\(228\) 0 0
\(229\) −25.5635 + 8.30610i −1.68929 + 0.548882i −0.986677 0.162693i \(-0.947982\pi\)
−0.702610 + 0.711575i \(0.747982\pi\)
\(230\) 8.89646 + 16.2710i 0.586615 + 1.07288i
\(231\) 0 0
\(232\) 8.53182 + 4.38028i 0.560141 + 0.287579i
\(233\) 9.83267 + 19.2977i 0.644160 + 1.26423i 0.950029 + 0.312161i \(0.101053\pi\)
−0.305870 + 0.952073i \(0.598947\pi\)
\(234\) 0 0
\(235\) 9.74211 1.32189i 0.635505 0.0862304i
\(236\) −5.02404 + 0.517638i −0.327037 + 0.0336954i
\(237\) 0 0
\(238\) 1.57073 2.41330i 0.101815 0.156431i
\(239\) 8.98000 + 6.52436i 0.580868 + 0.422025i 0.839037 0.544074i \(-0.183119\pi\)
−0.258169 + 0.966100i \(0.583119\pi\)
\(240\) 0 0
\(241\) 1.02024 0.741251i 0.0657197 0.0477481i −0.554440 0.832223i \(-0.687068\pi\)
0.620160 + 0.784475i \(0.287068\pi\)
\(242\) −0.798227 15.5357i −0.0513120 0.998675i
\(243\) 0 0
\(244\) −7.28584 16.4550i −0.466428 1.05342i
\(245\) −8.62498 12.4434i −0.551030 0.794983i
\(246\) 0 0
\(247\) 18.3066 + 9.32770i 1.16482 + 0.593507i
\(248\) 5.82621 + 11.5220i 0.369965 + 0.731650i
\(249\) 0 0
\(250\) 0.242080 15.8095i 0.0153105 0.999883i
\(251\) 1.61115i 0.101695i 0.998706 + 0.0508475i \(0.0161923\pi\)
−0.998706 + 0.0508475i \(0.983808\pi\)
\(252\) 0 0
\(253\) 0.0482098 + 0.0245641i 0.00303093 + 0.00154433i
\(254\) −5.55021 0.589103i −0.348251 0.0369636i
\(255\) 0 0
\(256\) −8.11335 + 13.7903i −0.507084 + 0.861897i
\(257\) 21.7848 + 21.7848i 1.35890 + 1.35890i 0.875276 + 0.483624i \(0.160680\pi\)
0.483624 + 0.875276i \(0.339320\pi\)
\(258\) 0 0
\(259\) 2.51747 1.82905i 0.156428 0.113652i
\(260\) −0.973629 + 12.6815i −0.0603819 + 0.786474i
\(261\) 0 0
\(262\) −5.60634 3.64898i −0.346361 0.225434i
\(263\) −17.8870 2.83302i −1.10296 0.174691i −0.421700 0.906735i \(-0.638567\pi\)
−0.681257 + 0.732044i \(0.738567\pi\)
\(264\) 0 0
\(265\) −1.50405 + 0.204081i −0.0923930 + 0.0125366i
\(266\) 1.01168 + 4.78369i 0.0620302 + 0.293307i
\(267\) 0 0
\(268\) 1.10099 20.2152i 0.0672537 1.23484i
\(269\) 4.11734 + 1.33780i 0.251038 + 0.0815673i 0.431833 0.901954i \(-0.357867\pi\)
−0.180795 + 0.983521i \(0.557867\pi\)
\(270\) 0 0
\(271\) −18.2185 + 5.91954i −1.10669 + 0.359587i −0.804675 0.593715i \(-0.797661\pi\)
−0.302019 + 0.953302i \(0.597661\pi\)
\(272\) 14.2341 + 9.32692i 0.863069 + 0.565528i
\(273\) 0 0
\(274\) 3.30366 + 1.47494i 0.199582 + 0.0891047i
\(275\) −0.0254319 0.0384901i −0.00153360 0.00232104i
\(276\) 0 0
\(277\) −0.838827 5.29615i −0.0504003 0.318215i −0.999989 0.00471597i \(-0.998499\pi\)
0.949589 0.313499i \(-0.101501\pi\)
\(278\) −10.0036 12.3793i −0.599976 0.742463i
\(279\) 0 0
\(280\) −2.49294 + 1.71662i −0.148982 + 0.102588i
\(281\) 0.313860 0.965962i 0.0187233 0.0576245i −0.941258 0.337687i \(-0.890355\pi\)
0.959982 + 0.280063i \(0.0903553\pi\)
\(282\) 0 0
\(283\) 1.23867 0.631135i 0.0736314 0.0375171i −0.416787 0.909004i \(-0.636844\pi\)
0.490418 + 0.871487i \(0.336844\pi\)
\(284\) −13.7520 2.95255i −0.816031 0.175202i
\(285\) 0 0
\(286\) 0.0185220 + 0.0321572i 0.00109523 + 0.00190149i
\(287\) 0.528247 3.33522i 0.0311814 0.196872i
\(288\) 0 0
\(289\) 0.646596 0.889963i 0.0380351 0.0523508i
\(290\) −8.48756 + 6.55246i −0.498407 + 0.384774i
\(291\) 0 0
\(292\) 5.50564 + 2.12638i 0.322193 + 0.124437i
\(293\) −7.08403 + 7.08403i −0.413853 + 0.413853i −0.883079 0.469225i \(-0.844533\pi\)
0.469225 + 0.883079i \(0.344533\pi\)
\(294\) 0 0
\(295\) 1.86382 5.33033i 0.108516 0.310344i
\(296\) 10.7640 + 14.9115i 0.625643 + 0.866716i
\(297\) 0 0
\(298\) 0.384635 1.42961i 0.0222813 0.0828154i
\(299\) 16.6780 0.964513
\(300\) 0 0
\(301\) 4.39168 0.253132
\(302\) 0.977784 3.63424i 0.0562652 0.209127i
\(303\) 0 0
\(304\) −28.2901 + 5.89213i −1.62255 + 0.337937i
\(305\) 20.1150 + 0.446934i 1.15178 + 0.0255914i
\(306\) 0 0
\(307\) −7.18265 + 7.18265i −0.409935 + 0.409935i −0.881716 0.471781i \(-0.843611\pi\)
0.471781 + 0.881716i \(0.343611\pi\)
\(308\) −0.00318177 + 0.00823827i −0.000181298 + 0.000469419i
\(309\) 0 0
\(310\) −14.4292 + 0.420290i −0.819521 + 0.0238709i
\(311\) 13.8607 19.0776i 0.785967 1.08179i −0.208631 0.977994i \(-0.566901\pi\)
0.994599 0.103797i \(-0.0330991\pi\)
\(312\) 0 0
\(313\) 2.12973 13.4466i 0.120379 0.760045i −0.851463 0.524414i \(-0.824284\pi\)
0.971843 0.235631i \(-0.0757156\pi\)
\(314\) −3.71432 6.44864i −0.209611 0.363918i
\(315\) 0 0
\(316\) 0.993132 4.62567i 0.0558680 0.260214i
\(317\) −15.3739 + 7.83338i −0.863483 + 0.439967i −0.828875 0.559434i \(-0.811018\pi\)
−0.0346084 + 0.999401i \(0.511018\pi\)
\(318\) 0 0
\(319\) −0.00966773 + 0.0297542i −0.000541289 + 0.00166592i
\(320\) −10.0999 14.7645i −0.564604 0.825362i
\(321\) 0 0
\(322\) 2.49461 + 3.08704i 0.139019 + 0.172034i
\(323\) 4.80804 + 30.3568i 0.267526 + 1.68909i
\(324\) 0 0
\(325\) −12.3709 7.01217i −0.686217 0.388965i
\(326\) 23.8629 + 10.6538i 1.32164 + 0.590058i
\(327\) 0 0
\(328\) 19.7016 + 3.18256i 1.08784 + 0.175728i
\(329\) 2.00120 0.650228i 0.110330 0.0358482i
\(330\) 0 0
\(331\) −20.8211 6.76518i −1.14443 0.371848i −0.325387 0.945581i \(-0.605495\pi\)
−0.819042 + 0.573733i \(0.805495\pi\)
\(332\) −7.55136 0.411274i −0.414435 0.0225716i
\(333\) 0 0
\(334\) 5.81042 + 27.4743i 0.317932 + 1.50333i
\(335\) 19.9345 + 10.7214i 1.08914 + 0.585775i
\(336\) 0 0
\(337\) 31.0160 + 4.91245i 1.68955 + 0.267598i 0.925826 0.377949i \(-0.123371\pi\)
0.763721 + 0.645547i \(0.223371\pi\)
\(338\) −5.82152 3.78903i −0.316649 0.206096i
\(339\) 0 0
\(340\) −16.2035 + 9.97227i −0.878761 + 0.540822i
\(341\) −0.0340743 + 0.0247564i −0.00184522 + 0.00134063i
\(342\) 0 0
\(343\) −4.66019 4.66019i −0.251626 0.251626i
\(344\) −0.0798069 + 25.9549i −0.00430290 + 1.39939i
\(345\) 0 0
\(346\) −8.17362 0.867553i −0.439416 0.0466399i
\(347\) −27.9531 14.2428i −1.50060 0.764594i −0.505440 0.862862i \(-0.668670\pi\)
−0.995160 + 0.0982679i \(0.968670\pi\)
\(348\) 0 0
\(349\) 32.7545i 1.75331i −0.481121 0.876654i \(-0.659770\pi\)
0.481121 0.876654i \(-0.340230\pi\)
\(350\) −0.552449 3.33867i −0.0295296 0.178459i
\(351\) 0 0
\(352\) −0.0486306 0.0189540i −0.00259202 0.00101025i
\(353\) −11.6240 5.92270i −0.618680 0.315233i 0.116411 0.993201i \(-0.462861\pi\)
−0.735092 + 0.677968i \(0.762861\pi\)
\(354\) 0 0
\(355\) 9.52358 12.5138i 0.505459 0.664163i
\(356\) 28.1657 12.4711i 1.49278 0.660965i
\(357\) 0 0
\(358\) −1.65169 32.1466i −0.0872948 1.69900i
\(359\) −9.36163 + 6.80162i −0.494088 + 0.358976i −0.806754 0.590887i \(-0.798778\pi\)
0.312666 + 0.949863i \(0.398778\pi\)
\(360\) 0 0
\(361\) −26.8516 19.5088i −1.41324 1.02678i
\(362\) −3.58870 + 5.51374i −0.188618 + 0.289796i
\(363\) 0 0
\(364\) 0.278995 + 2.70784i 0.0146233 + 0.141929i
\(365\) −4.76843 + 4.56114i −0.249591 + 0.238741i
\(366\) 0 0
\(367\) 3.05019 + 5.98633i 0.159219 + 0.312484i 0.956810 0.290714i \(-0.0938928\pi\)
−0.797591 + 0.603198i \(0.793893\pi\)
\(368\) −18.2898 + 14.6871i −0.953423 + 0.765616i
\(369\) 0 0
\(370\) −20.2060 + 3.80643i −1.05046 + 0.197887i
\(371\) −0.308958 + 0.100386i −0.0160403 + 0.00521180i
\(372\) 0 0
\(373\) −7.76622 + 1.23005i −0.402120 + 0.0636895i −0.354219 0.935163i \(-0.615253\pi\)
−0.0479009 + 0.998852i \(0.515253\pi\)
\(374\) −0.0226313 + 0.0506909i −0.00117024 + 0.00262116i
\(375\) 0 0
\(376\) 3.80650 + 11.8389i 0.196305 + 0.610546i
\(377\) 1.50856 + 9.52469i 0.0776950 + 0.490547i
\(378\) 0 0
\(379\) 5.05817 + 15.5675i 0.259821 + 0.799646i 0.992841 + 0.119440i \(0.0381099\pi\)
−0.733021 + 0.680206i \(0.761890\pi\)
\(380\) 7.48199 31.4297i 0.383818 1.61231i
\(381\) 0 0
\(382\) 11.6335 + 30.3995i 0.595224 + 1.55537i
\(383\) −21.7577 + 11.0861i −1.11177 + 0.566473i −0.910685 0.413102i \(-0.864445\pi\)
−0.201081 + 0.979575i \(0.564445\pi\)
\(384\) 0 0
\(385\) −0.00682499 0.00713517i −0.000347833 0.000363642i
\(386\) −28.5952 + 16.4704i −1.45546 + 0.838320i
\(387\) 0 0
\(388\) −30.0661 + 19.4376i −1.52637 + 0.986795i
\(389\) −5.31656 + 7.31762i −0.269560 + 0.371018i −0.922241 0.386615i \(-0.873644\pi\)
0.652681 + 0.757633i \(0.273644\pi\)
\(390\) 0 0
\(391\) 14.6646 + 20.1841i 0.741620 + 1.02075i
\(392\) 13.5835 13.5002i 0.686070 0.681864i
\(393\) 0 0
\(394\) −6.89539 + 7.64234i −0.347385 + 0.385016i
\(395\) 4.20919 + 3.20339i 0.211787 + 0.161180i
\(396\) 0 0
\(397\) −6.40609 + 12.5727i −0.321512 + 0.631004i −0.994034 0.109074i \(-0.965211\pi\)
0.672521 + 0.740078i \(0.265211\pi\)
\(398\) −25.3897 6.83104i −1.27267 0.342409i
\(399\) 0 0
\(400\) 19.7416 3.20431i 0.987082 0.160216i
\(401\) −11.2786 −0.563225 −0.281613 0.959528i \(-0.590869\pi\)
−0.281613 + 0.959528i \(0.590869\pi\)
\(402\) 0 0
\(403\) −5.89392 + 11.5675i −0.293597 + 0.576217i
\(404\) −31.5495 18.3014i −1.56964 0.910530i
\(405\) 0 0
\(406\) −1.53735 + 1.70388i −0.0762973 + 0.0845623i
\(407\) −0.0424210 + 0.0424210i −0.00210273 + 0.00210273i
\(408\) 0 0
\(409\) −3.93615 5.41764i −0.194630 0.267885i 0.700537 0.713616i \(-0.252944\pi\)
−0.895167 + 0.445731i \(0.852944\pi\)
\(410\) −12.5839 + 18.4255i −0.621475 + 0.909971i
\(411\) 0 0
\(412\) −18.1830 + 11.7553i −0.895812 + 0.579140i
\(413\) 0.189061 1.19369i 0.00930310 0.0587374i
\(414\) 0 0
\(415\) 4.00498 7.44651i 0.196597 0.365535i
\(416\) −16.0085 + 1.59966i −0.784880 + 0.0784296i
\(417\) 0 0
\(418\) −0.0336916 0.0880392i −0.00164791 0.00430614i
\(419\) 5.35944 16.4947i 0.261826 0.805817i −0.730582 0.682825i \(-0.760751\pi\)
0.992408 0.122992i \(-0.0392490\pi\)
\(420\) 0 0
\(421\) 2.27461 + 7.00054i 0.110858 + 0.341185i 0.991061 0.133413i \(-0.0425935\pi\)
−0.880203 + 0.474598i \(0.842594\pi\)
\(422\) −27.2139 + 21.9913i −1.32475 + 1.07052i
\(423\) 0 0
\(424\) −0.587671 1.82777i −0.0285398 0.0887644i
\(425\) −2.39121 21.1373i −0.115991 1.02531i
\(426\) 0 0
\(427\) 4.25319 0.673640i 0.205826 0.0325997i
\(428\) −10.8633 + 2.88696i −0.525098 + 0.139546i
\(429\) 0 0
\(430\) −26.2284 12.4158i −1.26484 0.598742i
\(431\) 27.6029 + 8.96873i 1.32959 + 0.432009i 0.885776 0.464113i \(-0.153627\pi\)
0.443809 + 0.896121i \(0.353627\pi\)
\(432\) 0 0
\(433\) 5.40336 + 10.6047i 0.259669 + 0.509629i 0.983627 0.180215i \(-0.0576793\pi\)
−0.723959 + 0.689843i \(0.757679\pi\)
\(434\) −3.02269 + 0.639254i −0.145094 + 0.0306852i
\(435\) 0 0
\(436\) 3.21351 + 31.1894i 0.153899 + 1.49370i
\(437\) −41.8434 6.62734i −2.00164 0.317029i
\(438\) 0 0
\(439\) 8.32588 + 6.04910i 0.397372 + 0.288708i 0.768470 0.639886i \(-0.221018\pi\)
−0.371097 + 0.928594i \(0.621018\pi\)
\(440\) 0.0422930 0.0402061i 0.00201624 0.00191675i
\(441\) 0 0
\(442\) 0.878030 + 17.0889i 0.0417636 + 0.812837i
\(443\) −19.8963 19.8963i −0.945304 0.945304i 0.0532759 0.998580i \(-0.483034\pi\)
−0.998580 + 0.0532759i \(0.983034\pi\)
\(444\) 0 0
\(445\) −0.765011 + 34.4305i −0.0362650 + 1.63216i
\(446\) 1.04463 9.84198i 0.0494649 0.466031i
\(447\) 0 0
\(448\) −2.69055 2.72385i −0.127117 0.128690i
\(449\) 3.25601i 0.153660i −0.997044 0.0768302i \(-0.975520\pi\)
0.997044 0.0768302i \(-0.0244799\pi\)
\(450\) 0 0
\(451\) 0.0651020i 0.00306553i
\(452\) 6.26018 7.69835i 0.294454 0.362100i
\(453\) 0 0
\(454\) −20.7262 2.19990i −0.972730 0.103246i
\(455\) −2.87292 1.00455i −0.134685 0.0470942i
\(456\) 0 0
\(457\) −7.55858 7.55858i −0.353576 0.353576i 0.507862 0.861438i \(-0.330436\pi\)
−0.861438 + 0.507862i \(0.830436\pi\)
\(458\) 37.9627 1.95053i 1.77388 0.0911422i
\(459\) 0 0
\(460\) −6.17107 25.4893i −0.287728 1.18844i
\(461\) 21.9843 + 15.9725i 1.02391 + 0.743915i 0.967081 0.254469i \(-0.0819006\pi\)
0.0568302 + 0.998384i \(0.481901\pi\)
\(462\) 0 0
\(463\) 30.3214 + 4.80244i 1.40916 + 0.223188i 0.814207 0.580575i \(-0.197172\pi\)
0.594949 + 0.803764i \(0.297172\pi\)
\(464\) −10.0421 9.11673i −0.466191 0.423233i
\(465\) 0 0
\(466\) −6.33752 29.9667i −0.293580 1.38818i
\(467\) 5.34562 + 10.4914i 0.247366 + 0.485483i 0.980986 0.194076i \(-0.0621710\pi\)
−0.733621 + 0.679559i \(0.762171\pi\)
\(468\) 0 0
\(469\) 4.60735 + 1.49702i 0.212748 + 0.0691260i
\(470\) −13.7900 1.77426i −0.636085 0.0818407i
\(471\) 0 0
\(472\) 7.05127 + 1.13905i 0.324561 + 0.0524289i
\(473\) −0.0836257 + 0.0132450i −0.00384511 + 0.000609006i
\(474\) 0 0
\(475\) 28.2510 + 22.5087i 1.29625 + 1.03277i
\(476\) −3.03178 + 2.71859i −0.138961 + 0.124606i
\(477\) 0 0
\(478\) −9.86633 12.2095i −0.451275 0.558448i
\(479\) 9.32001 + 28.6840i 0.425842 + 1.31061i 0.902186 + 0.431348i \(0.141962\pi\)
−0.476344 + 0.879259i \(0.658038\pi\)
\(480\) 0 0
\(481\) −5.71436 + 17.5870i −0.260552 + 0.801898i
\(482\) −1.66565 + 0.637425i −0.0758683 + 0.0290339i
\(483\) 0 0
\(484\) −4.61812 + 21.5097i −0.209915 + 0.977712i
\(485\) −5.38199 39.6645i −0.244384 1.80107i
\(486\) 0 0
\(487\) 3.03505 19.1625i 0.137531 0.868337i −0.818379 0.574678i \(-0.805127\pi\)
0.955910 0.293659i \(-0.0948729\pi\)
\(488\) 3.90394 + 25.1487i 0.176723 + 1.13843i
\(489\) 0 0
\(490\) 7.20666 + 20.1624i 0.325564 + 0.910845i
\(491\) −1.27404 1.75356i −0.0574965 0.0791371i 0.779301 0.626650i \(-0.215575\pi\)
−0.836797 + 0.547513i \(0.815575\pi\)
\(492\) 0 0
\(493\) −10.2006 + 10.2006i −0.459410 + 0.459410i
\(494\) −21.5732 19.4647i −0.970625 0.875758i
\(495\) 0 0
\(496\) −3.72308 17.8758i −0.167171 0.802645i
\(497\) 1.52800 2.99886i 0.0685400 0.134517i
\(498\) 0 0
\(499\) 13.9379 0.623948 0.311974 0.950091i \(-0.399010\pi\)
0.311974 + 0.950091i \(0.399010\pi\)
\(500\) −6.13942 + 21.5013i −0.274563 + 0.961569i
\(501\) 0 0
\(502\) 0.591978 2.20027i 0.0264213 0.0982029i
\(503\) −12.6449 + 24.8171i −0.563810 + 1.10654i 0.416511 + 0.909131i \(0.363253\pi\)
−0.980321 + 0.197409i \(0.936747\pi\)
\(504\) 0 0
\(505\) 33.5148 23.2303i 1.49139 1.03373i
\(506\) −0.0568123 0.0512595i −0.00252561 0.00227876i
\(507\) 0 0
\(508\) 7.36319 + 2.84380i 0.326689 + 0.126173i
\(509\) −9.16632 12.6164i −0.406290 0.559210i 0.556019 0.831170i \(-0.312328\pi\)
−0.962309 + 0.271959i \(0.912328\pi\)
\(510\) 0 0
\(511\) −0.830121 + 1.14256i −0.0367224 + 0.0505440i
\(512\) 16.1469 15.8517i 0.713599 0.700554i
\(513\) 0 0
\(514\) −21.7461 37.7547i −0.959181 1.66529i
\(515\) −3.25486 23.9878i −0.143426 1.05703i
\(516\) 0 0
\(517\) −0.0361455 + 0.0184170i −0.00158968 + 0.000809980i
\(518\) −4.11002 + 1.57286i −0.180584 + 0.0691074i
\(519\) 0 0
\(520\) 5.98914 16.9608i 0.262641 0.743779i
\(521\) −7.04186 21.6726i −0.308509 0.949494i −0.978344 0.206984i \(-0.933635\pi\)
0.669835 0.742510i \(-0.266365\pi\)
\(522\) 0 0
\(523\) 2.51510 + 15.8797i 0.109977 + 0.694371i 0.979646 + 0.200734i \(0.0643327\pi\)
−0.869668 + 0.493637i \(0.835667\pi\)
\(524\) 6.31557 + 7.04313i 0.275897 + 0.307681i
\(525\) 0 0
\(526\) 23.3864 + 10.4410i 1.01970 + 0.455251i
\(527\) −19.1816 + 3.03807i −0.835564 + 0.132340i
\(528\) 0 0
\(529\) −10.8318 + 3.51947i −0.470949 + 0.153021i
\(530\) 2.12899 + 0.273922i 0.0924774 + 0.0118984i
\(531\) 0 0
\(532\) 0.376047 6.90456i 0.0163037 0.299351i
\(533\) 9.11024 + 17.8799i 0.394608 + 0.774463i
\(534\) 0 0
\(535\) 2.24117 12.3657i 0.0968941 0.534614i
\(536\) −8.93115 + 27.2024i −0.385767 + 1.17496i
\(537\) 0 0
\(538\) −5.13130 3.33978i −0.221226 0.143988i
\(539\) 0.0505419 + 0.0367208i 0.00217699 + 0.00158168i
\(540\) 0 0
\(541\) 6.37355 4.63066i 0.274020 0.199087i −0.442285 0.896875i \(-0.645832\pi\)
0.716305 + 0.697787i \(0.245832\pi\)
\(542\) 27.0551 1.39009i 1.16211 0.0597095i
\(543\) 0 0
\(544\) −16.0118 17.9673i −0.686502 0.770340i
\(545\) −33.0908 11.5706i −1.41745 0.495631i
\(546\) 0 0
\(547\) −33.1305 16.8808i −1.41656 0.721773i −0.432837 0.901472i \(-0.642488\pi\)
−0.983722 + 0.179699i \(0.942488\pi\)
\(548\) −3.96971 3.22811i −0.169578 0.137898i
\(549\) 0 0
\(550\) 0.0205889 + 0.0619083i 0.000877912 + 0.00263978i
\(551\) 24.4959i 1.04356i
\(552\) 0 0
\(553\) 1.00871 + 0.513962i 0.0428946 + 0.0218559i
\(554\) −0.800394 + 7.54089i −0.0340055 + 0.320382i
\(555\) 0 0
\(556\) 9.11292 + 20.5814i 0.386474 + 0.872846i
\(557\) 12.6617 + 12.6617i 0.536492 + 0.536492i 0.922497 0.386005i \(-0.126145\pi\)
−0.386005 + 0.922497i \(0.626145\pi\)
\(558\) 0 0
\(559\) −21.1138 + 15.3401i −0.893018 + 0.648816i
\(560\) 4.03521 1.42833i 0.170519 0.0603579i
\(561\) 0 0
\(562\) −0.783542 + 1.20385i −0.0330517 + 0.0507812i
\(563\) 29.3480 + 4.64826i 1.23687 + 0.195901i 0.740408 0.672158i \(-0.234632\pi\)
0.496461 + 0.868059i \(0.334632\pi\)
\(564\) 0 0
\(565\) 4.81558 + 9.99391i 0.202593 + 0.420447i
\(566\) −1.92349 + 0.406790i −0.0808502 + 0.0170986i
\(567\) 0 0
\(568\) 17.6956 + 9.08498i 0.742489 + 0.381197i
\(569\) 26.6584 + 8.66183i 1.11758 + 0.363123i 0.808843 0.588025i \(-0.200094\pi\)
0.308735 + 0.951148i \(0.400094\pi\)
\(570\) 0 0
\(571\) 8.01362 2.60378i 0.335360 0.108965i −0.136496 0.990641i \(-0.543584\pi\)
0.471856 + 0.881676i \(0.343584\pi\)
\(572\) −0.0134793 0.0507209i −0.000563596 0.00212075i
\(573\) 0 0
\(574\) −1.94685 + 4.36065i −0.0812598 + 0.182010i
\(575\) 28.7279 + 5.86861i 1.19804 + 0.244738i
\(576\) 0 0
\(577\) −1.09509 6.91411i −0.0455891 0.287838i 0.954352 0.298684i \(-0.0965476\pi\)
−0.999941 + 0.0108457i \(0.996548\pi\)
\(578\) −1.21002 + 0.977802i −0.0503302 + 0.0406712i
\(579\) 0 0
\(580\) 13.9986 5.82983i 0.581259 0.242070i
\(581\) 0.559210 1.72107i 0.0231999 0.0714021i
\(582\) 0 0
\(583\) 0.00558037 0.00284334i 0.000231115 0.000117759i
\(584\) −6.73749 4.92680i −0.278799 0.203872i
\(585\) 0 0
\(586\) 12.2772 7.07145i 0.507165 0.292119i
\(587\) −7.27291 + 45.9194i −0.300185 + 1.89530i 0.128282 + 0.991738i \(0.459054\pi\)
−0.428467 + 0.903558i \(0.640946\pi\)
\(588\) 0 0
\(589\) 19.3838 26.6795i 0.798696 1.09931i
\(590\) −4.50382 + 6.59454i −0.185419 + 0.271493i
\(591\) 0 0
\(592\) −9.22093 24.3189i −0.378978 0.999500i
\(593\) 23.3870 23.3870i 0.960388 0.960388i −0.0388569 0.999245i \(-0.512372\pi\)
0.999245 + 0.0388569i \(0.0123716\pi\)
\(594\) 0 0
\(595\) −1.31036 4.36016i −0.0537196 0.178749i
\(596\) −1.05055 + 1.81103i −0.0430323 + 0.0741826i
\(597\) 0 0
\(598\) −22.7763 6.12792i −0.931392 0.250589i
\(599\) 19.0773 0.779479 0.389739 0.920925i \(-0.372565\pi\)
0.389739 + 0.920925i \(0.372565\pi\)
\(600\) 0 0
\(601\) 15.5584 0.634640 0.317320 0.948318i \(-0.397217\pi\)
0.317320 + 0.948318i \(0.397217\pi\)
\(602\) −5.99749 1.61361i −0.244439 0.0657659i
\(603\) 0 0
\(604\) −2.67062 + 4.60383i −0.108666 + 0.187327i
\(605\) −19.5730 14.8960i −0.795754 0.605607i
\(606\) 0 0
\(607\) −8.69480 + 8.69480i −0.352911 + 0.352911i −0.861192 0.508281i \(-0.830281\pi\)
0.508281 + 0.861192i \(0.330281\pi\)
\(608\) 40.7993 + 2.34792i 1.65463 + 0.0952206i
\(609\) 0 0
\(610\) −27.3058 8.00110i −1.10558 0.323955i
\(611\) −7.34989 + 10.1163i −0.297345 + 0.409260i
\(612\) 0 0
\(613\) −5.95915 + 37.6246i −0.240688 + 1.51964i 0.510686 + 0.859767i \(0.329391\pi\)
−0.751374 + 0.659877i \(0.770609\pi\)
\(614\) 12.4481 7.16989i 0.502363 0.289353i
\(615\) 0 0
\(616\) 0.00737213 0.0100815i 0.000297032 0.000406197i
\(617\) 2.33785 1.19119i 0.0941182 0.0479556i −0.406298 0.913741i \(-0.633180\pi\)
0.500416 + 0.865785i \(0.333180\pi\)
\(618\) 0 0
\(619\) −0.100449 + 0.309150i −0.00403738 + 0.0124258i −0.953055 0.302798i \(-0.902079\pi\)
0.949018 + 0.315223i \(0.102079\pi\)
\(620\) 19.8596 + 4.72767i 0.797581 + 0.189868i
\(621\) 0 0
\(622\) −25.9384 + 20.9605i −1.04004 + 0.840441i
\(623\) 1.15306 + 7.28013i 0.0461963 + 0.291672i
\(624\) 0 0
\(625\) −18.8416 16.4315i −0.753662 0.657262i
\(626\) −7.84907 + 17.5808i −0.313712 + 0.702669i
\(627\) 0 0
\(628\) 2.70306 + 10.1713i 0.107864 + 0.405880i
\(629\) −26.3087 + 8.54821i −1.04900 + 0.340839i
\(630\) 0 0
\(631\) 10.0045 + 3.25066i 0.398273 + 0.129407i 0.501304 0.865271i \(-0.332854\pi\)
−0.103030 + 0.994678i \(0.532854\pi\)
\(632\) −3.05586 + 5.95215i −0.121556 + 0.236764i
\(633\) 0 0
\(634\) 23.8735 5.04890i 0.948138 0.200518i
\(635\) −6.37726 + 6.10002i −0.253074 + 0.242072i
\(636\) 0 0
\(637\) 19.0197 + 3.01242i 0.753586 + 0.119356i
\(638\) 0.0241352 0.0370817i 0.000955521 0.00146808i
\(639\) 0 0
\(640\) 8.36813 + 23.8741i 0.330779 + 0.943708i
\(641\) 35.5379 25.8198i 1.40366 1.01982i 0.409457 0.912329i \(-0.365718\pi\)
0.994206 0.107492i \(-0.0342819\pi\)
\(642\) 0 0
\(643\) 10.0572 + 10.0572i 0.396616 + 0.396616i 0.877037 0.480422i \(-0.159516\pi\)
−0.480422 + 0.877037i \(0.659516\pi\)
\(644\) −2.27250 5.13240i −0.0895490 0.202245i
\(645\) 0 0
\(646\) 4.58775 43.2233i 0.180502 1.70060i
\(647\) −24.4178 12.4415i −0.959963 0.489126i −0.0974945 0.995236i \(-0.531083\pi\)
−0.862469 + 0.506110i \(0.831083\pi\)
\(648\) 0 0
\(649\) 0.0233002i 0.000914613i
\(650\) 14.3179 + 14.1216i 0.561595 + 0.553894i
\(651\) 0 0
\(652\) −28.6739 23.3171i −1.12296 0.913170i
\(653\) 4.64388 + 2.36618i 0.181729 + 0.0925956i 0.542488 0.840063i \(-0.317482\pi\)
−0.360759 + 0.932659i \(0.617482\pi\)
\(654\) 0 0
\(655\) −10.1291 + 3.04411i −0.395777 + 0.118943i
\(656\) −25.7362 11.5851i −1.00483 0.452324i
\(657\) 0 0
\(658\) −2.97184 + 0.152694i −0.115855 + 0.00595261i
\(659\) −3.08407 + 2.24070i −0.120138 + 0.0872855i −0.646232 0.763141i \(-0.723656\pi\)
0.526094 + 0.850427i \(0.323656\pi\)
\(660\) 0 0
\(661\) −21.1830 15.3904i −0.823925 0.598616i 0.0939094 0.995581i \(-0.470064\pi\)
−0.917834 + 0.396965i \(0.870064\pi\)
\(662\) 25.9486 + 16.8891i 1.00852 + 0.656412i
\(663\) 0 0
\(664\) 10.1614 + 3.33622i 0.394339 + 0.129470i
\(665\) 6.80869 + 3.66194i 0.264030 + 0.142004i
\(666\) 0 0
\(667\) −9.02728 17.7170i −0.349538 0.686006i
\(668\) 2.15976 39.6552i 0.0835636 1.53430i
\(669\) 0 0
\(670\) −23.2842 21.9662i −0.899548 0.848627i
\(671\) −0.0789571 + 0.0256547i −0.00304810 + 0.000990389i
\(672\) 0 0
\(673\) −25.4790 + 4.03547i −0.982142 + 0.155556i −0.626800 0.779180i \(-0.715636\pi\)
−0.355342 + 0.934736i \(0.615636\pi\)
\(674\) −40.5520 18.1047i −1.56200 0.697368i
\(675\) 0 0
\(676\) 6.55797 + 7.31346i 0.252230 + 0.281287i
\(677\) 4.12705 + 26.0571i 0.158615 + 1.00146i 0.930659 + 0.365888i \(0.119235\pi\)
−0.772044 + 0.635570i \(0.780765\pi\)
\(678\) 0 0
\(679\) −2.64737 8.14776i −0.101597 0.312682i
\(680\) 25.7924 7.66504i 0.989095 0.293941i
\(681\) 0 0
\(682\) 0.0556296 0.0212888i 0.00213017 0.000815191i
\(683\) 20.3220 10.3546i 0.777600 0.396207i −0.0196878 0.999806i \(-0.506267\pi\)
0.797288 + 0.603599i \(0.206267\pi\)
\(684\) 0 0
\(685\) 5.15344 2.48319i 0.196903 0.0948778i
\(686\) 4.65191 + 8.07645i 0.177611 + 0.308360i
\(687\) 0 0
\(688\) 9.64547 35.4160i 0.367730 1.35022i
\(689\) 1.13472 1.56181i 0.0432295 0.0595003i
\(690\) 0 0
\(691\) 27.1958 + 37.4318i 1.03458 + 1.42397i 0.901455 + 0.432872i \(0.142500\pi\)
0.133121 + 0.991100i \(0.457500\pi\)
\(692\) 10.8435 + 4.18797i 0.412209 + 0.159203i
\(693\) 0 0
\(694\) 32.9409 + 29.7214i 1.25042 + 1.12821i
\(695\) −25.1592 0.559013i −0.954344 0.0212046i
\(696\) 0 0
\(697\) −13.6282 + 26.7468i −0.516204 + 1.01311i
\(698\) −12.0348 + 44.7312i −0.455525 + 1.69310i
\(699\) 0 0
\(700\) −0.472260 + 4.76243i −0.0178498 + 0.180003i
\(701\) 10.5399 0.398088 0.199044 0.979991i \(-0.436216\pi\)
0.199044 + 0.979991i \(0.436216\pi\)
\(702\) 0 0
\(703\) 21.3253 41.8532i 0.804299 1.57852i
\(704\) 0.0594481 + 0.0437527i 0.00224053 + 0.00164899i
\(705\) 0 0
\(706\) 13.6981 + 12.3593i 0.515535 + 0.465147i
\(707\) 6.17142 6.17142i 0.232100 0.232100i
\(708\) 0 0
\(709\) −6.66013 9.16688i −0.250126 0.344269i 0.665429 0.746461i \(-0.268249\pi\)
−0.915556 + 0.402192i \(0.868249\pi\)
\(710\) −17.6038 + 13.5902i −0.660657 + 0.510033i
\(711\) 0 0
\(712\) −43.0467 + 6.68231i −1.61324 + 0.250430i
\(713\) 4.18764 26.4397i 0.156828 0.990175i
\(714\) 0 0
\(715\) 0.0577354 + 0.0104640i 0.00215918 + 0.000391333i
\(716\) −9.55583 + 44.5078i −0.357118 + 1.66334i
\(717\) 0 0
\(718\) 15.2838 5.84893i 0.570386 0.218280i
\(719\) −8.75905 + 26.9576i −0.326658 + 1.00535i 0.644029 + 0.765001i \(0.277261\pi\)
−0.970687 + 0.240348i \(0.922739\pi\)
\(720\) 0 0
\(721\) −1.60105 4.92751i −0.0596261 0.183510i
\(722\) 29.5019 + 36.5082i 1.09795 + 1.35869i
\(723\) 0 0
\(724\) 6.92680 6.21125i 0.257432 0.230839i
\(725\) −0.753024 + 16.9371i −0.0279666 + 0.629029i
\(726\) 0 0
\(727\) −43.9866 + 6.96679i −1.63137 + 0.258384i −0.903897 0.427750i \(-0.859306\pi\)
−0.727475 + 0.686134i \(0.759306\pi\)
\(728\) 0.613920 3.80047i 0.0227534 0.140855i
\(729\) 0 0
\(730\) 8.18788 4.47687i 0.303047 0.165697i
\(731\) −37.1298 12.0642i −1.37330 0.446211i
\(732\) 0 0
\(733\) 11.9095 + 23.3738i 0.439889 + 0.863331i 0.999404 + 0.0345111i \(0.0109874\pi\)
−0.559515 + 0.828820i \(0.689013\pi\)
\(734\) −1.96596 9.29595i −0.0725649 0.343120i
\(735\) 0 0
\(736\) 30.3739 13.3372i 1.11960 0.491617i
\(737\) −0.0922475 0.0146106i −0.00339798 0.000538187i
\(738\) 0 0
\(739\) −22.6226 16.4363i −0.832187 0.604619i 0.0879901 0.996121i \(-0.471956\pi\)
−0.920177 + 0.391502i \(0.871956\pi\)
\(740\) 28.9929 + 2.22594i 1.06580 + 0.0818272i
\(741\) 0 0
\(742\) 0.458812 0.0235738i 0.0168435 0.000865422i
\(743\) −32.7328 32.7328i −1.20085 1.20085i −0.973909 0.226941i \(-0.927128\pi\)
−0.226941 0.973909i \(-0.572872\pi\)
\(744\) 0 0
\(745\) −1.33348 1.92385i −0.0488550 0.0704842i
\(746\) 11.0579 + 1.17369i 0.404858 + 0.0429719i
\(747\) 0 0
\(748\) 0.0495316 0.0609107i 0.00181105 0.00222712i
\(749\) 2.68970i 0.0982796i
\(750\) 0 0
\(751\) 50.2489i 1.83361i −0.399338 0.916804i \(-0.630760\pi\)
0.399338 0.916804i \(-0.369240\pi\)
\(752\) −0.848417 17.5664i −0.0309386 0.640582i
\(753\) 0 0
\(754\) 1.43944 13.5617i 0.0524215 0.493887i
\(755\) −3.38986 4.89062i −0.123370 0.177988i
\(756\) 0 0
\(757\) −18.7549 18.7549i −0.681658 0.681658i 0.278716 0.960374i \(-0.410091\pi\)
−0.960374 + 0.278716i \(0.910091\pi\)
\(758\) −1.18781 23.1182i −0.0431434 0.839690i
\(759\) 0 0
\(760\) −21.7659 + 40.1729i −0.789531 + 1.45723i
\(761\) 25.1788 + 18.2935i 0.912731 + 0.663138i 0.941704 0.336442i \(-0.109224\pi\)
−0.0289729 + 0.999580i \(0.509224\pi\)
\(762\) 0 0
\(763\) −7.41043 1.17370i −0.268275 0.0424907i
\(764\) −4.71780 45.7896i −0.170684 1.65661i
\(765\) 0 0
\(766\) 33.7867 7.14540i 1.22076 0.258174i
\(767\) 3.26058 + 6.39926i 0.117733 + 0.231064i
\(768\) 0 0
\(769\) 27.1469 + 8.82055i 0.978941 + 0.318077i 0.754420 0.656392i \(-0.227918\pi\)
0.224521 + 0.974469i \(0.427918\pi\)
\(770\) 0.00669890 + 0.0122518i 0.000241412 + 0.000441525i
\(771\) 0 0
\(772\) 45.1026 11.9862i 1.62328 0.431392i
\(773\) −35.7571 + 5.66336i −1.28609 + 0.203697i −0.761784 0.647832i \(-0.775676\pi\)
−0.524308 + 0.851529i \(0.675676\pi\)
\(774\) 0 0
\(775\) −14.2226 + 17.8511i −0.510892 + 0.641229i
\(776\) 48.2016 15.4979i 1.73034 0.556344i
\(777\) 0 0
\(778\) 9.94924 8.03986i 0.356697 0.288243i
\(779\) −15.7517 48.4789i −0.564365 1.73694i
\(780\) 0 0
\(781\) −0.0200515 + 0.0617122i −0.000717500 + 0.00220824i
\(782\) −12.6106 32.9525i −0.450952 1.17838i
\(783\) 0 0
\(784\) −23.5106 + 13.4456i −0.839665 + 0.480202i
\(785\) −11.5780 2.09841i −0.413235 0.0748953i
\(786\) 0 0
\(787\) 3.28931 20.7679i 0.117251 0.740294i −0.857081 0.515181i \(-0.827725\pi\)
0.974333 0.225113i \(-0.0722753\pi\)
\(788\) 12.2247 7.90322i 0.435486 0.281540i
\(789\) 0 0
\(790\) −4.57127 5.92127i −0.162638 0.210669i
\(791\) 1.39560 + 1.92088i 0.0496218 + 0.0682985i
\(792\) 0 0
\(793\) −18.0950 + 18.0950i −0.642573 + 0.642573i
\(794\) 13.3680 14.8161i 0.474412 0.525803i
\(795\) 0 0
\(796\) 32.1635 + 18.6576i 1.14000 + 0.661301i
\(797\) −0.286364 + 0.562022i −0.0101435 + 0.0199078i −0.896023 0.444008i \(-0.853556\pi\)
0.885879 + 0.463916i \(0.153556\pi\)
\(798\) 0 0
\(799\) −18.7055 −0.661753
\(800\) −28.1375 2.87761i −0.994811 0.101739i
\(801\) 0 0
\(802\) 15.4026 + 4.14403i 0.543884 + 0.146331i
\(803\) 0.0123612 0.0242601i 0.000436216 0.000856121i
\(804\) 0 0
\(805\) 6.27398 + 0.139401i 0.221129 + 0.00491326i
\(806\) 12.2992 13.6315i 0.433221 0.480151i
\(807\) 0 0
\(808\) 36.3611 + 36.5854i 1.27918 + 1.28707i
\(809\) 10.7939 + 14.8566i 0.379495 + 0.522330i 0.955451 0.295151i \(-0.0953699\pi\)
−0.575956 + 0.817481i \(0.695370\pi\)
\(810\) 0 0
\(811\) 28.0972 38.6725i 0.986625 1.35797i 0.0534429 0.998571i \(-0.482980\pi\)
0.933183 0.359403i \(-0.117020\pi\)
\(812\) 2.72553 1.76205i 0.0956473 0.0618357i
\(813\) 0 0
\(814\) 0.0735188 0.0423457i 0.00257683 0.00148422i
\(815\) 37.2241 17.9365i 1.30390 0.628288i
\(816\) 0 0
\(817\) 59.0681 30.0967i 2.06653 1.05295i
\(818\) 3.38482 + 8.84484i 0.118347 + 0.309253i
\(819\) 0 0
\(820\) 23.9552 20.5391i 0.836552 0.717258i
\(821\) 12.7770 + 39.3235i 0.445919 + 1.37240i 0.881472 + 0.472236i \(0.156553\pi\)
−0.435553 + 0.900163i \(0.643447\pi\)
\(822\) 0 0
\(823\) 4.70612 + 29.7133i 0.164045 + 1.03574i 0.923057 + 0.384663i \(0.125682\pi\)
−0.759012 + 0.651076i \(0.774318\pi\)
\(824\) 29.1508 9.37267i 1.01552 0.326512i
\(825\) 0 0
\(826\) −0.696782 + 1.56069i −0.0242441 + 0.0543034i
\(827\) 3.42645 0.542696i 0.119149 0.0188714i −0.0965750 0.995326i \(-0.530789\pi\)
0.215724 + 0.976454i \(0.430789\pi\)
\(828\) 0 0
\(829\) 16.7607 5.44590i 0.582125 0.189144i −0.00312747 0.999995i \(-0.500996\pi\)
0.585252 + 0.810851i \(0.300996\pi\)
\(830\) −8.20543 + 8.69779i −0.284815 + 0.301905i
\(831\) 0 0
\(832\) 22.4497 + 3.69735i 0.778304 + 0.128182i
\(833\) 13.0779 + 25.6668i 0.453121 + 0.889301i
\(834\) 0 0
\(835\) 39.1045 + 21.0317i 1.35327 + 0.727832i
\(836\) 0.0136631 + 0.132610i 0.000472548 + 0.00458641i
\(837\) 0 0
\(838\) −13.3797 + 20.5567i −0.462193 + 0.710121i
\(839\) 7.06575 + 5.13357i 0.243937 + 0.177231i 0.703035 0.711155i \(-0.251828\pi\)
−0.459099 + 0.888385i \(0.651828\pi\)
\(840\) 0 0
\(841\) −14.1599 + 10.2878i −0.488274 + 0.354752i
\(842\) −0.534149 10.3960i −0.0184080 0.358271i
\(843\) 0 0
\(844\) 45.2448 20.0333i 1.55739 0.689573i
\(845\) −10.5179 + 3.16095i −0.361826 + 0.108740i
\(846\) 0 0
\(847\) −4.69055 2.38996i −0.161169 0.0821199i
\(848\) 0.130984 + 2.71202i 0.00449801 + 0.0931311i
\(849\) 0 0
\(850\) −4.50080 + 29.7447i −0.154376 + 1.02023i
\(851\) 38.1298i 1.30707i
\(852\) 0 0
\(853\) 21.8126 + 11.1141i 0.746849 + 0.380539i 0.785620 0.618709i \(-0.212344\pi\)
−0.0387705 + 0.999248i \(0.512344\pi\)
\(854\) −6.05589 0.642775i −0.207228 0.0219953i
\(855\) 0 0
\(856\) 15.8962 + 0.0488782i 0.543321 + 0.00167062i
\(857\) 2.88171 + 2.88171i 0.0984373 + 0.0984373i 0.754610 0.656173i \(-0.227826\pi\)
−0.656173 + 0.754610i \(0.727826\pi\)
\(858\) 0 0
\(859\) −39.7386 + 28.8718i −1.35586 + 0.985092i −0.357166 + 0.934041i \(0.616257\pi\)
−0.998696 + 0.0510509i \(0.983743\pi\)
\(860\) 31.2569 + 26.5926i 1.06585 + 0.906799i
\(861\) 0 0
\(862\) −34.4006 22.3902i −1.17169 0.762612i
\(863\) 15.4604 + 2.44868i 0.526276 + 0.0833540i 0.413919 0.910314i \(-0.364160\pi\)
0.112358 + 0.993668i \(0.464160\pi\)
\(864\) 0 0
\(865\) −9.39158 + 8.98331i −0.319323 + 0.305442i
\(866\) −3.48266 16.4676i −0.118346 0.559592i
\(867\) 0 0
\(868\) 4.36281 + 0.237614i 0.148083 + 0.00806514i
\(869\) −0.0207578 0.00674461i −0.000704159 0.000228795i
\(870\) 0 0
\(871\) −27.3798 + 8.89623i −0.927729 + 0.301437i
\(872\) 7.07123 43.7744i 0.239462 1.48239i
\(873\) 0 0
\(874\) 54.7083 + 24.4249i 1.85054 + 0.826186i
\(875\) −4.59513 2.74126i −0.155344 0.0926716i
\(876\) 0 0
\(877\) −8.26731 52.1978i −0.279167 1.76259i −0.585503 0.810670i \(-0.699103\pi\)
0.306336 0.951923i \(-0.400897\pi\)
\(878\) −9.14763 11.3201i −0.308718 0.382035i
\(879\) 0 0
\(880\) −0.0725302 + 0.0393680i −0.00244499 + 0.00132709i
\(881\) −16.9137 + 52.0551i −0.569838 + 1.75378i 0.0832834 + 0.996526i \(0.473459\pi\)
−0.653121 + 0.757254i \(0.726541\pi\)
\(882\) 0 0
\(883\) −36.8694 + 18.7859i −1.24076 + 0.632196i −0.946245 0.323452i \(-0.895157\pi\)
−0.294511 + 0.955648i \(0.595157\pi\)
\(884\) 5.07982 23.6601i 0.170853 0.795775i
\(885\) 0 0
\(886\) 19.8610 + 34.4819i 0.667244 + 1.15844i
\(887\) 4.33280 27.3562i 0.145481 0.918532i −0.801675 0.597760i \(-0.796058\pi\)
0.947156 0.320772i \(-0.103942\pi\)
\(888\) 0 0
\(889\) −1.11020 + 1.52805i −0.0372348 + 0.0512493i
\(890\) 13.6954 46.7389i 0.459070 1.56669i
\(891\) 0 0
\(892\) −5.04280 + 13.0569i −0.168845 + 0.437177i
\(893\) 22.4600 22.4600i 0.751596 0.751596i
\(894\) 0 0
\(895\) −40.5004 30.8227i −1.35378 1.03029i
\(896\) 2.67354 + 4.70840i 0.0893168 + 0.157297i
\(897\) 0 0
\(898\) −1.19634 + 4.44656i −0.0399224 + 0.148384i
\(899\) 15.4783 0.516231
\(900\) 0 0
\(901\) 2.88788 0.0962091
\(902\) 0.0239201 0.0889065i 0.000796453 0.00296026i
\(903\) 0 0
\(904\) −11.3778 + 8.21311i −0.378419 + 0.273164i
\(905\) 2.99383 + 9.96179i 0.0995182 + 0.331141i
\(906\) 0 0
\(907\) 1.04931 1.04931i 0.0348419 0.0348419i −0.689471 0.724313i \(-0.742157\pi\)
0.724313 + 0.689471i \(0.242157\pi\)
\(908\) 27.4965 + 10.6196i 0.912503 + 0.352425i
\(909\) 0 0
\(910\) 3.55430 + 2.42745i 0.117824 + 0.0804693i
\(911\) 33.9572 46.7381i 1.12505 1.54850i 0.327911 0.944709i \(-0.393655\pi\)
0.797141 0.603793i \(-0.206345\pi\)
\(912\) 0 0
\(913\) −0.00545776 + 0.0344589i −0.000180625 + 0.00114042i
\(914\) 7.54516 + 13.0996i 0.249572 + 0.433296i
\(915\) 0 0
\(916\) −52.5604 11.2847i −1.73665 0.372858i
\(917\) −2.01696 + 1.02769i −0.0666059 + 0.0339374i
\(918\) 0 0
\(919\) 11.5591 35.5754i 0.381301 1.17352i −0.557828 0.829957i \(-0.688365\pi\)
0.939128 0.343566i \(-0.111635\pi\)
\(920\) −0.937879 + 37.0768i −0.0309209 + 1.22239i
\(921\) 0 0
\(922\) −24.1541 29.8905i −0.795474 0.984390i
\(923\) 3.12886 + 19.7549i 0.102988 + 0.650239i
\(924\) 0 0
\(925\) −16.0315 + 28.2829i −0.527111 + 0.929935i
\(926\) −39.6439 17.6993i −1.30278 0.581635i
\(927\) 0 0
\(928\) 10.3642 + 16.1400i 0.340222 + 0.529820i
\(929\) −8.87951 + 2.88513i −0.291327 + 0.0946580i −0.451035 0.892506i \(-0.648945\pi\)
0.159707 + 0.987164i \(0.448945\pi\)
\(930\) 0 0
\(931\) −46.5213 15.1157i −1.52467 0.495397i
\(932\) −2.35568 + 43.2525i −0.0771630 + 1.41678i
\(933\) 0 0
\(934\) −3.44545 16.2917i −0.112739 0.533079i
\(935\) 0.0381017 + 0.0790735i 0.00124606 + 0.00258598i
\(936\) 0 0
\(937\) −23.3504 3.69834i −0.762825 0.120820i −0.237113 0.971482i \(-0.576201\pi\)
−0.525712 + 0.850663i \(0.676201\pi\)
\(938\) −5.74199 3.73726i −0.187483 0.122026i
\(939\) 0 0
\(940\) 18.1804 + 7.48982i 0.592979 + 0.244291i
\(941\) −14.7926 + 10.7475i −0.482226 + 0.350358i −0.802187 0.597073i \(-0.796330\pi\)
0.319961 + 0.947431i \(0.396330\pi\)
\(942\) 0 0
\(943\) −29.2582 29.2582i −0.952777 0.952777i
\(944\) −9.21105 4.14636i −0.299794 0.134952i
\(945\) 0 0
\(946\) 0.119070 + 0.0126382i 0.00387130 + 0.000410902i
\(947\) 14.5607 + 7.41904i 0.473159 + 0.241086i 0.674274 0.738481i \(-0.264457\pi\)
−0.201115 + 0.979568i \(0.564457\pi\)
\(948\) 0 0
\(949\) 8.39269i 0.272438i
\(950\) −30.3107 41.1191i −0.983410 1.33408i
\(951\) 0 0
\(952\) 5.13922 2.59869i 0.166563 0.0842241i
\(953\) −6.96002 3.54631i −0.225457 0.114876i 0.337614 0.941285i \(-0.390380\pi\)
−0.563071 + 0.826409i \(0.690380\pi\)
\(954\) 0 0
\(955\) 48.5810 + 16.9870i 1.57205 + 0.549686i
\(956\) 8.98788 + 20.2990i 0.290689 + 0.656516i
\(957\) 0 0
\(958\) −2.18862 42.5967i −0.0707112 1.37624i
\(959\) 0.990514 0.719650i 0.0319854 0.0232387i
\(960\) 0 0
\(961\) −8.22144 5.97323i −0.265208 0.192685i
\(962\) 14.2657 21.9181i 0.459945 0.706667i
\(963\) 0 0
\(964\) 2.50890 0.258497i 0.0808062 0.00832564i
\(965\) −9.30496 + 51.3402i −0.299537 + 1.65270i
\(966\) 0 0
\(967\) 15.6133 + 30.6429i 0.502091 + 0.985408i 0.993430 + 0.114440i \(0.0365074\pi\)
−0.491340 + 0.870968i \(0.663493\pi\)
\(968\) 14.2099 27.6778i 0.456725 0.889599i
\(969\) 0 0
\(970\) −7.22382 + 56.1452i −0.231943 + 1.80271i
\(971\) −33.0263 + 10.7309i −1.05986 + 0.344371i −0.786532 0.617549i \(-0.788126\pi\)
−0.273332 + 0.961920i \(0.588126\pi\)
\(972\) 0 0
\(973\) −5.31978 + 0.842570i −0.170544 + 0.0270115i
\(974\) −11.1856 + 25.0541i −0.358410 + 0.802786i
\(975\) 0 0
\(976\) 3.90887 35.7787i 0.125120 1.14525i
\(977\) −1.13937 7.19369i −0.0364516 0.230147i 0.962736 0.270442i \(-0.0871700\pi\)
−0.999188 + 0.0402958i \(0.987170\pi\)
\(978\) 0 0
\(979\) −0.0439128 0.135150i −0.00140346 0.00431940i
\(980\) −2.43359 30.1827i −0.0777382 0.964151i
\(981\) 0 0
\(982\) 1.09559 + 2.86286i 0.0349615 + 0.0913577i
\(983\) 31.7358 16.1702i 1.01221 0.515749i 0.132465 0.991188i \(-0.457711\pi\)
0.879749 + 0.475439i \(0.157711\pi\)
\(984\) 0 0
\(985\) 2.18828 + 16.1273i 0.0697245 + 0.513860i
\(986\) 17.6783 10.1824i 0.562992 0.324275i
\(987\) 0 0
\(988\) 22.3096 + 34.5085i 0.709764 + 1.09786i
\(989\) 31.6305 43.5357i 1.00579 1.38435i
\(990\) 0 0
\(991\) 1.17484 + 1.61702i 0.0373199 + 0.0513664i 0.827269 0.561806i \(-0.189893\pi\)
−0.789949 + 0.613172i \(0.789893\pi\)
\(992\) −1.48359 + 25.7800i −0.0471039 + 0.818515i
\(993\) 0 0
\(994\) −3.18856 + 3.53397i −0.101135 + 0.112091i
\(995\) −34.1671 + 23.6824i −1.08317 + 0.750782i
\(996\) 0 0
\(997\) −16.0795 + 31.5579i −0.509244 + 0.999447i 0.483056 + 0.875589i \(0.339527\pi\)
−0.992300 + 0.123858i \(0.960473\pi\)
\(998\) −19.0343 5.12115i −0.602521 0.162107i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.bj.f.487.3 240
3.2 odd 2 300.2.w.a.187.28 yes 240
4.3 odd 2 inner 900.2.bj.f.487.25 240
12.11 even 2 300.2.w.a.187.6 240
25.23 odd 20 inner 900.2.bj.f.523.25 240
75.23 even 20 300.2.w.a.223.6 yes 240
100.23 even 20 inner 900.2.bj.f.523.3 240
300.23 odd 20 300.2.w.a.223.28 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
300.2.w.a.187.6 240 12.11 even 2
300.2.w.a.187.28 yes 240 3.2 odd 2
300.2.w.a.223.6 yes 240 75.23 even 20
300.2.w.a.223.28 yes 240 300.23 odd 20
900.2.bj.f.487.3 240 1.1 even 1 trivial
900.2.bj.f.487.25 240 4.3 odd 2 inner
900.2.bj.f.523.3 240 100.23 even 20 inner
900.2.bj.f.523.25 240 25.23 odd 20 inner