Properties

Label 900.2.bj.f.163.4
Level $900$
Weight $2$
Character 900.163
Analytic conductor $7.187$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(127,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([10, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [240,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 300)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 163.4
Character \(\chi\) \(=\) 900.163
Dual form 900.2.bj.f.127.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.33300 - 0.472333i) q^{2} +(1.55380 + 1.25924i) q^{4} +(-1.01218 + 1.99386i) q^{5} +(0.189838 + 0.189838i) q^{7} +(-1.47645 - 2.41249i) q^{8} +(2.29101 - 2.17974i) q^{10} +(-2.68290 + 3.69270i) q^{11} +(-1.66631 - 0.263917i) q^{13} +(-0.163389 - 0.342722i) q^{14} +(0.828612 + 3.91323i) q^{16} +(-2.52266 - 4.95101i) q^{17} +(-0.186788 + 0.574876i) q^{19} +(-4.08349 + 1.82349i) q^{20} +(5.32050 - 3.65516i) q^{22} +(3.67098 - 0.581426i) q^{23} +(-2.95097 - 4.03631i) q^{25} +(2.09654 + 1.13886i) q^{26} +(0.0559189 + 0.534025i) q^{28} +(-3.14920 + 1.02324i) q^{29} +(-6.47245 - 2.10303i) q^{31} +(0.743804 - 5.60774i) q^{32} +(1.02420 + 7.79125i) q^{34} +(-0.570663 + 0.186361i) q^{35} +(-0.372643 + 2.35278i) q^{37} +(0.520523 - 0.678086i) q^{38} +(6.30461 - 0.501950i) q^{40} +(9.30874 - 6.76320i) q^{41} +(0.00980686 - 0.00980686i) q^{43} +(-8.81871 + 2.35930i) q^{44} +(-5.16806 - 0.958880i) q^{46} +(1.17702 - 2.31002i) q^{47} -6.92792i q^{49} +(2.02718 + 6.77426i) q^{50} +(-2.25678 - 2.50836i) q^{52} +(4.53201 - 8.89456i) q^{53} +(-4.64714 - 9.08702i) q^{55} +(0.177697 - 0.738270i) q^{56} +(4.68120 + 0.123490i) q^{58} +(-3.15728 + 2.29390i) q^{59} +(-9.40115 - 6.83034i) q^{61} +(7.63448 + 5.86050i) q^{62} +(-3.64021 + 7.12382i) q^{64} +(2.21282 - 3.05526i) q^{65} +(-6.49592 + 3.30984i) q^{67} +(2.31480 - 10.8695i) q^{68} +(0.848721 + 0.0211233i) q^{70} +(-12.6076 + 4.09646i) q^{71} +(-0.770226 - 4.86301i) q^{73} +(1.60803 - 2.96025i) q^{74} +(-1.01414 + 0.658032i) q^{76} +(-1.21033 + 0.191698i) q^{77} +(4.17182 + 12.8395i) q^{79} +(-8.64116 - 2.30877i) q^{80} +(-15.6031 + 4.61855i) q^{82} +(3.42602 + 6.72394i) q^{83} +(12.4250 - 0.0185208i) q^{85} +(-0.0177047 + 0.00844049i) q^{86} +(12.8698 + 1.02040i) q^{88} +(-4.20350 + 5.78562i) q^{89} +(-0.266228 - 0.366431i) q^{91} +(6.43614 + 3.71924i) q^{92} +(-2.66007 + 2.52333i) q^{94} +(-0.957159 - 0.954310i) q^{95} +(-0.917106 - 0.467289i) q^{97} +(-3.27228 + 9.23495i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 12 q^{8} + 8 q^{10} + 4 q^{13} - 20 q^{17} + 20 q^{20} - 12 q^{22} + 20 q^{25} + 4 q^{28} + 20 q^{32} - 4 q^{37} + 76 q^{38} - 92 q^{40} + 140 q^{44} + 164 q^{50} - 172 q^{52} + 4 q^{53} - 120 q^{58}+ \cdots - 256 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{19}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33300 0.472333i −0.942577 0.333990i
\(3\) 0 0
\(4\) 1.55380 + 1.25924i 0.776902 + 0.629622i
\(5\) −1.01218 + 1.99386i −0.452662 + 0.891682i
\(6\) 0 0
\(7\) 0.189838 + 0.189838i 0.0717522 + 0.0717522i 0.742072 0.670320i \(-0.233843\pi\)
−0.670320 + 0.742072i \(0.733843\pi\)
\(8\) −1.47645 2.41249i −0.522003 0.852944i
\(9\) 0 0
\(10\) 2.29101 2.17974i 0.724481 0.689295i
\(11\) −2.68290 + 3.69270i −0.808925 + 1.11339i 0.182563 + 0.983194i \(0.441561\pi\)
−0.991488 + 0.130196i \(0.958439\pi\)
\(12\) 0 0
\(13\) −1.66631 0.263917i −0.462151 0.0731975i −0.0789825 0.996876i \(-0.525167\pi\)
−0.383168 + 0.923678i \(0.625167\pi\)
\(14\) −0.163389 0.342722i −0.0436675 0.0915964i
\(15\) 0 0
\(16\) 0.828612 + 3.91323i 0.207153 + 0.978309i
\(17\) −2.52266 4.95101i −0.611836 1.20080i −0.964261 0.264955i \(-0.914643\pi\)
0.352425 0.935840i \(-0.385357\pi\)
\(18\) 0 0
\(19\) −0.186788 + 0.574876i −0.0428522 + 0.131886i −0.970194 0.242331i \(-0.922088\pi\)
0.927342 + 0.374216i \(0.122088\pi\)
\(20\) −4.08349 + 1.82349i −0.913096 + 0.407744i
\(21\) 0 0
\(22\) 5.32050 3.65516i 1.13434 0.779283i
\(23\) 3.67098 0.581426i 0.765452 0.121236i 0.238514 0.971139i \(-0.423340\pi\)
0.526939 + 0.849903i \(0.323340\pi\)
\(24\) 0 0
\(25\) −2.95097 4.03631i −0.590194 0.807261i
\(26\) 2.09654 + 1.13886i 0.411165 + 0.223348i
\(27\) 0 0
\(28\) 0.0559189 + 0.534025i 0.0105677 + 0.100921i
\(29\) −3.14920 + 1.02324i −0.584791 + 0.190010i −0.586446 0.809988i \(-0.699473\pi\)
0.00165467 + 0.999999i \(0.499473\pi\)
\(30\) 0 0
\(31\) −6.47245 2.10303i −1.16249 0.377715i −0.336653 0.941629i \(-0.609295\pi\)
−0.825834 + 0.563914i \(0.809295\pi\)
\(32\) 0.743804 5.60774i 0.131487 0.991318i
\(33\) 0 0
\(34\) 1.02420 + 7.79125i 0.175649 + 1.33619i
\(35\) −0.570663 + 0.186361i −0.0964596 + 0.0315007i
\(36\) 0 0
\(37\) −0.372643 + 2.35278i −0.0612621 + 0.386794i 0.937938 + 0.346803i \(0.112733\pi\)
−0.999200 + 0.0399907i \(0.987267\pi\)
\(38\) 0.520523 0.678086i 0.0844399 0.110000i
\(39\) 0 0
\(40\) 6.30461 0.501950i 0.996846 0.0793652i
\(41\) 9.30874 6.76320i 1.45378 1.05623i 0.468852 0.883277i \(-0.344668\pi\)
0.984929 0.172957i \(-0.0553323\pi\)
\(42\) 0 0
\(43\) 0.00980686 0.00980686i 0.00149553 0.00149553i −0.706359 0.707854i \(-0.749663\pi\)
0.707854 + 0.706359i \(0.249663\pi\)
\(44\) −8.81871 + 2.35930i −1.32947 + 0.355678i
\(45\) 0 0
\(46\) −5.16806 0.958880i −0.761989 0.141379i
\(47\) 1.17702 2.31002i 0.171685 0.336952i −0.789091 0.614277i \(-0.789448\pi\)
0.960776 + 0.277325i \(0.0894479\pi\)
\(48\) 0 0
\(49\) 6.92792i 0.989703i
\(50\) 2.02718 + 6.77426i 0.286687 + 0.958024i
\(51\) 0 0
\(52\) −2.25678 2.50836i −0.312959 0.347848i
\(53\) 4.53201 8.89456i 0.622519 1.22176i −0.337368 0.941373i \(-0.609537\pi\)
0.959886 0.280389i \(-0.0904634\pi\)
\(54\) 0 0
\(55\) −4.64714 9.08702i −0.626621 1.22529i
\(56\) 0.177697 0.738270i 0.0237458 0.0986554i
\(57\) 0 0
\(58\) 4.68120 + 0.123490i 0.614672 + 0.0162150i
\(59\) −3.15728 + 2.29390i −0.411043 + 0.298640i −0.774024 0.633156i \(-0.781759\pi\)
0.362981 + 0.931797i \(0.381759\pi\)
\(60\) 0 0
\(61\) −9.40115 6.83034i −1.20369 0.874535i −0.209051 0.977905i \(-0.567038\pi\)
−0.994643 + 0.103369i \(0.967038\pi\)
\(62\) 7.63448 + 5.86050i 0.969581 + 0.744284i
\(63\) 0 0
\(64\) −3.64021 + 7.12382i −0.455027 + 0.890478i
\(65\) 2.21282 3.05526i 0.274467 0.378958i
\(66\) 0 0
\(67\) −6.49592 + 3.30984i −0.793603 + 0.404361i −0.803287 0.595592i \(-0.796917\pi\)
0.00968402 + 0.999953i \(0.496917\pi\)
\(68\) 2.31480 10.8695i 0.280710 1.31813i
\(69\) 0 0
\(70\) 0.848721 + 0.0211233i 0.101442 + 0.00252471i
\(71\) −12.6076 + 4.09646i −1.49625 + 0.486160i −0.938921 0.344134i \(-0.888173\pi\)
−0.557326 + 0.830294i \(0.688173\pi\)
\(72\) 0 0
\(73\) −0.770226 4.86301i −0.0901481 0.569173i −0.990875 0.134786i \(-0.956965\pi\)
0.900727 0.434386i \(-0.143035\pi\)
\(74\) 1.60803 2.96025i 0.186929 0.344122i
\(75\) 0 0
\(76\) −1.01414 + 0.658032i −0.116330 + 0.0754814i
\(77\) −1.21033 + 0.191698i −0.137930 + 0.0218460i
\(78\) 0 0
\(79\) 4.17182 + 12.8395i 0.469366 + 1.44456i 0.853408 + 0.521244i \(0.174532\pi\)
−0.384042 + 0.923316i \(0.625468\pi\)
\(80\) −8.64116 2.30877i −0.966111 0.258128i
\(81\) 0 0
\(82\) −15.6031 + 4.61855i −1.72307 + 0.510034i
\(83\) 3.42602 + 6.72394i 0.376054 + 0.738048i 0.999023 0.0441989i \(-0.0140735\pi\)
−0.622969 + 0.782247i \(0.714074\pi\)
\(84\) 0 0
\(85\) 12.4250 0.0185208i 1.34768 0.00200886i
\(86\) −0.0177047 + 0.00844049i −0.00190915 + 0.000910161i
\(87\) 0 0
\(88\) 12.8698 + 1.02040i 1.37192 + 0.108775i
\(89\) −4.20350 + 5.78562i −0.445570 + 0.613274i −0.971438 0.237292i \(-0.923740\pi\)
0.525869 + 0.850566i \(0.323740\pi\)
\(90\) 0 0
\(91\) −0.266228 0.366431i −0.0279083 0.0384124i
\(92\) 6.43614 + 3.71924i 0.671014 + 0.387757i
\(93\) 0 0
\(94\) −2.66007 + 2.52333i −0.274365 + 0.260262i
\(95\) −0.957159 0.954310i −0.0982024 0.0979101i
\(96\) 0 0
\(97\) −0.917106 0.467289i −0.0931180 0.0474460i 0.406811 0.913512i \(-0.366641\pi\)
−0.499929 + 0.866066i \(0.666641\pi\)
\(98\) −3.27228 + 9.23495i −0.330551 + 0.932871i
\(99\) 0 0
\(100\) 0.497459 9.98762i 0.0497459 0.998762i
\(101\) −6.65959 −0.662654 −0.331327 0.943516i \(-0.607496\pi\)
−0.331327 + 0.943516i \(0.607496\pi\)
\(102\) 0 0
\(103\) −13.3848 6.81989i −1.31884 0.671984i −0.354107 0.935205i \(-0.615215\pi\)
−0.964736 + 0.263221i \(0.915215\pi\)
\(104\) 1.82352 + 4.40961i 0.178811 + 0.432398i
\(105\) 0 0
\(106\) −10.2424 + 9.71588i −0.994828 + 0.943690i
\(107\) −11.3660 11.3660i −1.09880 1.09880i −0.994552 0.104243i \(-0.966758\pi\)
−0.104243 0.994552i \(-0.533242\pi\)
\(108\) 0 0
\(109\) 3.89523 + 5.36133i 0.373095 + 0.513522i 0.953739 0.300636i \(-0.0971990\pi\)
−0.580643 + 0.814158i \(0.697199\pi\)
\(110\) 1.90257 + 14.3080i 0.181403 + 1.36422i
\(111\) 0 0
\(112\) −0.585580 + 0.900185i −0.0553321 + 0.0850595i
\(113\) −16.3189 2.58466i −1.53515 0.243144i −0.669129 0.743146i \(-0.733333\pi\)
−0.866024 + 0.500002i \(0.833333\pi\)
\(114\) 0 0
\(115\) −2.55642 + 7.90794i −0.238387 + 0.737419i
\(116\) −6.18174 2.37570i −0.573960 0.220578i
\(117\) 0 0
\(118\) 5.29216 1.56649i 0.487183 0.144207i
\(119\) 0.460993 1.41879i 0.0422591 0.130060i
\(120\) 0 0
\(121\) −3.03887 9.35268i −0.276261 0.850243i
\(122\) 9.30559 + 13.5453i 0.842489 + 1.22634i
\(123\) 0 0
\(124\) −7.40870 11.4181i −0.665321 1.02537i
\(125\) 11.0348 1.79835i 0.986979 0.160850i
\(126\) 0 0
\(127\) 0.216773 + 1.36865i 0.0192355 + 0.121448i 0.995438 0.0954145i \(-0.0304176\pi\)
−0.976202 + 0.216863i \(0.930418\pi\)
\(128\) 8.21724 7.77670i 0.726308 0.687369i
\(129\) 0 0
\(130\) −4.39280 + 3.02748i −0.385274 + 0.265528i
\(131\) −18.9066 6.14313i −1.65188 0.536728i −0.672732 0.739886i \(-0.734880\pi\)
−0.979146 + 0.203158i \(0.934880\pi\)
\(132\) 0 0
\(133\) −0.144593 + 0.0736739i −0.0125378 + 0.00638834i
\(134\) 10.2224 1.34379i 0.883084 0.116086i
\(135\) 0 0
\(136\) −8.21967 + 13.3958i −0.704831 + 1.14868i
\(137\) 0.600835 3.79353i 0.0513328 0.324103i −0.948637 0.316366i \(-0.897537\pi\)
0.999970 0.00773685i \(-0.00246274\pi\)
\(138\) 0 0
\(139\) 14.9655 + 10.8731i 1.26936 + 0.922243i 0.999177 0.0405660i \(-0.0129161\pi\)
0.270182 + 0.962809i \(0.412916\pi\)
\(140\) −1.12137 0.429036i −0.0947732 0.0362601i
\(141\) 0 0
\(142\) 18.7409 + 0.494383i 1.57270 + 0.0414877i
\(143\) 5.44511 5.44511i 0.455343 0.455343i
\(144\) 0 0
\(145\) 1.14737 7.31477i 0.0952840 0.607458i
\(146\) −1.27025 + 6.84622i −0.105126 + 0.566597i
\(147\) 0 0
\(148\) −3.54173 + 3.18650i −0.291129 + 0.261929i
\(149\) 19.1283i 1.56705i 0.621359 + 0.783526i \(0.286581\pi\)
−0.621359 + 0.783526i \(0.713419\pi\)
\(150\) 0 0
\(151\) 0.789590i 0.0642559i 0.999484 + 0.0321280i \(0.0102284\pi\)
−0.999484 + 0.0321280i \(0.989772\pi\)
\(152\) 1.66267 0.398148i 0.134860 0.0322941i
\(153\) 0 0
\(154\) 1.70393 + 0.316146i 0.137306 + 0.0254758i
\(155\) 10.7445 10.7765i 0.863015 0.865592i
\(156\) 0 0
\(157\) 0.986707 0.986707i 0.0787478 0.0787478i −0.666636 0.745384i \(-0.732266\pi\)
0.745384 + 0.666636i \(0.232266\pi\)
\(158\) 0.503478 19.0856i 0.0400546 1.51837i
\(159\) 0 0
\(160\) 10.4282 + 7.15910i 0.824421 + 0.565977i
\(161\) 0.807270 + 0.586516i 0.0636218 + 0.0462240i
\(162\) 0 0
\(163\) 1.18009 7.45082i 0.0924320 0.583593i −0.897385 0.441248i \(-0.854536\pi\)
0.989817 0.142345i \(-0.0454641\pi\)
\(164\) 22.9805 + 1.21329i 1.79447 + 0.0947421i
\(165\) 0 0
\(166\) −1.39096 10.5813i −0.107960 0.821265i
\(167\) 17.5211 8.92744i 1.35582 0.690826i 0.383298 0.923625i \(-0.374788\pi\)
0.972525 + 0.232799i \(0.0747883\pi\)
\(168\) 0 0
\(169\) −9.65680 3.13769i −0.742831 0.241360i
\(170\) −16.5714 5.84405i −1.27097 0.448218i
\(171\) 0 0
\(172\) 0.0275871 0.00288871i 0.00210350 0.000220262i
\(173\) 2.63941 + 16.6646i 0.200670 + 1.26698i 0.858106 + 0.513473i \(0.171641\pi\)
−0.657435 + 0.753511i \(0.728359\pi\)
\(174\) 0 0
\(175\) 0.206038 1.32645i 0.0155750 0.100271i
\(176\) −16.6735 7.43901i −1.25681 0.560736i
\(177\) 0 0
\(178\) 8.33602 5.72681i 0.624811 0.429242i
\(179\) 0.708606 + 2.18087i 0.0529637 + 0.163006i 0.974040 0.226377i \(-0.0726883\pi\)
−0.921076 + 0.389383i \(0.872688\pi\)
\(180\) 0 0
\(181\) 4.25840 13.1060i 0.316525 0.974163i −0.658598 0.752495i \(-0.728850\pi\)
0.975122 0.221667i \(-0.0711499\pi\)
\(182\) 0.181806 + 0.614203i 0.0134763 + 0.0455277i
\(183\) 0 0
\(184\) −6.82269 7.99776i −0.502975 0.589603i
\(185\) −4.31393 3.12444i −0.317166 0.229713i
\(186\) 0 0
\(187\) 25.0506 + 3.96763i 1.83188 + 0.290142i
\(188\) 4.73774 2.10717i 0.345535 0.153682i
\(189\) 0 0
\(190\) 0.825146 + 1.72420i 0.0598624 + 0.125086i
\(191\) 15.6587 + 21.5523i 1.13302 + 1.55947i 0.782200 + 0.623027i \(0.214097\pi\)
0.350821 + 0.936443i \(0.385903\pi\)
\(192\) 0 0
\(193\) 6.53786 + 6.53786i 0.470605 + 0.470605i 0.902110 0.431505i \(-0.142017\pi\)
−0.431505 + 0.902110i \(0.642017\pi\)
\(194\) 1.00179 + 1.05608i 0.0719244 + 0.0758219i
\(195\) 0 0
\(196\) 8.72394 10.7646i 0.623139 0.768902i
\(197\) −12.1115 6.17110i −0.862906 0.439673i −0.0342384 0.999414i \(-0.510901\pi\)
−0.828668 + 0.559741i \(0.810901\pi\)
\(198\) 0 0
\(199\) 7.41416 0.525576 0.262788 0.964854i \(-0.415358\pi\)
0.262788 + 0.964854i \(0.415358\pi\)
\(200\) −5.38059 + 13.0786i −0.380465 + 0.924795i
\(201\) 0 0
\(202\) 8.87726 + 3.14554i 0.624602 + 0.221319i
\(203\) −0.792088 0.403589i −0.0555937 0.0283264i
\(204\) 0 0
\(205\) 4.06274 + 25.4059i 0.283754 + 1.77443i
\(206\) 14.6207 + 15.4130i 1.01867 + 1.07388i
\(207\) 0 0
\(208\) −0.347953 6.73934i −0.0241262 0.467289i
\(209\) −1.62171 2.23209i −0.112176 0.154397i
\(210\) 0 0
\(211\) 4.85618 6.68396i 0.334313 0.460142i −0.608457 0.793587i \(-0.708211\pi\)
0.942770 + 0.333445i \(0.108211\pi\)
\(212\) 18.2423 8.11350i 1.25288 0.557238i
\(213\) 0 0
\(214\) 9.78242 + 20.5195i 0.668713 + 1.40268i
\(215\) 0.00962719 + 0.0294799i 0.000656569 + 0.00201051i
\(216\) 0 0
\(217\) −0.829485 1.62796i −0.0563091 0.110513i
\(218\) −2.66003 8.98652i −0.180160 0.608644i
\(219\) 0 0
\(220\) 4.22202 19.9713i 0.284649 1.34647i
\(221\) 2.89688 + 8.91568i 0.194865 + 0.599733i
\(222\) 0 0
\(223\) −4.16161 + 0.659135i −0.278682 + 0.0441389i −0.294211 0.955741i \(-0.595057\pi\)
0.0155288 + 0.999879i \(0.495057\pi\)
\(224\) 1.20577 0.923362i 0.0805637 0.0616947i
\(225\) 0 0
\(226\) 20.5324 + 11.1533i 1.36579 + 0.741907i
\(227\) 1.61847 + 10.2186i 0.107421 + 0.678232i 0.981358 + 0.192191i \(0.0615594\pi\)
−0.873936 + 0.486041i \(0.838441\pi\)
\(228\) 0 0
\(229\) −1.55021 + 0.503695i −0.102441 + 0.0332851i −0.359789 0.933034i \(-0.617151\pi\)
0.257348 + 0.966319i \(0.417151\pi\)
\(230\) 7.14290 9.33384i 0.470989 0.615455i
\(231\) 0 0
\(232\) 7.11817 + 6.08665i 0.467330 + 0.399608i
\(233\) −2.66801 + 1.35942i −0.174787 + 0.0890586i −0.539195 0.842181i \(-0.681271\pi\)
0.364408 + 0.931240i \(0.381271\pi\)
\(234\) 0 0
\(235\) 3.41451 + 4.68497i 0.222738 + 0.305614i
\(236\) −7.79438 0.411517i −0.507371 0.0267875i
\(237\) 0 0
\(238\) −1.28465 + 1.67351i −0.0832713 + 0.108478i
\(239\) 17.9159 + 13.0167i 1.15888 + 0.841979i 0.989637 0.143595i \(-0.0458662\pi\)
0.169248 + 0.985574i \(0.445866\pi\)
\(240\) 0 0
\(241\) −0.0614146 + 0.0446203i −0.00395606 + 0.00287425i −0.589762 0.807577i \(-0.700778\pi\)
0.585805 + 0.810452i \(0.300778\pi\)
\(242\) −0.366748 + 13.9025i −0.0235754 + 0.893688i
\(243\) 0 0
\(244\) −6.00649 22.4513i −0.384526 1.43730i
\(245\) 13.8133 + 7.01232i 0.882501 + 0.448001i
\(246\) 0 0
\(247\) 0.462967 0.908624i 0.0294579 0.0578144i
\(248\) 4.48270 + 18.7197i 0.284652 + 1.18870i
\(249\) 0 0
\(250\) −15.5588 2.81486i −0.984025 0.178028i
\(251\) 29.9398i 1.88979i −0.327379 0.944893i \(-0.606165\pi\)
0.327379 0.944893i \(-0.393835\pi\)
\(252\) 0 0
\(253\) −7.70185 + 15.1157i −0.484211 + 0.950318i
\(254\) 0.357499 1.92681i 0.0224315 0.120899i
\(255\) 0 0
\(256\) −14.6268 + 6.48511i −0.914175 + 0.405319i
\(257\) −14.7898 + 14.7898i −0.922565 + 0.922565i −0.997210 0.0746451i \(-0.976218\pi\)
0.0746451 + 0.997210i \(0.476218\pi\)
\(258\) 0 0
\(259\) −0.517389 + 0.375905i −0.0321490 + 0.0233576i
\(260\) 7.28561 1.96079i 0.451834 0.121603i
\(261\) 0 0
\(262\) 22.3010 + 17.1190i 1.37776 + 1.05762i
\(263\) −4.13096 + 26.0818i −0.254726 + 1.60827i 0.446128 + 0.894969i \(0.352803\pi\)
−0.700854 + 0.713305i \(0.747197\pi\)
\(264\) 0 0
\(265\) 13.1473 + 18.0391i 0.807633 + 1.10813i
\(266\) 0.227542 0.0299116i 0.0139515 0.00183400i
\(267\) 0 0
\(268\) −14.2613 3.03711i −0.871146 0.185521i
\(269\) 14.2213 + 4.62080i 0.867091 + 0.281735i 0.708587 0.705623i \(-0.249333\pi\)
0.158504 + 0.987358i \(0.449333\pi\)
\(270\) 0 0
\(271\) −8.37925 + 2.72258i −0.509003 + 0.165385i −0.552249 0.833679i \(-0.686230\pi\)
0.0432457 + 0.999064i \(0.486230\pi\)
\(272\) 17.2841 13.9742i 1.04800 0.847313i
\(273\) 0 0
\(274\) −2.59272 + 4.77299i −0.156632 + 0.288347i
\(275\) 22.8220 0.0680375i 1.37622 0.00410281i
\(276\) 0 0
\(277\) −8.96925 + 1.42059i −0.538910 + 0.0853549i −0.419955 0.907545i \(-0.637954\pi\)
−0.118955 + 0.992900i \(0.537954\pi\)
\(278\) −14.8134 21.5626i −0.888449 1.29324i
\(279\) 0 0
\(280\) 1.29215 + 1.10157i 0.0772205 + 0.0658312i
\(281\) 8.89363 27.3718i 0.530549 1.63286i −0.222525 0.974927i \(-0.571430\pi\)
0.753074 0.657936i \(-0.228570\pi\)
\(282\) 0 0
\(283\) −8.13832 15.9724i −0.483773 0.949458i −0.995892 0.0905436i \(-0.971140\pi\)
0.512120 0.858914i \(-0.328860\pi\)
\(284\) −24.7482 9.51094i −1.46853 0.564371i
\(285\) 0 0
\(286\) −9.83026 + 4.68646i −0.581276 + 0.277116i
\(287\) 3.05107 + 0.483242i 0.180099 + 0.0285249i
\(288\) 0 0
\(289\) −8.15628 + 11.2262i −0.479781 + 0.660362i
\(290\) −4.98445 + 9.20868i −0.292697 + 0.540752i
\(291\) 0 0
\(292\) 4.92694 8.52607i 0.288327 0.498950i
\(293\) 1.24037 + 1.24037i 0.0724632 + 0.0724632i 0.742410 0.669946i \(-0.233683\pi\)
−0.669946 + 0.742410i \(0.733683\pi\)
\(294\) 0 0
\(295\) −1.37797 8.61703i −0.0802287 0.501703i
\(296\) 6.22624 2.57475i 0.361893 0.149654i
\(297\) 0 0
\(298\) 9.03492 25.4981i 0.523379 1.47707i
\(299\) −6.27044 −0.362629
\(300\) 0 0
\(301\) 0.00372344 0.000214615
\(302\) 0.372949 1.05253i 0.0214608 0.0605661i
\(303\) 0 0
\(304\) −2.40440 0.254598i −0.137902 0.0146022i
\(305\) 23.1344 11.8311i 1.32467 0.677444i
\(306\) 0 0
\(307\) 11.6840 + 11.6840i 0.666844 + 0.666844i 0.956984 0.290140i \(-0.0937020\pi\)
−0.290140 + 0.956984i \(0.593702\pi\)
\(308\) −2.12202 1.22624i −0.120913 0.0698717i
\(309\) 0 0
\(310\) −19.4125 + 9.29022i −1.10256 + 0.527649i
\(311\) −3.31285 + 4.55974i −0.187854 + 0.258559i −0.892548 0.450952i \(-0.851084\pi\)
0.704694 + 0.709512i \(0.251084\pi\)
\(312\) 0 0
\(313\) −17.7167 2.80604i −1.00141 0.158607i −0.365859 0.930670i \(-0.619225\pi\)
−0.635546 + 0.772063i \(0.719225\pi\)
\(314\) −1.78134 + 0.849231i −0.100527 + 0.0479249i
\(315\) 0 0
\(316\) −9.68591 + 25.2034i −0.544875 + 1.41780i
\(317\) −4.15260 8.14994i −0.233233 0.457746i 0.744493 0.667630i \(-0.232691\pi\)
−0.977726 + 0.209884i \(0.932691\pi\)
\(318\) 0 0
\(319\) 4.67049 14.3743i 0.261497 0.804805i
\(320\) −10.5194 14.4687i −0.588050 0.808825i
\(321\) 0 0
\(322\) −0.799064 1.16313i −0.0445301 0.0648186i
\(323\) 3.31742 0.525427i 0.184586 0.0292356i
\(324\) 0 0
\(325\) 3.85198 + 7.50454i 0.213669 + 0.416277i
\(326\) −5.09233 + 9.37458i −0.282038 + 0.519210i
\(327\) 0 0
\(328\) −30.0600 12.4718i −1.65979 0.688637i
\(329\) 0.661974 0.215089i 0.0364958 0.0118582i
\(330\) 0 0
\(331\) −7.07411 2.29852i −0.388828 0.126338i 0.108077 0.994142i \(-0.465531\pi\)
−0.496906 + 0.867804i \(0.665531\pi\)
\(332\) −3.14371 + 14.7619i −0.172534 + 0.810163i
\(333\) 0 0
\(334\) −27.5724 + 3.62454i −1.50870 + 0.198326i
\(335\) −0.0243001 16.3021i −0.00132765 0.890680i
\(336\) 0 0
\(337\) 1.87071 11.8112i 0.101904 0.643398i −0.882878 0.469603i \(-0.844397\pi\)
0.984782 0.173795i \(-0.0556030\pi\)
\(338\) 11.3905 + 8.74377i 0.619563 + 0.475599i
\(339\) 0 0
\(340\) 19.3294 + 15.6173i 1.04828 + 0.846969i
\(341\) 25.1308 18.2586i 1.36091 0.988759i
\(342\) 0 0
\(343\) 2.64406 2.64406i 0.142766 0.142766i
\(344\) −0.0381382 0.00917964i −0.00205628 0.000494933i
\(345\) 0 0
\(346\) 4.35287 23.4606i 0.234012 1.26125i
\(347\) −15.3433 + 30.1129i −0.823672 + 1.61655i −0.0368882 + 0.999319i \(0.511745\pi\)
−0.786784 + 0.617228i \(0.788255\pi\)
\(348\) 0 0
\(349\) 27.4462i 1.46916i 0.678523 + 0.734579i \(0.262620\pi\)
−0.678523 + 0.734579i \(0.737380\pi\)
\(350\) −0.901177 + 1.67085i −0.0481699 + 0.0893108i
\(351\) 0 0
\(352\) 18.7121 + 17.7917i 0.997360 + 0.948299i
\(353\) −4.86385 + 9.54584i −0.258876 + 0.508074i −0.983463 0.181110i \(-0.942031\pi\)
0.724586 + 0.689184i \(0.242031\pi\)
\(354\) 0 0
\(355\) 4.59342 29.2842i 0.243794 1.55424i
\(356\) −13.8169 + 3.69649i −0.732295 + 0.195913i
\(357\) 0 0
\(358\) 0.0855185 3.24180i 0.00451980 0.171335i
\(359\) 10.7538 7.81307i 0.567562 0.412358i −0.266657 0.963792i \(-0.585919\pi\)
0.834219 + 0.551434i \(0.185919\pi\)
\(360\) 0 0
\(361\) 15.0757 + 10.9532i 0.793460 + 0.576482i
\(362\) −11.8669 + 15.4590i −0.623709 + 0.812507i
\(363\) 0 0
\(364\) 0.0477602 0.904608i 0.00250332 0.0474143i
\(365\) 10.4758 + 3.38653i 0.548328 + 0.177259i
\(366\) 0 0
\(367\) −23.2351 + 11.8389i −1.21286 + 0.617983i −0.939043 0.343799i \(-0.888286\pi\)
−0.273817 + 0.961782i \(0.588286\pi\)
\(368\) 5.31708 + 13.8836i 0.277172 + 0.723734i
\(369\) 0 0
\(370\) 4.27471 + 6.20250i 0.222232 + 0.322453i
\(371\) 2.54888 0.828181i 0.132331 0.0429970i
\(372\) 0 0
\(373\) −4.62618 29.2086i −0.239535 1.51236i −0.755156 0.655545i \(-0.772439\pi\)
0.515621 0.856817i \(-0.327561\pi\)
\(374\) −31.5186 17.1211i −1.62979 0.885311i
\(375\) 0 0
\(376\) −7.31071 + 0.571087i −0.377021 + 0.0294516i
\(377\) 5.51758 0.873899i 0.284170 0.0450081i
\(378\) 0 0
\(379\) −5.98387 18.4165i −0.307371 0.945990i −0.978782 0.204905i \(-0.934311\pi\)
0.671411 0.741085i \(-0.265689\pi\)
\(380\) −0.285529 2.68811i −0.0146473 0.137897i
\(381\) 0 0
\(382\) −10.6932 36.1254i −0.547113 1.84834i
\(383\) −4.35881 8.55465i −0.222725 0.437122i 0.752422 0.658681i \(-0.228885\pi\)
−0.975147 + 0.221559i \(0.928885\pi\)
\(384\) 0 0
\(385\) 0.842860 2.60727i 0.0429561 0.132879i
\(386\) −5.62695 11.8030i −0.286404 0.600759i
\(387\) 0 0
\(388\) −0.836572 1.88093i −0.0424705 0.0954900i
\(389\) −11.3570 + 15.6316i −0.575825 + 0.792555i −0.993230 0.116166i \(-0.962940\pi\)
0.417405 + 0.908721i \(0.362940\pi\)
\(390\) 0 0
\(391\) −12.1393 16.7083i −0.613910 0.844975i
\(392\) −16.7135 + 10.2287i −0.844161 + 0.516628i
\(393\) 0 0
\(394\) 13.2298 + 13.9467i 0.666509 + 0.702627i
\(395\) −29.8229 4.67792i −1.50055 0.235372i
\(396\) 0 0
\(397\) 17.5405 + 8.93731i 0.880331 + 0.448551i 0.834890 0.550416i \(-0.185531\pi\)
0.0454402 + 0.998967i \(0.485531\pi\)
\(398\) −9.88311 3.50195i −0.495395 0.175537i
\(399\) 0 0
\(400\) 13.3498 14.8924i 0.667490 0.744619i
\(401\) −33.9482 −1.69529 −0.847645 0.530564i \(-0.821980\pi\)
−0.847645 + 0.530564i \(0.821980\pi\)
\(402\) 0 0
\(403\) 10.2301 + 5.21249i 0.509597 + 0.259652i
\(404\) −10.3477 8.38604i −0.514817 0.417221i
\(405\) 0 0
\(406\) 0.865229 + 0.912115i 0.0429406 + 0.0452675i
\(407\) −7.68833 7.68833i −0.381096 0.381096i
\(408\) 0 0
\(409\) 8.02687 + 11.0480i 0.396903 + 0.546291i 0.959963 0.280125i \(-0.0903760\pi\)
−0.563060 + 0.826416i \(0.690376\pi\)
\(410\) 6.58441 35.7852i 0.325181 1.76731i
\(411\) 0 0
\(412\) −12.2094 27.4515i −0.601516 1.35244i
\(413\) −1.03484 0.163903i −0.0509214 0.00806515i
\(414\) 0 0
\(415\) −16.8744 + 0.0251530i −0.828330 + 0.00123471i
\(416\) −2.71939 + 9.14792i −0.133329 + 0.448514i
\(417\) 0 0
\(418\) 1.10746 + 3.74137i 0.0541674 + 0.182996i
\(419\) 2.10539 6.47973i 0.102855 0.316555i −0.886366 0.462985i \(-0.846778\pi\)
0.989221 + 0.146430i \(0.0467783\pi\)
\(420\) 0 0
\(421\) 3.96818 + 12.2128i 0.193397 + 0.595215i 0.999992 + 0.00410979i \(0.00130819\pi\)
−0.806594 + 0.591105i \(0.798692\pi\)
\(422\) −9.63036 + 6.61601i −0.468799 + 0.322062i
\(423\) 0 0
\(424\) −28.1493 + 2.19892i −1.36705 + 0.106789i
\(425\) −12.5395 + 24.7925i −0.608253 + 1.20261i
\(426\) 0 0
\(427\) −0.488040 3.08136i −0.0236179 0.149118i
\(428\) −3.34798 31.9732i −0.161831 1.54548i
\(429\) 0 0
\(430\) 0.00109121 0.0438440i 5.26226e−5 0.00211435i
\(431\) −3.23293 1.05044i −0.155725 0.0505981i 0.230117 0.973163i \(-0.426089\pi\)
−0.385842 + 0.922565i \(0.626089\pi\)
\(432\) 0 0
\(433\) 3.04817 1.55312i 0.146486 0.0746383i −0.379211 0.925310i \(-0.623805\pi\)
0.525697 + 0.850672i \(0.323805\pi\)
\(434\) 0.336771 + 2.56187i 0.0161655 + 0.122974i
\(435\) 0 0
\(436\) −0.698789 + 13.2355i −0.0334659 + 0.633865i
\(437\) −0.351449 + 2.21896i −0.0168121 + 0.106147i
\(438\) 0 0
\(439\) 16.2122 + 11.7788i 0.773766 + 0.562174i 0.903102 0.429427i \(-0.141285\pi\)
−0.129336 + 0.991601i \(0.541285\pi\)
\(440\) −15.0611 + 24.6277i −0.718009 + 1.17408i
\(441\) 0 0
\(442\) 0.349612 13.2529i 0.0166293 0.630378i
\(443\) −10.2267 + 10.2267i −0.485887 + 0.485887i −0.907006 0.421119i \(-0.861638\pi\)
0.421119 + 0.907006i \(0.361638\pi\)
\(444\) 0 0
\(445\) −7.28102 14.2373i −0.345153 0.674912i
\(446\) 5.85878 + 1.08704i 0.277421 + 0.0514726i
\(447\) 0 0
\(448\) −2.04343 + 0.661323i −0.0965429 + 0.0312446i
\(449\) 20.1223i 0.949629i −0.880086 0.474814i \(-0.842515\pi\)
0.880086 0.474814i \(-0.157485\pi\)
\(450\) 0 0
\(451\) 52.5194i 2.47304i
\(452\) −22.1017 24.5655i −1.03957 1.15547i
\(453\) 0 0
\(454\) 2.66915 14.3859i 0.125270 0.675163i
\(455\) 1.00008 0.159926i 0.0468847 0.00749746i
\(456\) 0 0
\(457\) 5.50274 5.50274i 0.257407 0.257407i −0.566591 0.823999i \(-0.691738\pi\)
0.823999 + 0.566591i \(0.191738\pi\)
\(458\) 2.30436 + 0.0607887i 0.107675 + 0.00284047i
\(459\) 0 0
\(460\) −13.9302 + 9.06823i −0.649499 + 0.422808i
\(461\) −1.99209 1.44734i −0.0927808 0.0674092i 0.540428 0.841390i \(-0.318262\pi\)
−0.633209 + 0.773981i \(0.718262\pi\)
\(462\) 0 0
\(463\) −5.26029 + 33.2122i −0.244467 + 1.54350i 0.494151 + 0.869376i \(0.335479\pi\)
−0.738617 + 0.674125i \(0.764521\pi\)
\(464\) −6.61362 11.4757i −0.307030 0.532745i
\(465\) 0 0
\(466\) 4.19857 0.551925i 0.194495 0.0255674i
\(467\) −9.58390 + 4.88324i −0.443490 + 0.225969i −0.661452 0.749988i \(-0.730059\pi\)
0.217962 + 0.975957i \(0.430059\pi\)
\(468\) 0 0
\(469\) −1.86151 0.604841i −0.0859565 0.0279290i
\(470\) −2.33870 7.85788i −0.107876 0.362457i
\(471\) 0 0
\(472\) 10.1956 + 4.23009i 0.469289 + 0.194706i
\(473\) 0.00990292 + 0.0625246i 0.000455337 + 0.00287488i
\(474\) 0 0
\(475\) 2.87158 0.942507i 0.131757 0.0432452i
\(476\) 2.50289 1.62402i 0.114720 0.0744368i
\(477\) 0 0
\(478\) −17.7338 25.8136i −0.811125 1.18068i
\(479\) −7.08607 21.8087i −0.323771 0.996464i −0.971992 0.235012i \(-0.924487\pi\)
0.648221 0.761452i \(-0.275513\pi\)
\(480\) 0 0
\(481\) 1.24188 3.82210i 0.0566247 0.174273i
\(482\) 0.102942 0.0304710i 0.00468886 0.00138792i
\(483\) 0 0
\(484\) 7.05549 18.3589i 0.320704 0.834495i
\(485\) 1.85999 1.35560i 0.0844577 0.0615547i
\(486\) 0 0
\(487\) 16.6355 + 2.63480i 0.753826 + 0.119394i 0.521509 0.853246i \(-0.325369\pi\)
0.232317 + 0.972640i \(0.425369\pi\)
\(488\) −2.59782 + 32.7648i −0.117598 + 1.48319i
\(489\) 0 0
\(490\) −15.1011 15.8719i −0.682197 0.717021i
\(491\) −6.71450 9.24172i −0.303021 0.417073i 0.630168 0.776459i \(-0.282986\pi\)
−0.933189 + 0.359386i \(0.882986\pi\)
\(492\) 0 0
\(493\) 13.0104 + 13.0104i 0.585959 + 0.585959i
\(494\) −1.04631 + 0.992526i −0.0470757 + 0.0446558i
\(495\) 0 0
\(496\) 2.86649 27.0708i 0.128709 1.21552i
\(497\) −3.17107 1.61574i −0.142242 0.0724759i
\(498\) 0 0
\(499\) −41.8728 −1.87448 −0.937242 0.348679i \(-0.886630\pi\)
−0.937242 + 0.348679i \(0.886630\pi\)
\(500\) 19.4104 + 11.1012i 0.868060 + 0.496459i
\(501\) 0 0
\(502\) −14.1416 + 39.9100i −0.631169 + 1.78127i
\(503\) −21.0178 10.7091i −0.937139 0.477496i −0.0824263 0.996597i \(-0.526267\pi\)
−0.854713 + 0.519101i \(0.826267\pi\)
\(504\) 0 0
\(505\) 6.74072 13.2783i 0.299958 0.590877i
\(506\) 17.4063 16.5115i 0.773802 0.734026i
\(507\) 0 0
\(508\) −1.38664 + 2.39958i −0.0615223 + 0.106464i
\(509\) 22.3651 + 30.7830i 0.991318 + 1.36443i 0.930504 + 0.366282i \(0.119370\pi\)
0.0608138 + 0.998149i \(0.480630\pi\)
\(510\) 0 0
\(511\) 0.776968 1.06941i 0.0343711 0.0473077i
\(512\) 22.5607 1.73596i 0.997053 0.0767194i
\(513\) 0 0
\(514\) 26.7007 12.7292i 1.17772 0.561461i
\(515\) 27.1458 19.7845i 1.19619 0.871807i
\(516\) 0 0
\(517\) 5.37240 + 10.5439i 0.236278 + 0.463722i
\(518\) 0.867235 0.256704i 0.0381041 0.0112789i
\(519\) 0 0
\(520\) −10.6379 0.827492i −0.466502 0.0362879i
\(521\) −2.57819 7.93486i −0.112953 0.347632i 0.878562 0.477629i \(-0.158504\pi\)
−0.991515 + 0.129996i \(0.958504\pi\)
\(522\) 0 0
\(523\) 32.5180 5.15034i 1.42191 0.225209i 0.602365 0.798221i \(-0.294225\pi\)
0.819547 + 0.573012i \(0.194225\pi\)
\(524\) −21.6415 33.3532i −0.945412 1.45704i
\(525\) 0 0
\(526\) 17.8259 32.8160i 0.777245 1.43085i
\(527\) 5.91572 + 37.3504i 0.257693 + 1.62701i
\(528\) 0 0
\(529\) −8.73626 + 2.83858i −0.379837 + 0.123417i
\(530\) −9.00497 30.2561i −0.391151 1.31424i
\(531\) 0 0
\(532\) −0.317443 0.0676032i −0.0137629 0.00293097i
\(533\) −17.2962 + 8.81284i −0.749180 + 0.381726i
\(534\) 0 0
\(535\) 34.1668 11.1578i 1.47716 0.482393i
\(536\) 17.5758 + 10.7845i 0.759160 + 0.465821i
\(537\) 0 0
\(538\) −16.7746 12.8767i −0.723203 0.555156i
\(539\) 25.5827 + 18.5869i 1.10193 + 0.800596i
\(540\) 0 0
\(541\) −7.48590 + 5.43883i −0.321844 + 0.233833i −0.736962 0.675934i \(-0.763740\pi\)
0.415118 + 0.909768i \(0.363740\pi\)
\(542\) 12.4555 + 0.328576i 0.535011 + 0.0141136i
\(543\) 0 0
\(544\) −29.6403 + 10.4639i −1.27082 + 0.448634i
\(545\) −14.6324 + 2.33991i −0.626784 + 0.100231i
\(546\) 0 0
\(547\) 6.35363 12.4697i 0.271662 0.533166i −0.714361 0.699777i \(-0.753283\pi\)
0.986023 + 0.166611i \(0.0532825\pi\)
\(548\) 5.71055 5.13780i 0.243943 0.219476i
\(549\) 0 0
\(550\) −30.4540 10.6889i −1.29856 0.455776i
\(551\) 2.00153i 0.0852679i
\(552\) 0 0
\(553\) −1.64547 + 3.22941i −0.0699723 + 0.137328i
\(554\) 12.6270 + 2.34282i 0.536472 + 0.0995367i
\(555\) 0 0
\(556\) 9.56162 + 35.7399i 0.405503 + 1.51571i
\(557\) −2.87624 + 2.87624i −0.121870 + 0.121870i −0.765411 0.643541i \(-0.777464\pi\)
0.643541 + 0.765411i \(0.277464\pi\)
\(558\) 0 0
\(559\) −0.0189295 + 0.0137531i −0.000800630 + 0.000581692i
\(560\) −1.20213 2.07872i −0.0507993 0.0878418i
\(561\) 0 0
\(562\) −24.7838 + 32.2860i −1.04544 + 1.36190i
\(563\) −3.30793 + 20.8854i −0.139412 + 0.880216i 0.814507 + 0.580153i \(0.197007\pi\)
−0.953920 + 0.300062i \(0.902993\pi\)
\(564\) 0 0
\(565\) 21.6712 29.9215i 0.911713 1.25881i
\(566\) 3.30416 + 25.1352i 0.138884 + 1.05651i
\(567\) 0 0
\(568\) 28.4971 + 24.3675i 1.19571 + 1.02244i
\(569\) −3.40048 1.10488i −0.142556 0.0463192i 0.236870 0.971541i \(-0.423878\pi\)
−0.379426 + 0.925222i \(0.623878\pi\)
\(570\) 0 0
\(571\) 10.6049 3.44576i 0.443803 0.144200i −0.0785864 0.996907i \(-0.525041\pi\)
0.522390 + 0.852707i \(0.325041\pi\)
\(572\) 15.3174 1.60391i 0.640451 0.0670630i
\(573\) 0 0
\(574\) −3.83884 2.08529i −0.160230 0.0870381i
\(575\) −13.1798 13.1014i −0.549635 0.546367i
\(576\) 0 0
\(577\) −38.4820 + 6.09495i −1.60203 + 0.253736i −0.892535 0.450979i \(-0.851075\pi\)
−0.709491 + 0.704714i \(0.751075\pi\)
\(578\) 16.1748 11.1120i 0.672785 0.462200i
\(579\) 0 0
\(580\) 10.9939 9.92089i 0.456495 0.411943i
\(581\) −0.626072 + 1.92685i −0.0259738 + 0.0799393i
\(582\) 0 0
\(583\) 20.6860 + 40.5986i 0.856727 + 1.68142i
\(584\) −10.5948 + 9.03814i −0.438415 + 0.374001i
\(585\) 0 0
\(586\) −1.06755 2.23929i −0.0441002 0.0925041i
\(587\) −15.7614 2.49636i −0.650542 0.103036i −0.177563 0.984109i \(-0.556821\pi\)
−0.472979 + 0.881074i \(0.656821\pi\)
\(588\) 0 0
\(589\) 2.41796 3.32804i 0.0996303 0.137129i
\(590\) −2.23326 + 12.1374i −0.0919419 + 0.499689i
\(591\) 0 0
\(592\) −9.51574 + 0.491299i −0.391094 + 0.0201923i
\(593\) −6.24575 6.24575i −0.256482 0.256482i 0.567140 0.823622i \(-0.308050\pi\)
−0.823622 + 0.567140i \(0.808050\pi\)
\(594\) 0 0
\(595\) 2.36226 + 2.35523i 0.0968433 + 0.0965550i
\(596\) −24.0872 + 29.7216i −0.986650 + 1.21745i
\(597\) 0 0
\(598\) 8.35852 + 2.96173i 0.341805 + 0.121114i
\(599\) −19.3797 −0.791832 −0.395916 0.918287i \(-0.629573\pi\)
−0.395916 + 0.918287i \(0.629573\pi\)
\(600\) 0 0
\(601\) 21.8893 0.892883 0.446441 0.894813i \(-0.352691\pi\)
0.446441 + 0.894813i \(0.352691\pi\)
\(602\) −0.00496336 0.00175870i −0.000202291 7.16793e-5i
\(603\) 0 0
\(604\) −0.994286 + 1.22687i −0.0404569 + 0.0499206i
\(605\) 21.7238 + 3.40753i 0.883199 + 0.138536i
\(606\) 0 0
\(607\) −26.4147 26.4147i −1.07214 1.07214i −0.997187 0.0749533i \(-0.976119\pi\)
−0.0749533 0.997187i \(-0.523881\pi\)
\(608\) 3.08482 + 1.47506i 0.125106 + 0.0598214i
\(609\) 0 0
\(610\) −36.4265 + 4.84370i −1.47487 + 0.196116i
\(611\) −2.57093 + 3.53858i −0.104009 + 0.143156i
\(612\) 0 0
\(613\) −23.7116 3.75555i −0.957703 0.151685i −0.342032 0.939688i \(-0.611115\pi\)
−0.615671 + 0.788003i \(0.711115\pi\)
\(614\) −10.0561 21.0937i −0.405833 0.851270i
\(615\) 0 0
\(616\) 2.24946 + 2.63689i 0.0906334 + 0.106243i
\(617\) −19.1096 37.5048i −0.769325 1.50989i −0.857900 0.513816i \(-0.828231\pi\)
0.0885751 0.996070i \(-0.471769\pi\)
\(618\) 0 0
\(619\) 0.176865 0.544334i 0.00710880 0.0218786i −0.947439 0.319936i \(-0.896339\pi\)
0.954548 + 0.298057i \(0.0963386\pi\)
\(620\) 30.2651 3.21474i 1.21547 0.129107i
\(621\) 0 0
\(622\) 6.56976 4.51339i 0.263423 0.180971i
\(623\) −1.89632 + 0.300347i −0.0759744 + 0.0120332i
\(624\) 0 0
\(625\) −7.58352 + 23.8221i −0.303341 + 0.952882i
\(626\) 22.2910 + 12.1086i 0.890928 + 0.483958i
\(627\) 0 0
\(628\) 2.77565 0.290645i 0.110761 0.0115980i
\(629\) 12.5887 4.09030i 0.501943 0.163091i
\(630\) 0 0
\(631\) 12.1577 + 3.95028i 0.483991 + 0.157258i 0.540842 0.841124i \(-0.318106\pi\)
−0.0568504 + 0.998383i \(0.518106\pi\)
\(632\) 24.8158 29.0213i 0.987118 1.15441i
\(633\) 0 0
\(634\) 1.68596 + 12.8253i 0.0669579 + 0.509359i
\(635\) −2.94831 0.953109i −0.117000 0.0378230i
\(636\) 0 0
\(637\) −1.82840 + 11.5441i −0.0724438 + 0.457392i
\(638\) −13.0152 + 16.9550i −0.515277 + 0.671253i
\(639\) 0 0
\(640\) 7.18832 + 24.2555i 0.284143 + 0.958782i
\(641\) 0.248557 0.180587i 0.00981740 0.00713276i −0.582866 0.812568i \(-0.698069\pi\)
0.592683 + 0.805436i \(0.298069\pi\)
\(642\) 0 0
\(643\) −16.7114 + 16.7114i −0.659034 + 0.659034i −0.955152 0.296117i \(-0.904308\pi\)
0.296117 + 0.955152i \(0.404308\pi\)
\(644\) 0.515773 + 1.92788i 0.0203243 + 0.0759691i
\(645\) 0 0
\(646\) −4.67031 0.866527i −0.183751 0.0340931i
\(647\) 0.506217 0.993506i 0.0199014 0.0390588i −0.880842 0.473411i \(-0.843023\pi\)
0.900743 + 0.434352i \(0.143023\pi\)
\(648\) 0 0
\(649\) 17.8132i 0.699229i
\(650\) −1.59007 11.8230i −0.0623676 0.463737i
\(651\) 0 0
\(652\) 11.2160 10.0911i 0.439253 0.395197i
\(653\) −7.76292 + 15.2356i −0.303786 + 0.596214i −0.991551 0.129720i \(-0.958592\pi\)
0.687764 + 0.725934i \(0.258592\pi\)
\(654\) 0 0
\(655\) 31.3855 31.4792i 1.22633 1.22999i
\(656\) 34.1793 + 30.8232i 1.33448 + 1.20344i
\(657\) 0 0
\(658\) −0.984008 0.0259581i −0.0383606 0.00101195i
\(659\) 19.1442 13.9091i 0.745752 0.541820i −0.148755 0.988874i \(-0.547527\pi\)
0.894507 + 0.447054i \(0.147527\pi\)
\(660\) 0 0
\(661\) 11.9962 + 8.71577i 0.466599 + 0.339004i 0.796115 0.605146i \(-0.206885\pi\)
−0.329515 + 0.944150i \(0.606885\pi\)
\(662\) 8.34416 + 6.40527i 0.324305 + 0.248948i
\(663\) 0 0
\(664\) 11.1631 18.1928i 0.433212 0.706016i
\(665\) −0.000540897 0.362870i −2.09751e−5 0.0140715i
\(666\) 0 0
\(667\) −10.9657 + 5.58730i −0.424594 + 0.216341i
\(668\) 38.4662 + 8.19183i 1.48830 + 0.316951i
\(669\) 0 0
\(670\) −7.66763 + 21.7423i −0.296227 + 0.839978i
\(671\) 50.4448 16.3905i 1.94740 0.632748i
\(672\) 0 0
\(673\) 5.11813 + 32.3146i 0.197289 + 1.24564i 0.865212 + 0.501406i \(0.167184\pi\)
−0.667923 + 0.744231i \(0.732816\pi\)
\(674\) −8.07250 + 14.8608i −0.310941 + 0.572417i
\(675\) 0 0
\(676\) −11.0537 17.0356i −0.425141 0.655216i
\(677\) 16.7410 2.65152i 0.643410 0.101906i 0.173801 0.984781i \(-0.444395\pi\)
0.469609 + 0.882875i \(0.344395\pi\)
\(678\) 0 0
\(679\) −0.0853926 0.262811i −0.00327707 0.0100858i
\(680\) −18.3896 29.9479i −0.705207 1.14845i
\(681\) 0 0
\(682\) −42.1236 + 12.4687i −1.61300 + 0.477451i
\(683\) −10.1740 19.9676i −0.389296 0.764037i 0.610308 0.792164i \(-0.291046\pi\)
−0.999604 + 0.0281270i \(0.991046\pi\)
\(684\) 0 0
\(685\) 6.95561 + 5.03772i 0.265760 + 0.192482i
\(686\) −4.77341 + 2.27566i −0.182250 + 0.0868853i
\(687\) 0 0
\(688\) 0.0465026 + 0.0302504i 0.00177290 + 0.00115329i
\(689\) −9.89915 + 13.6250i −0.377128 + 0.519072i
\(690\) 0 0
\(691\) −9.13509 12.5734i −0.347515 0.478314i 0.599102 0.800672i \(-0.295524\pi\)
−0.946618 + 0.322359i \(0.895524\pi\)
\(692\) −16.8836 + 29.2171i −0.641819 + 1.11067i
\(693\) 0 0
\(694\) 34.6760 32.8936i 1.31628 1.24862i
\(695\) −36.8273 + 18.8336i −1.39694 + 0.714400i
\(696\) 0 0
\(697\) −56.9675 29.0264i −2.15780 1.09945i
\(698\) 12.9637 36.5859i 0.490684 1.38479i
\(699\) 0 0
\(700\) 1.99047 1.80160i 0.0752327 0.0680940i
\(701\) 10.8238 0.408809 0.204404 0.978887i \(-0.434474\pi\)
0.204404 + 0.978887i \(0.434474\pi\)
\(702\) 0 0
\(703\) −1.28295 0.653695i −0.0483873 0.0246546i
\(704\) −16.5398 32.5547i −0.623367 1.22695i
\(705\) 0 0
\(706\) 10.9923 10.4273i 0.413702 0.392436i
\(707\) −1.26425 1.26425i −0.0475469 0.0475469i
\(708\) 0 0
\(709\) 1.47386 + 2.02859i 0.0553519 + 0.0761853i 0.835796 0.549041i \(-0.185007\pi\)
−0.780444 + 0.625226i \(0.785007\pi\)
\(710\) −19.9549 + 36.8663i −0.748895 + 1.38357i
\(711\) 0 0
\(712\) 20.1640 + 1.59874i 0.755677 + 0.0599153i
\(713\) −24.9830 3.95692i −0.935621 0.148188i
\(714\) 0 0
\(715\) 5.34535 + 16.3682i 0.199905 + 0.612138i
\(716\) −1.64521 + 4.28095i −0.0614842 + 0.159986i
\(717\) 0 0
\(718\) −18.0252 + 5.33550i −0.672694 + 0.199119i
\(719\) −2.03075 + 6.25002i −0.0757344 + 0.233086i −0.981756 0.190145i \(-0.939104\pi\)
0.906022 + 0.423231i \(0.139104\pi\)
\(720\) 0 0
\(721\) −1.24627 3.83563i −0.0464135 0.142846i
\(722\) −14.9225 21.7214i −0.555357 0.808386i
\(723\) 0 0
\(724\) 23.1204 15.0018i 0.859262 0.557538i
\(725\) 13.4233 + 9.69158i 0.498528 + 0.359936i
\(726\) 0 0
\(727\) −4.93599 31.1646i −0.183066 1.15583i −0.892496 0.451055i \(-0.851048\pi\)
0.709430 0.704776i \(-0.248952\pi\)
\(728\) −0.490940 + 1.18329i −0.0181955 + 0.0438556i
\(729\) 0 0
\(730\) −12.3647 9.46232i −0.457638 0.350216i
\(731\) −0.0732932 0.0238144i −0.00271085 0.000880808i
\(732\) 0 0
\(733\) 37.4928 19.1035i 1.38483 0.705605i 0.406691 0.913566i \(-0.366683\pi\)
0.978137 + 0.207961i \(0.0666826\pi\)
\(734\) 36.5643 4.80657i 1.34961 0.177414i
\(735\) 0 0
\(736\) −0.529997 21.0184i −0.0195359 0.774747i
\(737\) 5.20569 32.8674i 0.191754 1.21069i
\(738\) 0 0
\(739\) −22.9251 16.6560i −0.843313 0.612702i 0.0799814 0.996796i \(-0.474514\pi\)
−0.923294 + 0.384094i \(0.874514\pi\)
\(740\) −2.76857 10.2870i −0.101775 0.378159i
\(741\) 0 0
\(742\) −3.78884 0.0999495i −0.139093 0.00366926i
\(743\) 35.9683 35.9683i 1.31955 1.31955i 0.405414 0.914133i \(-0.367127\pi\)
0.914133 0.405414i \(-0.132873\pi\)
\(744\) 0 0
\(745\) −38.1392 19.3613i −1.39731 0.709345i
\(746\) −7.62943 + 41.1202i −0.279333 + 1.50552i
\(747\) 0 0
\(748\) 33.9276 + 37.7098i 1.24051 + 1.37881i
\(749\) 4.31542i 0.157682i
\(750\) 0 0
\(751\) 4.28864i 0.156495i 0.996934 + 0.0782473i \(0.0249324\pi\)
−0.996934 + 0.0782473i \(0.975068\pi\)
\(752\) 10.0150 + 2.69183i 0.365208 + 0.0981608i
\(753\) 0 0
\(754\) −7.76774 1.44122i −0.282884 0.0524862i
\(755\) −1.57433 0.799209i −0.0572959 0.0290862i
\(756\) 0 0
\(757\) 12.7121 12.7121i 0.462030 0.462030i −0.437291 0.899320i \(-0.644062\pi\)
0.899320 + 0.437291i \(0.144062\pi\)
\(758\) −0.722167 + 27.3756i −0.0262303 + 0.994327i
\(759\) 0 0
\(760\) −0.889069 + 3.71812i −0.0322499 + 0.134871i
\(761\) 27.1391 + 19.7177i 0.983792 + 0.714766i 0.958553 0.284915i \(-0.0919654\pi\)
0.0252388 + 0.999681i \(0.491965\pi\)
\(762\) 0 0
\(763\) −0.278321 + 1.75725i −0.0100759 + 0.0636167i
\(764\) −2.80910 + 53.2061i −0.101630 + 1.92493i
\(765\) 0 0
\(766\) 1.76968 + 13.4622i 0.0639410 + 0.486409i
\(767\) 5.86641 2.98908i 0.211824 0.107930i
\(768\) 0 0
\(769\) 38.5837 + 12.5366i 1.39136 + 0.452081i 0.906388 0.422447i \(-0.138829\pi\)
0.484975 + 0.874528i \(0.338829\pi\)
\(770\) −2.35504 + 3.07740i −0.0848696 + 0.110902i
\(771\) 0 0
\(772\) 1.92579 + 18.3913i 0.0693108 + 0.661917i
\(773\) −1.29494 8.17594i −0.0465758 0.294068i 0.953395 0.301725i \(-0.0975626\pi\)
−0.999971 + 0.00765730i \(0.997563\pi\)
\(774\) 0 0
\(775\) 10.6116 + 32.3308i 0.381179 + 1.16136i
\(776\) 0.226728 + 2.90243i 0.00813906 + 0.104191i
\(777\) 0 0
\(778\) 22.5223 15.4727i 0.807464 0.554724i
\(779\) 2.14923 + 6.61466i 0.0770043 + 0.236995i
\(780\) 0 0
\(781\) 18.6980 57.5465i 0.669066 2.05917i
\(782\) 8.28986 + 28.0060i 0.296445 + 1.00149i
\(783\) 0 0
\(784\) 27.1106 5.74056i 0.968235 0.205020i
\(785\) 0.968630 + 2.96609i 0.0345719 + 0.105864i
\(786\) 0 0
\(787\) −12.9653 2.05351i −0.462164 0.0731996i −0.0789893 0.996875i \(-0.525169\pi\)
−0.383175 + 0.923676i \(0.625169\pi\)
\(788\) −11.0479 24.8400i −0.393566 0.884887i
\(789\) 0 0
\(790\) 37.5445 + 20.3220i 1.33577 + 0.723025i
\(791\) −2.60729 3.58862i −0.0927045 0.127597i
\(792\) 0 0
\(793\) 13.8626 + 13.8626i 0.492275 + 0.492275i
\(794\) −19.1601 20.1984i −0.679968 0.716815i
\(795\) 0 0
\(796\) 11.5201 + 9.33623i 0.408321 + 0.330914i
\(797\) 30.9282 + 15.7587i 1.09553 + 0.558202i 0.905831 0.423640i \(-0.139248\pi\)
0.189702 + 0.981842i \(0.439248\pi\)
\(798\) 0 0
\(799\) −14.4062 −0.509653
\(800\) −24.8295 + 13.5461i −0.877855 + 0.478926i
\(801\) 0 0
\(802\) 45.2531 + 16.0348i 1.59794 + 0.566209i
\(803\) 20.0241 + 10.2028i 0.706634 + 0.360048i
\(804\) 0 0
\(805\) −1.98654 + 1.01592i −0.0700162 + 0.0358066i
\(806\) −11.1747 11.7803i −0.393613 0.414942i
\(807\) 0 0
\(808\) 9.83252 + 16.0662i 0.345907 + 0.565207i
\(809\) 11.2361 + 15.4652i 0.395042 + 0.543728i 0.959491 0.281739i \(-0.0909114\pi\)
−0.564449 + 0.825468i \(0.690911\pi\)
\(810\) 0 0
\(811\) 8.18655 11.2678i 0.287469 0.395667i −0.640721 0.767774i \(-0.721365\pi\)
0.928190 + 0.372107i \(0.121365\pi\)
\(812\) −0.722533 1.62453i −0.0253559 0.0570098i
\(813\) 0 0
\(814\) 6.61713 + 13.8800i 0.231930 + 0.486495i
\(815\) 13.6614 + 9.89453i 0.478539 + 0.346590i
\(816\) 0 0
\(817\) 0.00380592 + 0.00746953i 0.000133152 + 0.000261326i
\(818\) −5.48151 18.5185i −0.191656 0.647482i
\(819\) 0 0
\(820\) −25.6796 + 44.5918i −0.896770 + 1.55721i
\(821\) −5.48325 16.8757i −0.191367 0.588967i −1.00000 0.000653180i \(-0.999792\pi\)
0.808633 0.588314i \(-0.200208\pi\)
\(822\) 0 0
\(823\) −8.33927 + 1.32081i −0.290689 + 0.0460405i −0.300076 0.953915i \(-0.597012\pi\)
0.00938714 + 0.999956i \(0.497012\pi\)
\(824\) 3.30900 + 42.3599i 0.115275 + 1.47568i
\(825\) 0 0
\(826\) 1.30204 + 0.707275i 0.0453036 + 0.0246092i
\(827\) 8.69708 + 54.9112i 0.302427 + 1.90945i 0.404254 + 0.914647i \(0.367531\pi\)
−0.101827 + 0.994802i \(0.532469\pi\)
\(828\) 0 0
\(829\) 19.0441 6.18779i 0.661428 0.214911i 0.0409816 0.999160i \(-0.486952\pi\)
0.620446 + 0.784249i \(0.286952\pi\)
\(830\) 22.5055 + 7.93678i 0.781177 + 0.275490i
\(831\) 0 0
\(832\) 7.94582 10.9098i 0.275472 0.378228i
\(833\) −34.3002 + 17.4768i −1.18843 + 0.605536i
\(834\) 0 0
\(835\) 0.0655432 + 43.9708i 0.00226822 + 1.52167i
\(836\) 0.290928 5.51035i 0.0100620 0.190580i
\(837\) 0 0
\(838\) −5.86708 + 7.64306i −0.202675 + 0.264025i
\(839\) −15.9259 11.5708i −0.549822 0.399469i 0.277898 0.960611i \(-0.410362\pi\)
−0.827720 + 0.561142i \(0.810362\pi\)
\(840\) 0 0
\(841\) −14.5911 + 10.6010i −0.503140 + 0.365553i
\(842\) 0.478902 18.1540i 0.0165040 0.625628i
\(843\) 0 0
\(844\) 15.9623 4.27045i 0.549444 0.146995i
\(845\) 16.0306 16.0784i 0.551468 0.553115i
\(846\) 0 0
\(847\) 1.19860 2.35239i 0.0411845 0.0808291i
\(848\) 38.5618 + 10.3647i 1.32422 + 0.355924i
\(849\) 0 0
\(850\) 28.4255 27.1258i 0.974986 0.930406i
\(851\) 8.85366i 0.303499i
\(852\) 0 0
\(853\) −3.78263 + 7.42382i −0.129515 + 0.254187i −0.946653 0.322255i \(-0.895559\pi\)
0.817138 + 0.576442i \(0.195559\pi\)
\(854\) −0.804868 + 4.33799i −0.0275420 + 0.148443i
\(855\) 0 0
\(856\) −10.6391 + 44.2017i −0.363637 + 1.51078i
\(857\) 20.2813 20.2813i 0.692795 0.692795i −0.270051 0.962846i \(-0.587041\pi\)
0.962846 + 0.270051i \(0.0870406\pi\)
\(858\) 0 0
\(859\) −7.51815 + 5.46225i −0.256516 + 0.186370i −0.708610 0.705601i \(-0.750677\pi\)
0.452094 + 0.891970i \(0.350677\pi\)
\(860\) −0.0221635 + 0.0579289i −0.000755771 + 0.00197536i
\(861\) 0 0
\(862\) 3.81336 + 2.92727i 0.129883 + 0.0997030i
\(863\) −1.61317 + 10.1852i −0.0549130 + 0.346707i 0.944900 + 0.327360i \(0.106159\pi\)
−0.999813 + 0.0193475i \(0.993841\pi\)
\(864\) 0 0
\(865\) −35.8984 11.6050i −1.22058 0.394581i
\(866\) −4.79682 + 0.630568i −0.163003 + 0.0214276i
\(867\) 0 0
\(868\) 0.761136 3.57405i 0.0258346 0.121311i
\(869\) −58.6051 19.0419i −1.98804 0.645954i
\(870\) 0 0
\(871\) 11.6977 3.80082i 0.396363 0.128786i
\(872\) 7.18304 17.3129i 0.243249 0.586289i
\(873\) 0 0
\(874\) 1.51657 2.79189i 0.0512988 0.0944369i
\(875\) 2.43622 + 1.75343i 0.0823592 + 0.0592766i
\(876\) 0 0
\(877\) −13.9619 + 2.21134i −0.471458 + 0.0746716i −0.387643 0.921810i \(-0.626711\pi\)
−0.0838154 + 0.996481i \(0.526711\pi\)
\(878\) −16.0474 23.3588i −0.541573 0.788322i
\(879\) 0 0
\(880\) 31.7090 25.7150i 1.06891 0.866852i
\(881\) 7.58893 23.3563i 0.255677 0.786894i −0.738018 0.674781i \(-0.764238\pi\)
0.993695 0.112113i \(-0.0357620\pi\)
\(882\) 0 0
\(883\) −10.6317 20.8659i −0.357786 0.702195i 0.640023 0.768356i \(-0.278925\pi\)
−0.997809 + 0.0661610i \(0.978925\pi\)
\(884\) −6.72583 + 17.5011i −0.226214 + 0.588625i
\(885\) 0 0
\(886\) 18.4627 8.80187i 0.620267 0.295705i
\(887\) −9.96921 1.57897i −0.334733 0.0530166i −0.0131946 0.999913i \(-0.504200\pi\)
−0.321539 + 0.946896i \(0.604200\pi\)
\(888\) 0 0
\(889\) −0.218671 + 0.300974i −0.00733398 + 0.0100944i
\(890\) 2.98089 + 22.4174i 0.0999197 + 0.751434i
\(891\) 0 0
\(892\) −7.29634 4.21632i −0.244299 0.141173i
\(893\) 1.10812 + 1.10812i 0.0370820 + 0.0370820i
\(894\) 0 0
\(895\) −5.06558 0.794571i −0.169324 0.0265596i
\(896\) 3.03626 + 0.0836310i 0.101434 + 0.00279392i
\(897\) 0 0
\(898\) −9.50440 + 26.8231i −0.317166 + 0.895098i
\(899\) 22.5349 0.751582
\(900\) 0 0
\(901\) −55.4697 −1.84797
\(902\) 24.8066 70.0086i 0.825970 2.33103i
\(903\) 0 0
\(904\) 17.8585 + 43.1853i 0.593965 + 1.43632i
\(905\) 21.8213 + 21.7564i 0.725365 + 0.723206i
\(906\) 0 0
\(907\) 2.65824 + 2.65824i 0.0882653 + 0.0882653i 0.749861 0.661596i \(-0.230120\pi\)
−0.661596 + 0.749861i \(0.730120\pi\)
\(908\) −10.3529 + 17.9157i −0.343574 + 0.594555i
\(909\) 0 0
\(910\) −1.40866 0.259190i −0.0466965 0.00859206i
\(911\) −5.17032 + 7.11634i −0.171300 + 0.235775i −0.886032 0.463624i \(-0.846549\pi\)
0.714732 + 0.699399i \(0.246549\pi\)
\(912\) 0 0
\(913\) −34.0211 5.38842i −1.12594 0.178331i
\(914\) −9.93430 + 4.73606i −0.328598 + 0.156655i
\(915\) 0 0
\(916\) −3.04300 1.16945i −0.100544 0.0386398i
\(917\) −2.42300 4.75540i −0.0800145 0.157037i
\(918\) 0 0
\(919\) 5.44982 16.7728i 0.179773 0.553284i −0.820046 0.572297i \(-0.806052\pi\)
0.999819 + 0.0190131i \(0.00605242\pi\)
\(920\) 22.8522 5.50831i 0.753416 0.181604i
\(921\) 0 0
\(922\) 1.97184 + 2.87023i 0.0649390 + 0.0945261i
\(923\) 22.0893 3.49860i 0.727077 0.115158i
\(924\) 0 0
\(925\) 10.5962 5.43888i 0.348400 0.178829i
\(926\) 22.6992 41.7874i 0.745942 1.37322i
\(927\) 0 0
\(928\) 3.39566 + 18.4210i 0.111468 + 0.604698i
\(929\) 35.1070 11.4069i 1.15182 0.374250i 0.329993 0.943983i \(-0.392954\pi\)
0.821829 + 0.569734i \(0.192954\pi\)
\(930\) 0 0
\(931\) 3.98270 + 1.29406i 0.130528 + 0.0424110i
\(932\) −5.85741 1.24741i −0.191866 0.0408601i
\(933\) 0 0
\(934\) 15.0819 1.98260i 0.493495 0.0648725i
\(935\) −33.2667 + 45.9315i −1.08794 + 1.50212i
\(936\) 0 0
\(937\) 6.89911 43.5592i 0.225384 1.42302i −0.572350 0.820009i \(-0.693968\pi\)
0.797734 0.603009i \(-0.206032\pi\)
\(938\) 2.19572 + 1.68551i 0.0716926 + 0.0550338i
\(939\) 0 0
\(940\) −0.594038 + 11.5792i −0.0193754 + 0.377673i
\(941\) −8.90352 + 6.46878i −0.290246 + 0.210876i −0.723374 0.690456i \(-0.757410\pi\)
0.433128 + 0.901332i \(0.357410\pi\)
\(942\) 0 0
\(943\) 30.2399 30.2399i 0.984747 0.984747i
\(944\) −11.5927 10.4544i −0.377311 0.340263i
\(945\) 0 0
\(946\) 0.0163318 0.0880231i 0.000530991 0.00286188i
\(947\) 23.8973 46.9012i 0.776559 1.52408i −0.0734408 0.997300i \(-0.523398\pi\)
0.850000 0.526783i \(-0.176602\pi\)
\(948\) 0 0
\(949\) 8.30656i 0.269642i
\(950\) −4.27301 0.0999751i −0.138635 0.00324362i
\(951\) 0 0
\(952\) −4.10345 + 0.982627i −0.132993 + 0.0318471i
\(953\) 7.88451 15.4742i 0.255404 0.501259i −0.727329 0.686289i \(-0.759238\pi\)
0.982733 + 0.185030i \(0.0592383\pi\)
\(954\) 0 0
\(955\) −58.8217 + 9.40635i −1.90343 + 0.304382i
\(956\) 11.4467 + 42.7859i 0.370211 + 1.38379i
\(957\) 0 0
\(958\) −0.855186 + 32.4181i −0.0276298 + 1.04738i
\(959\) 0.834219 0.606095i 0.0269383 0.0195718i
\(960\) 0 0
\(961\) 12.3904 + 9.00217i 0.399691 + 0.290392i
\(962\) −3.46073 + 4.50830i −0.111578 + 0.145354i
\(963\) 0 0
\(964\) −0.151614 0.00800471i −0.00488316 0.000257814i
\(965\) −19.6531 + 6.41808i −0.632655 + 0.206605i
\(966\) 0 0
\(967\) −53.2482 + 27.1313i −1.71235 + 0.872485i −0.730476 + 0.682939i \(0.760702\pi\)
−0.981872 + 0.189546i \(0.939298\pi\)
\(968\) −18.0765 + 21.1400i −0.581001 + 0.679464i
\(969\) 0 0
\(970\) −3.11967 + 0.928490i −0.100166 + 0.0298120i
\(971\) 39.7349 12.9106i 1.27515 0.414322i 0.408283 0.912856i \(-0.366128\pi\)
0.866871 + 0.498533i \(0.166128\pi\)
\(972\) 0 0
\(973\) 0.776901 + 4.90516i 0.0249063 + 0.157252i
\(974\) −20.9307 11.3697i −0.670662 0.364308i
\(975\) 0 0
\(976\) 18.9388 42.4486i 0.606216 1.35875i
\(977\) −26.2795 + 4.16226i −0.840754 + 0.133162i −0.561935 0.827181i \(-0.689943\pi\)
−0.278819 + 0.960344i \(0.589943\pi\)
\(978\) 0 0
\(979\) −10.0870 31.0445i −0.322381 0.992186i
\(980\) 12.6330 + 28.2901i 0.403545 + 0.903694i
\(981\) 0 0
\(982\) 4.58530 + 15.4907i 0.146323 + 0.494329i
\(983\) −1.53672 3.01599i −0.0490138 0.0961950i 0.865200 0.501426i \(-0.167191\pi\)
−0.914214 + 0.405231i \(0.867191\pi\)
\(984\) 0 0
\(985\) 24.5633 17.9023i 0.782653 0.570415i
\(986\) −11.1977 23.4882i −0.356607 0.748016i
\(987\) 0 0
\(988\) 1.86354 0.828835i 0.0592871 0.0263688i
\(989\) 0.0302988 0.0417027i 0.000963446 0.00132607i
\(990\) 0 0
\(991\) −29.2963 40.3229i −0.930627 1.28090i −0.959614 0.281319i \(-0.909228\pi\)
0.0289870 0.999580i \(-0.490772\pi\)
\(992\) −16.6075 + 34.7316i −0.527288 + 1.10273i
\(993\) 0 0
\(994\) 3.46389 + 3.65159i 0.109868 + 0.115821i
\(995\) −7.50448 + 14.7828i −0.237908 + 0.468647i
\(996\) 0 0
\(997\) 18.8621 + 9.61073i 0.597369 + 0.304375i 0.726407 0.687265i \(-0.241189\pi\)
−0.129038 + 0.991640i \(0.541189\pi\)
\(998\) 55.8167 + 19.7779i 1.76685 + 0.626058i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.bj.f.163.4 240
3.2 odd 2 300.2.w.a.163.27 yes 240
4.3 odd 2 inner 900.2.bj.f.163.8 240
12.11 even 2 300.2.w.a.163.23 yes 240
25.2 odd 20 inner 900.2.bj.f.127.8 240
75.2 even 20 300.2.w.a.127.23 240
100.27 even 20 inner 900.2.bj.f.127.4 240
300.227 odd 20 300.2.w.a.127.27 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
300.2.w.a.127.23 240 75.2 even 20
300.2.w.a.127.27 yes 240 300.227 odd 20
300.2.w.a.163.23 yes 240 12.11 even 2
300.2.w.a.163.27 yes 240 3.2 odd 2
900.2.bj.f.127.4 240 100.27 even 20 inner
900.2.bj.f.127.8 240 25.2 odd 20 inner
900.2.bj.f.163.4 240 1.1 even 1 trivial
900.2.bj.f.163.8 240 4.3 odd 2 inner