Properties

Label 90.13.g.b.37.1
Level $90$
Weight $13$
Character 90.37
Analytic conductor $82.259$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,13,Mod(37,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 13, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.37"); S:= CuspForms(chi, 13); N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 13 \)
Character orbit: \([\chi]\) \(=\) 90.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,192,0,0,16260] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(82.2594435549\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 2385x^{4} + 1422264x^{2} + 490000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2}\cdot 5^{6} \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 37.1
Root \(34.3230i\) of defining polynomial
Character \(\chi\) \(=\) 90.37
Dual form 90.13.g.b.73.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(32.0000 + 32.0000i) q^{2} +2048.00i q^{4} +(-3818.66 + 15151.2i) q^{5} +(-59325.1 - 59325.1i) q^{7} +(-65536.0 + 65536.0i) q^{8} +(-607035. + 362641. i) q^{10} +2.34646e6 q^{11} +(-4.56702e6 + 4.56702e6i) q^{13} -3.79681e6i q^{14} -4.19430e6 q^{16} +(1.56434e7 + 1.56434e7i) q^{17} +1.45864e7i q^{19} +(-3.10296e7 - 7.82062e6i) q^{20} +(7.50867e7 + 7.50867e7i) q^{22} +(-1.10378e8 + 1.10378e8i) q^{23} +(-2.14976e8 - 1.15715e8i) q^{25} -2.92289e8 q^{26} +(1.21498e8 - 1.21498e8i) q^{28} +5.34534e7i q^{29} -1.35539e9 q^{31} +(-1.34218e8 - 1.34218e8i) q^{32} +1.00118e9i q^{34} +(1.12539e9 - 6.72303e8i) q^{35} +(7.96598e8 + 7.96598e8i) q^{37} +(-4.66766e8 + 4.66766e8i) q^{38} +(-7.42688e8 - 1.24321e9i) q^{40} -5.38572e8 q^{41} +(7.82281e9 - 7.82281e9i) q^{43} +4.80555e9i q^{44} -7.06422e9 q^{46} +(-5.73384e9 - 5.73384e9i) q^{47} -6.80235e9i q^{49} +(-3.17637e9 - 1.05821e10i) q^{50} +(-9.35326e9 - 9.35326e9i) q^{52} +(1.01663e10 - 1.01663e10i) q^{53} +(-8.96034e9 + 3.55517e10i) q^{55} +7.77586e9 q^{56} +(-1.71051e9 + 1.71051e9i) q^{58} +5.72907e10i q^{59} -9.47423e10 q^{61} +(-4.33726e10 - 4.33726e10i) q^{62} -8.58993e9i q^{64} +(-5.17559e10 - 8.66357e10i) q^{65} +(-4.17965e10 - 4.17965e10i) q^{67} +(-3.20376e10 + 3.20376e10i) q^{68} +(5.75261e10 + 1.44987e10i) q^{70} +3.51901e10 q^{71} +(1.08806e11 - 1.08806e11i) q^{73} +5.09823e10i q^{74} -2.98730e10 q^{76} +(-1.39204e11 - 1.39204e11i) q^{77} -1.31009e11i q^{79} +(1.60166e10 - 6.35487e10i) q^{80} +(-1.72343e10 - 1.72343e10i) q^{82} +(-1.61869e11 + 1.61869e11i) q^{83} +(-2.96752e11 + 1.77279e11i) q^{85} +5.00660e11 q^{86} +(-1.53778e11 + 1.53778e11i) q^{88} -8.98485e11i q^{89} +5.41878e11 q^{91} +(-2.26055e11 - 2.26055e11i) q^{92} -3.66966e11i q^{94} +(-2.21002e11 - 5.57007e10i) q^{95} +(-3.98581e11 - 3.98581e11i) q^{97} +(2.17675e11 - 2.17675e11i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 192 q^{2} + 16260 q^{5} - 45336 q^{7} - 393216 q^{8} + 886080 q^{10} + 3418008 q^{11} + 8106834 q^{13} - 25165824 q^{16} - 10772514 q^{17} + 23408640 q^{20} + 109376256 q^{22} - 241146864 q^{23} - 520941150 q^{25}+ \cdots + 1960900383168 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000 + 32.0000i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 2048.00i 0.500000i
\(5\) −3818.66 + 15151.2i −0.244394 + 0.969676i
\(6\) 0 0
\(7\) −59325.1 59325.1i −0.504255 0.504255i 0.408502 0.912757i \(-0.366051\pi\)
−0.912757 + 0.408502i \(0.866051\pi\)
\(8\) −65536.0 + 65536.0i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) −607035. + 362641.i −0.607035 + 0.362641i
\(11\) 2.34646e6 1.32452 0.662258 0.749276i \(-0.269598\pi\)
0.662258 + 0.749276i \(0.269598\pi\)
\(12\) 0 0
\(13\) −4.56702e6 + 4.56702e6i −0.946178 + 0.946178i −0.998624 0.0524458i \(-0.983298\pi\)
0.0524458 + 0.998624i \(0.483298\pi\)
\(14\) 3.79681e6i 0.504255i
\(15\) 0 0
\(16\) −4.19430e6 −0.250000
\(17\) 1.56434e7 + 1.56434e7i 0.648092 + 0.648092i 0.952532 0.304440i \(-0.0984692\pi\)
−0.304440 + 0.952532i \(0.598469\pi\)
\(18\) 0 0
\(19\) 1.45864e7i 0.310047i 0.987911 + 0.155023i \(0.0495453\pi\)
−0.987911 + 0.155023i \(0.950455\pi\)
\(20\) −3.10296e7 7.82062e6i −0.484838 0.122197i
\(21\) 0 0
\(22\) 7.50867e7 + 7.50867e7i 0.662258 + 0.662258i
\(23\) −1.10378e8 + 1.10378e8i −0.745619 + 0.745619i −0.973653 0.228034i \(-0.926770\pi\)
0.228034 + 0.973653i \(0.426770\pi\)
\(24\) 0 0
\(25\) −2.14976e8 1.15715e8i −0.880543 0.473967i
\(26\) −2.92289e8 −0.946178
\(27\) 0 0
\(28\) 1.21498e8 1.21498e8i 0.252128 0.252128i
\(29\) 5.34534e7i 0.0898643i 0.998990 + 0.0449322i \(0.0143072\pi\)
−0.998990 + 0.0449322i \(0.985693\pi\)
\(30\) 0 0
\(31\) −1.35539e9 −1.52720 −0.763600 0.645690i \(-0.776570\pi\)
−0.763600 + 0.645690i \(0.776570\pi\)
\(32\) −1.34218e8 1.34218e8i −0.125000 0.125000i
\(33\) 0 0
\(34\) 1.00118e9i 0.648092i
\(35\) 1.12539e9 6.72303e8i 0.612201 0.365727i
\(36\) 0 0
\(37\) 7.96598e8 + 7.96598e8i 0.310477 + 0.310477i 0.845094 0.534618i \(-0.179544\pi\)
−0.534618 + 0.845094i \(0.679544\pi\)
\(38\) −4.66766e8 + 4.66766e8i −0.155023 + 0.155023i
\(39\) 0 0
\(40\) −7.42688e8 1.24321e9i −0.181320 0.303518i
\(41\) −5.38572e8 −0.113381 −0.0566905 0.998392i \(-0.518055\pi\)
−0.0566905 + 0.998392i \(0.518055\pi\)
\(42\) 0 0
\(43\) 7.82281e9 7.82281e9i 1.23752 1.23752i 0.276508 0.961012i \(-0.410823\pi\)
0.961012 0.276508i \(-0.0891773\pi\)
\(44\) 4.80555e9i 0.662258i
\(45\) 0 0
\(46\) −7.06422e9 −0.745619
\(47\) −5.73384e9 5.73384e9i −0.531935 0.531935i 0.389213 0.921148i \(-0.372747\pi\)
−0.921148 + 0.389213i \(0.872747\pi\)
\(48\) 0 0
\(49\) 6.80235e9i 0.491453i
\(50\) −3.17637e9 1.05821e10i −0.203288 0.677255i
\(51\) 0 0
\(52\) −9.35326e9 9.35326e9i −0.473089 0.473089i
\(53\) 1.01663e10 1.01663e10i 0.458679 0.458679i −0.439543 0.898222i \(-0.644860\pi\)
0.898222 + 0.439543i \(0.144860\pi\)
\(54\) 0 0
\(55\) −8.96034e9 + 3.55517e10i −0.323704 + 1.28435i
\(56\) 7.77586e9 0.252128
\(57\) 0 0
\(58\) −1.71051e9 + 1.71051e9i −0.0449322 + 0.0449322i
\(59\) 5.72907e10i 1.35823i 0.734034 + 0.679113i \(0.237635\pi\)
−0.734034 + 0.679113i \(0.762365\pi\)
\(60\) 0 0
\(61\) −9.47423e10 −1.83893 −0.919464 0.393174i \(-0.871377\pi\)
−0.919464 + 0.393174i \(0.871377\pi\)
\(62\) −4.33726e10 4.33726e10i −0.763600 0.763600i
\(63\) 0 0
\(64\) 8.58993e9i 0.125000i
\(65\) −5.17559e10 8.66357e10i −0.686245 1.14873i
\(66\) 0 0
\(67\) −4.17965e10 4.17965e10i −0.462052 0.462052i 0.437276 0.899327i \(-0.355943\pi\)
−0.899327 + 0.437276i \(0.855943\pi\)
\(68\) −3.20376e10 + 3.20376e10i −0.324046 + 0.324046i
\(69\) 0 0
\(70\) 5.75261e10 + 1.44987e10i 0.488964 + 0.123237i
\(71\) 3.51901e10 0.274708 0.137354 0.990522i \(-0.456140\pi\)
0.137354 + 0.990522i \(0.456140\pi\)
\(72\) 0 0
\(73\) 1.08806e11 1.08806e11i 0.718980 0.718980i −0.249416 0.968396i \(-0.580239\pi\)
0.968396 + 0.249416i \(0.0802387\pi\)
\(74\) 5.09823e10i 0.310477i
\(75\) 0 0
\(76\) −2.98730e10 −0.155023
\(77\) −1.39204e11 1.39204e11i −0.667894 0.667894i
\(78\) 0 0
\(79\) 1.31009e11i 0.538939i −0.963009 0.269470i \(-0.913152\pi\)
0.963009 0.269470i \(-0.0868484\pi\)
\(80\) 1.60166e10 6.35487e10i 0.0610986 0.242419i
\(81\) 0 0
\(82\) −1.72343e10 1.72343e10i −0.0566905 0.0566905i
\(83\) −1.61869e11 + 1.61869e11i −0.495102 + 0.495102i −0.909909 0.414807i \(-0.863849\pi\)
0.414807 + 0.909909i \(0.363849\pi\)
\(84\) 0 0
\(85\) −2.96752e11 + 1.77279e11i −0.786829 + 0.470049i
\(86\) 5.00660e11 1.23752
\(87\) 0 0
\(88\) −1.53778e11 + 1.53778e11i −0.331129 + 0.331129i
\(89\) 8.98485e11i 1.80789i −0.427654 0.903943i \(-0.640660\pi\)
0.427654 0.903943i \(-0.359340\pi\)
\(90\) 0 0
\(91\) 5.41878e11 0.954230
\(92\) −2.26055e11 2.26055e11i −0.372810 0.372810i
\(93\) 0 0
\(94\) 3.66966e11i 0.531935i
\(95\) −2.21002e11 5.57007e10i −0.300645 0.0757738i
\(96\) 0 0
\(97\) −3.98581e11 3.98581e11i −0.478505 0.478505i 0.426149 0.904653i \(-0.359870\pi\)
−0.904653 + 0.426149i \(0.859870\pi\)
\(98\) 2.17675e11 2.17675e11i 0.245727 0.245727i
\(99\) 0 0
\(100\) 2.36983e11 4.40271e11i 0.236983 0.440271i
\(101\) −1.57852e12 −1.48704 −0.743520 0.668714i \(-0.766845\pi\)
−0.743520 + 0.668714i \(0.766845\pi\)
\(102\) 0 0
\(103\) 5.59456e11 5.59456e11i 0.468536 0.468536i −0.432904 0.901440i \(-0.642511\pi\)
0.901440 + 0.432904i \(0.142511\pi\)
\(104\) 5.98608e11i 0.473089i
\(105\) 0 0
\(106\) 6.50644e11 0.458679
\(107\) 8.66153e11 + 8.66153e11i 0.577154 + 0.577154i 0.934118 0.356964i \(-0.116188\pi\)
−0.356964 + 0.934118i \(0.616188\pi\)
\(108\) 0 0
\(109\) 2.03012e12i 1.21049i 0.796037 + 0.605247i \(0.206926\pi\)
−0.796037 + 0.605247i \(0.793074\pi\)
\(110\) −1.42438e12 + 8.50922e11i −0.804028 + 0.480323i
\(111\) 0 0
\(112\) 2.48828e11 + 2.48828e11i 0.126064 + 0.126064i
\(113\) 2.69479e12 2.69479e12i 1.29436 1.29436i 0.362290 0.932065i \(-0.381995\pi\)
0.932065 0.362290i \(-0.118005\pi\)
\(114\) 0 0
\(115\) −1.25087e12 2.09386e12i −0.540784 0.905235i
\(116\) −1.09473e11 −0.0449322
\(117\) 0 0
\(118\) −1.83330e12 + 1.83330e12i −0.679113 + 0.679113i
\(119\) 1.85609e12i 0.653608i
\(120\) 0 0
\(121\) 2.36745e12 0.754342
\(122\) −3.03175e12 3.03175e12i −0.919464 0.919464i
\(123\) 0 0
\(124\) 2.77585e12i 0.763600i
\(125\) 2.57414e12 2.81527e12i 0.674794 0.738006i
\(126\) 0 0
\(127\) −3.64991e12 3.64991e12i −0.869880 0.869880i 0.122579 0.992459i \(-0.460884\pi\)
−0.992459 + 0.122579i \(0.960884\pi\)
\(128\) 2.74878e11 2.74878e11i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) 1.11615e12 4.42853e12i 0.231241 0.917486i
\(131\) −7.99465e12 −1.58187 −0.790936 0.611899i \(-0.790406\pi\)
−0.790936 + 0.611899i \(0.790406\pi\)
\(132\) 0 0
\(133\) 8.65342e11 8.65342e11i 0.156343 0.156343i
\(134\) 2.67497e12i 0.462052i
\(135\) 0 0
\(136\) −2.05041e12 −0.324046
\(137\) −4.94921e12 4.94921e12i −0.748535 0.748535i 0.225669 0.974204i \(-0.427543\pi\)
−0.974204 + 0.225669i \(0.927543\pi\)
\(138\) 0 0
\(139\) 5.34137e12i 0.740567i 0.928919 + 0.370283i \(0.120739\pi\)
−0.928919 + 0.370283i \(0.879261\pi\)
\(140\) 1.37688e12 + 2.30480e12i 0.182863 + 0.306101i
\(141\) 0 0
\(142\) 1.12608e12 + 1.12608e12i 0.137354 + 0.137354i
\(143\) −1.07163e13 + 1.07163e13i −1.25323 + 1.25323i
\(144\) 0 0
\(145\) −8.09882e11 2.04121e11i −0.0871393 0.0219623i
\(146\) 6.96360e12 0.718980
\(147\) 0 0
\(148\) −1.63143e12 + 1.63143e12i −0.155238 + 0.155238i
\(149\) 1.91205e12i 0.174736i −0.996176 0.0873679i \(-0.972154\pi\)
0.996176 0.0873679i \(-0.0278456\pi\)
\(150\) 0 0
\(151\) −1.03879e13 −0.876327 −0.438164 0.898895i \(-0.644371\pi\)
−0.438164 + 0.898895i \(0.644371\pi\)
\(152\) −9.55937e11 9.55937e11i −0.0775117 0.0775117i
\(153\) 0 0
\(154\) 8.90906e12i 0.667894i
\(155\) 5.17580e12 2.05358e13i 0.373239 1.48089i
\(156\) 0 0
\(157\) −5.32378e12 5.32378e12i −0.355486 0.355486i 0.506660 0.862146i \(-0.330880\pi\)
−0.862146 + 0.506660i \(0.830880\pi\)
\(158\) 4.19230e12 4.19230e12i 0.269470 0.269470i
\(159\) 0 0
\(160\) 2.54609e12 1.52103e12i 0.151759 0.0906602i
\(161\) 1.30964e13 0.751965
\(162\) 0 0
\(163\) −1.54050e13 + 1.54050e13i −0.821365 + 0.821365i −0.986304 0.164938i \(-0.947257\pi\)
0.164938 + 0.986304i \(0.447257\pi\)
\(164\) 1.10299e12i 0.0566905i
\(165\) 0 0
\(166\) −1.03596e13 −0.495102
\(167\) 4.16031e12 + 4.16031e12i 0.191790 + 0.191790i 0.796469 0.604679i \(-0.206699\pi\)
−0.604679 + 0.796469i \(0.706699\pi\)
\(168\) 0 0
\(169\) 1.84173e13i 0.790505i
\(170\) −1.51690e13 3.82315e12i −0.628439 0.158390i
\(171\) 0 0
\(172\) 1.60211e13 + 1.60211e13i 0.618760 + 0.618760i
\(173\) −1.69171e13 + 1.69171e13i −0.631030 + 0.631030i −0.948326 0.317297i \(-0.897225\pi\)
0.317297 + 0.948326i \(0.397225\pi\)
\(174\) 0 0
\(175\) 5.88871e12 + 1.96183e13i 0.205018 + 0.683019i
\(176\) −9.84177e12 −0.331129
\(177\) 0 0
\(178\) 2.87515e13 2.87515e13i 0.903943 0.903943i
\(179\) 4.51000e13i 1.37107i 0.728041 + 0.685533i \(0.240431\pi\)
−0.728041 + 0.685533i \(0.759569\pi\)
\(180\) 0 0
\(181\) 1.58853e13 0.451777 0.225889 0.974153i \(-0.427471\pi\)
0.225889 + 0.974153i \(0.427471\pi\)
\(182\) 1.73401e13 + 1.73401e13i 0.477115 + 0.477115i
\(183\) 0 0
\(184\) 1.44675e13i 0.372810i
\(185\) −1.51113e13 + 9.02746e12i −0.376940 + 0.225183i
\(186\) 0 0
\(187\) 3.67065e13 + 3.67065e13i 0.858408 + 0.858408i
\(188\) 1.17429e13 1.17429e13i 0.265968 0.265968i
\(189\) 0 0
\(190\) −5.28963e12 8.85448e12i −0.112436 0.188209i
\(191\) 3.46025e13 0.712701 0.356350 0.934352i \(-0.384021\pi\)
0.356350 + 0.934352i \(0.384021\pi\)
\(192\) 0 0
\(193\) −7.29983e12 + 7.29983e12i −0.141244 + 0.141244i −0.774193 0.632949i \(-0.781844\pi\)
0.632949 + 0.774193i \(0.281844\pi\)
\(194\) 2.55092e13i 0.478505i
\(195\) 0 0
\(196\) 1.39312e13 0.245727
\(197\) 4.95012e13 + 4.95012e13i 0.846873 + 0.846873i 0.989742 0.142868i \(-0.0456326\pi\)
−0.142868 + 0.989742i \(0.545633\pi\)
\(198\) 0 0
\(199\) 1.16610e14i 1.87766i 0.344386 + 0.938828i \(0.388087\pi\)
−0.344386 + 0.938828i \(0.611913\pi\)
\(200\) 2.16722e13 6.50521e12i 0.338627 0.101644i
\(201\) 0 0
\(202\) −5.05127e13 5.05127e13i −0.743520 0.743520i
\(203\) 3.17113e12 3.17113e12i 0.0453146 0.0453146i
\(204\) 0 0
\(205\) 2.05662e12 8.16000e12i 0.0277097 0.109943i
\(206\) 3.58052e13 0.468536
\(207\) 0 0
\(208\) 1.91555e13 1.91555e13i 0.236544 0.236544i
\(209\) 3.42265e13i 0.410662i
\(210\) 0 0
\(211\) 3.42858e13 0.388525 0.194263 0.980950i \(-0.437769\pi\)
0.194263 + 0.980950i \(0.437769\pi\)
\(212\) 2.08206e13 + 2.08206e13i 0.229339 + 0.229339i
\(213\) 0 0
\(214\) 5.54338e13i 0.577154i
\(215\) 8.86522e13 + 1.48398e14i 0.897550 + 1.50244i
\(216\) 0 0
\(217\) 8.04090e13 + 8.04090e13i 0.770098 + 0.770098i
\(218\) −6.49639e13 + 6.49639e13i −0.605247 + 0.605247i
\(219\) 0 0
\(220\) −7.28098e13 1.83508e13i −0.642175 0.161852i
\(221\) −1.42887e14 −1.22642
\(222\) 0 0
\(223\) −6.17679e13 + 6.17679e13i −0.502265 + 0.502265i −0.912141 0.409876i \(-0.865572\pi\)
0.409876 + 0.912141i \(0.365572\pi\)
\(224\) 1.59250e13i 0.126064i
\(225\) 0 0
\(226\) 1.72466e14 1.29436
\(227\) 5.96352e13 + 5.96352e13i 0.435861 + 0.435861i 0.890616 0.454756i \(-0.150273\pi\)
−0.454756 + 0.890616i \(0.650273\pi\)
\(228\) 0 0
\(229\) 6.56031e13i 0.454895i 0.973790 + 0.227448i \(0.0730381\pi\)
−0.973790 + 0.227448i \(0.926962\pi\)
\(230\) 2.69759e13 1.07031e14i 0.182225 0.723009i
\(231\) 0 0
\(232\) −3.50312e12 3.50312e12i −0.0224661 0.0224661i
\(233\) 7.61404e13 7.61404e13i 0.475860 0.475860i −0.427945 0.903805i \(-0.640762\pi\)
0.903805 + 0.427945i \(0.140762\pi\)
\(234\) 0 0
\(235\) 1.08770e14 6.49789e13i 0.645807 0.385803i
\(236\) −1.17331e14 −0.679113
\(237\) 0 0
\(238\) 5.93949e13 5.93949e13i 0.326804 0.326804i
\(239\) 4.35416e13i 0.233624i 0.993154 + 0.116812i \(0.0372674\pi\)
−0.993154 + 0.116812i \(0.962733\pi\)
\(240\) 0 0
\(241\) −3.05059e14 −1.55697 −0.778486 0.627662i \(-0.784012\pi\)
−0.778486 + 0.627662i \(0.784012\pi\)
\(242\) 7.57583e13 + 7.57583e13i 0.377171 + 0.377171i
\(243\) 0 0
\(244\) 1.94032e14i 0.919464i
\(245\) 1.03064e14 + 2.59759e13i 0.476550 + 0.120108i
\(246\) 0 0
\(247\) −6.66165e13 6.66165e13i −0.293360 0.293360i
\(248\) 8.88272e13 8.88272e13i 0.381800 0.381800i
\(249\) 0 0
\(250\) 1.72461e14 7.71631e12i 0.706400 0.0316060i
\(251\) −6.24088e13 −0.249577 −0.124788 0.992183i \(-0.539825\pi\)
−0.124788 + 0.992183i \(0.539825\pi\)
\(252\) 0 0
\(253\) −2.58999e14 + 2.58999e14i −0.987585 + 0.987585i
\(254\) 2.33594e14i 0.869880i
\(255\) 0 0
\(256\) 1.75922e13 0.0625000
\(257\) −5.89058e13 5.89058e13i −0.204437 0.204437i 0.597461 0.801898i \(-0.296176\pi\)
−0.801898 + 0.597461i \(0.796176\pi\)
\(258\) 0 0
\(259\) 9.45165e13i 0.313119i
\(260\) 1.77430e14 1.05996e14i 0.574363 0.343123i
\(261\) 0 0
\(262\) −2.55829e14 2.55829e14i −0.790936 0.790936i
\(263\) −3.16432e14 + 3.16432e14i −0.956193 + 0.956193i −0.999080 0.0428873i \(-0.986344\pi\)
0.0428873 + 0.999080i \(0.486344\pi\)
\(264\) 0 0
\(265\) 1.15210e14 + 1.92854e14i 0.332671 + 0.556868i
\(266\) 5.53819e13 0.156343
\(267\) 0 0
\(268\) 8.55991e13 8.55991e13i 0.231026 0.231026i
\(269\) 6.27369e13i 0.165581i −0.996567 0.0827903i \(-0.973617\pi\)
0.996567 0.0827903i \(-0.0263832\pi\)
\(270\) 0 0
\(271\) −2.92212e14 −0.737705 −0.368853 0.929488i \(-0.620249\pi\)
−0.368853 + 0.929488i \(0.620249\pi\)
\(272\) −6.56130e13 6.56130e13i −0.162023 0.162023i
\(273\) 0 0
\(274\) 3.16749e14i 0.748535i
\(275\) −5.04433e14 2.71520e14i −1.16629 0.627777i
\(276\) 0 0
\(277\) 4.26675e14 + 4.26675e14i 0.944535 + 0.944535i 0.998541 0.0540053i \(-0.0171988\pi\)
−0.0540053 + 0.998541i \(0.517199\pi\)
\(278\) −1.70924e14 + 1.70924e14i −0.370283 + 0.370283i
\(279\) 0 0
\(280\) −2.96934e13 + 1.17814e14i −0.0616186 + 0.244482i
\(281\) −3.02979e14 −0.615424 −0.307712 0.951480i \(-0.599563\pi\)
−0.307712 + 0.951480i \(0.599563\pi\)
\(282\) 0 0
\(283\) 3.57301e14 3.57301e14i 0.695529 0.695529i −0.267914 0.963443i \(-0.586334\pi\)
0.963443 + 0.267914i \(0.0863343\pi\)
\(284\) 7.20694e13i 0.137354i
\(285\) 0 0
\(286\) −6.85845e14 −1.25323
\(287\) 3.19508e13 + 3.19508e13i 0.0571730 + 0.0571730i
\(288\) 0 0
\(289\) 9.31923e13i 0.159953i
\(290\) −1.93844e13 3.24481e13i −0.0325885 0.0545508i
\(291\) 0 0
\(292\) 2.22835e14 + 2.22835e14i 0.359490 + 0.359490i
\(293\) −5.09282e13 + 5.09282e13i −0.0804920 + 0.0804920i −0.746207 0.665715i \(-0.768127\pi\)
0.665715 + 0.746207i \(0.268127\pi\)
\(294\) 0 0
\(295\) −8.68022e14 2.18774e14i −1.31704 0.331943i
\(296\) −1.04412e14 −0.155238
\(297\) 0 0
\(298\) 6.11856e13 6.11856e13i 0.0873679 0.0873679i
\(299\) 1.00820e15i 1.41098i
\(300\) 0 0
\(301\) −9.28179e14 −1.24805
\(302\) −3.32413e14 3.32413e14i −0.438164 0.438164i
\(303\) 0 0
\(304\) 6.11799e13i 0.0775117i
\(305\) 3.61789e14 1.43546e15i 0.449424 1.78316i
\(306\) 0 0
\(307\) 2.54088e14 + 2.54088e14i 0.303496 + 0.303496i 0.842380 0.538884i \(-0.181154\pi\)
−0.538884 + 0.842380i \(0.681154\pi\)
\(308\) 2.85090e14 2.85090e14i 0.333947 0.333947i
\(309\) 0 0
\(310\) 8.22772e14 4.91521e14i 0.927064 0.553825i
\(311\) 6.59240e14 0.728587 0.364293 0.931284i \(-0.381311\pi\)
0.364293 + 0.931284i \(0.381311\pi\)
\(312\) 0 0
\(313\) 4.43077e14 4.43077e14i 0.471209 0.471209i −0.431097 0.902306i \(-0.641873\pi\)
0.902306 + 0.431097i \(0.141873\pi\)
\(314\) 3.40722e14i 0.355486i
\(315\) 0 0
\(316\) 2.68307e14 0.269470
\(317\) 1.11031e15 + 1.11031e15i 1.09418 + 1.09418i 0.995077 + 0.0991001i \(0.0315964\pi\)
0.0991001 + 0.995077i \(0.468404\pi\)
\(318\) 0 0
\(319\) 1.25426e14i 0.119027i
\(320\) 1.30148e14 + 3.28021e13i 0.121209 + 0.0305493i
\(321\) 0 0
\(322\) 4.19086e14 + 4.19086e14i 0.375983 + 0.375983i
\(323\) −2.28181e14 + 2.28181e14i −0.200939 + 0.200939i
\(324\) 0 0
\(325\) 1.51027e15 4.53330e14i 1.28161 0.384693i
\(326\) −9.85921e14 −0.821365
\(327\) 0 0
\(328\) 3.52958e13 3.52958e13i 0.0283453 0.0283453i
\(329\) 6.80322e14i 0.536462i
\(330\) 0 0
\(331\) 2.05156e15 1.55997 0.779985 0.625798i \(-0.215227\pi\)
0.779985 + 0.625798i \(0.215227\pi\)
\(332\) −3.31508e14 3.31508e14i −0.247551 0.247551i
\(333\) 0 0
\(334\) 2.66260e14i 0.191790i
\(335\) 7.92872e14 4.73659e14i 0.560963 0.335118i
\(336\) 0 0
\(337\) −1.38553e15 1.38553e15i −0.945884 0.945884i 0.0527249 0.998609i \(-0.483209\pi\)
−0.998609 + 0.0527249i \(0.983209\pi\)
\(338\) 5.89352e14 5.89352e14i 0.395253 0.395253i
\(339\) 0 0
\(340\) −3.63067e14 6.07749e14i −0.235025 0.393415i
\(341\) −3.18038e15 −2.02280
\(342\) 0 0
\(343\) −1.22469e15 + 1.22469e15i −0.752073 + 0.752073i
\(344\) 1.02535e15i 0.618760i
\(345\) 0 0
\(346\) −1.08270e15 −0.631030
\(347\) −5.07241e14 5.07241e14i −0.290561 0.290561i 0.546741 0.837302i \(-0.315868\pi\)
−0.837302 + 0.546741i \(0.815868\pi\)
\(348\) 0 0
\(349\) 5.27073e14i 0.291688i 0.989308 + 0.145844i \(0.0465898\pi\)
−0.989308 + 0.145844i \(0.953410\pi\)
\(350\) −4.39346e14 + 8.16223e14i −0.239000 + 0.444018i
\(351\) 0 0
\(352\) −3.14937e14 3.14937e14i −0.165564 0.165564i
\(353\) 2.96169e13 2.96169e13i 0.0153070 0.0153070i −0.699412 0.714719i \(-0.746555\pi\)
0.714719 + 0.699412i \(0.246555\pi\)
\(354\) 0 0
\(355\) −1.34379e14 + 5.33172e14i −0.0671370 + 0.266377i
\(356\) 1.84010e15 0.903943
\(357\) 0 0
\(358\) −1.44320e15 + 1.44320e15i −0.685533 + 0.685533i
\(359\) 2.28760e15i 1.06859i −0.845297 0.534297i \(-0.820577\pi\)
0.845297 0.534297i \(-0.179423\pi\)
\(360\) 0 0
\(361\) 2.00055e15 0.903871
\(362\) 5.08330e14 + 5.08330e14i 0.225889 + 0.225889i
\(363\) 0 0
\(364\) 1.10977e15i 0.477115i
\(365\) 1.23305e15 + 2.06404e15i 0.521463 + 0.872892i
\(366\) 0 0
\(367\) −2.81458e15 2.81458e15i −1.15191 1.15191i −0.986170 0.165739i \(-0.946999\pi\)
−0.165739 0.986170i \(-0.553001\pi\)
\(368\) 4.62961e14 4.62961e14i 0.186405 0.186405i
\(369\) 0 0
\(370\) −7.72442e14 1.94684e14i −0.301062 0.0758788i
\(371\) −1.20624e15 −0.462582
\(372\) 0 0
\(373\) −7.01497e14 + 7.01497e14i −0.260479 + 0.260479i −0.825249 0.564770i \(-0.808965\pi\)
0.564770 + 0.825249i \(0.308965\pi\)
\(374\) 2.34922e15i 0.858408i
\(375\) 0 0
\(376\) 7.51546e14 0.265968
\(377\) −2.44123e14 2.44123e14i −0.0850276 0.0850276i
\(378\) 0 0
\(379\) 3.39861e15i 1.14674i 0.819295 + 0.573372i \(0.194365\pi\)
−0.819295 + 0.573372i \(0.805635\pi\)
\(380\) 1.14075e14 4.52612e14i 0.0378869 0.150323i
\(381\) 0 0
\(382\) 1.10728e15 + 1.10728e15i 0.356350 + 0.356350i
\(383\) −1.42429e14 + 1.42429e14i −0.0451238 + 0.0451238i −0.729309 0.684185i \(-0.760158\pi\)
0.684185 + 0.729309i \(0.260158\pi\)
\(384\) 0 0
\(385\) 2.64068e15 1.57753e15i 0.810870 0.484411i
\(386\) −4.67189e14 −0.141244
\(387\) 0 0
\(388\) 8.16294e14 8.16294e14i 0.239252 0.239252i
\(389\) 5.00987e15i 1.44587i 0.690916 + 0.722935i \(0.257207\pi\)
−0.690916 + 0.722935i \(0.742793\pi\)
\(390\) 0 0
\(391\) −3.45338e15 −0.966460
\(392\) 4.45799e14 + 4.45799e14i 0.122863 + 0.122863i
\(393\) 0 0
\(394\) 3.16808e15i 0.846873i
\(395\) 1.98495e15 + 5.00281e14i 0.522597 + 0.131714i
\(396\) 0 0
\(397\) −3.66883e14 3.66883e14i −0.0937097 0.0937097i 0.658698 0.752408i \(-0.271108\pi\)
−0.752408 + 0.658698i \(0.771108\pi\)
\(398\) −3.73151e15 + 3.73151e15i −0.938828 + 0.938828i
\(399\) 0 0
\(400\) 9.01676e14 + 4.85342e14i 0.220136 + 0.118492i
\(401\) 2.47959e15 0.596368 0.298184 0.954508i \(-0.403619\pi\)
0.298184 + 0.954508i \(0.403619\pi\)
\(402\) 0 0
\(403\) 6.19012e15 6.19012e15i 1.44500 1.44500i
\(404\) 3.23282e15i 0.743520i
\(405\) 0 0
\(406\) 2.02952e14 0.0453146
\(407\) 1.86919e15 + 1.86919e15i 0.411231 + 0.411231i
\(408\) 0 0
\(409\) 1.83428e15i 0.391855i −0.980618 0.195927i \(-0.937228\pi\)
0.980618 0.195927i \(-0.0627717\pi\)
\(410\) 3.26932e14 1.95308e14i 0.0688263 0.0411166i
\(411\) 0 0
\(412\) 1.14577e15 + 1.14577e15i 0.234268 + 0.234268i
\(413\) 3.39878e15 3.39878e15i 0.684892 0.684892i
\(414\) 0 0
\(415\) −1.83438e15 3.07063e15i −0.359088 0.601089i
\(416\) 1.22595e15 0.236544
\(417\) 0 0
\(418\) −1.09525e15 + 1.09525e15i −0.205331 + 0.205331i
\(419\) 1.64549e15i 0.304097i 0.988373 + 0.152048i \(0.0485870\pi\)
−0.988373 + 0.152048i \(0.951413\pi\)
\(420\) 0 0
\(421\) −4.22560e15 −0.758919 −0.379459 0.925208i \(-0.623890\pi\)
−0.379459 + 0.925208i \(0.623890\pi\)
\(422\) 1.09714e15 + 1.09714e15i 0.194263 + 0.194263i
\(423\) 0 0
\(424\) 1.33252e15i 0.229339i
\(425\) −1.55279e15 5.17312e15i −0.263499 0.877847i
\(426\) 0 0
\(427\) 5.62060e15 + 5.62060e15i 0.927289 + 0.927289i
\(428\) −1.77388e15 + 1.77388e15i −0.288577 + 0.288577i
\(429\) 0 0
\(430\) −1.91185e15 + 7.58559e15i −0.302443 + 1.19999i
\(431\) 1.10167e16 1.71866 0.859329 0.511423i \(-0.170882\pi\)
0.859329 + 0.511423i \(0.170882\pi\)
\(432\) 0 0
\(433\) −3.63481e15 + 3.63481e15i −0.551512 + 0.551512i −0.926877 0.375365i \(-0.877517\pi\)
0.375365 + 0.926877i \(0.377517\pi\)
\(434\) 5.14617e15i 0.770098i
\(435\) 0 0
\(436\) −4.15769e15 −0.605247
\(437\) −1.61003e15 1.61003e15i −0.231177 0.231177i
\(438\) 0 0
\(439\) 1.02927e15i 0.143794i −0.997412 0.0718969i \(-0.977095\pi\)
0.997412 0.0718969i \(-0.0229053\pi\)
\(440\) −1.74269e15 2.91714e15i −0.240162 0.402014i
\(441\) 0 0
\(442\) −4.57239e15 4.57239e15i −0.613210 0.613210i
\(443\) −5.98471e15 + 5.98471e15i −0.791810 + 0.791810i −0.981788 0.189979i \(-0.939158\pi\)
0.189979 + 0.981788i \(0.439158\pi\)
\(444\) 0 0
\(445\) 1.36131e16 + 3.43101e15i 1.75306 + 0.441837i
\(446\) −3.95314e15 −0.502265
\(447\) 0 0
\(448\) −5.09599e14 + 5.09599e14i −0.0630319 + 0.0630319i
\(449\) 5.85542e15i 0.714628i 0.933984 + 0.357314i \(0.116307\pi\)
−0.933984 + 0.357314i \(0.883693\pi\)
\(450\) 0 0
\(451\) −1.26374e15 −0.150175
\(452\) 5.51892e15 + 5.51892e15i 0.647178 + 0.647178i
\(453\) 0 0
\(454\) 3.81665e15i 0.435861i
\(455\) −2.06925e15 + 8.21010e15i −0.233209 + 0.925294i
\(456\) 0 0
\(457\) −7.20985e14 7.20985e14i −0.0791460 0.0791460i 0.666426 0.745572i \(-0.267823\pi\)
−0.745572 + 0.666426i \(0.767823\pi\)
\(458\) −2.09930e15 + 2.09930e15i −0.227448 + 0.227448i
\(459\) 0 0
\(460\) 4.28823e15 2.56177e15i 0.452617 0.270392i
\(461\) −6.66525e15 −0.694402 −0.347201 0.937791i \(-0.612868\pi\)
−0.347201 + 0.937791i \(0.612868\pi\)
\(462\) 0 0
\(463\) 1.04215e16 1.04215e16i 1.05789 1.05789i 0.0596773 0.998218i \(-0.480993\pi\)
0.998218 0.0596773i \(-0.0190072\pi\)
\(464\) 2.24200e14i 0.0224661i
\(465\) 0 0
\(466\) 4.87298e15 0.475860
\(467\) −1.42258e16 1.42258e16i −1.37143 1.37143i −0.858325 0.513107i \(-0.828494\pi\)
−0.513107 0.858325i \(-0.671506\pi\)
\(468\) 0 0
\(469\) 4.95916e15i 0.465984i
\(470\) 5.55997e15 + 1.40132e15i 0.515805 + 0.130002i
\(471\) 0 0
\(472\) −3.75460e15 3.75460e15i −0.339556 0.339556i
\(473\) 1.83559e16 1.83559e16i 1.63911 1.63911i
\(474\) 0 0
\(475\) 1.68786e15 3.13574e15i 0.146952 0.273010i
\(476\) 3.80127e15 0.326804
\(477\) 0 0
\(478\) −1.39333e15 + 1.39333e15i −0.116812 + 0.116812i
\(479\) 1.03779e16i 0.859202i 0.903019 + 0.429601i \(0.141346\pi\)
−0.903019 + 0.429601i \(0.858654\pi\)
\(480\) 0 0
\(481\) −7.27616e15 −0.587532
\(482\) −9.76188e15 9.76188e15i −0.778486 0.778486i
\(483\) 0 0
\(484\) 4.84853e15i 0.377171i
\(485\) 7.56102e15 4.51693e15i 0.580938 0.347050i
\(486\) 0 0
\(487\) −1.20111e16 1.20111e16i −0.900347 0.900347i 0.0951192 0.995466i \(-0.469677\pi\)
−0.995466 + 0.0951192i \(0.969677\pi\)
\(488\) 6.20903e15 6.20903e15i 0.459732 0.459732i
\(489\) 0 0
\(490\) 2.46681e15 + 4.12926e15i 0.178221 + 0.298329i
\(491\) −6.06257e15 −0.432681 −0.216341 0.976318i \(-0.569412\pi\)
−0.216341 + 0.976318i \(0.569412\pi\)
\(492\) 0 0
\(493\) −8.36191e14 + 8.36191e14i −0.0582404 + 0.0582404i
\(494\) 4.26346e15i 0.293360i
\(495\) 0 0
\(496\) 5.68494e15 0.381800
\(497\) −2.08766e15 2.08766e15i −0.138523 0.138523i
\(498\) 0 0
\(499\) 2.32445e16i 1.50562i 0.658235 + 0.752812i \(0.271303\pi\)
−0.658235 + 0.752812i \(0.728697\pi\)
\(500\) 5.76567e15 + 5.27183e15i 0.369003 + 0.337397i
\(501\) 0 0
\(502\) −1.99708e15 1.99708e15i −0.124788 0.124788i
\(503\) 5.32163e15 5.32163e15i 0.328576 0.328576i −0.523469 0.852045i \(-0.675362\pi\)
0.852045 + 0.523469i \(0.175362\pi\)
\(504\) 0 0
\(505\) 6.02785e15 2.39165e16i 0.363424 1.44195i
\(506\) −1.65759e16 −0.987585
\(507\) 0 0
\(508\) 7.47501e15 7.47501e15i 0.434940 0.434940i
\(509\) 1.17956e16i 0.678287i −0.940735 0.339144i \(-0.889863\pi\)
0.940735 0.339144i \(-0.110137\pi\)
\(510\) 0 0
\(511\) −1.29099e16 −0.725099
\(512\) 5.62950e14 + 5.62950e14i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 3.76997e15i 0.204437i
\(515\) 6.34005e15 + 1.06128e16i 0.339820 + 0.568835i
\(516\) 0 0
\(517\) −1.34542e16 1.34542e16i −0.704556 0.704556i
\(518\) 3.02453e15 3.02453e15i 0.156559 0.156559i
\(519\) 0 0
\(520\) 9.06963e15 + 2.28588e15i 0.458743 + 0.115620i
\(521\) −2.57819e16 −1.28911 −0.644553 0.764560i \(-0.722956\pi\)
−0.644553 + 0.764560i \(0.722956\pi\)
\(522\) 0 0
\(523\) 1.24797e16 1.24797e16i 0.609812 0.609812i −0.333085 0.942897i \(-0.608090\pi\)
0.942897 + 0.333085i \(0.108090\pi\)
\(524\) 1.63730e16i 0.790936i
\(525\) 0 0
\(526\) −2.02516e16 −0.956193
\(527\) −2.12029e16 2.12029e16i −0.989766 0.989766i
\(528\) 0 0
\(529\) 2.45218e15i 0.111897i
\(530\) −2.48459e15 + 9.85803e15i −0.112099 + 0.444770i
\(531\) 0 0
\(532\) 1.77222e15 + 1.77222e15i 0.0781714 + 0.0781714i
\(533\) 2.45967e15 2.45967e15i 0.107279 0.107279i
\(534\) 0 0
\(535\) −1.64308e16 + 9.81570e15i −0.700706 + 0.418599i
\(536\) 5.47834e15 0.231026
\(537\) 0 0
\(538\) 2.00758e15 2.00758e15i 0.0827903 0.0827903i
\(539\) 1.59614e16i 0.650938i
\(540\) 0 0
\(541\) 1.45220e16 0.579218 0.289609 0.957145i \(-0.406475\pi\)
0.289609 + 0.957145i \(0.406475\pi\)
\(542\) −9.35080e15 9.35080e15i −0.368853 0.368853i
\(543\) 0 0
\(544\) 4.19923e15i 0.162023i
\(545\) −3.07587e16 7.75235e15i −1.17379 0.295838i
\(546\) 0 0
\(547\) −2.64412e16 2.64412e16i −0.987089 0.987089i 0.0128284 0.999918i \(-0.495916\pi\)
−0.999918 + 0.0128284i \(0.995916\pi\)
\(548\) 1.01360e16 1.01360e16i 0.374267 0.374267i
\(549\) 0 0
\(550\) −7.45323e15 2.48305e16i −0.269258 0.897035i
\(551\) −7.79694e14 −0.0278622
\(552\) 0 0
\(553\) −7.77215e15 + 7.77215e15i −0.271763 + 0.271763i
\(554\) 2.73072e16i 0.944535i
\(555\) 0 0
\(556\) −1.09391e16 −0.370283
\(557\) 1.22128e16 + 1.22128e16i 0.408962 + 0.408962i 0.881377 0.472414i \(-0.156617\pi\)
−0.472414 + 0.881377i \(0.656617\pi\)
\(558\) 0 0
\(559\) 7.14539e16i 2.34183i
\(560\) −4.72022e15 + 2.81984e15i −0.153050 + 0.0914317i
\(561\) 0 0
\(562\) −9.69532e15 9.69532e15i −0.307712 0.307712i
\(563\) −3.08347e15 + 3.08347e15i −0.0968253 + 0.0968253i −0.753860 0.657035i \(-0.771810\pi\)
0.657035 + 0.753860i \(0.271810\pi\)
\(564\) 0 0
\(565\) 3.05387e16 + 5.11197e16i 0.938772 + 1.57144i
\(566\) 2.28672e16 0.695529
\(567\) 0 0
\(568\) −2.30622e15 + 2.30622e15i −0.0686769 + 0.0686769i
\(569\) 4.92549e16i 1.45136i 0.688031 + 0.725681i \(0.258475\pi\)
−0.688031 + 0.725681i \(0.741525\pi\)
\(570\) 0 0
\(571\) −3.71286e16 −1.07125 −0.535626 0.844455i \(-0.679924\pi\)
−0.535626 + 0.844455i \(0.679924\pi\)
\(572\) −2.19470e16 2.19470e16i −0.626614 0.626614i
\(573\) 0 0
\(574\) 2.04485e15i 0.0571730i
\(575\) 3.65011e16 1.09563e16i 1.00995 0.303151i
\(576\) 0 0
\(577\) −1.58541e16 1.58541e16i −0.429623 0.429623i 0.458877 0.888500i \(-0.348252\pi\)
−0.888500 + 0.458877i \(0.848252\pi\)
\(578\) 2.98215e15 2.98215e15i 0.0799766 0.0799766i
\(579\) 0 0
\(580\) 4.18039e14 1.65864e15i 0.0109812 0.0435696i
\(581\) 1.92058e16 0.499316
\(582\) 0 0
\(583\) 2.38549e16 2.38549e16i 0.607527 0.607527i
\(584\) 1.42615e16i 0.359490i
\(585\) 0 0
\(586\) −3.25941e15 −0.0804920
\(587\) −2.04641e16 2.04641e16i −0.500224 0.500224i 0.411284 0.911507i \(-0.365081\pi\)
−0.911507 + 0.411284i \(0.865081\pi\)
\(588\) 0 0
\(589\) 1.97704e16i 0.473504i
\(590\) −2.07759e16 3.47775e16i −0.492548 0.824491i
\(591\) 0 0
\(592\) −3.34117e15 3.34117e15i −0.0776191 0.0776191i
\(593\) −6.50583e15 + 6.50583e15i −0.149615 + 0.149615i −0.777946 0.628331i \(-0.783738\pi\)
0.628331 + 0.777946i \(0.283738\pi\)
\(594\) 0 0
\(595\) 2.81220e16 + 7.08778e15i 0.633788 + 0.159738i
\(596\) 3.91588e15 0.0873679
\(597\) 0 0
\(598\) 3.22624e16 3.22624e16i 0.705489 0.705489i
\(599\) 1.83187e16i 0.396583i 0.980143 + 0.198292i \(0.0635393\pi\)
−0.980143 + 0.198292i \(0.936461\pi\)
\(600\) 0 0
\(601\) 2.90777e16 0.617041 0.308520 0.951218i \(-0.400166\pi\)
0.308520 + 0.951218i \(0.400166\pi\)
\(602\) −2.97017e16 2.97017e16i −0.624026 0.624026i
\(603\) 0 0
\(604\) 2.12744e16i 0.438164i
\(605\) −9.04049e15 + 3.58696e16i −0.184357 + 0.731467i
\(606\) 0 0
\(607\) 5.05207e15 + 5.05207e15i 0.101004 + 0.101004i 0.755803 0.654799i \(-0.227247\pi\)
−0.654799 + 0.755803i \(0.727247\pi\)
\(608\) 1.95776e15 1.95776e15i 0.0387559 0.0387559i
\(609\) 0 0
\(610\) 5.75119e16 3.43574e16i 1.11629 0.666870i
\(611\) 5.23732e16 1.00661
\(612\) 0 0
\(613\) 1.21687e16 1.21687e16i 0.229340 0.229340i −0.583077 0.812417i \(-0.698151\pi\)
0.812417 + 0.583077i \(0.198151\pi\)
\(614\) 1.62616e16i 0.303496i
\(615\) 0 0
\(616\) 1.82458e16 0.333947
\(617\) 6.86609e16 + 6.86609e16i 1.24451 + 1.24451i 0.958110 + 0.286400i \(0.0924587\pi\)
0.286400 + 0.958110i \(0.407541\pi\)
\(618\) 0 0
\(619\) 5.30269e16i 0.942655i 0.881958 + 0.471327i \(0.156225\pi\)
−0.881958 + 0.471327i \(0.843775\pi\)
\(620\) 4.20574e16 + 1.06000e16i 0.740444 + 0.186620i
\(621\) 0 0
\(622\) 2.10957e16 + 2.10957e16i 0.364293 + 0.364293i
\(623\) −5.33027e16 + 5.33027e16i −0.911635 + 0.911635i
\(624\) 0 0
\(625\) 3.28249e16 + 4.97518e16i 0.550711 + 0.834696i
\(626\) 2.83570e16 0.471209
\(627\) 0 0
\(628\) 1.09031e16 1.09031e16i 0.177743 0.177743i
\(629\) 2.49230e16i 0.402435i
\(630\) 0 0
\(631\) −7.10226e16 −1.12518 −0.562588 0.826738i \(-0.690194\pi\)
−0.562588 + 0.826738i \(0.690194\pi\)
\(632\) 8.58583e15 + 8.58583e15i 0.134735 + 0.134735i
\(633\) 0 0
\(634\) 7.10597e16i 1.09418i
\(635\) 6.92382e16 4.13626e16i 1.05610 0.630908i
\(636\) 0 0
\(637\) 3.10665e16 + 3.10665e16i 0.465002 + 0.465002i
\(638\) −4.01364e15 + 4.01364e15i −0.0595134 + 0.0595134i
\(639\) 0 0
\(640\) 3.11506e15 + 5.21439e15i 0.0453301 + 0.0758794i
\(641\) −1.46335e16 −0.210960 −0.105480 0.994421i \(-0.533638\pi\)
−0.105480 + 0.994421i \(0.533638\pi\)
\(642\) 0 0
\(643\) −5.21919e16 + 5.21919e16i −0.738478 + 0.738478i −0.972283 0.233805i \(-0.924882\pi\)
0.233805 + 0.972283i \(0.424882\pi\)
\(644\) 2.68215e16i 0.375983i
\(645\) 0 0
\(646\) −1.46036e16 −0.200939
\(647\) −3.33260e16 3.33260e16i −0.454315 0.454315i 0.442469 0.896784i \(-0.354103\pi\)
−0.896784 + 0.442469i \(0.854103\pi\)
\(648\) 0 0
\(649\) 1.34430e17i 1.79899i
\(650\) 6.28353e16 + 3.38221e16i 0.833150 + 0.448457i
\(651\) 0 0
\(652\) −3.15495e16 3.15495e16i −0.410683 0.410683i
\(653\) 6.47983e16 6.47983e16i 0.835766 0.835766i −0.152532 0.988298i \(-0.548743\pi\)
0.988298 + 0.152532i \(0.0487428\pi\)
\(654\) 0 0
\(655\) 3.05289e16 1.21128e17i 0.386601 1.53390i
\(656\) 2.25893e15 0.0283453
\(657\) 0 0
\(658\) −2.17703e16 + 2.17703e16i −0.268231 + 0.268231i
\(659\) 1.34385e17i 1.64073i 0.571841 + 0.820365i \(0.306229\pi\)
−0.571841 + 0.820365i \(0.693771\pi\)
\(660\) 0 0
\(661\) −4.46690e16 −0.535547 −0.267773 0.963482i \(-0.586288\pi\)
−0.267773 + 0.963482i \(0.586288\pi\)
\(662\) 6.56499e16 + 6.56499e16i 0.779985 + 0.779985i
\(663\) 0 0
\(664\) 2.12165e16i 0.247551i
\(665\) 9.80651e15 + 1.64154e16i 0.113393 + 0.189811i
\(666\) 0 0
\(667\) −5.90010e15 5.90010e15i −0.0670046 0.0670046i
\(668\) −8.52032e15 + 8.52032e15i −0.0958952 + 0.0958952i
\(669\) 0 0
\(670\) 4.05290e16 + 1.02148e16i 0.448040 + 0.112923i
\(671\) −2.22309e17 −2.43569
\(672\) 0 0
\(673\) 1.25981e16 1.25981e16i 0.135586 0.135586i −0.636056 0.771642i \(-0.719435\pi\)
0.771642 + 0.636056i \(0.219435\pi\)
\(674\) 8.86742e16i 0.945884i
\(675\) 0 0
\(676\) 3.77186e16 0.395253
\(677\) 8.47278e15 + 8.47278e15i 0.0880022 + 0.0880022i 0.749738 0.661735i \(-0.230180\pi\)
−0.661735 + 0.749738i \(0.730180\pi\)
\(678\) 0 0
\(679\) 4.72917e16i 0.482577i
\(680\) 7.82982e15 3.10661e16i 0.0791951 0.314220i
\(681\) 0 0
\(682\) −1.01772e17 1.01772e17i −1.01140 1.01140i
\(683\) 4.43256e15 4.43256e15i 0.0436647 0.0436647i −0.684937 0.728602i \(-0.740170\pi\)
0.728602 + 0.684937i \(0.240170\pi\)
\(684\) 0 0
\(685\) 9.38857e16 5.60870e16i 0.908774 0.542898i
\(686\) −7.83799e16 −0.752073
\(687\) 0 0
\(688\) −3.28113e16 + 3.28113e16i −0.309380 + 0.309380i
\(689\) 9.28596e16i 0.867983i
\(690\) 0 0
\(691\) 4.70857e16 0.432535 0.216267 0.976334i \(-0.430612\pi\)
0.216267 + 0.976334i \(0.430612\pi\)
\(692\) −3.46463e16 3.46463e16i −0.315515 0.315515i
\(693\) 0 0
\(694\) 3.24634e16i 0.290561i
\(695\) −8.09281e16 2.03969e16i −0.718109 0.180990i
\(696\) 0 0
\(697\) −8.42507e15 8.42507e15i −0.0734813 0.0734813i
\(698\) −1.68663e16 + 1.68663e16i −0.145844 + 0.145844i
\(699\) 0 0
\(700\) −4.01782e16 + 1.20601e16i −0.341509 + 0.102509i
\(701\) −8.06515e15 −0.0679680 −0.0339840 0.999422i \(-0.510820\pi\)
−0.0339840 + 0.999422i \(0.510820\pi\)
\(702\) 0 0
\(703\) −1.16195e16 + 1.16195e16i −0.0962623 + 0.0962623i
\(704\) 2.01559e16i 0.165564i
\(705\) 0 0
\(706\) 1.89548e15 0.0153070
\(707\) 9.36461e16 + 9.36461e16i 0.749848 + 0.749848i
\(708\) 0 0
\(709\) 1.43911e17i 1.13297i 0.824073 + 0.566484i \(0.191697\pi\)
−0.824073 + 0.566484i \(0.808303\pi\)
\(710\) −2.13616e16 + 1.27614e16i −0.166757 + 0.0996202i
\(711\) 0 0
\(712\) 5.88831e16 + 5.88831e16i 0.451971 + 0.451971i
\(713\) 1.49606e17 1.49606e17i 1.13871 1.13871i
\(714\) 0 0
\(715\) −1.21443e17 2.03287e17i −0.908943 1.52151i
\(716\) −9.23648e16 −0.685533
\(717\) 0 0
\(718\) 7.32030e16 7.32030e16i 0.534297 0.534297i
\(719\) 9.19905e16i 0.665840i −0.942955 0.332920i \(-0.891966\pi\)
0.942955 0.332920i \(-0.108034\pi\)
\(720\) 0 0
\(721\) −6.63796e16 −0.472523
\(722\) 6.40176e16 + 6.40176e16i 0.451935 + 0.451935i
\(723\) 0 0
\(724\) 3.25331e16i 0.225889i
\(725\) 6.18534e15 1.14912e16i 0.0425927 0.0791294i
\(726\) 0 0
\(727\) −3.54829e16 3.54829e16i −0.240333 0.240333i 0.576655 0.816988i \(-0.304358\pi\)
−0.816988 + 0.576655i \(0.804358\pi\)
\(728\) −3.55125e16 + 3.55125e16i −0.238558 + 0.238558i
\(729\) 0 0
\(730\) −2.65917e16 + 1.05507e17i −0.175715 + 0.697178i
\(731\) 2.44750e17 1.60405
\(732\) 0 0
\(733\) −2.35715e15 + 2.35715e15i −0.0151972 + 0.0151972i −0.714665 0.699467i \(-0.753421\pi\)
0.699467 + 0.714665i \(0.253421\pi\)
\(734\) 1.80133e17i 1.15191i
\(735\) 0 0
\(736\) 2.96295e16 0.186405
\(737\) −9.80737e16 9.80737e16i −0.611995 0.611995i
\(738\) 0 0
\(739\) 1.74369e17i 1.07054i −0.844680 0.535271i \(-0.820209\pi\)
0.844680 0.535271i \(-0.179791\pi\)
\(740\) −1.84882e16 3.09480e16i −0.112591 0.188470i
\(741\) 0 0
\(742\) −3.85996e16 3.85996e16i −0.231291 0.231291i
\(743\) −4.60511e16 + 4.60511e16i −0.273720 + 0.273720i −0.830596 0.556876i \(-0.812000\pi\)
0.556876 + 0.830596i \(0.312000\pi\)
\(744\) 0 0
\(745\) 2.89698e16 + 7.30148e15i 0.169437 + 0.0427045i
\(746\) −4.48958e16 −0.260479
\(747\) 0 0
\(748\) −7.51750e16 + 7.51750e16i −0.429204 + 0.429204i
\(749\) 1.02769e17i 0.582066i
\(750\) 0 0
\(751\) −2.46982e17 −1.37666 −0.688328 0.725400i \(-0.741655\pi\)
−0.688328 + 0.725400i \(0.741655\pi\)
\(752\) 2.40495e16 + 2.40495e16i 0.132984 + 0.132984i
\(753\) 0 0
\(754\) 1.56239e16i 0.0850276i
\(755\) 3.96679e16 1.57389e17i 0.214169 0.849753i
\(756\) 0 0
\(757\) −8.81831e15 8.81831e15i −0.0468608 0.0468608i 0.683288 0.730149i \(-0.260549\pi\)
−0.730149 + 0.683288i \(0.760549\pi\)
\(758\) −1.08756e17 + 1.08756e17i −0.573372 + 0.573372i
\(759\) 0 0
\(760\) 1.81340e16 1.08332e16i 0.0941047 0.0562178i
\(761\) −9.59846e16 −0.494189 −0.247095 0.968991i \(-0.579476\pi\)
−0.247095 + 0.968991i \(0.579476\pi\)
\(762\) 0 0
\(763\) 1.20437e17 1.20437e17i 0.610398 0.610398i
\(764\) 7.08659e16i 0.356350i
\(765\) 0 0
\(766\) −9.11546e15 −0.0451238
\(767\) −2.61648e17 2.61648e17i −1.28512 1.28512i
\(768\) 0 0
\(769\) 9.31936e16i 0.450638i −0.974285 0.225319i \(-0.927658\pi\)
0.974285 0.225319i \(-0.0723424\pi\)
\(770\) 1.34983e17 + 3.40207e16i 0.647641 + 0.163230i
\(771\) 0 0
\(772\) −1.49501e16 1.49501e16i −0.0706218 0.0706218i
\(773\) −1.71053e17 + 1.71053e17i −0.801777 + 0.801777i −0.983373 0.181596i \(-0.941874\pi\)
0.181596 + 0.983373i \(0.441874\pi\)
\(774\) 0 0
\(775\) 2.91378e17 + 1.56839e17i 1.34476 + 0.723842i
\(776\) 5.22428e16 0.239252
\(777\) 0 0
\(778\) −1.60316e17 + 1.60316e17i −0.722935 + 0.722935i
\(779\) 7.85584e15i 0.0351534i
\(780\) 0 0
\(781\) 8.25722e16 0.363855
\(782\) −1.10508e17 1.10508e17i −0.483230 0.483230i
\(783\) 0 0
\(784\) 2.85311e16i 0.122863i
\(785\) 1.00991e17 6.03319e16i 0.431585 0.257827i
\(786\) 0 0
\(787\) −7.61701e16 7.61701e16i −0.320580 0.320580i 0.528410 0.848990i \(-0.322789\pi\)
−0.848990 + 0.528410i \(0.822789\pi\)
\(788\) −1.01378e17 + 1.01378e17i −0.423437 + 0.423437i
\(789\) 0 0
\(790\) 4.75093e16 + 7.95273e16i 0.195441 + 0.327155i
\(791\) −3.19737e17 −1.30537
\(792\) 0 0
\(793\) 4.32690e17 4.32690e17i 1.73995 1.73995i
\(794\) 2.34805e16i 0.0937097i
\(795\) 0 0
\(796\) −2.38817e17 −0.938828
\(797\) 5.12571e16 + 5.12571e16i 0.199988 + 0.199988i 0.799995 0.600007i \(-0.204835\pi\)
−0.600007 + 0.799995i \(0.704835\pi\)
\(798\) 0 0
\(799\) 1.79393e17i 0.689486i
\(800\) 1.33227e16 + 4.43846e16i 0.0508220 + 0.169314i
\(801\) 0 0
\(802\) 7.93470e16 + 7.93470e16i 0.298184 + 0.298184i
\(803\) 2.55310e17 2.55310e17i 0.952300 0.952300i
\(804\) 0 0
\(805\) −5.00109e16 + 1.98426e17i −0.183776 + 0.729162i
\(806\) 3.96167e17 1.44500
\(807\) 0 0
\(808\) 1.03450e17 1.03450e17i 0.371760 0.371760i
\(809\) 1.73173e17i 0.617717i −0.951108 0.308859i \(-0.900053\pi\)
0.951108 0.308859i \(-0.0999470\pi\)
\(810\) 0 0
\(811\) −3.57991e17 −1.25819 −0.629095 0.777328i \(-0.716575\pi\)
−0.629095 + 0.777328i \(0.716575\pi\)
\(812\) 6.49447e15 + 6.49447e15i 0.0226573 + 0.0226573i
\(813\) 0 0
\(814\) 1.19628e17i 0.411231i
\(815\) −1.74578e17 2.92231e17i −0.595721 0.997195i
\(816\) 0 0
\(817\) 1.14107e17 + 1.14107e17i 0.383689 + 0.383689i
\(818\) 5.86969e16 5.86969e16i 0.195927 0.195927i
\(819\) 0 0
\(820\) 1.67117e16 + 4.21197e15i 0.0549714 + 0.0138548i
\(821\) −1.62633e17 −0.531068 −0.265534 0.964102i \(-0.585548\pi\)
−0.265534 + 0.964102i \(0.585548\pi\)
\(822\) 0 0
\(823\) −3.78884e17 + 3.78884e17i −1.21929 + 1.21929i −0.251409 + 0.967881i \(0.580894\pi\)
−0.967881 + 0.251409i \(0.919106\pi\)
\(824\) 7.33290e16i 0.234268i
\(825\) 0 0
\(826\) 2.17522e17 0.684892
\(827\) 3.48092e17 + 3.48092e17i 1.08808 + 1.08808i 0.995726 + 0.0923537i \(0.0294390\pi\)
0.0923537 + 0.995726i \(0.470561\pi\)
\(828\) 0 0
\(829\) 3.69157e17i 1.13732i −0.822572 0.568661i \(-0.807461\pi\)
0.822572 0.568661i \(-0.192539\pi\)
\(830\) 3.95599e16 1.56960e17i 0.121000 0.480089i
\(831\) 0 0
\(832\) 3.92304e16 + 3.92304e16i 0.118272 + 0.118272i
\(833\) 1.06412e17 1.06412e17i 0.318507 0.318507i
\(834\) 0 0
\(835\) −7.89205e16 + 4.71468e16i −0.232847 + 0.139102i
\(836\) −7.00958e16 −0.205331
\(837\) 0 0
\(838\) −5.26558e16 + 5.26558e16i −0.152048 + 0.152048i
\(839\) 2.28480e17i 0.655054i 0.944842 + 0.327527i \(0.106215\pi\)
−0.944842 + 0.327527i \(0.893785\pi\)
\(840\) 0 0
\(841\) 3.50958e17 0.991924
\(842\) −1.35219e17 1.35219e17i −0.379459 0.379459i
\(843\) 0 0
\(844\) 7.02172e16i 0.194263i
\(845\) 2.79043e17 + 7.03293e16i 0.766534 + 0.193195i
\(846\) 0 0
\(847\) −1.40449e17 1.40449e17i −0.380381 0.380381i
\(848\) −4.26406e16 + 4.26406e16i −0.114670 + 0.114670i
\(849\) 0 0
\(850\) 1.15851e17 2.15229e17i 0.307174 0.570673i
\(851\) −1.75854e17 −0.462995
\(852\) 0 0
\(853\) 3.95302e17 3.95302e17i 1.02621 1.02621i 0.0265604 0.999647i \(-0.491545\pi\)
0.999647 0.0265604i \(-0.00845542\pi\)
\(854\) 3.59718e17i 0.927289i
\(855\) 0 0
\(856\) −1.13528e17 −0.288577
\(857\) 1.52003e17 + 1.52003e17i 0.383680 + 0.383680i 0.872426 0.488746i \(-0.162546\pi\)
−0.488746 + 0.872426i \(0.662546\pi\)
\(858\) 0 0
\(859\) 1.83511e17i 0.456775i 0.973570 + 0.228388i \(0.0733453\pi\)
−0.973570 + 0.228388i \(0.926655\pi\)
\(860\) −3.03918e17 + 1.81560e17i −0.751218 + 0.448775i
\(861\) 0 0
\(862\) 3.52536e17 + 3.52536e17i 0.859329 + 0.859329i
\(863\) −7.21471e16 + 7.21471e16i −0.174644 + 0.174644i −0.789016 0.614372i \(-0.789409\pi\)
0.614372 + 0.789016i \(0.289409\pi\)
\(864\) 0 0
\(865\) −1.91714e17 3.20915e17i −0.457674 0.766115i
\(866\) −2.32628e17 −0.551512
\(867\) 0 0
\(868\) −1.64678e17 + 1.64678e17i −0.385049 + 0.385049i
\(869\) 3.07408e17i 0.713834i
\(870\) 0 0
\(871\) 3.81770e17 0.874366
\(872\) −1.33046e17 1.33046e17i −0.302624 0.302624i
\(873\) 0 0
\(874\) 1.03042e17i 0.231177i
\(875\) −3.19727e17 + 1.43053e16i −0.712412 + 0.0318750i
\(876\) 0 0
\(877\) 2.24375e17 + 2.24375e17i 0.493147 + 0.493147i 0.909296 0.416149i \(-0.136621\pi\)
−0.416149 + 0.909296i \(0.636621\pi\)
\(878\) 3.29365e16 3.29365e16i 0.0718969 0.0718969i
\(879\) 0 0
\(880\) 3.75824e16 1.49114e17i 0.0809261 0.321088i
\(881\) 4.52418e17 0.967575 0.483788 0.875185i \(-0.339261\pi\)
0.483788 + 0.875185i \(0.339261\pi\)
\(882\) 0 0
\(883\) −2.62955e17 + 2.62955e17i −0.554776 + 0.554776i −0.927815 0.373040i \(-0.878315\pi\)
0.373040 + 0.927815i \(0.378315\pi\)
\(884\) 2.92633e17i 0.613210i
\(885\) 0 0
\(886\) −3.83021e17 −0.791810
\(887\) 2.84621e17 + 2.84621e17i 0.584421 + 0.584421i 0.936115 0.351694i \(-0.114394\pi\)
−0.351694 + 0.936115i \(0.614394\pi\)
\(888\) 0 0
\(889\) 4.33062e17i 0.877283i
\(890\) 3.25827e17 + 5.45412e17i 0.655613 + 1.09745i
\(891\) 0 0
\(892\) −1.26501e17 1.26501e17i −0.251133 0.251133i
\(893\) 8.36363e16 8.36363e16i 0.164925 0.164925i
\(894\) 0 0
\(895\) −6.83319e17 1.72222e17i −1.32949 0.335081i
\(896\) −3.26143e16 −0.0630319
\(897\) 0 0
\(898\) −1.87373e17 + 1.87373e17i −0.357314 + 0.357314i
\(899\) 7.24505e16i 0.137241i
\(900\) 0 0
\(901\) 3.18071e17 0.594532
\(902\) −4.04396e16 4.04396e16i −0.0750875 0.0750875i
\(903\) 0 0
\(904\) 3.53211e17i 0.647178i
\(905\) −6.06607e16 + 2.40681e17i −0.110412 + 0.438078i
\(906\) 0 0
\(907\) −1.04107e17 1.04107e17i −0.186997 0.186997i 0.607400 0.794396i \(-0.292213\pi\)
−0.794396 + 0.607400i \(0.792213\pi\)
\(908\) −1.22133e17 + 1.22133e17i −0.217930 + 0.217930i
\(909\) 0 0
\(910\) −3.28939e17 + 1.96507e17i −0.579251 + 0.346043i
\(911\) −3.22588e17 −0.564337 −0.282168 0.959365i \(-0.591054\pi\)
−0.282168 + 0.959365i \(0.591054\pi\)
\(912\) 0 0
\(913\) −3.79819e17 + 3.79819e17i −0.655771 + 0.655771i
\(914\) 4.61430e16i 0.0791460i
\(915\) 0 0
\(916\) −1.34355e17 −0.227448
\(917\) 4.74283e17 + 4.74283e17i 0.797667 + 0.797667i
\(918\) 0 0
\(919\) 3.75318e17i 0.623027i −0.950242 0.311513i \(-0.899164\pi\)
0.950242 0.311513i \(-0.100836\pi\)
\(920\) 2.19200e17 + 5.52466e16i 0.361505 + 0.0911127i
\(921\) 0 0
\(922\) −2.13288e17 2.13288e17i −0.347201 0.347201i
\(923\) −1.60714e17 + 1.60714e17i −0.259922 + 0.259922i
\(924\) 0 0
\(925\) −7.90716e16 2.63428e17i −0.126232 0.420544i
\(926\) 6.66973e17 1.05789
\(927\) 0 0
\(928\) 7.17439e15 7.17439e15i 0.0112330 0.0112330i
\(929\) 1.22101e16i 0.0189943i 0.999955 + 0.00949717i \(0.00302309\pi\)
−0.999955 + 0.00949717i \(0.996977\pi\)
\(930\) 0 0
\(931\) 9.92220e16 0.152374
\(932\) 1.55935e17 + 1.55935e17i 0.237930 + 0.237930i
\(933\) 0 0
\(934\) 9.10449e17i 1.37143i
\(935\) −6.96318e17 + 4.15978e17i −1.04217 + 0.622587i
\(936\) 0 0
\(937\) 6.76414e17 + 6.76414e17i 0.999482 + 0.999482i 1.00000 0.000518293i \(-0.000164978\pi\)
−0.000518293 1.00000i \(0.500165\pi\)
\(938\) −1.58693e17 + 1.58693e17i −0.232992 + 0.232992i
\(939\) 0 0
\(940\) 1.33077e17 + 2.22761e17i 0.192901 + 0.322903i
\(941\) 6.59259e17 0.949551 0.474775 0.880107i \(-0.342529\pi\)
0.474775 + 0.880107i \(0.342529\pi\)
\(942\) 0 0
\(943\) 5.94467e16 5.94467e16i 0.0845391 0.0845391i
\(944\) 2.40294e17i 0.339556i
\(945\) 0 0
\(946\) 1.17478e18 1.63911
\(947\) 1.50923e17 + 1.50923e17i 0.209245 + 0.209245i 0.803946 0.594702i \(-0.202730\pi\)
−0.594702 + 0.803946i \(0.702730\pi\)
\(948\) 0 0
\(949\) 9.93841e17i 1.36057i
\(950\) 1.54355e17 4.63320e16i 0.209981 0.0630288i
\(951\) 0 0
\(952\) 1.21641e17 + 1.21641e17i 0.163402 + 0.163402i
\(953\) −2.51624e17 + 2.51624e17i −0.335888 + 0.335888i −0.854817 0.518929i \(-0.826331\pi\)
0.518929 + 0.854817i \(0.326331\pi\)
\(954\) 0 0
\(955\) −1.32135e17 + 5.24269e17i −0.174180 + 0.691089i
\(956\) −8.91731e16 −0.116812
\(957\) 0 0
\(958\) −3.32092e17 + 3.32092e17i −0.429601 + 0.429601i
\(959\) 5.87224e17i 0.754905i
\(960\) 0 0
\(961\) 1.04943e18 1.33234
\(962\) −2.32837e17 2.32837e17i −0.293766 0.293766i
\(963\) 0 0
\(964\) 6.24760e17i 0.778486i
\(965\) −8.27255e16 1.38477e17i −0.102441 0.171480i
\(966\) 0 0
\(967\) −5.27730e17 5.27730e17i −0.645436 0.645436i 0.306451 0.951887i \(-0.400859\pi\)
−0.951887 + 0.306451i \(0.900859\pi\)
\(968\) −1.55153e17 + 1.55153e17i −0.188585 + 0.188585i
\(969\) 0 0
\(970\) 3.86494e17 + 9.74110e16i 0.463994 + 0.116944i
\(971\) −3.09306e16 −0.0369040 −0.0184520 0.999830i \(-0.505874\pi\)
−0.0184520 + 0.999830i \(0.505874\pi\)
\(972\) 0 0
\(973\) 3.16878e17 3.16878e17i 0.373435 0.373435i
\(974\) 7.68712e17i 0.900347i
\(975\) 0 0
\(976\) 3.97378e17 0.459732
\(977\) −3.95237e17 3.95237e17i −0.454455 0.454455i 0.442375 0.896830i \(-0.354136\pi\)
−0.896830 + 0.442375i \(0.854136\pi\)
\(978\) 0 0
\(979\) 2.10826e18i 2.39457i
\(980\) −5.31986e16 + 2.11074e17i −0.0600542 + 0.238275i
\(981\) 0 0
\(982\) −1.94002e17 1.94002e17i −0.216341 0.216341i
\(983\) 1.05857e18 1.05857e18i 1.17327 1.17327i 0.191842 0.981426i \(-0.438554\pi\)
0.981426 0.191842i \(-0.0614460\pi\)
\(984\) 0 0
\(985\) −9.39031e17 + 5.60974e17i −1.02816 + 0.614221i
\(986\) −5.35162e16 −0.0582404
\(987\) 0 0
\(988\) 1.36431e17 1.36431e17i 0.146680 0.146680i
\(989\) 1.72694e18i 1.84544i
\(990\) 0 0
\(991\) −1.13103e18 −1.19408 −0.597040 0.802211i \(-0.703657\pi\)
−0.597040 + 0.802211i \(0.703657\pi\)
\(992\) 1.81918e17 + 1.81918e17i 0.190900 + 0.190900i
\(993\) 0 0
\(994\) 1.33610e17i 0.138523i
\(995\) −1.76677e18 4.45293e17i −1.82072 0.458889i
\(996\) 0 0
\(997\) 1.23508e18 + 1.23508e18i 1.25755 + 1.25755i 0.952258 + 0.305293i \(0.0987544\pi\)
0.305293 + 0.952258i \(0.401246\pi\)
\(998\) −7.43824e17 + 7.43824e17i −0.752812 + 0.752812i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.13.g.b.37.1 6
3.2 odd 2 10.13.c.a.7.2 yes 6
5.3 odd 4 inner 90.13.g.b.73.1 6
12.11 even 2 80.13.p.b.17.2 6
15.2 even 4 50.13.c.d.43.2 6
15.8 even 4 10.13.c.a.3.2 6
15.14 odd 2 50.13.c.d.7.2 6
60.23 odd 4 80.13.p.b.33.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.13.c.a.3.2 6 15.8 even 4
10.13.c.a.7.2 yes 6 3.2 odd 2
50.13.c.d.7.2 6 15.14 odd 2
50.13.c.d.43.2 6 15.2 even 4
80.13.p.b.17.2 6 12.11 even 2
80.13.p.b.33.2 6 60.23 odd 4
90.13.g.b.37.1 6 1.1 even 1 trivial
90.13.g.b.73.1 6 5.3 odd 4 inner