Properties

Label 9.44.a.c.1.3
Level $9$
Weight $44$
Character 9.1
Self dual yes
Analytic conductor $105.399$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9,44,Mod(1,9)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9.1"); S:= CuspForms(chi, 44); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 44, names="a")
 
Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 44 \)
Character orbit: \([\chi]\) \(=\) 9.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1660014] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.399355811\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 886516819907x^{2} - 42308083143723387x + 94580276745082867224894 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{10}\cdot 5^{2}\cdot 7\cdot 11 \)
Twist minimal: no (minimal twist has level 3)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-388484.\) of defining polynomial
Character \(\chi\) \(=\) 9.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.91590e6 q^{2} -5.12540e12 q^{4} -2.05854e15 q^{5} +1.37114e18 q^{7} -2.66723e19 q^{8} -3.94396e21 q^{10} +2.95641e22 q^{11} +4.85026e23 q^{13} +2.62698e24 q^{14} -6.01799e24 q^{16} -2.08153e26 q^{17} -1.07725e27 q^{19} +1.05508e28 q^{20} +5.66420e28 q^{22} +2.47106e29 q^{23} +3.10071e30 q^{25} +9.29263e29 q^{26} -7.02766e30 q^{28} -1.39089e31 q^{29} +1.48976e31 q^{31} +2.23082e32 q^{32} -3.98801e32 q^{34} -2.82255e33 q^{35} +9.02009e33 q^{37} -2.06390e33 q^{38} +5.49059e34 q^{40} -5.58080e34 q^{41} -2.06648e35 q^{43} -1.51528e35 q^{44} +4.73431e35 q^{46} -6.46223e35 q^{47} -3.03780e35 q^{49} +5.94067e36 q^{50} -2.48595e36 q^{52} +4.21095e36 q^{53} -6.08589e37 q^{55} -3.65715e37 q^{56} -2.66481e37 q^{58} -4.40127e37 q^{59} +4.53571e37 q^{61} +2.85424e37 q^{62} +4.80338e38 q^{64} -9.98445e38 q^{65} -1.64891e37 q^{67} +1.06687e39 q^{68} -5.40774e39 q^{70} -6.75118e39 q^{71} -5.28077e39 q^{73} +1.72816e40 q^{74} +5.52132e39 q^{76} +4.05366e40 q^{77} +1.01508e41 q^{79} +1.23883e40 q^{80} -1.06923e41 q^{82} -2.11545e41 q^{83} +4.28491e41 q^{85} -3.95917e41 q^{86} -7.88542e41 q^{88} +7.34681e41 q^{89} +6.65040e41 q^{91} -1.26652e42 q^{92} -1.23810e42 q^{94} +2.21755e42 q^{95} -6.37472e42 q^{97} -5.82013e41 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 1660014 q^{2} + 29333750564548 q^{4} - 16\!\cdots\!20 q^{5} + 11\!\cdots\!28 q^{7} - 77\!\cdots\!48 q^{8} + 53\!\cdots\!60 q^{10} - 87\!\cdots\!96 q^{11} - 16\!\cdots\!96 q^{13} + 13\!\cdots\!08 q^{14}+ \cdots - 62\!\cdots\!46 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.91590e6 0.645995 0.322997 0.946400i \(-0.395309\pi\)
0.322997 + 0.946400i \(0.395309\pi\)
\(3\) 0 0
\(4\) −5.12540e12 −0.582691
\(5\) −2.05854e15 −1.93065 −0.965326 0.261047i \(-0.915932\pi\)
−0.965326 + 0.261047i \(0.915932\pi\)
\(6\) 0 0
\(7\) 1.37114e18 0.927844 0.463922 0.885876i \(-0.346442\pi\)
0.463922 + 0.885876i \(0.346442\pi\)
\(8\) −2.66723e19 −1.02241
\(9\) 0 0
\(10\) −3.94396e21 −1.24719
\(11\) 2.95641e22 1.20454 0.602271 0.798292i \(-0.294263\pi\)
0.602271 + 0.798292i \(0.294263\pi\)
\(12\) 0 0
\(13\) 4.85026e23 0.544481 0.272241 0.962229i \(-0.412235\pi\)
0.272241 + 0.962229i \(0.412235\pi\)
\(14\) 2.62698e24 0.599383
\(15\) 0 0
\(16\) −6.01799e24 −0.0777807
\(17\) −2.08153e26 −0.730686 −0.365343 0.930873i \(-0.619048\pi\)
−0.365343 + 0.930873i \(0.619048\pi\)
\(18\) 0 0
\(19\) −1.07725e27 −0.346029 −0.173015 0.984919i \(-0.555351\pi\)
−0.173015 + 0.984919i \(0.555351\pi\)
\(20\) 1.05508e28 1.12497
\(21\) 0 0
\(22\) 5.66420e28 0.778128
\(23\) 2.47106e29 1.30537 0.652686 0.757628i \(-0.273642\pi\)
0.652686 + 0.757628i \(0.273642\pi\)
\(24\) 0 0
\(25\) 3.10071e30 2.72742
\(26\) 9.29263e29 0.351732
\(27\) 0 0
\(28\) −7.02766e30 −0.540646
\(29\) −1.39089e31 −0.503195 −0.251597 0.967832i \(-0.580956\pi\)
−0.251597 + 0.967832i \(0.580956\pi\)
\(30\) 0 0
\(31\) 1.48976e31 0.128481 0.0642406 0.997934i \(-0.479537\pi\)
0.0642406 + 0.997934i \(0.479537\pi\)
\(32\) 2.23082e32 0.972164
\(33\) 0 0
\(34\) −3.98801e32 −0.472020
\(35\) −2.82255e33 −1.79134
\(36\) 0 0
\(37\) 9.02009e33 1.73330 0.866651 0.498916i \(-0.166268\pi\)
0.866651 + 0.498916i \(0.166268\pi\)
\(38\) −2.06390e33 −0.223533
\(39\) 0 0
\(40\) 5.49059e34 1.97392
\(41\) −5.58080e34 −1.17989 −0.589947 0.807442i \(-0.700852\pi\)
−0.589947 + 0.807442i \(0.700852\pi\)
\(42\) 0 0
\(43\) −2.06648e35 −1.56913 −0.784565 0.620047i \(-0.787113\pi\)
−0.784565 + 0.620047i \(0.787113\pi\)
\(44\) −1.51528e35 −0.701876
\(45\) 0 0
\(46\) 4.73431e35 0.843264
\(47\) −6.46223e35 −0.724901 −0.362450 0.932003i \(-0.618060\pi\)
−0.362450 + 0.932003i \(0.618060\pi\)
\(48\) 0 0
\(49\) −3.03780e35 −0.139105
\(50\) 5.94067e36 1.76190
\(51\) 0 0
\(52\) −2.48595e36 −0.317264
\(53\) 4.21095e36 0.356820 0.178410 0.983956i \(-0.442905\pi\)
0.178410 + 0.983956i \(0.442905\pi\)
\(54\) 0 0
\(55\) −6.08589e37 −2.32555
\(56\) −3.65715e37 −0.948637
\(57\) 0 0
\(58\) −2.66481e37 −0.325061
\(59\) −4.40127e37 −0.371757 −0.185879 0.982573i \(-0.559513\pi\)
−0.185879 + 0.982573i \(0.559513\pi\)
\(60\) 0 0
\(61\) 4.53571e37 0.187091 0.0935457 0.995615i \(-0.470180\pi\)
0.0935457 + 0.995615i \(0.470180\pi\)
\(62\) 2.85424e37 0.0829982
\(63\) 0 0
\(64\) 4.80338e38 0.705794
\(65\) −9.98445e38 −1.05120
\(66\) 0 0
\(67\) −1.64891e37 −0.00904878 −0.00452439 0.999990i \(-0.501440\pi\)
−0.00452439 + 0.999990i \(0.501440\pi\)
\(68\) 1.06687e39 0.425764
\(69\) 0 0
\(70\) −5.40774e39 −1.15720
\(71\) −6.75118e39 −1.06494 −0.532470 0.846449i \(-0.678736\pi\)
−0.532470 + 0.846449i \(0.678736\pi\)
\(72\) 0 0
\(73\) −5.28077e39 −0.458412 −0.229206 0.973378i \(-0.573613\pi\)
−0.229206 + 0.973378i \(0.573613\pi\)
\(74\) 1.72816e40 1.11970
\(75\) 0 0
\(76\) 5.52132e39 0.201628
\(77\) 4.05366e40 1.11763
\(78\) 0 0
\(79\) 1.01508e41 1.61257 0.806286 0.591526i \(-0.201474\pi\)
0.806286 + 0.591526i \(0.201474\pi\)
\(80\) 1.23883e40 0.150167
\(81\) 0 0
\(82\) −1.06923e41 −0.762206
\(83\) −2.11545e41 −1.16205 −0.581024 0.813886i \(-0.697348\pi\)
−0.581024 + 0.813886i \(0.697348\pi\)
\(84\) 0 0
\(85\) 4.28491e41 1.41070
\(86\) −3.95917e41 −1.01365
\(87\) 0 0
\(88\) −7.88542e41 −1.23154
\(89\) 7.34681e41 0.899940 0.449970 0.893044i \(-0.351435\pi\)
0.449970 + 0.893044i \(0.351435\pi\)
\(90\) 0 0
\(91\) 6.65040e41 0.505194
\(92\) −1.26652e42 −0.760629
\(93\) 0 0
\(94\) −1.23810e42 −0.468282
\(95\) 2.21755e42 0.668062
\(96\) 0 0
\(97\) −6.37472e42 −1.22707 −0.613534 0.789668i \(-0.710253\pi\)
−0.613534 + 0.789668i \(0.710253\pi\)
\(98\) −5.82013e41 −0.0898611
\(99\) 0 0
\(100\) −1.58924e43 −1.58924
\(101\) −1.97674e43 −1.59602 −0.798012 0.602642i \(-0.794115\pi\)
−0.798012 + 0.602642i \(0.794115\pi\)
\(102\) 0 0
\(103\) 2.37782e43 1.25944 0.629721 0.776821i \(-0.283169\pi\)
0.629721 + 0.776821i \(0.283169\pi\)
\(104\) −1.29367e43 −0.556683
\(105\) 0 0
\(106\) 8.06778e42 0.230504
\(107\) −1.70071e41 −0.00397081 −0.00198541 0.999998i \(-0.500632\pi\)
−0.00198541 + 0.999998i \(0.500632\pi\)
\(108\) 0 0
\(109\) 5.49545e43 0.861656 0.430828 0.902434i \(-0.358222\pi\)
0.430828 + 0.902434i \(0.358222\pi\)
\(110\) −1.16600e44 −1.50229
\(111\) 0 0
\(112\) −8.25153e42 −0.0721683
\(113\) −5.69482e43 −0.411427 −0.205714 0.978612i \(-0.565952\pi\)
−0.205714 + 0.978612i \(0.565952\pi\)
\(114\) 0 0
\(115\) −5.08677e44 −2.52022
\(116\) 7.12888e43 0.293207
\(117\) 0 0
\(118\) −8.43241e43 −0.240153
\(119\) −2.85408e44 −0.677963
\(120\) 0 0
\(121\) 2.71636e44 0.450922
\(122\) 8.68999e43 0.120860
\(123\) 0 0
\(124\) −7.63561e43 −0.0748648
\(125\) −4.04265e45 −3.33504
\(126\) 0 0
\(127\) −1.89728e45 −1.11263 −0.556316 0.830971i \(-0.687786\pi\)
−0.556316 + 0.830971i \(0.687786\pi\)
\(128\) −1.04197e45 −0.516225
\(129\) 0 0
\(130\) −1.91292e45 −0.679072
\(131\) −1.03358e45 −0.311179 −0.155590 0.987822i \(-0.549728\pi\)
−0.155590 + 0.987822i \(0.549728\pi\)
\(132\) 0 0
\(133\) −1.47706e45 −0.321061
\(134\) −3.15916e43 −0.00584546
\(135\) 0 0
\(136\) 5.55191e45 0.747061
\(137\) −7.28740e45 −0.837684 −0.418842 0.908059i \(-0.637564\pi\)
−0.418842 + 0.908059i \(0.637564\pi\)
\(138\) 0 0
\(139\) −6.85030e44 −0.0576622 −0.0288311 0.999584i \(-0.509178\pi\)
−0.0288311 + 0.999584i \(0.509178\pi\)
\(140\) 1.44667e46 1.04380
\(141\) 0 0
\(142\) −1.29346e46 −0.687945
\(143\) 1.43394e46 0.655851
\(144\) 0 0
\(145\) 2.86320e46 0.971494
\(146\) −1.01175e46 −0.296132
\(147\) 0 0
\(148\) −4.62316e46 −1.00998
\(149\) 8.50711e45 0.160797 0.0803984 0.996763i \(-0.474381\pi\)
0.0803984 + 0.996763i \(0.474381\pi\)
\(150\) 0 0
\(151\) 8.58237e46 1.21788 0.608938 0.793218i \(-0.291596\pi\)
0.608938 + 0.793218i \(0.291596\pi\)
\(152\) 2.87326e46 0.353784
\(153\) 0 0
\(154\) 7.76643e46 0.721982
\(155\) −3.06673e46 −0.248053
\(156\) 0 0
\(157\) 2.17438e47 1.33504 0.667519 0.744593i \(-0.267356\pi\)
0.667519 + 0.744593i \(0.267356\pi\)
\(158\) 1.94480e47 1.04171
\(159\) 0 0
\(160\) −4.59223e47 −1.87691
\(161\) 3.38818e47 1.21118
\(162\) 0 0
\(163\) 2.10328e47 0.576584 0.288292 0.957543i \(-0.406913\pi\)
0.288292 + 0.957543i \(0.406913\pi\)
\(164\) 2.86038e47 0.687514
\(165\) 0 0
\(166\) −4.05300e47 −0.750677
\(167\) −4.19368e47 −0.682639 −0.341320 0.939947i \(-0.610874\pi\)
−0.341320 + 0.939947i \(0.610874\pi\)
\(168\) 0 0
\(169\) −5.58281e47 −0.703540
\(170\) 8.20948e47 0.911305
\(171\) 0 0
\(172\) 1.05915e48 0.914317
\(173\) 2.43273e47 0.185397 0.0926983 0.995694i \(-0.470451\pi\)
0.0926983 + 0.995694i \(0.470451\pi\)
\(174\) 0 0
\(175\) 4.25153e48 2.53062
\(176\) −1.77916e47 −0.0936901
\(177\) 0 0
\(178\) 1.40758e48 0.581357
\(179\) −3.65334e47 −0.133767 −0.0668836 0.997761i \(-0.521306\pi\)
−0.0668836 + 0.997761i \(0.521306\pi\)
\(180\) 0 0
\(181\) −4.64912e48 −1.34054 −0.670272 0.742115i \(-0.733823\pi\)
−0.670272 + 0.742115i \(0.733823\pi\)
\(182\) 1.27415e48 0.326352
\(183\) 0 0
\(184\) −6.59087e48 −1.33463
\(185\) −1.85682e49 −3.34640
\(186\) 0 0
\(187\) −6.15386e48 −0.880143
\(188\) 3.31215e48 0.422393
\(189\) 0 0
\(190\) 4.24862e48 0.431565
\(191\) 1.11668e49 1.01324 0.506621 0.862169i \(-0.330894\pi\)
0.506621 + 0.862169i \(0.330894\pi\)
\(192\) 0 0
\(193\) −8.49609e48 −0.616222 −0.308111 0.951350i \(-0.599697\pi\)
−0.308111 + 0.951350i \(0.599697\pi\)
\(194\) −1.22134e49 −0.792680
\(195\) 0 0
\(196\) 1.55699e48 0.0810552
\(197\) 2.47958e49 1.15706 0.578529 0.815662i \(-0.303627\pi\)
0.578529 + 0.815662i \(0.303627\pi\)
\(198\) 0 0
\(199\) −1.43615e49 −0.539336 −0.269668 0.962953i \(-0.586914\pi\)
−0.269668 + 0.962953i \(0.586914\pi\)
\(200\) −8.27031e49 −2.78854
\(201\) 0 0
\(202\) −3.78724e49 −1.03102
\(203\) −1.90711e49 −0.466886
\(204\) 0 0
\(205\) 1.14883e50 2.27797
\(206\) 4.55567e49 0.813593
\(207\) 0 0
\(208\) −2.91888e48 −0.0423501
\(209\) −3.18478e49 −0.416807
\(210\) 0 0
\(211\) −1.63599e49 −0.174464 −0.0872322 0.996188i \(-0.527802\pi\)
−0.0872322 + 0.996188i \(0.527802\pi\)
\(212\) −2.15828e49 −0.207916
\(213\) 0 0
\(214\) −3.25840e47 −0.00256512
\(215\) 4.25392e50 3.02944
\(216\) 0 0
\(217\) 2.04267e49 0.119211
\(218\) 1.05288e50 0.556625
\(219\) 0 0
\(220\) 3.11926e50 1.35508
\(221\) −1.00960e50 −0.397845
\(222\) 0 0
\(223\) −3.73988e50 −1.21424 −0.607118 0.794612i \(-0.707674\pi\)
−0.607118 + 0.794612i \(0.707674\pi\)
\(224\) 3.05877e50 0.902017
\(225\) 0 0
\(226\) −1.09107e50 −0.265780
\(227\) −8.48595e49 −0.187994 −0.0939972 0.995572i \(-0.529964\pi\)
−0.0939972 + 0.995572i \(0.529964\pi\)
\(228\) 0 0
\(229\) −7.41729e49 −0.136076 −0.0680381 0.997683i \(-0.521674\pi\)
−0.0680381 + 0.997683i \(0.521674\pi\)
\(230\) −9.74577e50 −1.62805
\(231\) 0 0
\(232\) 3.70982e50 0.514471
\(233\) 1.00178e51 1.26654 0.633269 0.773932i \(-0.281713\pi\)
0.633269 + 0.773932i \(0.281713\pi\)
\(234\) 0 0
\(235\) 1.33028e51 1.39953
\(236\) 2.25583e50 0.216620
\(237\) 0 0
\(238\) −5.46814e50 −0.437961
\(239\) −8.73908e50 −0.639604 −0.319802 0.947484i \(-0.603616\pi\)
−0.319802 + 0.947484i \(0.603616\pi\)
\(240\) 0 0
\(241\) −3.95900e50 −0.242225 −0.121112 0.992639i \(-0.538646\pi\)
−0.121112 + 0.992639i \(0.538646\pi\)
\(242\) 5.20428e50 0.291293
\(243\) 0 0
\(244\) −2.32473e50 −0.109016
\(245\) 6.25342e50 0.268563
\(246\) 0 0
\(247\) −5.22493e50 −0.188406
\(248\) −3.97352e50 −0.131360
\(249\) 0 0
\(250\) −7.74534e51 −2.15442
\(251\) −1.46542e51 −0.374090 −0.187045 0.982351i \(-0.559891\pi\)
−0.187045 + 0.982351i \(0.559891\pi\)
\(252\) 0 0
\(253\) 7.30546e51 1.57238
\(254\) −3.63501e51 −0.718755
\(255\) 0 0
\(256\) −6.22141e51 −1.03927
\(257\) −1.09888e52 −1.68806 −0.844030 0.536296i \(-0.819823\pi\)
−0.844030 + 0.536296i \(0.819823\pi\)
\(258\) 0 0
\(259\) 1.23678e52 1.60823
\(260\) 5.11743e51 0.612527
\(261\) 0 0
\(262\) −1.98024e51 −0.201020
\(263\) −1.90424e51 −0.178104 −0.0890519 0.996027i \(-0.528384\pi\)
−0.0890519 + 0.996027i \(0.528384\pi\)
\(264\) 0 0
\(265\) −8.66841e51 −0.688895
\(266\) −2.82991e51 −0.207404
\(267\) 0 0
\(268\) 8.45135e49 0.00527264
\(269\) −2.81599e52 −1.62165 −0.810826 0.585287i \(-0.800982\pi\)
−0.810826 + 0.585287i \(0.800982\pi\)
\(270\) 0 0
\(271\) −1.50188e52 −0.737558 −0.368779 0.929517i \(-0.620224\pi\)
−0.368779 + 0.929517i \(0.620224\pi\)
\(272\) 1.25266e51 0.0568333
\(273\) 0 0
\(274\) −1.39620e52 −0.541140
\(275\) 9.16699e52 3.28529
\(276\) 0 0
\(277\) −2.09522e52 −0.642561 −0.321280 0.946984i \(-0.604113\pi\)
−0.321280 + 0.946984i \(0.604113\pi\)
\(278\) −1.31245e51 −0.0372495
\(279\) 0 0
\(280\) 7.52839e52 1.83149
\(281\) 1.94351e52 0.437926 0.218963 0.975733i \(-0.429733\pi\)
0.218963 + 0.975733i \(0.429733\pi\)
\(282\) 0 0
\(283\) 5.63973e52 1.09106 0.545532 0.838090i \(-0.316328\pi\)
0.545532 + 0.838090i \(0.316328\pi\)
\(284\) 3.46025e52 0.620531
\(285\) 0 0
\(286\) 2.74728e52 0.423676
\(287\) −7.65207e52 −1.09476
\(288\) 0 0
\(289\) −3.78251e52 −0.466098
\(290\) 5.48562e52 0.627580
\(291\) 0 0
\(292\) 2.70661e52 0.267112
\(293\) 1.38284e53 1.26800 0.633998 0.773334i \(-0.281413\pi\)
0.633998 + 0.773334i \(0.281413\pi\)
\(294\) 0 0
\(295\) 9.06018e52 0.717734
\(296\) −2.40586e53 −1.77214
\(297\) 0 0
\(298\) 1.62988e52 0.103874
\(299\) 1.19853e53 0.710751
\(300\) 0 0
\(301\) −2.83344e53 −1.45591
\(302\) 1.64430e53 0.786742
\(303\) 0 0
\(304\) 6.48286e51 0.0269144
\(305\) −9.33693e52 −0.361208
\(306\) 0 0
\(307\) 1.55833e53 0.523822 0.261911 0.965092i \(-0.415647\pi\)
0.261911 + 0.965092i \(0.415647\pi\)
\(308\) −2.07767e53 −0.651231
\(309\) 0 0
\(310\) −5.87556e52 −0.160241
\(311\) −3.09503e53 −0.787620 −0.393810 0.919192i \(-0.628843\pi\)
−0.393810 + 0.919192i \(0.628843\pi\)
\(312\) 0 0
\(313\) −6.06624e53 −1.34498 −0.672490 0.740106i \(-0.734775\pi\)
−0.672490 + 0.740106i \(0.734775\pi\)
\(314\) 4.16591e53 0.862428
\(315\) 0 0
\(316\) −5.20271e53 −0.939631
\(317\) −7.12220e53 −1.20182 −0.600911 0.799316i \(-0.705195\pi\)
−0.600911 + 0.799316i \(0.705195\pi\)
\(318\) 0 0
\(319\) −4.11204e53 −0.606119
\(320\) −9.88795e53 −1.36264
\(321\) 0 0
\(322\) 6.49142e53 0.782418
\(323\) 2.24232e53 0.252839
\(324\) 0 0
\(325\) 1.50393e54 1.48503
\(326\) 4.02968e53 0.372470
\(327\) 0 0
\(328\) 1.48852e54 1.20634
\(329\) −8.86065e53 −0.672595
\(330\) 0 0
\(331\) −2.21005e53 −0.147265 −0.0736325 0.997285i \(-0.523459\pi\)
−0.0736325 + 0.997285i \(0.523459\pi\)
\(332\) 1.08425e54 0.677115
\(333\) 0 0
\(334\) −8.03469e53 −0.440981
\(335\) 3.39435e52 0.0174700
\(336\) 0 0
\(337\) −9.92988e53 −0.449678 −0.224839 0.974396i \(-0.572186\pi\)
−0.224839 + 0.974396i \(0.572186\pi\)
\(338\) −1.06961e54 −0.454483
\(339\) 0 0
\(340\) −2.19619e54 −0.822002
\(341\) 4.40434e53 0.154761
\(342\) 0 0
\(343\) −3.41085e54 −1.05691
\(344\) 5.51176e54 1.60429
\(345\) 0 0
\(346\) 4.66087e53 0.119765
\(347\) 2.14712e53 0.0518530 0.0259265 0.999664i \(-0.491746\pi\)
0.0259265 + 0.999664i \(0.491746\pi\)
\(348\) 0 0
\(349\) 2.01754e53 0.0430601 0.0215300 0.999768i \(-0.493146\pi\)
0.0215300 + 0.999768i \(0.493146\pi\)
\(350\) 8.14552e54 1.63477
\(351\) 0 0
\(352\) 6.59521e54 1.17101
\(353\) −7.42627e54 −1.24055 −0.620275 0.784384i \(-0.712979\pi\)
−0.620275 + 0.784384i \(0.712979\pi\)
\(354\) 0 0
\(355\) 1.38976e55 2.05603
\(356\) −3.76554e54 −0.524387
\(357\) 0 0
\(358\) −6.99945e53 −0.0864129
\(359\) 8.85340e54 1.02939 0.514694 0.857374i \(-0.327905\pi\)
0.514694 + 0.857374i \(0.327905\pi\)
\(360\) 0 0
\(361\) −8.53135e54 −0.880264
\(362\) −8.90727e54 −0.865985
\(363\) 0 0
\(364\) −3.40860e54 −0.294372
\(365\) 1.08707e55 0.885034
\(366\) 0 0
\(367\) 2.72584e55 1.97324 0.986620 0.163035i \(-0.0521283\pi\)
0.986620 + 0.163035i \(0.0521283\pi\)
\(368\) −1.48708e54 −0.101533
\(369\) 0 0
\(370\) −3.55749e55 −2.16176
\(371\) 5.77382e54 0.331073
\(372\) 0 0
\(373\) −2.12458e55 −1.08526 −0.542628 0.839973i \(-0.682571\pi\)
−0.542628 + 0.839973i \(0.682571\pi\)
\(374\) −1.17902e55 −0.568567
\(375\) 0 0
\(376\) 1.72362e55 0.741146
\(377\) −6.74618e54 −0.273980
\(378\) 0 0
\(379\) 2.08438e55 0.755499 0.377750 0.925908i \(-0.376698\pi\)
0.377750 + 0.925908i \(0.376698\pi\)
\(380\) −1.13659e55 −0.389274
\(381\) 0 0
\(382\) 2.13946e55 0.654549
\(383\) 1.15099e55 0.332889 0.166444 0.986051i \(-0.446771\pi\)
0.166444 + 0.986051i \(0.446771\pi\)
\(384\) 0 0
\(385\) −8.34463e55 −2.15775
\(386\) −1.62777e55 −0.398076
\(387\) 0 0
\(388\) 3.26730e55 0.715001
\(389\) −2.58934e54 −0.0536132 −0.0268066 0.999641i \(-0.508534\pi\)
−0.0268066 + 0.999641i \(0.508534\pi\)
\(390\) 0 0
\(391\) −5.14358e55 −0.953818
\(392\) 8.10249e54 0.142222
\(393\) 0 0
\(394\) 4.75065e55 0.747453
\(395\) −2.08959e56 −3.11331
\(396\) 0 0
\(397\) −4.99618e55 −0.667793 −0.333897 0.942610i \(-0.608364\pi\)
−0.333897 + 0.942610i \(0.608364\pi\)
\(398\) −2.75153e55 −0.348408
\(399\) 0 0
\(400\) −1.86601e55 −0.212140
\(401\) −5.05004e55 −0.544115 −0.272058 0.962281i \(-0.587704\pi\)
−0.272058 + 0.962281i \(0.587704\pi\)
\(402\) 0 0
\(403\) 7.22572e54 0.0699556
\(404\) 1.01316e56 0.929988
\(405\) 0 0
\(406\) −3.65384e55 −0.301606
\(407\) 2.66671e56 2.08783
\(408\) 0 0
\(409\) 2.15446e56 1.51806 0.759028 0.651058i \(-0.225674\pi\)
0.759028 + 0.651058i \(0.225674\pi\)
\(410\) 2.20105e56 1.47155
\(411\) 0 0
\(412\) −1.21873e56 −0.733866
\(413\) −6.03477e55 −0.344933
\(414\) 0 0
\(415\) 4.35474e56 2.24351
\(416\) 1.08200e56 0.529325
\(417\) 0 0
\(418\) −6.10174e55 −0.269255
\(419\) 3.43101e56 1.43820 0.719102 0.694904i \(-0.244553\pi\)
0.719102 + 0.694904i \(0.244553\pi\)
\(420\) 0 0
\(421\) −4.45367e56 −1.68521 −0.842603 0.538536i \(-0.818978\pi\)
−0.842603 + 0.538536i \(0.818978\pi\)
\(422\) −3.13439e55 −0.112703
\(423\) 0 0
\(424\) −1.12316e56 −0.364816
\(425\) −6.45423e56 −1.99289
\(426\) 0 0
\(427\) 6.21911e55 0.173592
\(428\) 8.71683e53 0.00231376
\(429\) 0 0
\(430\) 8.15011e56 1.95700
\(431\) 1.15170e56 0.263074 0.131537 0.991311i \(-0.458009\pi\)
0.131537 + 0.991311i \(0.458009\pi\)
\(432\) 0 0
\(433\) 2.47297e56 0.511362 0.255681 0.966761i \(-0.417700\pi\)
0.255681 + 0.966761i \(0.417700\pi\)
\(434\) 3.91357e55 0.0770094
\(435\) 0 0
\(436\) −2.81664e56 −0.502079
\(437\) −2.66194e56 −0.451697
\(438\) 0 0
\(439\) 4.99561e55 0.0768424 0.0384212 0.999262i \(-0.487767\pi\)
0.0384212 + 0.999262i \(0.487767\pi\)
\(440\) 1.62324e57 2.37767
\(441\) 0 0
\(442\) −1.93429e56 −0.257006
\(443\) −1.10930e57 −1.40401 −0.702003 0.712174i \(-0.747711\pi\)
−0.702003 + 0.712174i \(0.747711\pi\)
\(444\) 0 0
\(445\) −1.51237e57 −1.73747
\(446\) −7.16525e56 −0.784389
\(447\) 0 0
\(448\) 6.58613e56 0.654866
\(449\) 4.08332e55 0.0387005 0.0193503 0.999813i \(-0.493840\pi\)
0.0193503 + 0.999813i \(0.493840\pi\)
\(450\) 0 0
\(451\) −1.64991e57 −1.42123
\(452\) 2.91882e56 0.239735
\(453\) 0 0
\(454\) −1.62583e56 −0.121443
\(455\) −1.36901e57 −0.975353
\(456\) 0 0
\(457\) −1.23487e57 −0.800611 −0.400305 0.916382i \(-0.631096\pi\)
−0.400305 + 0.916382i \(0.631096\pi\)
\(458\) −1.42108e56 −0.0879045
\(459\) 0 0
\(460\) 2.60717e57 1.46851
\(461\) −1.83528e57 −0.986580 −0.493290 0.869865i \(-0.664206\pi\)
−0.493290 + 0.869865i \(0.664206\pi\)
\(462\) 0 0
\(463\) 8.87478e56 0.434677 0.217338 0.976096i \(-0.430262\pi\)
0.217338 + 0.976096i \(0.430262\pi\)
\(464\) 8.37036e55 0.0391388
\(465\) 0 0
\(466\) 1.91931e57 0.818177
\(467\) 9.54635e56 0.388620 0.194310 0.980940i \(-0.437753\pi\)
0.194310 + 0.980940i \(0.437753\pi\)
\(468\) 0 0
\(469\) −2.26090e55 −0.00839586
\(470\) 2.54868e57 0.904090
\(471\) 0 0
\(472\) 1.17392e57 0.380089
\(473\) −6.10935e57 −1.89008
\(474\) 0 0
\(475\) −3.34024e57 −0.943766
\(476\) 1.46283e57 0.395043
\(477\) 0 0
\(478\) −1.67432e57 −0.413181
\(479\) −1.34733e57 −0.317877 −0.158939 0.987288i \(-0.550807\pi\)
−0.158939 + 0.987288i \(0.550807\pi\)
\(480\) 0 0
\(481\) 4.37498e57 0.943750
\(482\) −7.58506e56 −0.156476
\(483\) 0 0
\(484\) −1.39224e57 −0.262748
\(485\) 1.31226e58 2.36904
\(486\) 0 0
\(487\) −9.08466e57 −1.50119 −0.750596 0.660762i \(-0.770233\pi\)
−0.750596 + 0.660762i \(0.770233\pi\)
\(488\) −1.20978e57 −0.191284
\(489\) 0 0
\(490\) 1.19810e57 0.173491
\(491\) 8.89699e57 1.23308 0.616540 0.787324i \(-0.288534\pi\)
0.616540 + 0.787324i \(0.288534\pi\)
\(492\) 0 0
\(493\) 2.89518e57 0.367677
\(494\) −1.00105e57 −0.121710
\(495\) 0 0
\(496\) −8.96535e55 −0.00999335
\(497\) −9.25683e57 −0.988098
\(498\) 0 0
\(499\) −7.85254e56 −0.0768862 −0.0384431 0.999261i \(-0.512240\pi\)
−0.0384431 + 0.999261i \(0.512240\pi\)
\(500\) 2.07202e58 1.94330
\(501\) 0 0
\(502\) −2.80760e57 −0.241660
\(503\) −2.18276e58 −1.80009 −0.900044 0.435800i \(-0.856466\pi\)
−0.900044 + 0.435800i \(0.856466\pi\)
\(504\) 0 0
\(505\) 4.06919e58 3.08137
\(506\) 1.39966e58 1.01575
\(507\) 0 0
\(508\) 9.72433e57 0.648321
\(509\) 9.01858e57 0.576376 0.288188 0.957574i \(-0.406947\pi\)
0.288188 + 0.957574i \(0.406947\pi\)
\(510\) 0 0
\(511\) −7.24069e57 −0.425335
\(512\) −2.75439e57 −0.155139
\(513\) 0 0
\(514\) −2.10535e58 −1.09048
\(515\) −4.89483e58 −2.43155
\(516\) 0 0
\(517\) −1.91050e58 −0.873174
\(518\) 2.36956e58 1.03891
\(519\) 0 0
\(520\) 2.66308e58 1.07476
\(521\) 4.86422e57 0.188366 0.0941829 0.995555i \(-0.469976\pi\)
0.0941829 + 0.995555i \(0.469976\pi\)
\(522\) 0 0
\(523\) −4.83195e58 −1.72320 −0.861601 0.507586i \(-0.830538\pi\)
−0.861601 + 0.507586i \(0.830538\pi\)
\(524\) 5.29750e57 0.181321
\(525\) 0 0
\(526\) −3.64834e57 −0.115054
\(527\) −3.10098e57 −0.0938795
\(528\) 0 0
\(529\) 2.52272e58 0.703998
\(530\) −1.66078e58 −0.445023
\(531\) 0 0
\(532\) 7.57053e57 0.187079
\(533\) −2.70683e58 −0.642430
\(534\) 0 0
\(535\) 3.50098e56 0.00766626
\(536\) 4.39803e56 0.00925156
\(537\) 0 0
\(538\) −5.39517e58 −1.04758
\(539\) −8.98097e57 −0.167558
\(540\) 0 0
\(541\) −8.31551e58 −1.43267 −0.716337 0.697754i \(-0.754183\pi\)
−0.716337 + 0.697754i \(0.754183\pi\)
\(542\) −2.87746e58 −0.476458
\(543\) 0 0
\(544\) −4.64351e58 −0.710347
\(545\) −1.13126e59 −1.66356
\(546\) 0 0
\(547\) −1.45905e58 −0.198310 −0.0991548 0.995072i \(-0.531614\pi\)
−0.0991548 + 0.995072i \(0.531614\pi\)
\(548\) 3.73508e58 0.488111
\(549\) 0 0
\(550\) 1.75631e59 2.12228
\(551\) 1.49833e58 0.174120
\(552\) 0 0
\(553\) 1.39182e59 1.49622
\(554\) −4.01424e58 −0.415091
\(555\) 0 0
\(556\) 3.51105e57 0.0335992
\(557\) 1.75662e59 1.61730 0.808650 0.588290i \(-0.200199\pi\)
0.808650 + 0.588290i \(0.200199\pi\)
\(558\) 0 0
\(559\) −1.00229e59 −0.854361
\(560\) 1.69861e58 0.139332
\(561\) 0 0
\(562\) 3.72358e58 0.282898
\(563\) 1.51361e59 1.10684 0.553418 0.832903i \(-0.313323\pi\)
0.553418 + 0.832903i \(0.313323\pi\)
\(564\) 0 0
\(565\) 1.17230e59 0.794323
\(566\) 1.08052e59 0.704821
\(567\) 0 0
\(568\) 1.80069e59 1.08880
\(569\) −2.44840e59 −1.42550 −0.712752 0.701417i \(-0.752551\pi\)
−0.712752 + 0.701417i \(0.752551\pi\)
\(570\) 0 0
\(571\) −2.27586e59 −1.22877 −0.614384 0.789007i \(-0.710595\pi\)
−0.614384 + 0.789007i \(0.710595\pi\)
\(572\) −7.34950e58 −0.382158
\(573\) 0 0
\(574\) −1.46606e59 −0.707208
\(575\) 7.66205e59 3.56030
\(576\) 0 0
\(577\) −5.18881e58 −0.223763 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(578\) −7.24693e58 −0.301097
\(579\) 0 0
\(580\) −1.46751e59 −0.566081
\(581\) −2.90059e59 −1.07820
\(582\) 0 0
\(583\) 1.24493e59 0.429805
\(584\) 1.40850e59 0.468685
\(585\) 0 0
\(586\) 2.64939e59 0.819119
\(587\) −2.57601e59 −0.767764 −0.383882 0.923382i \(-0.625413\pi\)
−0.383882 + 0.923382i \(0.625413\pi\)
\(588\) 0 0
\(589\) −1.60484e58 −0.0444583
\(590\) 1.73585e59 0.463653
\(591\) 0 0
\(592\) −5.42828e58 −0.134817
\(593\) −3.64832e59 −0.873810 −0.436905 0.899508i \(-0.643925\pi\)
−0.436905 + 0.899508i \(0.643925\pi\)
\(594\) 0 0
\(595\) 5.87523e59 1.30891
\(596\) −4.36023e58 −0.0936948
\(597\) 0 0
\(598\) 2.29626e59 0.459141
\(599\) 3.13536e58 0.0604798 0.0302399 0.999543i \(-0.490373\pi\)
0.0302399 + 0.999543i \(0.490373\pi\)
\(600\) 0 0
\(601\) −5.61238e59 −1.00773 −0.503867 0.863781i \(-0.668090\pi\)
−0.503867 + 0.863781i \(0.668090\pi\)
\(602\) −5.42859e59 −0.940509
\(603\) 0 0
\(604\) −4.39881e59 −0.709645
\(605\) −5.59173e59 −0.870574
\(606\) 0 0
\(607\) −4.58204e59 −0.664511 −0.332255 0.943189i \(-0.607810\pi\)
−0.332255 + 0.943189i \(0.607810\pi\)
\(608\) −2.40314e59 −0.336397
\(609\) 0 0
\(610\) −1.78887e59 −0.233339
\(611\) −3.13435e59 −0.394695
\(612\) 0 0
\(613\) −1.17245e60 −1.37624 −0.688118 0.725599i \(-0.741563\pi\)
−0.688118 + 0.725599i \(0.741563\pi\)
\(614\) 2.98561e59 0.338387
\(615\) 0 0
\(616\) −1.08120e60 −1.14267
\(617\) 1.43564e60 1.46526 0.732628 0.680629i \(-0.238293\pi\)
0.732628 + 0.680629i \(0.238293\pi\)
\(618\) 0 0
\(619\) 1.66096e60 1.58129 0.790644 0.612276i \(-0.209746\pi\)
0.790644 + 0.612276i \(0.209746\pi\)
\(620\) 1.57182e59 0.144538
\(621\) 0 0
\(622\) −5.92978e59 −0.508798
\(623\) 1.00735e60 0.835005
\(624\) 0 0
\(625\) 4.79686e60 3.71139
\(626\) −1.16223e60 −0.868850
\(627\) 0 0
\(628\) −1.11446e60 −0.777914
\(629\) −1.87756e60 −1.26650
\(630\) 0 0
\(631\) −5.47413e59 −0.344892 −0.172446 0.985019i \(-0.555167\pi\)
−0.172446 + 0.985019i \(0.555167\pi\)
\(632\) −2.70745e60 −1.64871
\(633\) 0 0
\(634\) −1.36455e60 −0.776371
\(635\) 3.90563e60 2.14811
\(636\) 0 0
\(637\) −1.47341e59 −0.0757401
\(638\) −7.87829e59 −0.391550
\(639\) 0 0
\(640\) 2.14493e60 0.996651
\(641\) 3.66398e59 0.164628 0.0823142 0.996606i \(-0.473769\pi\)
0.0823142 + 0.996606i \(0.473769\pi\)
\(642\) 0 0
\(643\) −2.84143e60 −1.19399 −0.596995 0.802245i \(-0.703639\pi\)
−0.596995 + 0.802245i \(0.703639\pi\)
\(644\) −1.73658e60 −0.705745
\(645\) 0 0
\(646\) 4.29608e59 0.163333
\(647\) 1.01042e60 0.371585 0.185793 0.982589i \(-0.440515\pi\)
0.185793 + 0.982589i \(0.440515\pi\)
\(648\) 0 0
\(649\) −1.30120e60 −0.447798
\(650\) 2.88138e60 0.959320
\(651\) 0 0
\(652\) −1.07801e60 −0.335970
\(653\) 4.87378e59 0.146971 0.0734857 0.997296i \(-0.476588\pi\)
0.0734857 + 0.997296i \(0.476588\pi\)
\(654\) 0 0
\(655\) 2.12766e60 0.600779
\(656\) 3.35852e59 0.0917730
\(657\) 0 0
\(658\) −1.69762e60 −0.434493
\(659\) 7.34783e60 1.82022 0.910108 0.414371i \(-0.135998\pi\)
0.910108 + 0.414371i \(0.135998\pi\)
\(660\) 0 0
\(661\) 6.39610e60 1.48451 0.742256 0.670116i \(-0.233756\pi\)
0.742256 + 0.670116i \(0.233756\pi\)
\(662\) −4.23424e59 −0.0951324
\(663\) 0 0
\(664\) 5.64239e60 1.18809
\(665\) 3.04059e60 0.619858
\(666\) 0 0
\(667\) −3.43697e60 −0.656857
\(668\) 2.14943e60 0.397768
\(669\) 0 0
\(670\) 6.50326e58 0.0112856
\(671\) 1.34094e60 0.225359
\(672\) 0 0
\(673\) −5.66196e60 −0.892571 −0.446285 0.894891i \(-0.647253\pi\)
−0.446285 + 0.894891i \(0.647253\pi\)
\(674\) −1.90247e60 −0.290489
\(675\) 0 0
\(676\) 2.86142e60 0.409946
\(677\) −8.79026e60 −1.21996 −0.609980 0.792417i \(-0.708823\pi\)
−0.609980 + 0.792417i \(0.708823\pi\)
\(678\) 0 0
\(679\) −8.74065e60 −1.13853
\(680\) −1.14288e61 −1.44231
\(681\) 0 0
\(682\) 8.43830e59 0.0999748
\(683\) −1.82024e60 −0.208969 −0.104485 0.994526i \(-0.533319\pi\)
−0.104485 + 0.994526i \(0.533319\pi\)
\(684\) 0 0
\(685\) 1.50014e61 1.61728
\(686\) −6.53486e60 −0.682760
\(687\) 0 0
\(688\) 1.24360e60 0.122048
\(689\) 2.04242e60 0.194282
\(690\) 0 0
\(691\) −9.14476e60 −0.817324 −0.408662 0.912686i \(-0.634005\pi\)
−0.408662 + 0.912686i \(0.634005\pi\)
\(692\) −1.24687e60 −0.108029
\(693\) 0 0
\(694\) 4.11369e59 0.0334967
\(695\) 1.41016e60 0.111326
\(696\) 0 0
\(697\) 1.16166e61 0.862133
\(698\) 3.86541e59 0.0278166
\(699\) 0 0
\(700\) −2.17908e61 −1.47457
\(701\) −1.07211e61 −0.703560 −0.351780 0.936083i \(-0.614423\pi\)
−0.351780 + 0.936083i \(0.614423\pi\)
\(702\) 0 0
\(703\) −9.71687e60 −0.599773
\(704\) 1.42008e61 0.850158
\(705\) 0 0
\(706\) −1.42280e61 −0.801389
\(707\) −2.71039e61 −1.48086
\(708\) 0 0
\(709\) 6.45364e60 0.331826 0.165913 0.986140i \(-0.446943\pi\)
0.165913 + 0.986140i \(0.446943\pi\)
\(710\) 2.66264e61 1.32818
\(711\) 0 0
\(712\) −1.95956e61 −0.920108
\(713\) 3.68128e60 0.167716
\(714\) 0 0
\(715\) −2.95181e61 −1.26622
\(716\) 1.87248e60 0.0779449
\(717\) 0 0
\(718\) 1.69623e61 0.664980
\(719\) 4.63987e60 0.176537 0.0882683 0.996097i \(-0.471867\pi\)
0.0882683 + 0.996097i \(0.471867\pi\)
\(720\) 0 0
\(721\) 3.26033e61 1.16857
\(722\) −1.63452e61 −0.568646
\(723\) 0 0
\(724\) 2.38286e61 0.781123
\(725\) −4.31276e61 −1.37242
\(726\) 0 0
\(727\) 1.44955e61 0.434753 0.217376 0.976088i \(-0.430250\pi\)
0.217376 + 0.976088i \(0.430250\pi\)
\(728\) −1.77381e61 −0.516515
\(729\) 0 0
\(730\) 2.08272e61 0.571727
\(731\) 4.30143e61 1.14654
\(732\) 0 0
\(733\) 2.28885e61 0.575282 0.287641 0.957738i \(-0.407129\pi\)
0.287641 + 0.957738i \(0.407129\pi\)
\(734\) 5.22245e61 1.27470
\(735\) 0 0
\(736\) 5.51248e61 1.26904
\(737\) −4.87487e59 −0.0108996
\(738\) 0 0
\(739\) −1.52004e61 −0.320628 −0.160314 0.987066i \(-0.551251\pi\)
−0.160314 + 0.987066i \(0.551251\pi\)
\(740\) 9.51696e61 1.94992
\(741\) 0 0
\(742\) 1.10621e61 0.213872
\(743\) 7.23666e61 1.35919 0.679593 0.733589i \(-0.262156\pi\)
0.679593 + 0.733589i \(0.262156\pi\)
\(744\) 0 0
\(745\) −1.75122e61 −0.310443
\(746\) −4.07049e61 −0.701070
\(747\) 0 0
\(748\) 3.15410e61 0.512851
\(749\) −2.33192e59 −0.00368430
\(750\) 0 0
\(751\) −1.13301e62 −1.69034 −0.845171 0.534496i \(-0.820502\pi\)
−0.845171 + 0.534496i \(0.820502\pi\)
\(752\) 3.88896e60 0.0563833
\(753\) 0 0
\(754\) −1.29250e61 −0.176990
\(755\) −1.76672e62 −2.35129
\(756\) 0 0
\(757\) −1.15154e62 −1.44783 −0.723916 0.689888i \(-0.757660\pi\)
−0.723916 + 0.689888i \(0.757660\pi\)
\(758\) 3.99348e61 0.488049
\(759\) 0 0
\(760\) −5.91472e61 −0.683033
\(761\) 1.34334e62 1.50805 0.754025 0.656845i \(-0.228110\pi\)
0.754025 + 0.656845i \(0.228110\pi\)
\(762\) 0 0
\(763\) 7.53505e61 0.799482
\(764\) −5.72346e61 −0.590407
\(765\) 0 0
\(766\) 2.20519e61 0.215044
\(767\) −2.13473e61 −0.202415
\(768\) 0 0
\(769\) 9.50818e61 0.852474 0.426237 0.904612i \(-0.359839\pi\)
0.426237 + 0.904612i \(0.359839\pi\)
\(770\) −1.59875e62 −1.39390
\(771\) 0 0
\(772\) 4.35459e61 0.359067
\(773\) −2.61737e61 −0.209897 −0.104949 0.994478i \(-0.533468\pi\)
−0.104949 + 0.994478i \(0.533468\pi\)
\(774\) 0 0
\(775\) 4.61932e61 0.350422
\(776\) 1.70028e62 1.25457
\(777\) 0 0
\(778\) −4.96092e60 −0.0346339
\(779\) 6.01190e61 0.408278
\(780\) 0 0
\(781\) −1.99593e62 −1.28276
\(782\) −9.85461e61 −0.616161
\(783\) 0 0
\(784\) 1.82814e60 0.0108197
\(785\) −4.47605e62 −2.57749
\(786\) 0 0
\(787\) 3.01082e62 1.64145 0.820726 0.571322i \(-0.193569\pi\)
0.820726 + 0.571322i \(0.193569\pi\)
\(788\) −1.27089e62 −0.674207
\(789\) 0 0
\(790\) −4.00345e62 −2.01118
\(791\) −7.80841e61 −0.381741
\(792\) 0 0
\(793\) 2.19994e61 0.101868
\(794\) −9.57220e61 −0.431391
\(795\) 0 0
\(796\) 7.36086e61 0.314266
\(797\) 2.40878e62 1.00102 0.500511 0.865730i \(-0.333145\pi\)
0.500511 + 0.865730i \(0.333145\pi\)
\(798\) 0 0
\(799\) 1.34513e62 0.529675
\(800\) 6.91713e62 2.65150
\(801\) 0 0
\(802\) −9.67540e61 −0.351496
\(803\) −1.56121e62 −0.552176
\(804\) 0 0
\(805\) −6.97469e62 −2.33837
\(806\) 1.38438e61 0.0451909
\(807\) 0 0
\(808\) 5.27240e62 1.63179
\(809\) 1.56406e62 0.471369 0.235685 0.971830i \(-0.424267\pi\)
0.235685 + 0.971830i \(0.424267\pi\)
\(810\) 0 0
\(811\) 1.12549e62 0.321656 0.160828 0.986982i \(-0.448584\pi\)
0.160828 + 0.986982i \(0.448584\pi\)
\(812\) 9.77471e61 0.272050
\(813\) 0 0
\(814\) 5.10916e62 1.34873
\(815\) −4.32967e62 −1.11318
\(816\) 0 0
\(817\) 2.22611e62 0.542965
\(818\) 4.12775e62 0.980657
\(819\) 0 0
\(820\) −5.88821e62 −1.32735
\(821\) −5.96819e61 −0.131058 −0.0655291 0.997851i \(-0.520874\pi\)
−0.0655291 + 0.997851i \(0.520874\pi\)
\(822\) 0 0
\(823\) −4.06781e62 −0.847743 −0.423872 0.905722i \(-0.639329\pi\)
−0.423872 + 0.905722i \(0.639329\pi\)
\(824\) −6.34218e62 −1.28767
\(825\) 0 0
\(826\) −1.15620e62 −0.222825
\(827\) 4.41980e61 0.0829915 0.0414958 0.999139i \(-0.486788\pi\)
0.0414958 + 0.999139i \(0.486788\pi\)
\(828\) 0 0
\(829\) 1.49177e62 0.265937 0.132969 0.991120i \(-0.457549\pi\)
0.132969 + 0.991120i \(0.457549\pi\)
\(830\) 8.34327e62 1.44930
\(831\) 0 0
\(832\) 2.32976e62 0.384291
\(833\) 6.32326e61 0.101642
\(834\) 0 0
\(835\) 8.63286e62 1.31794
\(836\) 1.63233e62 0.242870
\(837\) 0 0
\(838\) 6.57349e62 0.929072
\(839\) −1.09602e62 −0.150986 −0.0754930 0.997146i \(-0.524053\pi\)
−0.0754930 + 0.997146i \(0.524053\pi\)
\(840\) 0 0
\(841\) −5.70578e62 −0.746795
\(842\) −8.53281e62 −1.08863
\(843\) 0 0
\(844\) 8.38508e61 0.101659
\(845\) 1.14924e63 1.35829
\(846\) 0 0
\(847\) 3.72452e62 0.418386
\(848\) −2.53415e61 −0.0277537
\(849\) 0 0
\(850\) −1.23657e63 −1.28739
\(851\) 2.22892e63 2.26260
\(852\) 0 0
\(853\) −5.00803e61 −0.0483351 −0.0241675 0.999708i \(-0.507694\pi\)
−0.0241675 + 0.999708i \(0.507694\pi\)
\(854\) 1.19152e62 0.112139
\(855\) 0 0
\(856\) 4.53618e60 0.00405980
\(857\) −1.37674e63 −1.20161 −0.600805 0.799396i \(-0.705153\pi\)
−0.600805 + 0.799396i \(0.705153\pi\)
\(858\) 0 0
\(859\) 1.75498e62 0.145687 0.0728434 0.997343i \(-0.476793\pi\)
0.0728434 + 0.997343i \(0.476793\pi\)
\(860\) −2.18031e63 −1.76523
\(861\) 0 0
\(862\) 2.20655e62 0.169944
\(863\) −2.82644e62 −0.212328 −0.106164 0.994349i \(-0.533857\pi\)
−0.106164 + 0.994349i \(0.533857\pi\)
\(864\) 0 0
\(865\) −5.00786e62 −0.357936
\(866\) 4.73797e62 0.330337
\(867\) 0 0
\(868\) −1.04695e62 −0.0694629
\(869\) 3.00100e63 1.94241
\(870\) 0 0
\(871\) −7.99766e60 −0.00492689
\(872\) −1.46576e63 −0.880965
\(873\) 0 0
\(874\) −5.10002e62 −0.291794
\(875\) −5.54306e63 −3.09440
\(876\) 0 0
\(877\) −6.64060e62 −0.352952 −0.176476 0.984305i \(-0.556470\pi\)
−0.176476 + 0.984305i \(0.556470\pi\)
\(878\) 9.57111e61 0.0496398
\(879\) 0 0
\(880\) 3.66248e62 0.180883
\(881\) −3.34334e62 −0.161138 −0.0805690 0.996749i \(-0.525674\pi\)
−0.0805690 + 0.996749i \(0.525674\pi\)
\(882\) 0 0
\(883\) 2.18835e63 1.00453 0.502263 0.864715i \(-0.332501\pi\)
0.502263 + 0.864715i \(0.332501\pi\)
\(884\) 5.17459e62 0.231821
\(885\) 0 0
\(886\) −2.12531e63 −0.906980
\(887\) 1.17168e63 0.488034 0.244017 0.969771i \(-0.421535\pi\)
0.244017 + 0.969771i \(0.421535\pi\)
\(888\) 0 0
\(889\) −2.60144e63 −1.03235
\(890\) −2.89756e63 −1.12240
\(891\) 0 0
\(892\) 1.91684e63 0.707524
\(893\) 6.96142e62 0.250837
\(894\) 0 0
\(895\) 7.52054e62 0.258258
\(896\) −1.42868e63 −0.478977
\(897\) 0 0
\(898\) 7.82325e61 0.0250003
\(899\) −2.07209e62 −0.0646511
\(900\) 0 0
\(901\) −8.76523e62 −0.260723
\(902\) −3.16108e63 −0.918109
\(903\) 0 0
\(904\) 1.51894e63 0.420647
\(905\) 9.57039e63 2.58813
\(906\) 0 0
\(907\) −1.34194e63 −0.346081 −0.173041 0.984915i \(-0.555359\pi\)
−0.173041 + 0.984915i \(0.555359\pi\)
\(908\) 4.34939e62 0.109543
\(909\) 0 0
\(910\) −2.62289e63 −0.630073
\(911\) 4.78106e63 1.12171 0.560853 0.827915i \(-0.310473\pi\)
0.560853 + 0.827915i \(0.310473\pi\)
\(912\) 0 0
\(913\) −6.25414e63 −1.39974
\(914\) −2.36588e63 −0.517190
\(915\) 0 0
\(916\) 3.80166e62 0.0792904
\(917\) −1.41718e63 −0.288726
\(918\) 0 0
\(919\) 3.81921e63 0.742489 0.371245 0.928535i \(-0.378931\pi\)
0.371245 + 0.928535i \(0.378931\pi\)
\(920\) 1.35676e64 2.57670
\(921\) 0 0
\(922\) −3.51622e63 −0.637326
\(923\) −3.27450e63 −0.579840
\(924\) 0 0
\(925\) 2.79687e64 4.72744
\(926\) 1.70032e63 0.280799
\(927\) 0 0
\(928\) −3.10282e63 −0.489188
\(929\) −6.39575e63 −0.985266 −0.492633 0.870237i \(-0.663965\pi\)
−0.492633 + 0.870237i \(0.663965\pi\)
\(930\) 0 0
\(931\) 3.27246e62 0.0481344
\(932\) −5.13450e63 −0.738000
\(933\) 0 0
\(934\) 1.82899e63 0.251046
\(935\) 1.26680e64 1.69925
\(936\) 0 0
\(937\) 1.49402e64 1.91405 0.957027 0.290000i \(-0.0936554\pi\)
0.957027 + 0.290000i \(0.0936554\pi\)
\(938\) −4.33167e61 −0.00542368
\(939\) 0 0
\(940\) −6.81820e63 −0.815494
\(941\) −3.85740e63 −0.450939 −0.225469 0.974250i \(-0.572392\pi\)
−0.225469 + 0.974250i \(0.572392\pi\)
\(942\) 0 0
\(943\) −1.37905e64 −1.54020
\(944\) 2.64868e62 0.0289155
\(945\) 0 0
\(946\) −1.17049e64 −1.22098
\(947\) −1.02507e64 −1.04527 −0.522633 0.852558i \(-0.675050\pi\)
−0.522633 + 0.852558i \(0.675050\pi\)
\(948\) 0 0
\(949\) −2.56131e63 −0.249597
\(950\) −6.39957e63 −0.609668
\(951\) 0 0
\(952\) 7.61247e63 0.693156
\(953\) 1.69549e63 0.150938 0.0754689 0.997148i \(-0.475955\pi\)
0.0754689 + 0.997148i \(0.475955\pi\)
\(954\) 0 0
\(955\) −2.29874e64 −1.95622
\(956\) 4.47913e63 0.372691
\(957\) 0 0
\(958\) −2.58135e63 −0.205347
\(959\) −9.99207e63 −0.777240
\(960\) 0 0
\(961\) −1.32228e64 −0.983493
\(962\) 8.38204e63 0.609657
\(963\) 0 0
\(964\) 2.02915e63 0.141142
\(965\) 1.74895e64 1.18971
\(966\) 0 0
\(967\) 4.59701e63 0.299093 0.149546 0.988755i \(-0.452219\pi\)
0.149546 + 0.988755i \(0.452219\pi\)
\(968\) −7.24514e63 −0.461027
\(969\) 0 0
\(970\) 2.51417e64 1.53039
\(971\) 3.19574e63 0.190265 0.0951324 0.995465i \(-0.469673\pi\)
0.0951324 + 0.995465i \(0.469673\pi\)
\(972\) 0 0
\(973\) −9.39274e62 −0.0535016
\(974\) −1.74053e64 −0.969762
\(975\) 0 0
\(976\) −2.72958e62 −0.0145521
\(977\) −5.68464e63 −0.296462 −0.148231 0.988953i \(-0.547358\pi\)
−0.148231 + 0.988953i \(0.547358\pi\)
\(978\) 0 0
\(979\) 2.17202e64 1.08402
\(980\) −3.20513e63 −0.156489
\(981\) 0 0
\(982\) 1.70458e64 0.796563
\(983\) −2.85765e64 −1.30650 −0.653249 0.757143i \(-0.726594\pi\)
−0.653249 + 0.757143i \(0.726594\pi\)
\(984\) 0 0
\(985\) −5.10432e64 −2.23388
\(986\) 5.54689e63 0.237518
\(987\) 0 0
\(988\) 2.67798e63 0.109783
\(989\) −5.10638e64 −2.04830
\(990\) 0 0
\(991\) −3.67835e64 −1.41276 −0.706381 0.707832i \(-0.749674\pi\)
−0.706381 + 0.707832i \(0.749674\pi\)
\(992\) 3.32338e63 0.124905
\(993\) 0 0
\(994\) −1.77352e64 −0.638306
\(995\) 2.95638e64 1.04127
\(996\) 0 0
\(997\) 2.35927e64 0.795850 0.397925 0.917418i \(-0.369730\pi\)
0.397925 + 0.917418i \(0.369730\pi\)
\(998\) −1.50447e63 −0.0496681
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9.44.a.c.1.3 4
3.2 odd 2 3.44.a.b.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3.44.a.b.1.2 4 3.2 odd 2
9.44.a.c.1.3 4 1.1 even 1 trivial