Properties

Label 9.44.a.c
Level $9$
Weight $44$
Character orbit 9.a
Self dual yes
Analytic conductor $105.399$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9,44,Mod(1,9)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9.1"); S:= CuspForms(chi, 44); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 44, names="a")
 
Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 44 \)
Character orbit: \([\chi]\) \(=\) 9.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1660014] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.399355811\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 886516819907x^{2} - 42308083143723387x + 94580276745082867224894 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{10}\cdot 5^{2}\cdot 7\cdot 11 \)
Twist minimal: no (minimal twist has level 3)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 415003) q^{2} + (\beta_{3} + 1259527 \beta_1 + 7333437011374) q^{4} + (22 \beta_{3} - 13 \beta_{2} + \cdots - 412662665270741) q^{5} + ( - 50246 \beta_{3} + \cdots + 28\!\cdots\!75) q^{7}+ \cdots + ( - 35\!\cdots\!24 \beta_{3} + \cdots - 15\!\cdots\!83) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 1660014 q^{2} + 29333750564548 q^{4} - 16\!\cdots\!20 q^{5} + 11\!\cdots\!28 q^{7} - 77\!\cdots\!48 q^{8} + 53\!\cdots\!60 q^{10} - 87\!\cdots\!96 q^{11} - 16\!\cdots\!96 q^{13} + 13\!\cdots\!08 q^{14}+ \cdots - 62\!\cdots\!46 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 886516819907x^{2} - 42308083143723387x + 94580276745082867224894 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 6\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 27\nu^{3} - 2660112\nu^{2} - 17984400403617\nu + 322364875892989014 ) / 43072 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 36\nu^{2} - 2577138\nu - 15957302114051 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 429523\beta _1 + 15957302543574 ) / 36 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 147784\beta_{3} + 86144\beta_{2} + 6058276761571\beta _1 + 1713510242113696527 ) / 54 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
904229.
321562.
−388484.
−837306.
−5.84038e6 0 2.53139e13 −1.12222e15 0 −1.55171e18 −9.64704e19 0 6.55417e21
1.2 −2.34437e6 0 −3.30001e12 6.18875e14 0 −6.01464e16 2.83578e19 0 −1.45087e21
1.3 1.91590e6 0 −5.12540e12 −2.05854e15 0 1.37114e18 −2.66723e19 0 −3.94396e21
1.4 4.60883e6 0 1.24452e13 9.11231e14 0 3.55193e17 1.68183e19 0 4.19971e21
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9.44.a.c 4
3.b odd 2 1 3.44.a.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3.44.a.b 4 3.b odd 2 1
9.44.a.c 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 1660014T_{2}^{3} - 30881238086592T_{2}^{2} - 17064803544699174912T_{2} + 120901670049507055201419264 \) acting on \(S_{44}^{\mathrm{new}}(\Gamma_0(9))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + \cdots + 12\!\cdots\!64 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 45\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 16\!\cdots\!64 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 14\!\cdots\!84 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 53\!\cdots\!96 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 36\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 27\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 22\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 11\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 24\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 58\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 67\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 26\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 28\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 34\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 56\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 66\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 23\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 44\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 42\!\cdots\!64 \) Copy content Toggle raw display
show more
show less