Properties

Label 9.44.a.c.1.2
Level $9$
Weight $44$
Character 9.1
Self dual yes
Analytic conductor $105.399$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9,44,Mod(1,9)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9.1"); S:= CuspForms(chi, 44); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 44, names="a")
 
Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 44 \)
Character orbit: \([\chi]\) \(=\) 9.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1660014] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(105.399355811\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 886516819907x^{2} - 42308083143723387x + 94580276745082867224894 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{10}\cdot 5^{2}\cdot 7\cdot 11 \)
Twist minimal: no (minimal twist has level 3)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(321562.\) of defining polynomial
Character \(\chi\) \(=\) 9.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.34437e6 q^{2} -3.30001e12 q^{4} +6.18875e14 q^{5} -6.01464e16 q^{7} +2.83578e19 q^{8} -1.45087e21 q^{10} +9.76031e21 q^{11} -7.58355e23 q^{13} +1.41006e23 q^{14} -3.74540e25 q^{16} -2.78579e26 q^{17} +4.05410e27 q^{19} -2.04230e27 q^{20} -2.28818e28 q^{22} -1.45822e29 q^{23} -7.53862e29 q^{25} +1.77787e30 q^{26} +1.98484e29 q^{28} +9.74099e30 q^{29} +1.20460e32 q^{31} -1.61632e32 q^{32} +6.53093e32 q^{34} -3.72231e31 q^{35} +9.29506e32 q^{37} -9.50433e33 q^{38} +1.75499e34 q^{40} -7.39680e34 q^{41} +1.90025e35 q^{43} -3.22092e34 q^{44} +3.41860e35 q^{46} +3.68345e35 q^{47} -2.18020e36 q^{49} +1.76733e36 q^{50} +2.50258e36 q^{52} +1.07634e37 q^{53} +6.04041e36 q^{55} -1.70562e36 q^{56} -2.28365e37 q^{58} +1.44976e38 q^{59} +4.49263e38 q^{61} -2.82402e38 q^{62} +7.08373e38 q^{64} -4.69327e38 q^{65} +5.03842e38 q^{67} +9.19315e38 q^{68} +8.72649e37 q^{70} +4.05279e39 q^{71} -1.07882e40 q^{73} -2.17911e39 q^{74} -1.33786e40 q^{76} -5.87048e38 q^{77} -8.21320e40 q^{79} -2.31793e40 q^{80} +1.73408e41 q^{82} -4.07702e40 q^{83} -1.72406e41 q^{85} -4.45489e41 q^{86} +2.76781e41 q^{88} -1.83342e41 q^{89} +4.56124e40 q^{91} +4.81213e41 q^{92} -8.63538e41 q^{94} +2.50898e42 q^{95} -2.07049e42 q^{97} +5.11119e42 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 1660014 q^{2} + 29333750564548 q^{4} - 16\!\cdots\!20 q^{5} + 11\!\cdots\!28 q^{7} - 77\!\cdots\!48 q^{8} + 53\!\cdots\!60 q^{10} - 87\!\cdots\!96 q^{11} - 16\!\cdots\!96 q^{13} + 13\!\cdots\!08 q^{14}+ \cdots - 62\!\cdots\!46 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.34437e6 −0.790463 −0.395232 0.918582i \(-0.629336\pi\)
−0.395232 + 0.918582i \(0.629336\pi\)
\(3\) 0 0
\(4\) −3.30001e12 −0.375168
\(5\) 6.18875e14 0.580427 0.290214 0.956962i \(-0.406274\pi\)
0.290214 + 0.956962i \(0.406274\pi\)
\(6\) 0 0
\(7\) −6.01464e16 −0.0407007 −0.0203504 0.999793i \(-0.506478\pi\)
−0.0203504 + 0.999793i \(0.506478\pi\)
\(8\) 2.83578e19 1.08702
\(9\) 0 0
\(10\) −1.45087e21 −0.458806
\(11\) 9.76031e21 0.397668 0.198834 0.980033i \(-0.436284\pi\)
0.198834 + 0.980033i \(0.436284\pi\)
\(12\) 0 0
\(13\) −7.58355e23 −0.851315 −0.425658 0.904884i \(-0.639957\pi\)
−0.425658 + 0.904884i \(0.639957\pi\)
\(14\) 1.41006e23 0.0321724
\(15\) 0 0
\(16\) −3.74540e25 −0.484081
\(17\) −2.78579e26 −0.977906 −0.488953 0.872310i \(-0.662621\pi\)
−0.488953 + 0.872310i \(0.662621\pi\)
\(18\) 0 0
\(19\) 4.05410e27 1.30224 0.651122 0.758973i \(-0.274298\pi\)
0.651122 + 0.758973i \(0.274298\pi\)
\(20\) −2.04230e27 −0.217758
\(21\) 0 0
\(22\) −2.28818e28 −0.314342
\(23\) −1.45822e29 −0.770324 −0.385162 0.922849i \(-0.625854\pi\)
−0.385162 + 0.922849i \(0.625854\pi\)
\(24\) 0 0
\(25\) −7.53862e29 −0.663104
\(26\) 1.77787e30 0.672933
\(27\) 0 0
\(28\) 1.98484e29 0.0152696
\(29\) 9.74099e30 0.352408 0.176204 0.984354i \(-0.443618\pi\)
0.176204 + 0.984354i \(0.443618\pi\)
\(30\) 0 0
\(31\) 1.20460e32 1.03888 0.519440 0.854507i \(-0.326141\pi\)
0.519440 + 0.854507i \(0.326141\pi\)
\(32\) −1.61632e32 −0.704371
\(33\) 0 0
\(34\) 6.53093e32 0.772998
\(35\) −3.72231e31 −0.0236238
\(36\) 0 0
\(37\) 9.29506e32 0.178614 0.0893069 0.996004i \(-0.471535\pi\)
0.0893069 + 0.996004i \(0.471535\pi\)
\(38\) −9.50433e33 −1.02938
\(39\) 0 0
\(40\) 1.75499e34 0.630936
\(41\) −7.39680e34 −1.56383 −0.781917 0.623382i \(-0.785758\pi\)
−0.781917 + 0.623382i \(0.785758\pi\)
\(42\) 0 0
\(43\) 1.90025e35 1.44291 0.721455 0.692462i \(-0.243474\pi\)
0.721455 + 0.692462i \(0.243474\pi\)
\(44\) −3.22092e34 −0.149192
\(45\) 0 0
\(46\) 3.41860e35 0.608912
\(47\) 3.68345e35 0.413191 0.206595 0.978426i \(-0.433762\pi\)
0.206595 + 0.978426i \(0.433762\pi\)
\(48\) 0 0
\(49\) −2.18020e36 −0.998343
\(50\) 1.76733e36 0.524159
\(51\) 0 0
\(52\) 2.50258e36 0.319386
\(53\) 1.07634e37 0.912047 0.456023 0.889968i \(-0.349273\pi\)
0.456023 + 0.889968i \(0.349273\pi\)
\(54\) 0 0
\(55\) 6.04041e36 0.230818
\(56\) −1.70562e36 −0.0442425
\(57\) 0 0
\(58\) −2.28365e37 −0.278566
\(59\) 1.44976e38 1.22455 0.612275 0.790645i \(-0.290255\pi\)
0.612275 + 0.790645i \(0.290255\pi\)
\(60\) 0 0
\(61\) 4.49263e38 1.85314 0.926572 0.376117i \(-0.122741\pi\)
0.926572 + 0.376117i \(0.122741\pi\)
\(62\) −2.82402e38 −0.821196
\(63\) 0 0
\(64\) 7.08373e38 1.04086
\(65\) −4.69327e38 −0.494127
\(66\) 0 0
\(67\) 5.03842e38 0.276494 0.138247 0.990398i \(-0.455853\pi\)
0.138247 + 0.990398i \(0.455853\pi\)
\(68\) 9.19315e38 0.366879
\(69\) 0 0
\(70\) 8.72649e37 0.0186738
\(71\) 4.05279e39 0.639293 0.319646 0.947537i \(-0.396436\pi\)
0.319646 + 0.947537i \(0.396436\pi\)
\(72\) 0 0
\(73\) −1.07882e40 −0.936503 −0.468251 0.883595i \(-0.655116\pi\)
−0.468251 + 0.883595i \(0.655116\pi\)
\(74\) −2.17911e39 −0.141188
\(75\) 0 0
\(76\) −1.33786e40 −0.488560
\(77\) −5.87048e38 −0.0161854
\(78\) 0 0
\(79\) −8.21320e40 −1.30476 −0.652379 0.757893i \(-0.726229\pi\)
−0.652379 + 0.757893i \(0.726229\pi\)
\(80\) −2.31793e40 −0.280974
\(81\) 0 0
\(82\) 1.73408e41 1.23615
\(83\) −4.07702e40 −0.223956 −0.111978 0.993711i \(-0.535719\pi\)
−0.111978 + 0.993711i \(0.535719\pi\)
\(84\) 0 0
\(85\) −1.72406e41 −0.567603
\(86\) −4.45489e41 −1.14057
\(87\) 0 0
\(88\) 2.76781e41 0.432273
\(89\) −1.83342e41 −0.224583 −0.112292 0.993675i \(-0.535819\pi\)
−0.112292 + 0.993675i \(0.535819\pi\)
\(90\) 0 0
\(91\) 4.56124e40 0.0346491
\(92\) 4.81213e41 0.289001
\(93\) 0 0
\(94\) −8.63538e41 −0.326612
\(95\) 2.50898e42 0.755858
\(96\) 0 0
\(97\) −2.07049e42 −0.398547 −0.199274 0.979944i \(-0.563858\pi\)
−0.199274 + 0.979944i \(0.563858\pi\)
\(98\) 5.11119e42 0.789154
\(99\) 0 0
\(100\) 2.48775e42 0.248775
\(101\) −1.86748e43 −1.50781 −0.753904 0.656985i \(-0.771831\pi\)
−0.753904 + 0.656985i \(0.771831\pi\)
\(102\) 0 0
\(103\) 1.80725e43 0.957233 0.478617 0.878024i \(-0.341138\pi\)
0.478617 + 0.878024i \(0.341138\pi\)
\(104\) −2.15053e43 −0.925396
\(105\) 0 0
\(106\) −2.52333e43 −0.720939
\(107\) −5.57930e43 −1.30265 −0.651326 0.758798i \(-0.725787\pi\)
−0.651326 + 0.758798i \(0.725787\pi\)
\(108\) 0 0
\(109\) −9.67648e43 −1.51722 −0.758609 0.651546i \(-0.774121\pi\)
−0.758609 + 0.651546i \(0.774121\pi\)
\(110\) −1.41610e43 −0.182453
\(111\) 0 0
\(112\) 2.25272e42 0.0197024
\(113\) −1.75497e44 −1.26790 −0.633948 0.773375i \(-0.718567\pi\)
−0.633948 + 0.773375i \(0.718567\pi\)
\(114\) 0 0
\(115\) −9.02453e43 −0.447117
\(116\) −3.21454e43 −0.132212
\(117\) 0 0
\(118\) −3.39877e44 −0.967961
\(119\) 1.67556e43 0.0398015
\(120\) 0 0
\(121\) −5.07137e44 −0.841860
\(122\) −1.05324e45 −1.46484
\(123\) 0 0
\(124\) −3.97518e44 −0.389754
\(125\) −1.17013e45 −0.965311
\(126\) 0 0
\(127\) 2.40153e45 1.40834 0.704170 0.710032i \(-0.251319\pi\)
0.704170 + 0.710032i \(0.251319\pi\)
\(128\) −2.38964e44 −0.118391
\(129\) 0 0
\(130\) 1.10028e45 0.390589
\(131\) −4.93252e45 −1.48503 −0.742516 0.669828i \(-0.766368\pi\)
−0.742516 + 0.669828i \(0.766368\pi\)
\(132\) 0 0
\(133\) −2.43840e44 −0.0530023
\(134\) −1.18119e45 −0.218558
\(135\) 0 0
\(136\) −7.89989e45 −1.06300
\(137\) 4.38206e45 0.503716 0.251858 0.967764i \(-0.418958\pi\)
0.251858 + 0.967764i \(0.418958\pi\)
\(138\) 0 0
\(139\) −1.27611e46 −1.07416 −0.537082 0.843530i \(-0.680473\pi\)
−0.537082 + 0.843530i \(0.680473\pi\)
\(140\) 1.22837e44 0.00886290
\(141\) 0 0
\(142\) −9.50126e45 −0.505338
\(143\) −7.40178e45 −0.338541
\(144\) 0 0
\(145\) 6.02846e45 0.204548
\(146\) 2.52916e46 0.740271
\(147\) 0 0
\(148\) −3.06738e45 −0.0670102
\(149\) −6.74357e46 −1.27463 −0.637316 0.770602i \(-0.719955\pi\)
−0.637316 + 0.770602i \(0.719955\pi\)
\(150\) 0 0
\(151\) 1.15191e47 1.63461 0.817303 0.576209i \(-0.195468\pi\)
0.817303 + 0.576209i \(0.195468\pi\)
\(152\) 1.14965e47 1.41557
\(153\) 0 0
\(154\) 1.37626e45 0.0127940
\(155\) 7.45494e46 0.602994
\(156\) 0 0
\(157\) 1.70621e47 1.04759 0.523795 0.851844i \(-0.324516\pi\)
0.523795 + 0.851844i \(0.324516\pi\)
\(158\) 1.92548e47 1.03136
\(159\) 0 0
\(160\) −1.00030e47 −0.408836
\(161\) 8.77065e45 0.0313527
\(162\) 0 0
\(163\) 2.46516e47 0.675790 0.337895 0.941184i \(-0.390285\pi\)
0.337895 + 0.941184i \(0.390285\pi\)
\(164\) 2.44095e47 0.586701
\(165\) 0 0
\(166\) 9.55804e46 0.177029
\(167\) 1.01601e48 1.65384 0.826920 0.562319i \(-0.190091\pi\)
0.826920 + 0.562319i \(0.190091\pi\)
\(168\) 0 0
\(169\) −2.18429e47 −0.275262
\(170\) 4.04183e47 0.448669
\(171\) 0 0
\(172\) −6.27085e47 −0.541333
\(173\) −1.53528e48 −1.17003 −0.585015 0.811023i \(-0.698911\pi\)
−0.585015 + 0.811023i \(0.698911\pi\)
\(174\) 0 0
\(175\) 4.53421e46 0.0269888
\(176\) −3.65562e47 −0.192504
\(177\) 0 0
\(178\) 4.29822e47 0.177525
\(179\) −4.05033e48 −1.48303 −0.741515 0.670936i \(-0.765892\pi\)
−0.741515 + 0.670936i \(0.765892\pi\)
\(180\) 0 0
\(181\) 2.03822e48 0.587708 0.293854 0.955850i \(-0.405062\pi\)
0.293854 + 0.955850i \(0.405062\pi\)
\(182\) −1.06932e47 −0.0273889
\(183\) 0 0
\(184\) −4.13517e48 −0.837357
\(185\) 5.75248e47 0.103672
\(186\) 0 0
\(187\) −2.71902e48 −0.388882
\(188\) −1.21554e48 −0.155016
\(189\) 0 0
\(190\) −5.88199e48 −0.597478
\(191\) −3.56591e48 −0.323559 −0.161779 0.986827i \(-0.551723\pi\)
−0.161779 + 0.986827i \(0.551723\pi\)
\(192\) 0 0
\(193\) −2.12053e48 −0.153802 −0.0769012 0.997039i \(-0.524503\pi\)
−0.0769012 + 0.997039i \(0.524503\pi\)
\(194\) 4.85399e48 0.315037
\(195\) 0 0
\(196\) 7.19468e48 0.374546
\(197\) −1.79197e49 −0.836192 −0.418096 0.908403i \(-0.637302\pi\)
−0.418096 + 0.908403i \(0.637302\pi\)
\(198\) 0 0
\(199\) −7.04650e48 −0.264626 −0.132313 0.991208i \(-0.542240\pi\)
−0.132313 + 0.991208i \(0.542240\pi\)
\(200\) −2.13778e49 −0.720807
\(201\) 0 0
\(202\) 4.37806e49 1.19187
\(203\) −5.85886e47 −0.0143433
\(204\) 0 0
\(205\) −4.57769e49 −0.907693
\(206\) −4.23687e49 −0.756658
\(207\) 0 0
\(208\) 2.84034e49 0.412106
\(209\) 3.95693e49 0.517861
\(210\) 0 0
\(211\) −1.48444e50 −1.58303 −0.791516 0.611149i \(-0.790708\pi\)
−0.791516 + 0.611149i \(0.790708\pi\)
\(212\) −3.55193e49 −0.342171
\(213\) 0 0
\(214\) 1.30799e50 1.02970
\(215\) 1.17602e50 0.837504
\(216\) 0 0
\(217\) −7.24522e48 −0.0422831
\(218\) 2.26853e50 1.19930
\(219\) 0 0
\(220\) −1.99334e49 −0.0865954
\(221\) 2.11262e50 0.832506
\(222\) 0 0
\(223\) −8.53574e49 −0.277132 −0.138566 0.990353i \(-0.544249\pi\)
−0.138566 + 0.990353i \(0.544249\pi\)
\(224\) 9.72157e48 0.0286684
\(225\) 0 0
\(226\) 4.11431e50 1.00223
\(227\) 4.48691e50 0.994012 0.497006 0.867747i \(-0.334433\pi\)
0.497006 + 0.867747i \(0.334433\pi\)
\(228\) 0 0
\(229\) 7.28299e50 1.33612 0.668062 0.744106i \(-0.267124\pi\)
0.668062 + 0.744106i \(0.267124\pi\)
\(230\) 2.11569e50 0.353429
\(231\) 0 0
\(232\) 2.76233e50 0.383075
\(233\) −9.17803e50 −1.16037 −0.580186 0.814484i \(-0.697020\pi\)
−0.580186 + 0.814484i \(0.697020\pi\)
\(234\) 0 0
\(235\) 2.27959e50 0.239827
\(236\) −4.78421e50 −0.459412
\(237\) 0 0
\(238\) −3.92813e49 −0.0314616
\(239\) 1.09851e50 0.0803990 0.0401995 0.999192i \(-0.487201\pi\)
0.0401995 + 0.999192i \(0.487201\pi\)
\(240\) 0 0
\(241\) −1.97410e51 −1.20782 −0.603910 0.797052i \(-0.706391\pi\)
−0.603910 + 0.797052i \(0.706391\pi\)
\(242\) 1.18892e51 0.665459
\(243\) 0 0
\(244\) −1.48257e51 −0.695240
\(245\) −1.34927e51 −0.579466
\(246\) 0 0
\(247\) −3.07445e51 −1.10862
\(248\) 3.41597e51 1.12928
\(249\) 0 0
\(250\) 2.74321e51 0.763043
\(251\) −6.49802e51 −1.65881 −0.829404 0.558650i \(-0.811320\pi\)
−0.829404 + 0.558650i \(0.811320\pi\)
\(252\) 0 0
\(253\) −1.42326e51 −0.306333
\(254\) −5.63007e51 −1.11324
\(255\) 0 0
\(256\) −5.67070e51 −0.947277
\(257\) −6.62733e51 −1.01807 −0.509033 0.860747i \(-0.669997\pi\)
−0.509033 + 0.860747i \(0.669997\pi\)
\(258\) 0 0
\(259\) −5.59065e49 −0.00726971
\(260\) 1.54878e51 0.185380
\(261\) 0 0
\(262\) 1.15637e52 1.17386
\(263\) −2.00645e51 −0.187663 −0.0938315 0.995588i \(-0.529912\pi\)
−0.0938315 + 0.995588i \(0.529912\pi\)
\(264\) 0 0
\(265\) 6.66118e51 0.529377
\(266\) 5.71652e50 0.0418964
\(267\) 0 0
\(268\) −1.66268e51 −0.103732
\(269\) 1.18548e52 0.682686 0.341343 0.939939i \(-0.389118\pi\)
0.341343 + 0.939939i \(0.389118\pi\)
\(270\) 0 0
\(271\) 1.04772e52 0.514522 0.257261 0.966342i \(-0.417180\pi\)
0.257261 + 0.966342i \(0.417180\pi\)
\(272\) 1.04339e52 0.473386
\(273\) 0 0
\(274\) −1.02732e52 −0.398169
\(275\) −7.35793e51 −0.263695
\(276\) 0 0
\(277\) −2.05756e52 −0.631012 −0.315506 0.948924i \(-0.602174\pi\)
−0.315506 + 0.948924i \(0.602174\pi\)
\(278\) 2.99168e52 0.849087
\(279\) 0 0
\(280\) −1.05557e51 −0.0256795
\(281\) 4.36534e52 0.983631 0.491816 0.870699i \(-0.336333\pi\)
0.491816 + 0.870699i \(0.336333\pi\)
\(282\) 0 0
\(283\) −5.12915e51 −0.0992286 −0.0496143 0.998768i \(-0.515799\pi\)
−0.0496143 + 0.998768i \(0.515799\pi\)
\(284\) −1.33743e52 −0.239842
\(285\) 0 0
\(286\) 1.73525e52 0.267604
\(287\) 4.44891e51 0.0636492
\(288\) 0 0
\(289\) −3.54642e51 −0.0437005
\(290\) −1.41330e52 −0.161687
\(291\) 0 0
\(292\) 3.56013e52 0.351346
\(293\) 1.29030e52 0.118314 0.0591571 0.998249i \(-0.481159\pi\)
0.0591571 + 0.998249i \(0.481159\pi\)
\(294\) 0 0
\(295\) 8.97217e52 0.710762
\(296\) 2.63587e52 0.194157
\(297\) 0 0
\(298\) 1.58094e53 1.00755
\(299\) 1.10584e53 0.655788
\(300\) 0 0
\(301\) −1.14293e52 −0.0587275
\(302\) −2.70050e53 −1.29210
\(303\) 0 0
\(304\) −1.51842e53 −0.630392
\(305\) 2.78038e53 1.07562
\(306\) 0 0
\(307\) −2.82932e53 −0.951058 −0.475529 0.879700i \(-0.657743\pi\)
−0.475529 + 0.879700i \(0.657743\pi\)
\(308\) 1.93727e51 0.00607224
\(309\) 0 0
\(310\) −1.74772e53 −0.476644
\(311\) 2.02380e53 0.515014 0.257507 0.966276i \(-0.417099\pi\)
0.257507 + 0.966276i \(0.417099\pi\)
\(312\) 0 0
\(313\) −4.97243e52 −0.110247 −0.0551234 0.998480i \(-0.517555\pi\)
−0.0551234 + 0.998480i \(0.517555\pi\)
\(314\) −4.00000e53 −0.828081
\(315\) 0 0
\(316\) 2.71037e53 0.489504
\(317\) −1.06498e54 −1.79708 −0.898540 0.438893i \(-0.855371\pi\)
−0.898540 + 0.438893i \(0.855371\pi\)
\(318\) 0 0
\(319\) 9.50751e52 0.140142
\(320\) 4.38394e53 0.604144
\(321\) 0 0
\(322\) −2.05617e52 −0.0247832
\(323\) −1.12939e54 −1.27347
\(324\) 0 0
\(325\) 5.71695e53 0.564511
\(326\) −5.77925e53 −0.534187
\(327\) 0 0
\(328\) −2.09757e54 −1.69992
\(329\) −2.21546e52 −0.0168172
\(330\) 0 0
\(331\) 3.46154e51 0.00230657 0.00115329 0.999999i \(-0.499633\pi\)
0.00115329 + 0.999999i \(0.499633\pi\)
\(332\) 1.34542e53 0.0840213
\(333\) 0 0
\(334\) −2.38190e54 −1.30730
\(335\) 3.11815e53 0.160485
\(336\) 0 0
\(337\) 3.36356e54 1.52320 0.761599 0.648048i \(-0.224414\pi\)
0.761599 + 0.648048i \(0.224414\pi\)
\(338\) 5.12080e53 0.217585
\(339\) 0 0
\(340\) 5.68941e53 0.212947
\(341\) 1.17572e54 0.413129
\(342\) 0 0
\(343\) 2.62480e53 0.0813340
\(344\) 5.38869e54 1.56847
\(345\) 0 0
\(346\) 3.59927e54 0.924865
\(347\) 1.72459e54 0.416487 0.208244 0.978077i \(-0.433225\pi\)
0.208244 + 0.978077i \(0.433225\pi\)
\(348\) 0 0
\(349\) −9.94419e53 −0.212238 −0.106119 0.994353i \(-0.533842\pi\)
−0.106119 + 0.994353i \(0.533842\pi\)
\(350\) −1.06299e53 −0.0213337
\(351\) 0 0
\(352\) −1.57757e54 −0.280106
\(353\) 5.27615e54 0.881375 0.440687 0.897661i \(-0.354735\pi\)
0.440687 + 0.897661i \(0.354735\pi\)
\(354\) 0 0
\(355\) 2.50817e54 0.371063
\(356\) 6.05031e53 0.0842564
\(357\) 0 0
\(358\) 9.49547e54 1.17228
\(359\) −3.67568e54 −0.427372 −0.213686 0.976902i \(-0.568547\pi\)
−0.213686 + 0.976902i \(0.568547\pi\)
\(360\) 0 0
\(361\) 6.74396e54 0.695841
\(362\) −4.77835e54 −0.464562
\(363\) 0 0
\(364\) −1.50521e53 −0.0129992
\(365\) −6.67657e54 −0.543572
\(366\) 0 0
\(367\) −1.91563e55 −1.38673 −0.693364 0.720587i \(-0.743872\pi\)
−0.693364 + 0.720587i \(0.743872\pi\)
\(368\) 5.46159e54 0.372899
\(369\) 0 0
\(370\) −1.34860e54 −0.0819492
\(371\) −6.47379e53 −0.0371210
\(372\) 0 0
\(373\) −2.66201e55 −1.35978 −0.679891 0.733313i \(-0.737973\pi\)
−0.679891 + 0.733313i \(0.737973\pi\)
\(374\) 6.37440e54 0.307397
\(375\) 0 0
\(376\) 1.04454e55 0.449147
\(377\) −7.38713e54 −0.300011
\(378\) 0 0
\(379\) −2.91659e55 −1.05714 −0.528570 0.848890i \(-0.677271\pi\)
−0.528570 + 0.848890i \(0.677271\pi\)
\(380\) −8.27968e54 −0.283574
\(381\) 0 0
\(382\) 8.35983e54 0.255761
\(383\) −8.50754e54 −0.246054 −0.123027 0.992403i \(-0.539260\pi\)
−0.123027 + 0.992403i \(0.539260\pi\)
\(384\) 0 0
\(385\) −3.63309e53 −0.00939444
\(386\) 4.97132e54 0.121575
\(387\) 0 0
\(388\) 6.83263e54 0.149522
\(389\) −4.01341e55 −0.830993 −0.415497 0.909595i \(-0.636392\pi\)
−0.415497 + 0.909595i \(0.636392\pi\)
\(390\) 0 0
\(391\) 4.06229e55 0.753304
\(392\) −6.18255e55 −1.08522
\(393\) 0 0
\(394\) 4.20103e55 0.660979
\(395\) −5.08295e55 −0.757318
\(396\) 0 0
\(397\) 3.05288e54 0.0408051 0.0204026 0.999792i \(-0.493505\pi\)
0.0204026 + 0.999792i \(0.493505\pi\)
\(398\) 1.65196e55 0.209177
\(399\) 0 0
\(400\) 2.82351e55 0.320996
\(401\) 6.81054e55 0.733800 0.366900 0.930260i \(-0.380419\pi\)
0.366900 + 0.930260i \(0.380419\pi\)
\(402\) 0 0
\(403\) −9.13511e55 −0.884414
\(404\) 6.16270e55 0.565681
\(405\) 0 0
\(406\) 1.37354e54 0.0113378
\(407\) 9.07227e54 0.0710291
\(408\) 0 0
\(409\) −7.81408e55 −0.550588 −0.275294 0.961360i \(-0.588775\pi\)
−0.275294 + 0.961360i \(0.588775\pi\)
\(410\) 1.07318e56 0.717498
\(411\) 0 0
\(412\) −5.96395e55 −0.359123
\(413\) −8.71976e54 −0.0498401
\(414\) 0 0
\(415\) −2.52316e55 −0.129990
\(416\) 1.22574e56 0.599642
\(417\) 0 0
\(418\) −9.27652e55 −0.409350
\(419\) −2.00491e56 −0.840413 −0.420207 0.907428i \(-0.638042\pi\)
−0.420207 + 0.907428i \(0.638042\pi\)
\(420\) 0 0
\(421\) 2.87650e56 1.08843 0.544214 0.838946i \(-0.316828\pi\)
0.544214 + 0.838946i \(0.316828\pi\)
\(422\) 3.48008e56 1.25133
\(423\) 0 0
\(424\) 3.05225e56 0.991413
\(425\) 2.10010e56 0.648453
\(426\) 0 0
\(427\) −2.70216e55 −0.0754243
\(428\) 1.84117e56 0.488713
\(429\) 0 0
\(430\) −2.75702e56 −0.662016
\(431\) −4.69093e56 −1.07151 −0.535757 0.844372i \(-0.679974\pi\)
−0.535757 + 0.844372i \(0.679974\pi\)
\(432\) 0 0
\(433\) 4.37174e56 0.903993 0.451996 0.892020i \(-0.350712\pi\)
0.451996 + 0.892020i \(0.350712\pi\)
\(434\) 1.69855e55 0.0334233
\(435\) 0 0
\(436\) 3.19325e56 0.569211
\(437\) −5.91176e56 −1.00315
\(438\) 0 0
\(439\) 3.15508e56 0.485314 0.242657 0.970112i \(-0.421981\pi\)
0.242657 + 0.970112i \(0.421981\pi\)
\(440\) 1.71293e56 0.250903
\(441\) 0 0
\(442\) −4.95277e56 −0.658065
\(443\) 8.23492e56 1.04227 0.521134 0.853475i \(-0.325509\pi\)
0.521134 + 0.853475i \(0.325509\pi\)
\(444\) 0 0
\(445\) −1.13466e56 −0.130354
\(446\) 2.00110e56 0.219063
\(447\) 0 0
\(448\) −4.26061e55 −0.0423638
\(449\) −8.61086e56 −0.816113 −0.408057 0.912957i \(-0.633793\pi\)
−0.408057 + 0.912957i \(0.633793\pi\)
\(450\) 0 0
\(451\) −7.21951e56 −0.621888
\(452\) 5.79143e56 0.475674
\(453\) 0 0
\(454\) −1.05190e57 −0.785730
\(455\) 2.82283e55 0.0201113
\(456\) 0 0
\(457\) −1.34211e57 −0.870141 −0.435070 0.900396i \(-0.643277\pi\)
−0.435070 + 0.900396i \(0.643277\pi\)
\(458\) −1.70740e57 −1.05616
\(459\) 0 0
\(460\) 2.97811e56 0.167744
\(461\) −2.56415e57 −1.37840 −0.689198 0.724573i \(-0.742037\pi\)
−0.689198 + 0.724573i \(0.742037\pi\)
\(462\) 0 0
\(463\) −1.67394e57 −0.819875 −0.409937 0.912114i \(-0.634449\pi\)
−0.409937 + 0.912114i \(0.634449\pi\)
\(464\) −3.64839e56 −0.170594
\(465\) 0 0
\(466\) 2.15167e57 0.917231
\(467\) −2.78817e57 −1.13503 −0.567514 0.823364i \(-0.692095\pi\)
−0.567514 + 0.823364i \(0.692095\pi\)
\(468\) 0 0
\(469\) −3.03043e55 −0.0112535
\(470\) −5.34422e56 −0.189575
\(471\) 0 0
\(472\) 4.11118e57 1.33111
\(473\) 1.85470e57 0.573799
\(474\) 0 0
\(475\) −3.05624e57 −0.863524
\(476\) −5.52935e55 −0.0149322
\(477\) 0 0
\(478\) −2.57533e56 −0.0635525
\(479\) 3.93113e57 0.927478 0.463739 0.885972i \(-0.346507\pi\)
0.463739 + 0.885972i \(0.346507\pi\)
\(480\) 0 0
\(481\) −7.04895e56 −0.152057
\(482\) 4.62802e57 0.954737
\(483\) 0 0
\(484\) 1.67356e57 0.315839
\(485\) −1.28137e57 −0.231328
\(486\) 0 0
\(487\) 4.59837e57 0.759855 0.379928 0.925016i \(-0.375949\pi\)
0.379928 + 0.925016i \(0.375949\pi\)
\(488\) 1.27401e58 2.01440
\(489\) 0 0
\(490\) 3.16319e57 0.458046
\(491\) −5.46081e57 −0.756842 −0.378421 0.925634i \(-0.623533\pi\)
−0.378421 + 0.925634i \(0.623533\pi\)
\(492\) 0 0
\(493\) −2.71364e57 −0.344622
\(494\) 7.20766e57 0.876324
\(495\) 0 0
\(496\) −4.51169e57 −0.502902
\(497\) −2.43761e56 −0.0260197
\(498\) 0 0
\(499\) 4.19230e57 0.410478 0.205239 0.978712i \(-0.434203\pi\)
0.205239 + 0.978712i \(0.434203\pi\)
\(500\) 3.86143e57 0.362154
\(501\) 0 0
\(502\) 1.52338e58 1.31123
\(503\) −8.78676e57 −0.724631 −0.362316 0.932056i \(-0.618014\pi\)
−0.362316 + 0.932056i \(0.618014\pi\)
\(504\) 0 0
\(505\) −1.15574e58 −0.875173
\(506\) 3.33666e57 0.242145
\(507\) 0 0
\(508\) −7.92507e57 −0.528364
\(509\) −2.23159e58 −1.42620 −0.713102 0.701060i \(-0.752710\pi\)
−0.713102 + 0.701060i \(0.752710\pi\)
\(510\) 0 0
\(511\) 6.48874e56 0.0381163
\(512\) 1.53962e58 0.867178
\(513\) 0 0
\(514\) 1.55369e58 0.804744
\(515\) 1.11846e58 0.555604
\(516\) 0 0
\(517\) 3.59516e57 0.164313
\(518\) 1.31066e56 0.00574644
\(519\) 0 0
\(520\) −1.33091e58 −0.537125
\(521\) −4.83482e58 −1.87227 −0.936136 0.351638i \(-0.885625\pi\)
−0.936136 + 0.351638i \(0.885625\pi\)
\(522\) 0 0
\(523\) −3.33314e58 −1.18869 −0.594343 0.804212i \(-0.702588\pi\)
−0.594343 + 0.804212i \(0.702588\pi\)
\(524\) 1.62774e58 0.557137
\(525\) 0 0
\(526\) 4.70386e57 0.148341
\(527\) −3.35575e58 −1.01593
\(528\) 0 0
\(529\) −1.45702e58 −0.406602
\(530\) −1.56163e58 −0.418453
\(531\) 0 0
\(532\) 8.04675e56 0.0198848
\(533\) 5.60940e58 1.33132
\(534\) 0 0
\(535\) −3.45289e58 −0.756095
\(536\) 1.42878e58 0.300554
\(537\) 0 0
\(538\) −2.77921e58 −0.539638
\(539\) −2.12794e58 −0.397010
\(540\) 0 0
\(541\) 6.69687e58 1.15380 0.576900 0.816815i \(-0.304262\pi\)
0.576900 + 0.816815i \(0.304262\pi\)
\(542\) −2.45624e58 −0.406711
\(543\) 0 0
\(544\) 4.50272e58 0.688809
\(545\) −5.98853e58 −0.880635
\(546\) 0 0
\(547\) 5.70829e58 0.775852 0.387926 0.921691i \(-0.373192\pi\)
0.387926 + 0.921691i \(0.373192\pi\)
\(548\) −1.44608e58 −0.188978
\(549\) 0 0
\(550\) 1.72497e58 0.208442
\(551\) 3.94910e58 0.458922
\(552\) 0 0
\(553\) 4.93995e57 0.0531046
\(554\) 4.82369e58 0.498792
\(555\) 0 0
\(556\) 4.21118e58 0.402992
\(557\) −1.85005e59 −1.70332 −0.851661 0.524093i \(-0.824404\pi\)
−0.851661 + 0.524093i \(0.824404\pi\)
\(558\) 0 0
\(559\) −1.44106e59 −1.22837
\(560\) 1.39415e57 0.0114358
\(561\) 0 0
\(562\) −1.02340e59 −0.777524
\(563\) 2.39144e59 1.74875 0.874377 0.485247i \(-0.161270\pi\)
0.874377 + 0.485247i \(0.161270\pi\)
\(564\) 0 0
\(565\) −1.08611e59 −0.735922
\(566\) 1.20246e58 0.0784366
\(567\) 0 0
\(568\) 1.14928e59 0.694924
\(569\) 2.48333e59 1.44584 0.722921 0.690930i \(-0.242799\pi\)
0.722921 + 0.690930i \(0.242799\pi\)
\(570\) 0 0
\(571\) 5.26109e57 0.0284053 0.0142027 0.999899i \(-0.495479\pi\)
0.0142027 + 0.999899i \(0.495479\pi\)
\(572\) 2.44260e58 0.127010
\(573\) 0 0
\(574\) −1.04299e58 −0.0503124
\(575\) 1.09929e59 0.510805
\(576\) 0 0
\(577\) 1.90433e59 0.821224 0.410612 0.911810i \(-0.365315\pi\)
0.410612 + 0.911810i \(0.365315\pi\)
\(578\) 8.31412e57 0.0345436
\(579\) 0 0
\(580\) −1.98940e58 −0.0767397
\(581\) 2.45218e57 0.00911519
\(582\) 0 0
\(583\) 1.05054e59 0.362692
\(584\) −3.05930e59 −1.01800
\(585\) 0 0
\(586\) −3.02494e58 −0.0935231
\(587\) 5.30546e59 1.58126 0.790630 0.612294i \(-0.209753\pi\)
0.790630 + 0.612294i \(0.209753\pi\)
\(588\) 0 0
\(589\) 4.88356e59 1.35287
\(590\) −2.10341e59 −0.561831
\(591\) 0 0
\(592\) −3.48137e58 −0.0864636
\(593\) −3.29065e59 −0.788144 −0.394072 0.919080i \(-0.628934\pi\)
−0.394072 + 0.919080i \(0.628934\pi\)
\(594\) 0 0
\(595\) 1.03696e58 0.0231019
\(596\) 2.22539e59 0.478201
\(597\) 0 0
\(598\) −2.59251e59 −0.518376
\(599\) −4.73910e59 −0.914154 −0.457077 0.889427i \(-0.651104\pi\)
−0.457077 + 0.889427i \(0.651104\pi\)
\(600\) 0 0
\(601\) 6.03771e59 1.08410 0.542052 0.840345i \(-0.317648\pi\)
0.542052 + 0.840345i \(0.317648\pi\)
\(602\) 2.67946e58 0.0464219
\(603\) 0 0
\(604\) −3.80131e59 −0.613252
\(605\) −3.13854e59 −0.488639
\(606\) 0 0
\(607\) −1.12859e60 −1.63674 −0.818370 0.574692i \(-0.805122\pi\)
−0.818370 + 0.574692i \(0.805122\pi\)
\(608\) −6.55271e59 −0.917264
\(609\) 0 0
\(610\) −6.51824e59 −0.850234
\(611\) −2.79336e59 −0.351756
\(612\) 0 0
\(613\) 5.36469e59 0.629716 0.314858 0.949139i \(-0.398043\pi\)
0.314858 + 0.949139i \(0.398043\pi\)
\(614\) 6.63298e59 0.751776
\(615\) 0 0
\(616\) −1.66474e58 −0.0175938
\(617\) −5.39956e58 −0.0551096 −0.0275548 0.999620i \(-0.508772\pi\)
−0.0275548 + 0.999620i \(0.508772\pi\)
\(618\) 0 0
\(619\) −8.54808e59 −0.813803 −0.406902 0.913472i \(-0.633391\pi\)
−0.406902 + 0.913472i \(0.633391\pi\)
\(620\) −2.46014e59 −0.226224
\(621\) 0 0
\(622\) −4.74454e59 −0.407100
\(623\) 1.10274e58 0.00914069
\(624\) 0 0
\(625\) 1.32880e59 0.102811
\(626\) 1.16572e59 0.0871460
\(627\) 0 0
\(628\) −5.63053e59 −0.393022
\(629\) −2.58941e59 −0.174667
\(630\) 0 0
\(631\) −1.08863e60 −0.685883 −0.342942 0.939357i \(-0.611423\pi\)
−0.342942 + 0.939357i \(0.611423\pi\)
\(632\) −2.32908e60 −1.41830
\(633\) 0 0
\(634\) 2.49671e60 1.42052
\(635\) 1.48624e60 0.817439
\(636\) 0 0
\(637\) 1.65336e60 0.849905
\(638\) −2.22892e59 −0.110777
\(639\) 0 0
\(640\) −1.47889e59 −0.0687172
\(641\) 5.75414e59 0.258543 0.129271 0.991609i \(-0.458736\pi\)
0.129271 + 0.991609i \(0.458736\pi\)
\(642\) 0 0
\(643\) 2.44929e60 1.02921 0.514605 0.857427i \(-0.327939\pi\)
0.514605 + 0.857427i \(0.327939\pi\)
\(644\) −2.89432e58 −0.0117625
\(645\) 0 0
\(646\) 2.64771e60 1.00663
\(647\) 4.54713e60 1.67223 0.836113 0.548557i \(-0.184823\pi\)
0.836113 + 0.548557i \(0.184823\pi\)
\(648\) 0 0
\(649\) 1.41501e60 0.486965
\(650\) −1.34027e60 −0.446225
\(651\) 0 0
\(652\) −8.13506e59 −0.253535
\(653\) 9.46384e59 0.285387 0.142693 0.989767i \(-0.454424\pi\)
0.142693 + 0.989767i \(0.454424\pi\)
\(654\) 0 0
\(655\) −3.05261e60 −0.861954
\(656\) 2.77039e60 0.757023
\(657\) 0 0
\(658\) 5.19387e58 0.0132934
\(659\) 7.05783e60 1.74837 0.874187 0.485589i \(-0.161395\pi\)
0.874187 + 0.485589i \(0.161395\pi\)
\(660\) 0 0
\(661\) −4.92212e60 −1.14241 −0.571204 0.820808i \(-0.693523\pi\)
−0.571204 + 0.820808i \(0.693523\pi\)
\(662\) −8.11513e57 −0.00182326
\(663\) 0 0
\(664\) −1.15615e60 −0.243445
\(665\) −1.50906e59 −0.0307640
\(666\) 0 0
\(667\) −1.42045e60 −0.271469
\(668\) −3.35284e60 −0.620468
\(669\) 0 0
\(670\) −7.31011e59 −0.126857
\(671\) 4.38495e60 0.736937
\(672\) 0 0
\(673\) 9.64075e60 1.51980 0.759901 0.650039i \(-0.225248\pi\)
0.759901 + 0.650039i \(0.225248\pi\)
\(674\) −7.88544e60 −1.20403
\(675\) 0 0
\(676\) 7.20820e59 0.103270
\(677\) −9.30646e60 −1.29160 −0.645800 0.763506i \(-0.723476\pi\)
−0.645800 + 0.763506i \(0.723476\pi\)
\(678\) 0 0
\(679\) 1.24532e59 0.0162212
\(680\) −4.88904e60 −0.616996
\(681\) 0 0
\(682\) −2.75633e60 −0.326563
\(683\) 1.08277e60 0.124306 0.0621530 0.998067i \(-0.480203\pi\)
0.0621530 + 0.998067i \(0.480203\pi\)
\(684\) 0 0
\(685\) 2.71195e60 0.292371
\(686\) −6.15350e59 −0.0642916
\(687\) 0 0
\(688\) −7.11719e60 −0.698485
\(689\) −8.16246e60 −0.776439
\(690\) 0 0
\(691\) −1.51050e61 −1.35003 −0.675014 0.737804i \(-0.735863\pi\)
−0.675014 + 0.737804i \(0.735863\pi\)
\(692\) 5.06645e60 0.438958
\(693\) 0 0
\(694\) −4.04308e60 −0.329218
\(695\) −7.89754e60 −0.623474
\(696\) 0 0
\(697\) 2.06059e61 1.52928
\(698\) 2.33129e60 0.167766
\(699\) 0 0
\(700\) −1.49630e59 −0.0101253
\(701\) 2.93153e60 0.192379 0.0961893 0.995363i \(-0.469335\pi\)
0.0961893 + 0.995363i \(0.469335\pi\)
\(702\) 0 0
\(703\) 3.76831e60 0.232599
\(704\) 6.91394e60 0.413917
\(705\) 0 0
\(706\) −1.23693e61 −0.696694
\(707\) 1.12322e60 0.0613688
\(708\) 0 0
\(709\) 2.90358e60 0.149293 0.0746465 0.997210i \(-0.476217\pi\)
0.0746465 + 0.997210i \(0.476217\pi\)
\(710\) −5.88009e60 −0.293312
\(711\) 0 0
\(712\) −5.19917e60 −0.244126
\(713\) −1.75656e61 −0.800273
\(714\) 0 0
\(715\) −4.58078e60 −0.196499
\(716\) 1.33661e61 0.556385
\(717\) 0 0
\(718\) 8.61715e60 0.337822
\(719\) 3.54815e61 1.34999 0.674995 0.737822i \(-0.264146\pi\)
0.674995 + 0.737822i \(0.264146\pi\)
\(720\) 0 0
\(721\) −1.08700e60 −0.0389601
\(722\) −1.58103e61 −0.550037
\(723\) 0 0
\(724\) −6.72615e60 −0.220489
\(725\) −7.34337e60 −0.233684
\(726\) 0 0
\(727\) 1.03918e61 0.311674 0.155837 0.987783i \(-0.450193\pi\)
0.155837 + 0.987783i \(0.450193\pi\)
\(728\) 1.29346e60 0.0376643
\(729\) 0 0
\(730\) 1.56524e61 0.429673
\(731\) −5.29370e61 −1.41103
\(732\) 0 0
\(733\) −1.42956e61 −0.359308 −0.179654 0.983730i \(-0.557498\pi\)
−0.179654 + 0.983730i \(0.557498\pi\)
\(734\) 4.49095e61 1.09616
\(735\) 0 0
\(736\) 2.35694e61 0.542594
\(737\) 4.91765e60 0.109953
\(738\) 0 0
\(739\) 3.23314e61 0.681975 0.340988 0.940068i \(-0.389239\pi\)
0.340988 + 0.940068i \(0.389239\pi\)
\(740\) −1.89833e60 −0.0388945
\(741\) 0 0
\(742\) 1.51770e60 0.0293428
\(743\) 4.05119e61 0.760893 0.380446 0.924803i \(-0.375770\pi\)
0.380446 + 0.924803i \(0.375770\pi\)
\(744\) 0 0
\(745\) −4.17343e61 −0.739832
\(746\) 6.24073e61 1.07486
\(747\) 0 0
\(748\) 8.97280e60 0.145896
\(749\) 3.35575e60 0.0530189
\(750\) 0 0
\(751\) −3.19198e61 −0.476214 −0.238107 0.971239i \(-0.576527\pi\)
−0.238107 + 0.971239i \(0.576527\pi\)
\(752\) −1.37960e61 −0.200018
\(753\) 0 0
\(754\) 1.73182e61 0.237147
\(755\) 7.12886e61 0.948770
\(756\) 0 0
\(757\) −2.67158e61 −0.335898 −0.167949 0.985796i \(-0.553714\pi\)
−0.167949 + 0.985796i \(0.553714\pi\)
\(758\) 6.83757e61 0.835630
\(759\) 0 0
\(760\) 7.11492e61 0.821633
\(761\) −4.67073e61 −0.524342 −0.262171 0.965021i \(-0.584438\pi\)
−0.262171 + 0.965021i \(0.584438\pi\)
\(762\) 0 0
\(763\) 5.82006e60 0.0617519
\(764\) 1.17676e61 0.121389
\(765\) 0 0
\(766\) 1.99448e61 0.194497
\(767\) −1.09943e62 −1.04248
\(768\) 0 0
\(769\) −3.41657e61 −0.306319 −0.153159 0.988202i \(-0.548945\pi\)
−0.153159 + 0.988202i \(0.548945\pi\)
\(770\) 8.51733e59 0.00742596
\(771\) 0 0
\(772\) 6.99779e60 0.0577017
\(773\) −6.37216e61 −0.511008 −0.255504 0.966808i \(-0.582241\pi\)
−0.255504 + 0.966808i \(0.582241\pi\)
\(774\) 0 0
\(775\) −9.08099e61 −0.688885
\(776\) −5.87144e61 −0.433229
\(777\) 0 0
\(778\) 9.40894e61 0.656870
\(779\) −2.99874e62 −2.03650
\(780\) 0 0
\(781\) 3.95565e61 0.254227
\(782\) −9.52351e61 −0.595459
\(783\) 0 0
\(784\) 8.16570e61 0.483279
\(785\) 1.05593e62 0.608050
\(786\) 0 0
\(787\) −2.17767e62 −1.18723 −0.593614 0.804750i \(-0.702300\pi\)
−0.593614 + 0.804750i \(0.702300\pi\)
\(788\) 5.91351e61 0.313712
\(789\) 0 0
\(790\) 1.19163e62 0.598632
\(791\) 1.05555e61 0.0516043
\(792\) 0 0
\(793\) −3.40701e62 −1.57761
\(794\) −7.15710e60 −0.0322549
\(795\) 0 0
\(796\) 2.32535e61 0.0992791
\(797\) −7.92440e61 −0.329316 −0.164658 0.986351i \(-0.552652\pi\)
−0.164658 + 0.986351i \(0.552652\pi\)
\(798\) 0 0
\(799\) −1.02613e62 −0.404062
\(800\) 1.21848e62 0.467072
\(801\) 0 0
\(802\) −1.59664e62 −0.580042
\(803\) −1.05297e62 −0.372417
\(804\) 0 0
\(805\) 5.42794e60 0.0181980
\(806\) 2.14161e62 0.699096
\(807\) 0 0
\(808\) −5.29575e62 −1.63902
\(809\) −3.01193e62 −0.907719 −0.453860 0.891073i \(-0.649953\pi\)
−0.453860 + 0.891073i \(0.649953\pi\)
\(810\) 0 0
\(811\) 4.60520e62 1.31613 0.658067 0.752959i \(-0.271374\pi\)
0.658067 + 0.752959i \(0.271374\pi\)
\(812\) 1.93343e60 0.00538114
\(813\) 0 0
\(814\) −2.12688e61 −0.0561459
\(815\) 1.52563e62 0.392247
\(816\) 0 0
\(817\) 7.70381e62 1.87902
\(818\) 1.83191e62 0.435220
\(819\) 0 0
\(820\) 1.51064e62 0.340537
\(821\) 6.21732e62 1.36529 0.682646 0.730749i \(-0.260829\pi\)
0.682646 + 0.730749i \(0.260829\pi\)
\(822\) 0 0
\(823\) 4.56107e62 0.950539 0.475270 0.879840i \(-0.342350\pi\)
0.475270 + 0.879840i \(0.342350\pi\)
\(824\) 5.12496e62 1.04053
\(825\) 0 0
\(826\) 2.04424e61 0.0393967
\(827\) −6.18607e62 −1.16157 −0.580786 0.814056i \(-0.697255\pi\)
−0.580786 + 0.814056i \(0.697255\pi\)
\(828\) 0 0
\(829\) 2.44434e62 0.435751 0.217876 0.975977i \(-0.430087\pi\)
0.217876 + 0.975977i \(0.430087\pi\)
\(830\) 5.91524e61 0.102753
\(831\) 0 0
\(832\) −5.37198e62 −0.886101
\(833\) 6.07358e62 0.976286
\(834\) 0 0
\(835\) 6.28783e62 0.959934
\(836\) −1.30579e62 −0.194285
\(837\) 0 0
\(838\) 4.70025e62 0.664316
\(839\) 4.81900e62 0.663858 0.331929 0.943304i \(-0.392301\pi\)
0.331929 + 0.943304i \(0.392301\pi\)
\(840\) 0 0
\(841\) −6.69149e62 −0.875808
\(842\) −6.74359e62 −0.860362
\(843\) 0 0
\(844\) 4.89867e62 0.593903
\(845\) −1.35180e62 −0.159770
\(846\) 0 0
\(847\) 3.05025e61 0.0342643
\(848\) −4.03131e62 −0.441505
\(849\) 0 0
\(850\) −4.92342e62 −0.512578
\(851\) −1.35542e62 −0.137590
\(852\) 0 0
\(853\) −1.38529e63 −1.33702 −0.668510 0.743703i \(-0.733068\pi\)
−0.668510 + 0.743703i \(0.733068\pi\)
\(854\) 6.33486e61 0.0596201
\(855\) 0 0
\(856\) −1.58216e63 −1.41601
\(857\) 2.18315e63 1.90545 0.952723 0.303840i \(-0.0982688\pi\)
0.952723 + 0.303840i \(0.0982688\pi\)
\(858\) 0 0
\(859\) −3.10254e62 −0.257552 −0.128776 0.991674i \(-0.541105\pi\)
−0.128776 + 0.991674i \(0.541105\pi\)
\(860\) −3.88087e62 −0.314205
\(861\) 0 0
\(862\) 1.09973e63 0.846993
\(863\) −3.22226e62 −0.242063 −0.121032 0.992649i \(-0.538620\pi\)
−0.121032 + 0.992649i \(0.538620\pi\)
\(864\) 0 0
\(865\) −9.50148e62 −0.679117
\(866\) −1.02490e63 −0.714573
\(867\) 0 0
\(868\) 2.39093e61 0.0158633
\(869\) −8.01634e62 −0.518861
\(870\) 0 0
\(871\) −3.82091e62 −0.235384
\(872\) −2.74404e63 −1.64925
\(873\) 0 0
\(874\) 1.38594e63 0.792953
\(875\) 7.03789e61 0.0392889
\(876\) 0 0
\(877\) 9.37907e62 0.498504 0.249252 0.968439i \(-0.419815\pi\)
0.249252 + 0.968439i \(0.419815\pi\)
\(878\) −7.39667e62 −0.383623
\(879\) 0 0
\(880\) −2.26237e62 −0.111734
\(881\) 1.19604e63 0.576452 0.288226 0.957562i \(-0.406935\pi\)
0.288226 + 0.957562i \(0.406935\pi\)
\(882\) 0 0
\(883\) 3.71532e63 1.70546 0.852728 0.522355i \(-0.174946\pi\)
0.852728 + 0.522355i \(0.174946\pi\)
\(884\) −6.97167e62 −0.312330
\(885\) 0 0
\(886\) −1.93057e63 −0.823875
\(887\) −3.17967e63 −1.32442 −0.662208 0.749320i \(-0.730380\pi\)
−0.662208 + 0.749320i \(0.730380\pi\)
\(888\) 0 0
\(889\) −1.44443e62 −0.0573204
\(890\) 2.66006e62 0.103040
\(891\) 0 0
\(892\) 2.81681e62 0.103971
\(893\) 1.49331e63 0.538076
\(894\) 0 0
\(895\) −2.50665e63 −0.860791
\(896\) 1.43728e61 0.00481859
\(897\) 0 0
\(898\) 2.01871e63 0.645107
\(899\) 1.17340e63 0.366110
\(900\) 0 0
\(901\) −2.99845e63 −0.891896
\(902\) 1.69252e63 0.491579
\(903\) 0 0
\(904\) −4.97671e63 −1.37823
\(905\) 1.26140e63 0.341122
\(906\) 0 0
\(907\) 6.50266e63 1.67700 0.838502 0.544899i \(-0.183432\pi\)
0.838502 + 0.544899i \(0.183432\pi\)
\(908\) −1.48069e63 −0.372921
\(909\) 0 0
\(910\) −6.61777e61 −0.0158973
\(911\) 7.52857e63 1.76631 0.883156 0.469079i \(-0.155414\pi\)
0.883156 + 0.469079i \(0.155414\pi\)
\(912\) 0 0
\(913\) −3.97930e62 −0.0890604
\(914\) 3.14640e63 0.687814
\(915\) 0 0
\(916\) −2.40340e63 −0.501271
\(917\) 2.96674e62 0.0604419
\(918\) 0 0
\(919\) 2.17512e63 0.422864 0.211432 0.977393i \(-0.432187\pi\)
0.211432 + 0.977393i \(0.432187\pi\)
\(920\) −2.55916e63 −0.486025
\(921\) 0 0
\(922\) 6.01133e63 1.08957
\(923\) −3.07346e63 −0.544240
\(924\) 0 0
\(925\) −7.00719e62 −0.118440
\(926\) 3.92433e63 0.648081
\(927\) 0 0
\(928\) −1.57445e63 −0.248226
\(929\) −7.86465e63 −1.21155 −0.605775 0.795636i \(-0.707137\pi\)
−0.605775 + 0.795636i \(0.707137\pi\)
\(930\) 0 0
\(931\) −8.83875e63 −1.30009
\(932\) 3.02876e63 0.435334
\(933\) 0 0
\(934\) 6.53651e63 0.897198
\(935\) −1.68273e63 −0.225718
\(936\) 0 0
\(937\) 1.79538e63 0.230015 0.115007 0.993365i \(-0.463311\pi\)
0.115007 + 0.993365i \(0.463311\pi\)
\(938\) 7.10445e61 0.00889548
\(939\) 0 0
\(940\) −7.52269e62 −0.0899755
\(941\) 1.29813e64 1.51754 0.758771 0.651358i \(-0.225800\pi\)
0.758771 + 0.651358i \(0.225800\pi\)
\(942\) 0 0
\(943\) 1.07861e64 1.20466
\(944\) −5.42991e63 −0.592781
\(945\) 0 0
\(946\) −4.34812e63 −0.453567
\(947\) −3.48486e63 −0.355353 −0.177677 0.984089i \(-0.556858\pi\)
−0.177677 + 0.984089i \(0.556858\pi\)
\(948\) 0 0
\(949\) 8.18131e63 0.797259
\(950\) 7.16495e63 0.682584
\(951\) 0 0
\(952\) 4.75150e62 0.0432650
\(953\) −3.62975e63 −0.323131 −0.161566 0.986862i \(-0.551654\pi\)
−0.161566 + 0.986862i \(0.551654\pi\)
\(954\) 0 0
\(955\) −2.20685e63 −0.187802
\(956\) −3.62511e62 −0.0301631
\(957\) 0 0
\(958\) −9.21603e63 −0.733137
\(959\) −2.63565e62 −0.0205016
\(960\) 0 0
\(961\) 1.06576e63 0.0792697
\(962\) 1.65254e63 0.120195
\(963\) 0 0
\(964\) 6.51455e63 0.453135
\(965\) −1.31235e63 −0.0892711
\(966\) 0 0
\(967\) −2.78438e64 −1.81159 −0.905794 0.423719i \(-0.860724\pi\)
−0.905794 + 0.423719i \(0.860724\pi\)
\(968\) −1.43813e64 −0.915118
\(969\) 0 0
\(970\) 3.00401e63 0.182856
\(971\) 2.13572e64 1.27154 0.635770 0.771878i \(-0.280683\pi\)
0.635770 + 0.771878i \(0.280683\pi\)
\(972\) 0 0
\(973\) 7.67536e62 0.0437192
\(974\) −1.07803e64 −0.600638
\(975\) 0 0
\(976\) −1.68267e64 −0.897072
\(977\) −3.39336e64 −1.76969 −0.884843 0.465889i \(-0.845734\pi\)
−0.884843 + 0.465889i \(0.845734\pi\)
\(978\) 0 0
\(979\) −1.78948e63 −0.0893096
\(980\) 4.45261e63 0.217397
\(981\) 0 0
\(982\) 1.28022e64 0.598255
\(983\) −8.51968e63 −0.389514 −0.194757 0.980852i \(-0.562392\pi\)
−0.194757 + 0.980852i \(0.562392\pi\)
\(984\) 0 0
\(985\) −1.10900e64 −0.485348
\(986\) 6.36178e63 0.272411
\(987\) 0 0
\(988\) 1.01457e64 0.415919
\(989\) −2.77097e64 −1.11151
\(990\) 0 0
\(991\) 4.90354e63 0.188333 0.0941664 0.995556i \(-0.469981\pi\)
0.0941664 + 0.995556i \(0.469981\pi\)
\(992\) −1.94701e64 −0.731757
\(993\) 0 0
\(994\) 5.71467e62 0.0205676
\(995\) −4.36090e63 −0.153596
\(996\) 0 0
\(997\) 4.69596e64 1.58409 0.792043 0.610465i \(-0.209017\pi\)
0.792043 + 0.610465i \(0.209017\pi\)
\(998\) −9.82831e63 −0.324468
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9.44.a.c.1.2 4
3.2 odd 2 3.44.a.b.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3.44.a.b.1.3 4 3.2 odd 2
9.44.a.c.1.2 4 1.1 even 1 trivial