Properties

Label 9.4.a.a
Level 99
Weight 44
Character orbit 9.a
Self dual yes
Analytic conductor 0.5310.531
Analytic rank 00
Dimension 11
CM discriminant -3
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9,4,Mod(1,9)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 9=32 9 = 3^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 9.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.5310171900520.531017190052
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q8q4+20q770q13+64q16+56q19125q25160q28+308q31+110q37520q43+57q49+560q52+182q61512q64880q67+1190q73+1330q97+O(q100) q - 8 q^{4} + 20 q^{7} - 70 q^{13} + 64 q^{16} + 56 q^{19} - 125 q^{25} - 160 q^{28} + 308 q^{31} + 110 q^{37} - 520 q^{43} + 57 q^{49} + 560 q^{52} + 182 q^{61} - 512 q^{64} - 880 q^{67} + 1190 q^{73}+ \cdots - 1330 q^{97}+O(q^{100}) Copy content Toggle raw display

Expression as an eta quotient

f(z)=η(3z)8=qn=1(1q3n)8f(z) = \eta(3z)^{8}=q\prod_{n=1}^\infty(1 - q^{3n})^{8}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 −8.00000 0 0 20.0000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9.4.a.a 1
3.b odd 2 1 CM 9.4.a.a 1
4.b odd 2 1 144.4.a.d 1
5.b even 2 1 225.4.a.d 1
5.c odd 4 2 225.4.b.g 2
7.b odd 2 1 441.4.a.f 1
7.c even 3 2 441.4.e.i 2
7.d odd 6 2 441.4.e.j 2
8.b even 2 1 576.4.a.m 1
8.d odd 2 1 576.4.a.l 1
9.c even 3 2 81.4.c.b 2
9.d odd 6 2 81.4.c.b 2
11.b odd 2 1 1089.4.a.g 1
12.b even 2 1 144.4.a.d 1
13.b even 2 1 1521.4.a.g 1
15.d odd 2 1 225.4.a.d 1
15.e even 4 2 225.4.b.g 2
21.c even 2 1 441.4.a.f 1
21.g even 6 2 441.4.e.j 2
21.h odd 6 2 441.4.e.i 2
24.f even 2 1 576.4.a.l 1
24.h odd 2 1 576.4.a.m 1
33.d even 2 1 1089.4.a.g 1
39.d odd 2 1 1521.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.4.a.a 1 1.a even 1 1 trivial
9.4.a.a 1 3.b odd 2 1 CM
81.4.c.b 2 9.c even 3 2
81.4.c.b 2 9.d odd 6 2
144.4.a.d 1 4.b odd 2 1
144.4.a.d 1 12.b even 2 1
225.4.a.d 1 5.b even 2 1
225.4.a.d 1 15.d odd 2 1
225.4.b.g 2 5.c odd 4 2
225.4.b.g 2 15.e even 4 2
441.4.a.f 1 7.b odd 2 1
441.4.a.f 1 21.c even 2 1
441.4.e.i 2 7.c even 3 2
441.4.e.i 2 21.h odd 6 2
441.4.e.j 2 7.d odd 6 2
441.4.e.j 2 21.g even 6 2
576.4.a.l 1 8.d odd 2 1
576.4.a.l 1 24.f even 2 1
576.4.a.m 1 8.b even 2 1
576.4.a.m 1 24.h odd 2 1
1089.4.a.g 1 11.b odd 2 1
1089.4.a.g 1 33.d even 2 1
1521.4.a.g 1 13.b even 2 1
1521.4.a.g 1 39.d odd 2 1

Hecke kernels

This newform subspace is the entire newspace S4new(Γ0(9))S_{4}^{\mathrm{new}}(\Gamma_0(9)).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T20 T - 20 Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T+70 T + 70 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T56 T - 56 Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T308 T - 308 Copy content Toggle raw display
3737 T110 T - 110 Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T+520 T + 520 Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T182 T - 182 Copy content Toggle raw display
6767 T+880 T + 880 Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T1190 T - 1190 Copy content Toggle raw display
7979 T884 T - 884 Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T+1330 T + 1330 Copy content Toggle raw display
show more
show less