gp: [N,k,chi] = [9,4,Mod(1,9)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("9.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
f ( z ) = η ( 3 z ) 8 = q ∏ n = 1 ∞ ( 1 − q 3 n ) 8 f(z) = \eta(3z)^{8}=q\prod_{n=1}^\infty(1 - q^{3n})^{8} f ( z ) = η ( 3 z ) 8 = q ∏ n = 1 ∞ ( 1 − q 3 n ) 8
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 4 n e w ( Γ 0 ( 9 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(9)) S 4 n e w ( Γ 0 ( 9 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T T T
T
5 5 5
T T T
T
7 7 7
T − 20 T - 20 T − 2 0
T - 20
11 11 1 1
T T T
T
13 13 1 3
T + 70 T + 70 T + 7 0
T + 70
17 17 1 7
T T T
T
19 19 1 9
T − 56 T - 56 T − 5 6
T - 56
23 23 2 3
T T T
T
29 29 2 9
T T T
T
31 31 3 1
T − 308 T - 308 T − 3 0 8
T - 308
37 37 3 7
T − 110 T - 110 T − 1 1 0
T - 110
41 41 4 1
T T T
T
43 43 4 3
T + 520 T + 520 T + 5 2 0
T + 520
47 47 4 7
T T T
T
53 53 5 3
T T T
T
59 59 5 9
T T T
T
61 61 6 1
T − 182 T - 182 T − 1 8 2
T - 182
67 67 6 7
T + 880 T + 880 T + 8 8 0
T + 880
71 71 7 1
T T T
T
73 73 7 3
T − 1190 T - 1190 T − 1 1 9 0
T - 1190
79 79 7 9
T − 884 T - 884 T − 8 8 4
T - 884
83 83 8 3
T T T
T
89 89 8 9
T T T
T
97 97 9 7
T + 1330 T + 1330 T + 1 3 3 0
T + 1330
show more
show less