Properties

Label 9.4
Level 9
Weight 4
Dimension 5
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 24
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 9 = 3^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(9))\).

Total New Old
Modular forms 13 10 3
Cusp forms 5 5 0
Eisenstein series 8 5 3

Trace form

\( 5 q - 3 q^{2} - 3 q^{3} - 13 q^{4} - 15 q^{5} + 9 q^{6} + 13 q^{7} + 66 q^{8} + 45 q^{9} + 12 q^{10} - 66 q^{11} - 156 q^{12} - 59 q^{13} - 60 q^{14} + 27 q^{15} + 71 q^{16} + 198 q^{17} + 216 q^{18} - 98 q^{19}+ \cdots + 297 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
9.4.a \(\chi_{9}(1, \cdot)\) 9.4.a.a 1 1
9.4.c \(\chi_{9}(4, \cdot)\) 9.4.c.a 4 2