Properties

Label 896.2.ba.f.417.7
Level $896$
Weight $2$
Character 896.417
Analytic conductor $7.155$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [896,2,Mod(289,896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("896.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(896, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.ba (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,-4,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 417.7
Character \(\chi\) \(=\) 896.417
Dual form 896.2.ba.f.737.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0543752 - 0.0145698i) q^{3} +(-1.25781 - 0.337028i) q^{5} +(0.230738 - 2.63567i) q^{7} +(-2.59533 + 1.49842i) q^{9} +(0.402875 + 1.50355i) q^{11} +(-1.59615 - 1.59615i) q^{13} -0.0733039 q^{15} +(1.46910 - 2.54455i) q^{17} +(-2.05021 + 7.65147i) q^{19} +(-0.0258547 - 0.146677i) q^{21} +(-3.91784 + 2.26197i) q^{23} +(-2.86164 - 1.65217i) q^{25} +(-0.238706 + 0.238706i) q^{27} +(-2.06234 - 2.06234i) q^{29} +(-3.14025 + 5.43908i) q^{31} +(0.0438128 + 0.0758861i) q^{33} +(-1.17852 + 3.23740i) q^{35} +(-5.24787 - 1.40616i) q^{37} +(-0.110046 - 0.0635352i) q^{39} +7.34101i q^{41} +(1.99391 - 1.99391i) q^{43} +(3.76943 - 1.01002i) q^{45} +(0.979430 + 1.69642i) q^{47} +(-6.89352 - 1.21630i) q^{49} +(0.0428089 - 0.159765i) q^{51} +(-3.00493 - 11.2146i) q^{53} -2.02696i q^{55} +0.445921i q^{57} +(-0.793411 - 2.96105i) q^{59} +(-2.60480 + 9.72123i) q^{61} +(3.35049 + 7.18618i) q^{63} +(1.46970 + 2.54559i) q^{65} +(2.11517 - 0.566758i) q^{67} +(-0.180077 + 0.180077i) q^{69} +7.26378i q^{71} +(-12.2392 - 7.06631i) q^{73} +(-0.179674 - 0.0481435i) q^{75} +(4.05583 - 0.714920i) q^{77} +(-0.961559 - 1.66547i) q^{79} +(4.48574 - 7.76954i) q^{81} +(-8.82731 - 8.82731i) q^{83} +(-2.70543 + 2.70543i) q^{85} +(-0.142188 - 0.0820924i) q^{87} +(11.5526 - 6.66987i) q^{89} +(-4.57521 + 3.83862i) q^{91} +(-0.0915056 + 0.341503i) q^{93} +(5.15752 - 8.93309i) q^{95} -9.69578 q^{97} +(-3.29854 - 3.29854i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{5} + 4 q^{11} + 24 q^{13} - 40 q^{15} + 8 q^{17} + 4 q^{19} + 8 q^{21} + 24 q^{27} - 24 q^{29} + 28 q^{31} + 16 q^{33} - 28 q^{35} + 24 q^{37} + 40 q^{43} + 28 q^{45} - 20 q^{47} - 24 q^{51}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0543752 0.0145698i 0.0313935 0.00841187i −0.243088 0.970004i \(-0.578160\pi\)
0.274482 + 0.961592i \(0.411494\pi\)
\(4\) 0 0
\(5\) −1.25781 0.337028i −0.562508 0.150724i −0.0336497 0.999434i \(-0.510713\pi\)
−0.528858 + 0.848710i \(0.677380\pi\)
\(6\) 0 0
\(7\) 0.230738 2.63567i 0.0872109 0.996190i
\(8\) 0 0
\(9\) −2.59533 + 1.49842i −0.865111 + 0.499472i
\(10\) 0 0
\(11\) 0.402875 + 1.50355i 0.121472 + 0.453338i 0.999689 0.0249229i \(-0.00793403\pi\)
−0.878218 + 0.478261i \(0.841267\pi\)
\(12\) 0 0
\(13\) −1.59615 1.59615i −0.442691 0.442691i 0.450224 0.892916i \(-0.351344\pi\)
−0.892916 + 0.450224i \(0.851344\pi\)
\(14\) 0 0
\(15\) −0.0733039 −0.0189270
\(16\) 0 0
\(17\) 1.46910 2.54455i 0.356309 0.617145i −0.631032 0.775757i \(-0.717368\pi\)
0.987341 + 0.158612i \(0.0507018\pi\)
\(18\) 0 0
\(19\) −2.05021 + 7.65147i −0.470350 + 1.75537i 0.168165 + 0.985759i \(0.446216\pi\)
−0.638514 + 0.769610i \(0.720451\pi\)
\(20\) 0 0
\(21\) −0.0258547 0.146677i −0.00564196 0.0320075i
\(22\) 0 0
\(23\) −3.91784 + 2.26197i −0.816927 + 0.471653i −0.849356 0.527821i \(-0.823009\pi\)
0.0324286 + 0.999474i \(0.489676\pi\)
\(24\) 0 0
\(25\) −2.86164 1.65217i −0.572328 0.330434i
\(26\) 0 0
\(27\) −0.238706 + 0.238706i −0.0459390 + 0.0459390i
\(28\) 0 0
\(29\) −2.06234 2.06234i −0.382968 0.382968i 0.489203 0.872170i \(-0.337288\pi\)
−0.872170 + 0.489203i \(0.837288\pi\)
\(30\) 0 0
\(31\) −3.14025 + 5.43908i −0.564006 + 0.976887i 0.433136 + 0.901329i \(0.357407\pi\)
−0.997141 + 0.0755580i \(0.975926\pi\)
\(32\) 0 0
\(33\) 0.0438128 + 0.0758861i 0.00762684 + 0.0132101i
\(34\) 0 0
\(35\) −1.17852 + 3.23740i −0.199206 + 0.547220i
\(36\) 0 0
\(37\) −5.24787 1.40616i −0.862745 0.231172i −0.199797 0.979837i \(-0.564028\pi\)
−0.662948 + 0.748666i \(0.730695\pi\)
\(38\) 0 0
\(39\) −0.110046 0.0635352i −0.0176215 0.0101738i
\(40\) 0 0
\(41\) 7.34101i 1.14647i 0.819390 + 0.573236i \(0.194312\pi\)
−0.819390 + 0.573236i \(0.805688\pi\)
\(42\) 0 0
\(43\) 1.99391 1.99391i 0.304068 0.304068i −0.538535 0.842603i \(-0.681022\pi\)
0.842603 + 0.538535i \(0.181022\pi\)
\(44\) 0 0
\(45\) 3.76943 1.01002i 0.561914 0.150564i
\(46\) 0 0
\(47\) 0.979430 + 1.69642i 0.142865 + 0.247449i 0.928574 0.371147i \(-0.121035\pi\)
−0.785710 + 0.618596i \(0.787702\pi\)
\(48\) 0 0
\(49\) −6.89352 1.21630i −0.984789 0.173757i
\(50\) 0 0
\(51\) 0.0428089 0.159765i 0.00599444 0.0223716i
\(52\) 0 0
\(53\) −3.00493 11.2146i −0.412759 1.54044i −0.789282 0.614031i \(-0.789547\pi\)
0.376522 0.926408i \(-0.377120\pi\)
\(54\) 0 0
\(55\) 2.02696i 0.273315i
\(56\) 0 0
\(57\) 0.445921i 0.0590637i
\(58\) 0 0
\(59\) −0.793411 2.96105i −0.103293 0.385496i 0.894853 0.446362i \(-0.147281\pi\)
−0.998146 + 0.0608657i \(0.980614\pi\)
\(60\) 0 0
\(61\) −2.60480 + 9.72123i −0.333510 + 1.24468i 0.571966 + 0.820277i \(0.306181\pi\)
−0.905476 + 0.424398i \(0.860486\pi\)
\(62\) 0 0
\(63\) 3.35049 + 7.18618i 0.422122 + 0.905374i
\(64\) 0 0
\(65\) 1.46970 + 2.54559i 0.182293 + 0.315742i
\(66\) 0 0
\(67\) 2.11517 0.566758i 0.258409 0.0692405i −0.127289 0.991866i \(-0.540627\pi\)
0.385698 + 0.922625i \(0.373961\pi\)
\(68\) 0 0
\(69\) −0.180077 + 0.180077i −0.0216787 + 0.0216787i
\(70\) 0 0
\(71\) 7.26378i 0.862052i 0.902340 + 0.431026i \(0.141848\pi\)
−0.902340 + 0.431026i \(0.858152\pi\)
\(72\) 0 0
\(73\) −12.2392 7.06631i −1.43249 0.827049i −0.435181 0.900343i \(-0.643316\pi\)
−0.997310 + 0.0732936i \(0.976649\pi\)
\(74\) 0 0
\(75\) −0.179674 0.0481435i −0.0207469 0.00555913i
\(76\) 0 0
\(77\) 4.05583 0.714920i 0.462204 0.0814727i
\(78\) 0 0
\(79\) −0.961559 1.66547i −0.108184 0.187380i 0.806851 0.590755i \(-0.201170\pi\)
−0.915035 + 0.403376i \(0.867837\pi\)
\(80\) 0 0
\(81\) 4.48574 7.76954i 0.498416 0.863282i
\(82\) 0 0
\(83\) −8.82731 8.82731i −0.968923 0.968923i 0.0306086 0.999531i \(-0.490255\pi\)
−0.999531 + 0.0306086i \(0.990255\pi\)
\(84\) 0 0
\(85\) −2.70543 + 2.70543i −0.293445 + 0.293445i
\(86\) 0 0
\(87\) −0.142188 0.0820924i −0.0152442 0.00880123i
\(88\) 0 0
\(89\) 11.5526 6.66987i 1.22457 0.707005i 0.258680 0.965963i \(-0.416713\pi\)
0.965888 + 0.258959i \(0.0833793\pi\)
\(90\) 0 0
\(91\) −4.57521 + 3.83862i −0.479612 + 0.402397i
\(92\) 0 0
\(93\) −0.0915056 + 0.341503i −0.00948869 + 0.0354123i
\(94\) 0 0
\(95\) 5.15752 8.93309i 0.529151 0.916516i
\(96\) 0 0
\(97\) −9.69578 −0.984458 −0.492229 0.870466i \(-0.663818\pi\)
−0.492229 + 0.870466i \(0.663818\pi\)
\(98\) 0 0
\(99\) −3.29854 3.29854i −0.331516 0.331516i
\(100\) 0 0
\(101\) 2.73526 + 10.2081i 0.272168 + 1.01575i 0.957715 + 0.287718i \(0.0928966\pi\)
−0.685547 + 0.728029i \(0.740437\pi\)
\(102\) 0 0
\(103\) −2.96542 + 1.71209i −0.292192 + 0.168697i −0.638930 0.769265i \(-0.720623\pi\)
0.346738 + 0.937962i \(0.387289\pi\)
\(104\) 0 0
\(105\) −0.0169140 + 0.193205i −0.00165064 + 0.0188549i
\(106\) 0 0
\(107\) 11.0668 + 2.96534i 1.06987 + 0.286670i 0.750439 0.660940i \(-0.229842\pi\)
0.319429 + 0.947610i \(0.396509\pi\)
\(108\) 0 0
\(109\) −3.02860 + 0.811511i −0.290087 + 0.0777287i −0.400928 0.916110i \(-0.631312\pi\)
0.110841 + 0.993838i \(0.464646\pi\)
\(110\) 0 0
\(111\) −0.305841 −0.0290292
\(112\) 0 0
\(113\) 4.67963 0.440223 0.220111 0.975475i \(-0.429358\pi\)
0.220111 + 0.975475i \(0.429358\pi\)
\(114\) 0 0
\(115\) 5.69024 1.52469i 0.530617 0.142178i
\(116\) 0 0
\(117\) 6.53422 + 1.75084i 0.604089 + 0.161865i
\(118\) 0 0
\(119\) −6.36763 4.45919i −0.583719 0.408773i
\(120\) 0 0
\(121\) 7.42792 4.28851i 0.675265 0.389865i
\(122\) 0 0
\(123\) 0.106957 + 0.399168i 0.00964398 + 0.0359918i
\(124\) 0 0
\(125\) 7.64645 + 7.64645i 0.683919 + 0.683919i
\(126\) 0 0
\(127\) 5.63308 0.499855 0.249928 0.968265i \(-0.419593\pi\)
0.249928 + 0.968265i \(0.419593\pi\)
\(128\) 0 0
\(129\) 0.0793683 0.137470i 0.00698799 0.0121035i
\(130\) 0 0
\(131\) −0.537304 + 2.00524i −0.0469444 + 0.175199i −0.985418 0.170153i \(-0.945574\pi\)
0.938473 + 0.345352i \(0.112240\pi\)
\(132\) 0 0
\(133\) 19.6937 + 7.16916i 1.70766 + 0.621645i
\(134\) 0 0
\(135\) 0.380697 0.219795i 0.0327652 0.0189170i
\(136\) 0 0
\(137\) 2.68685 + 1.55125i 0.229553 + 0.132532i 0.610366 0.792120i \(-0.291022\pi\)
−0.380813 + 0.924652i \(0.624356\pi\)
\(138\) 0 0
\(139\) −12.7451 + 12.7451i −1.08103 + 1.08103i −0.0846114 + 0.996414i \(0.526965\pi\)
−0.996414 + 0.0846114i \(0.973035\pi\)
\(140\) 0 0
\(141\) 0.0779732 + 0.0779732i 0.00656653 + 0.00656653i
\(142\) 0 0
\(143\) 1.75684 3.04294i 0.146914 0.254463i
\(144\) 0 0
\(145\) 1.89896 + 3.28910i 0.157700 + 0.273145i
\(146\) 0 0
\(147\) −0.392558 + 0.0343005i −0.0323776 + 0.00282906i
\(148\) 0 0
\(149\) −14.5303 3.89339i −1.19037 0.318959i −0.391338 0.920247i \(-0.627988\pi\)
−0.799032 + 0.601288i \(0.794654\pi\)
\(150\) 0 0
\(151\) 15.7545 + 9.09588i 1.28209 + 0.740212i 0.977229 0.212186i \(-0.0680584\pi\)
0.304856 + 0.952398i \(0.401392\pi\)
\(152\) 0 0
\(153\) 8.80528i 0.711865i
\(154\) 0 0
\(155\) 5.78295 5.78295i 0.464498 0.464498i
\(156\) 0 0
\(157\) −9.39175 + 2.51651i −0.749544 + 0.200840i −0.613316 0.789838i \(-0.710165\pi\)
−0.136228 + 0.990678i \(0.543498\pi\)
\(158\) 0 0
\(159\) −0.326788 0.566013i −0.0259159 0.0448877i
\(160\) 0 0
\(161\) 5.05781 + 10.8481i 0.398611 + 0.854948i
\(162\) 0 0
\(163\) 3.36548 12.5602i 0.263605 0.983787i −0.699494 0.714639i \(-0.746591\pi\)
0.963099 0.269148i \(-0.0867422\pi\)
\(164\) 0 0
\(165\) −0.0295323 0.110216i −0.00229909 0.00858031i
\(166\) 0 0
\(167\) 16.5417i 1.28004i −0.768360 0.640018i \(-0.778927\pi\)
0.768360 0.640018i \(-0.221073\pi\)
\(168\) 0 0
\(169\) 7.90463i 0.608049i
\(170\) 0 0
\(171\) −6.14412 22.9302i −0.469853 1.75351i
\(172\) 0 0
\(173\) 5.59219 20.8703i 0.425166 1.58674i −0.338393 0.941005i \(-0.609883\pi\)
0.763559 0.645738i \(-0.223450\pi\)
\(174\) 0 0
\(175\) −5.01486 + 7.16112i −0.379088 + 0.541330i
\(176\) 0 0
\(177\) −0.0862837 0.149448i −0.00648548 0.0112332i
\(178\) 0 0
\(179\) 18.3264 4.91053i 1.36978 0.367031i 0.502379 0.864647i \(-0.332458\pi\)
0.867397 + 0.497617i \(0.165791\pi\)
\(180\) 0 0
\(181\) −6.44222 + 6.44222i −0.478846 + 0.478846i −0.904763 0.425916i \(-0.859952\pi\)
0.425916 + 0.904763i \(0.359952\pi\)
\(182\) 0 0
\(183\) 0.566545i 0.0418802i
\(184\) 0 0
\(185\) 6.12689 + 3.53736i 0.450458 + 0.260072i
\(186\) 0 0
\(187\) 4.41773 + 1.18373i 0.323057 + 0.0865627i
\(188\) 0 0
\(189\) 0.574072 + 0.684230i 0.0417576 + 0.0497704i
\(190\) 0 0
\(191\) −12.9567 22.4417i −0.937515 1.62382i −0.770086 0.637940i \(-0.779787\pi\)
−0.167429 0.985884i \(-0.553546\pi\)
\(192\) 0 0
\(193\) −6.27389 + 10.8667i −0.451604 + 0.782202i −0.998486 0.0550082i \(-0.982481\pi\)
0.546881 + 0.837210i \(0.315815\pi\)
\(194\) 0 0
\(195\) 0.117004 + 0.117004i 0.00837881 + 0.00837881i
\(196\) 0 0
\(197\) 8.31651 8.31651i 0.592527 0.592527i −0.345786 0.938313i \(-0.612388\pi\)
0.938313 + 0.345786i \(0.112388\pi\)
\(198\) 0 0
\(199\) 16.6783 + 9.62922i 1.18229 + 0.682597i 0.956544 0.291589i \(-0.0941838\pi\)
0.225749 + 0.974186i \(0.427517\pi\)
\(200\) 0 0
\(201\) 0.106755 0.0616352i 0.00752993 0.00434741i
\(202\) 0 0
\(203\) −5.91152 + 4.95980i −0.414907 + 0.348109i
\(204\) 0 0
\(205\) 2.47413 9.23356i 0.172800 0.644900i
\(206\) 0 0
\(207\) 6.77874 11.7411i 0.471155 0.816064i
\(208\) 0 0
\(209\) −12.3304 −0.852909
\(210\) 0 0
\(211\) 8.62222 + 8.62222i 0.593578 + 0.593578i 0.938596 0.345018i \(-0.112127\pi\)
−0.345018 + 0.938596i \(0.612127\pi\)
\(212\) 0 0
\(213\) 0.105832 + 0.394969i 0.00725147 + 0.0270628i
\(214\) 0 0
\(215\) −3.17995 + 1.83595i −0.216871 + 0.125211i
\(216\) 0 0
\(217\) 13.6110 + 9.53167i 0.923977 + 0.647052i
\(218\) 0 0
\(219\) −0.768464 0.205909i −0.0519280 0.0139141i
\(220\) 0 0
\(221\) −6.40638 + 1.71658i −0.430940 + 0.115470i
\(222\) 0 0
\(223\) −22.4402 −1.50271 −0.751354 0.659899i \(-0.770599\pi\)
−0.751354 + 0.659899i \(0.770599\pi\)
\(224\) 0 0
\(225\) 9.90254 0.660169
\(226\) 0 0
\(227\) 2.25930 0.605377i 0.149955 0.0401803i −0.183061 0.983102i \(-0.558600\pi\)
0.333016 + 0.942921i \(0.391934\pi\)
\(228\) 0 0
\(229\) 18.9832 + 5.08653i 1.25444 + 0.336127i 0.824052 0.566514i \(-0.191708\pi\)
0.430393 + 0.902642i \(0.358375\pi\)
\(230\) 0 0
\(231\) 0.210120 0.0979664i 0.0138249 0.00644572i
\(232\) 0 0
\(233\) −3.35515 + 1.93710i −0.219803 + 0.126903i −0.605859 0.795572i \(-0.707171\pi\)
0.386056 + 0.922475i \(0.373837\pi\)
\(234\) 0 0
\(235\) −0.660191 2.46387i −0.0430661 0.160725i
\(236\) 0 0
\(237\) −0.0765505 0.0765505i −0.00497249 0.00497249i
\(238\) 0 0
\(239\) −6.56774 −0.424832 −0.212416 0.977179i \(-0.568133\pi\)
−0.212416 + 0.977179i \(0.568133\pi\)
\(240\) 0 0
\(241\) 6.62647 11.4774i 0.426849 0.739323i −0.569742 0.821823i \(-0.692957\pi\)
0.996591 + 0.0824998i \(0.0262904\pi\)
\(242\) 0 0
\(243\) 0.392830 1.46606i 0.0252001 0.0940479i
\(244\) 0 0
\(245\) 8.26078 + 3.85318i 0.527762 + 0.246171i
\(246\) 0 0
\(247\) 15.4853 8.94045i 0.985306 0.568867i
\(248\) 0 0
\(249\) −0.608598 0.351374i −0.0385683 0.0222674i
\(250\) 0 0
\(251\) 3.80916 3.80916i 0.240432 0.240432i −0.576597 0.817029i \(-0.695620\pi\)
0.817029 + 0.576597i \(0.195620\pi\)
\(252\) 0 0
\(253\) −4.97939 4.97939i −0.313052 0.313052i
\(254\) 0 0
\(255\) −0.107691 + 0.186526i −0.00674385 + 0.0116807i
\(256\) 0 0
\(257\) 11.8190 + 20.4712i 0.737251 + 1.27696i 0.953729 + 0.300669i \(0.0972099\pi\)
−0.216477 + 0.976288i \(0.569457\pi\)
\(258\) 0 0
\(259\) −4.91707 + 13.5072i −0.305532 + 0.839297i
\(260\) 0 0
\(261\) 8.44271 + 2.26222i 0.522591 + 0.140028i
\(262\) 0 0
\(263\) −15.4301 8.90857i −0.951460 0.549326i −0.0579260 0.998321i \(-0.518449\pi\)
−0.893534 + 0.448995i \(0.851782\pi\)
\(264\) 0 0
\(265\) 15.1185i 0.928722i
\(266\) 0 0
\(267\) 0.530993 0.530993i 0.0324963 0.0324963i
\(268\) 0 0
\(269\) 6.16728 1.65252i 0.376026 0.100756i −0.0658559 0.997829i \(-0.520978\pi\)
0.441882 + 0.897073i \(0.354311\pi\)
\(270\) 0 0
\(271\) 3.98703 + 6.90574i 0.242195 + 0.419494i 0.961339 0.275367i \(-0.0887993\pi\)
−0.719144 + 0.694861i \(0.755466\pi\)
\(272\) 0 0
\(273\) −0.192850 + 0.275386i −0.0116718 + 0.0166671i
\(274\) 0 0
\(275\) 1.33124 4.96824i 0.0802765 0.299596i
\(276\) 0 0
\(277\) −3.31607 12.3757i −0.199243 0.743586i −0.991127 0.132915i \(-0.957566\pi\)
0.791884 0.610671i \(-0.209100\pi\)
\(278\) 0 0
\(279\) 18.8216i 1.12682i
\(280\) 0 0
\(281\) 13.0438i 0.778126i −0.921211 0.389063i \(-0.872799\pi\)
0.921211 0.389063i \(-0.127201\pi\)
\(282\) 0 0
\(283\) 4.98843 + 18.6171i 0.296531 + 1.10667i 0.939994 + 0.341192i \(0.110831\pi\)
−0.643462 + 0.765478i \(0.722503\pi\)
\(284\) 0 0
\(285\) 0.150288 0.560883i 0.00890229 0.0332238i
\(286\) 0 0
\(287\) 19.3485 + 1.69385i 1.14210 + 0.0999850i
\(288\) 0 0
\(289\) 4.18350 + 7.24603i 0.246088 + 0.426237i
\(290\) 0 0
\(291\) −0.527210 + 0.141265i −0.0309056 + 0.00828113i
\(292\) 0 0
\(293\) −12.7021 + 12.7021i −0.742067 + 0.742067i −0.972975 0.230908i \(-0.925830\pi\)
0.230908 + 0.972975i \(0.425830\pi\)
\(294\) 0 0
\(295\) 3.99183i 0.232413i
\(296\) 0 0
\(297\) −0.455076 0.262738i −0.0264062 0.0152456i
\(298\) 0 0
\(299\) 9.86389 + 2.64302i 0.570443 + 0.152850i
\(300\) 0 0
\(301\) −4.79521 5.71536i −0.276391 0.329428i
\(302\) 0 0
\(303\) 0.297460 + 0.515217i 0.0170887 + 0.0295984i
\(304\) 0 0
\(305\) 6.55265 11.3495i 0.375204 0.649872i
\(306\) 0 0
\(307\) −15.5180 15.5180i −0.885657 0.885657i 0.108446 0.994102i \(-0.465413\pi\)
−0.994102 + 0.108446i \(0.965413\pi\)
\(308\) 0 0
\(309\) −0.136300 + 0.136300i −0.00775386 + 0.00775386i
\(310\) 0 0
\(311\) 3.14576 + 1.81621i 0.178380 + 0.102988i 0.586531 0.809927i \(-0.300493\pi\)
−0.408151 + 0.912914i \(0.633826\pi\)
\(312\) 0 0
\(313\) 3.24479 1.87338i 0.183406 0.105890i −0.405486 0.914101i \(-0.632898\pi\)
0.588892 + 0.808212i \(0.299564\pi\)
\(314\) 0 0
\(315\) −1.79232 10.1680i −0.100986 0.572904i
\(316\) 0 0
\(317\) −6.36774 + 23.7647i −0.357648 + 1.33476i 0.519472 + 0.854488i \(0.326129\pi\)
−0.877119 + 0.480272i \(0.840538\pi\)
\(318\) 0 0
\(319\) 2.26997 3.93171i 0.127094 0.220133i
\(320\) 0 0
\(321\) 0.644963 0.0359983
\(322\) 0 0
\(323\) 16.4576 + 16.4576i 0.915727 + 0.915727i
\(324\) 0 0
\(325\) 1.93049 + 7.20470i 0.107084 + 0.399645i
\(326\) 0 0
\(327\) −0.152857 + 0.0882521i −0.00845302 + 0.00488035i
\(328\) 0 0
\(329\) 4.69721 2.19003i 0.258965 0.120740i
\(330\) 0 0
\(331\) −9.79479 2.62451i −0.538370 0.144256i −0.0206195 0.999787i \(-0.506564\pi\)
−0.517751 + 0.855532i \(0.673231\pi\)
\(332\) 0 0
\(333\) 15.7270 4.21403i 0.861833 0.230928i
\(334\) 0 0
\(335\) −2.85149 −0.155793
\(336\) 0 0
\(337\) −5.30745 −0.289115 −0.144558 0.989496i \(-0.546176\pi\)
−0.144558 + 0.989496i \(0.546176\pi\)
\(338\) 0 0
\(339\) 0.254456 0.0681812i 0.0138201 0.00370309i
\(340\) 0 0
\(341\) −9.44306 2.53026i −0.511370 0.137021i
\(342\) 0 0
\(343\) −4.79637 + 17.8884i −0.258980 + 0.965883i
\(344\) 0 0
\(345\) 0.287193 0.165811i 0.0154620 0.00892696i
\(346\) 0 0
\(347\) −1.06753 3.98409i −0.0573082 0.213877i 0.931334 0.364166i \(-0.118646\pi\)
−0.988642 + 0.150290i \(0.951979\pi\)
\(348\) 0 0
\(349\) −11.4637 11.4637i −0.613639 0.613639i 0.330253 0.943892i \(-0.392866\pi\)
−0.943892 + 0.330253i \(0.892866\pi\)
\(350\) 0 0
\(351\) 0.762020 0.0406736
\(352\) 0 0
\(353\) 1.93371 3.34929i 0.102921 0.178265i −0.809966 0.586477i \(-0.800514\pi\)
0.912887 + 0.408212i \(0.133848\pi\)
\(354\) 0 0
\(355\) 2.44810 9.13642i 0.129932 0.484911i
\(356\) 0 0
\(357\) −0.411210 0.149694i −0.0217636 0.00792265i
\(358\) 0 0
\(359\) −13.6977 + 7.90839i −0.722938 + 0.417389i −0.815833 0.578287i \(-0.803721\pi\)
0.0928949 + 0.995676i \(0.470388\pi\)
\(360\) 0 0
\(361\) −37.8872 21.8742i −1.99407 1.15127i
\(362\) 0 0
\(363\) 0.341412 0.341412i 0.0179195 0.0179195i
\(364\) 0 0
\(365\) 13.0130 + 13.0130i 0.681132 + 0.681132i
\(366\) 0 0
\(367\) 2.37345 4.11093i 0.123893 0.214589i −0.797407 0.603442i \(-0.793795\pi\)
0.921300 + 0.388853i \(0.127129\pi\)
\(368\) 0 0
\(369\) −10.9999 19.0523i −0.572631 0.991826i
\(370\) 0 0
\(371\) −30.2513 + 5.33238i −1.57057 + 0.276844i
\(372\) 0 0
\(373\) −22.0083 5.89711i −1.13955 0.305341i −0.360779 0.932651i \(-0.617489\pi\)
−0.778769 + 0.627310i \(0.784156\pi\)
\(374\) 0 0
\(375\) 0.527184 + 0.304370i 0.0272237 + 0.0157176i
\(376\) 0 0
\(377\) 6.58360i 0.339073i
\(378\) 0 0
\(379\) −20.1030 + 20.1030i −1.03262 + 1.03262i −0.0331705 + 0.999450i \(0.510560\pi\)
−0.999450 + 0.0331705i \(0.989440\pi\)
\(380\) 0 0
\(381\) 0.306300 0.0820728i 0.0156922 0.00420472i
\(382\) 0 0
\(383\) 11.7252 + 20.3087i 0.599131 + 1.03773i 0.992950 + 0.118537i \(0.0378204\pi\)
−0.393819 + 0.919188i \(0.628846\pi\)
\(384\) 0 0
\(385\) −5.34239 0.467697i −0.272273 0.0238360i
\(386\) 0 0
\(387\) −2.18715 + 8.16255i −0.111179 + 0.414926i
\(388\) 0 0
\(389\) −2.77356 10.3510i −0.140625 0.524819i −0.999911 0.0133242i \(-0.995759\pi\)
0.859286 0.511495i \(-0.170908\pi\)
\(390\) 0 0
\(391\) 13.2922i 0.672216i
\(392\) 0 0
\(393\) 0.116864i 0.00589500i
\(394\) 0 0
\(395\) 0.648145 + 2.41891i 0.0326117 + 0.121709i
\(396\) 0 0
\(397\) −1.71548 + 6.40226i −0.0860975 + 0.321320i −0.995520 0.0945536i \(-0.969858\pi\)
0.909422 + 0.415874i \(0.136524\pi\)
\(398\) 0 0
\(399\) 1.17530 + 0.102891i 0.0588387 + 0.00515100i
\(400\) 0 0
\(401\) −15.8657 27.4802i −0.792294 1.37229i −0.924543 0.381077i \(-0.875553\pi\)
0.132250 0.991216i \(-0.457780\pi\)
\(402\) 0 0
\(403\) 13.6939 3.66926i 0.682140 0.182779i
\(404\) 0 0
\(405\) −8.26075 + 8.26075i −0.410480 + 0.410480i
\(406\) 0 0
\(407\) 8.45695i 0.419196i
\(408\) 0 0
\(409\) −1.11952 0.646353i −0.0553565 0.0319601i 0.472066 0.881563i \(-0.343508\pi\)
−0.527423 + 0.849603i \(0.676842\pi\)
\(410\) 0 0
\(411\) 0.168699 + 0.0452028i 0.00832131 + 0.00222969i
\(412\) 0 0
\(413\) −7.98742 + 1.40794i −0.393035 + 0.0692803i
\(414\) 0 0
\(415\) 8.12799 + 14.0781i 0.398987 + 0.691066i
\(416\) 0 0
\(417\) −0.507324 + 0.878710i −0.0248437 + 0.0430306i
\(418\) 0 0
\(419\) −17.2788 17.2788i −0.844124 0.844124i 0.145269 0.989392i \(-0.453595\pi\)
−0.989392 + 0.145269i \(0.953595\pi\)
\(420\) 0 0
\(421\) −3.36245 + 3.36245i −0.163876 + 0.163876i −0.784281 0.620405i \(-0.786968\pi\)
0.620405 + 0.784281i \(0.286968\pi\)
\(422\) 0 0
\(423\) −5.08389 2.93519i −0.247187 0.142714i
\(424\) 0 0
\(425\) −8.40806 + 4.85440i −0.407851 + 0.235473i
\(426\) 0 0
\(427\) 25.0209 + 9.10844i 1.21085 + 0.440788i
\(428\) 0 0
\(429\) 0.0511936 0.191057i 0.00247165 0.00922432i
\(430\) 0 0
\(431\) −5.58722 + 9.67735i −0.269127 + 0.466141i −0.968637 0.248482i \(-0.920068\pi\)
0.699510 + 0.714623i \(0.253402\pi\)
\(432\) 0 0
\(433\) −17.3943 −0.835916 −0.417958 0.908466i \(-0.637254\pi\)
−0.417958 + 0.908466i \(0.637254\pi\)
\(434\) 0 0
\(435\) 0.151178 + 0.151178i 0.00724842 + 0.00724842i
\(436\) 0 0
\(437\) −9.27500 34.6148i −0.443684 1.65585i
\(438\) 0 0
\(439\) −32.5115 + 18.7705i −1.55169 + 0.895867i −0.553683 + 0.832727i \(0.686778\pi\)
−0.998005 + 0.0631399i \(0.979889\pi\)
\(440\) 0 0
\(441\) 19.7135 7.17265i 0.938738 0.341555i
\(442\) 0 0
\(443\) −6.88186 1.84399i −0.326967 0.0876106i 0.0916015 0.995796i \(-0.470801\pi\)
−0.418569 + 0.908185i \(0.637468\pi\)
\(444\) 0 0
\(445\) −16.7788 + 4.49587i −0.795392 + 0.213125i
\(446\) 0 0
\(447\) −0.846815 −0.0400530
\(448\) 0 0
\(449\) −7.84005 −0.369995 −0.184997 0.982739i \(-0.559228\pi\)
−0.184997 + 0.982739i \(0.559228\pi\)
\(450\) 0 0
\(451\) −11.0376 + 2.95751i −0.519739 + 0.139264i
\(452\) 0 0
\(453\) 0.989180 + 0.265050i 0.0464757 + 0.0124531i
\(454\) 0 0
\(455\) 7.04845 3.28627i 0.330436 0.154063i
\(456\) 0 0
\(457\) −22.2821 + 12.8646i −1.04231 + 0.601780i −0.920488 0.390771i \(-0.872208\pi\)
−0.121826 + 0.992551i \(0.538875\pi\)
\(458\) 0 0
\(459\) 0.256718 + 0.958084i 0.0119826 + 0.0447195i
\(460\) 0 0
\(461\) 13.1661 + 13.1661i 0.613207 + 0.613207i 0.943780 0.330573i \(-0.107242\pi\)
−0.330573 + 0.943780i \(0.607242\pi\)
\(462\) 0 0
\(463\) 6.88821 0.320122 0.160061 0.987107i \(-0.448831\pi\)
0.160061 + 0.987107i \(0.448831\pi\)
\(464\) 0 0
\(465\) 0.230193 0.398705i 0.0106749 0.0184895i
\(466\) 0 0
\(467\) −10.2399 + 38.2159i −0.473847 + 1.76842i 0.151902 + 0.988396i \(0.451460\pi\)
−0.625749 + 0.780025i \(0.715206\pi\)
\(468\) 0 0
\(469\) −1.00574 5.70567i −0.0464406 0.263463i
\(470\) 0 0
\(471\) −0.474013 + 0.273672i −0.0218414 + 0.0126101i
\(472\) 0 0
\(473\) 3.80124 + 2.19465i 0.174781 + 0.100910i
\(474\) 0 0
\(475\) 18.5085 18.5085i 0.849227 0.849227i
\(476\) 0 0
\(477\) 24.6029 + 24.6029i 1.12649 + 1.12649i
\(478\) 0 0
\(479\) 0.261991 0.453782i 0.0119707 0.0207338i −0.859978 0.510331i \(-0.829523\pi\)
0.871949 + 0.489597i \(0.162856\pi\)
\(480\) 0 0
\(481\) 6.13193 + 10.6208i 0.279592 + 0.484267i
\(482\) 0 0
\(483\) 0.433073 + 0.516175i 0.0197055 + 0.0234868i
\(484\) 0 0
\(485\) 12.1954 + 3.26775i 0.553765 + 0.148381i
\(486\) 0 0
\(487\) 2.46586 + 1.42366i 0.111739 + 0.0645124i 0.554828 0.831965i \(-0.312784\pi\)
−0.443089 + 0.896478i \(0.646117\pi\)
\(488\) 0 0
\(489\) 0.731995i 0.0331019i
\(490\) 0 0
\(491\) 17.4826 17.4826i 0.788977 0.788977i −0.192349 0.981327i \(-0.561611\pi\)
0.981327 + 0.192349i \(0.0616106\pi\)
\(492\) 0 0
\(493\) −8.27753 + 2.21796i −0.372801 + 0.0998918i
\(494\) 0 0
\(495\) 3.03722 + 5.26063i 0.136513 + 0.236448i
\(496\) 0 0
\(497\) 19.1449 + 1.67603i 0.858767 + 0.0751803i
\(498\) 0 0
\(499\) −0.350599 + 1.30845i −0.0156949 + 0.0585743i −0.973329 0.229413i \(-0.926319\pi\)
0.957634 + 0.287987i \(0.0929861\pi\)
\(500\) 0 0
\(501\) −0.241009 0.899458i −0.0107675 0.0401848i
\(502\) 0 0
\(503\) 15.4389i 0.688388i 0.938899 + 0.344194i \(0.111848\pi\)
−0.938899 + 0.344194i \(0.888152\pi\)
\(504\) 0 0
\(505\) 13.7617i 0.612388i
\(506\) 0 0
\(507\) −0.115169 0.429816i −0.00511482 0.0190888i
\(508\) 0 0
\(509\) 2.23550 8.34301i 0.0990869 0.369797i −0.898520 0.438932i \(-0.855357\pi\)
0.997607 + 0.0691342i \(0.0220237\pi\)
\(510\) 0 0
\(511\) −21.4485 + 30.6281i −0.948827 + 1.35491i
\(512\) 0 0
\(513\) −1.33706 2.31585i −0.0590325 0.102247i
\(514\) 0 0
\(515\) 4.30694 1.15404i 0.189787 0.0508532i
\(516\) 0 0
\(517\) −2.15607 + 2.15607i −0.0948239 + 0.0948239i
\(518\) 0 0
\(519\) 1.21631i 0.0533899i
\(520\) 0 0
\(521\) 3.08690 + 1.78222i 0.135240 + 0.0780807i 0.566093 0.824341i \(-0.308454\pi\)
−0.430854 + 0.902422i \(0.641787\pi\)
\(522\) 0 0
\(523\) −19.5332 5.23389i −0.854125 0.228862i −0.194914 0.980820i \(-0.562443\pi\)
−0.659211 + 0.751958i \(0.729110\pi\)
\(524\) 0 0
\(525\) −0.168348 + 0.462452i −0.00734731 + 0.0201831i
\(526\) 0 0
\(527\) 9.22668 + 15.9811i 0.401920 + 0.696147i
\(528\) 0 0
\(529\) −1.26700 + 2.19451i −0.0550869 + 0.0954133i
\(530\) 0 0
\(531\) 6.49605 + 6.49605i 0.281905 + 0.281905i
\(532\) 0 0
\(533\) 11.7173 11.7173i 0.507534 0.507534i
\(534\) 0 0
\(535\) −12.9205 7.45964i −0.558601 0.322508i
\(536\) 0 0
\(537\) 0.924954 0.534022i 0.0399147 0.0230448i
\(538\) 0 0
\(539\) −0.948458 10.8548i −0.0408530 0.467549i
\(540\) 0 0
\(541\) 1.90773 7.11973i 0.0820195 0.306101i −0.912714 0.408600i \(-0.866017\pi\)
0.994733 + 0.102499i \(0.0326838\pi\)
\(542\) 0 0
\(543\) −0.256435 + 0.444159i −0.0110047 + 0.0190607i
\(544\) 0 0
\(545\) 4.08289 0.174892
\(546\) 0 0
\(547\) −17.8464 17.8464i −0.763058 0.763058i 0.213816 0.976874i \(-0.431411\pi\)
−0.976874 + 0.213816i \(0.931411\pi\)
\(548\) 0 0
\(549\) −7.80613 29.1329i −0.333158 1.24336i
\(550\) 0 0
\(551\) 20.0082 11.5517i 0.852378 0.492121i
\(552\) 0 0
\(553\) −4.61150 + 2.15006i −0.196101 + 0.0914301i
\(554\) 0 0
\(555\) 0.384689 + 0.103077i 0.0163291 + 0.00437538i
\(556\) 0 0
\(557\) 14.4174 3.86313i 0.610884 0.163686i 0.0599038 0.998204i \(-0.480921\pi\)
0.550980 + 0.834518i \(0.314254\pi\)
\(558\) 0 0
\(559\) −6.36514 −0.269217
\(560\) 0 0
\(561\) 0.257462 0.0108700
\(562\) 0 0
\(563\) −7.71786 + 2.06799i −0.325269 + 0.0871556i −0.417759 0.908558i \(-0.637184\pi\)
0.0924895 + 0.995714i \(0.470518\pi\)
\(564\) 0 0
\(565\) −5.88607 1.57717i −0.247629 0.0663519i
\(566\) 0 0
\(567\) −19.4429 13.6157i −0.816525 0.571805i
\(568\) 0 0
\(569\) −12.1275 + 7.00179i −0.508409 + 0.293530i −0.732180 0.681112i \(-0.761497\pi\)
0.223770 + 0.974642i \(0.428163\pi\)
\(570\) 0 0
\(571\) 0.488992 + 1.82494i 0.0204637 + 0.0763715i 0.975403 0.220431i \(-0.0707464\pi\)
−0.954939 + 0.296802i \(0.904080\pi\)
\(572\) 0 0
\(573\) −1.03149 1.03149i −0.0430913 0.0430913i
\(574\) 0 0
\(575\) 14.9486 0.623400
\(576\) 0 0
\(577\) −8.81809 + 15.2734i −0.367102 + 0.635839i −0.989111 0.147171i \(-0.952983\pi\)
0.622009 + 0.783010i \(0.286317\pi\)
\(578\) 0 0
\(579\) −0.182818 + 0.682288i −0.00759767 + 0.0283549i
\(580\) 0 0
\(581\) −25.3027 + 21.2291i −1.04973 + 0.880730i
\(582\) 0 0
\(583\) 15.6511 9.03615i 0.648201 0.374239i
\(584\) 0 0
\(585\) −7.62870 4.40443i −0.315408 0.182101i
\(586\) 0 0
\(587\) −18.5150 + 18.5150i −0.764194 + 0.764194i −0.977078 0.212883i \(-0.931715\pi\)
0.212883 + 0.977078i \(0.431715\pi\)
\(588\) 0 0
\(589\) −35.1788 35.1788i −1.44952 1.44952i
\(590\) 0 0
\(591\) 0.331042 0.573382i 0.0136172 0.0235858i
\(592\) 0 0
\(593\) −3.95463 6.84963i −0.162397 0.281281i 0.773331 0.634003i \(-0.218589\pi\)
−0.935728 + 0.352722i \(0.885256\pi\)
\(594\) 0 0
\(595\) 6.50637 + 7.75486i 0.266735 + 0.317918i
\(596\) 0 0
\(597\) 1.04718 + 0.280591i 0.0428582 + 0.0114838i
\(598\) 0 0
\(599\) 18.5333 + 10.7002i 0.757251 + 0.437199i 0.828308 0.560273i \(-0.189304\pi\)
−0.0710572 + 0.997472i \(0.522637\pi\)
\(600\) 0 0
\(601\) 0.974684i 0.0397582i −0.999802 0.0198791i \(-0.993672\pi\)
0.999802 0.0198791i \(-0.00632813\pi\)
\(602\) 0 0
\(603\) −4.64033 + 4.64033i −0.188969 + 0.188969i
\(604\) 0 0
\(605\) −10.7882 + 2.89070i −0.438604 + 0.117524i
\(606\) 0 0
\(607\) −3.01261 5.21800i −0.122278 0.211792i 0.798388 0.602144i \(-0.205687\pi\)
−0.920666 + 0.390352i \(0.872353\pi\)
\(608\) 0 0
\(609\) −0.249177 + 0.355819i −0.0100972 + 0.0144185i
\(610\) 0 0
\(611\) 1.14443 4.27106i 0.0462985 0.172788i
\(612\) 0 0
\(613\) 0.426012 + 1.58990i 0.0172065 + 0.0642155i 0.973995 0.226568i \(-0.0727506\pi\)
−0.956789 + 0.290784i \(0.906084\pi\)
\(614\) 0 0
\(615\) 0.538124i 0.0216993i
\(616\) 0 0
\(617\) 34.0864i 1.37227i 0.727476 + 0.686134i \(0.240693\pi\)
−0.727476 + 0.686134i \(0.759307\pi\)
\(618\) 0 0
\(619\) 8.65485 + 32.3004i 0.347868 + 1.29826i 0.889226 + 0.457469i \(0.151244\pi\)
−0.541358 + 0.840792i \(0.682090\pi\)
\(620\) 0 0
\(621\) 0.395268 1.47516i 0.0158615 0.0591961i
\(622\) 0 0
\(623\) −14.9140 31.9877i −0.597515 1.28156i
\(624\) 0 0
\(625\) 1.22016 + 2.11337i 0.0488063 + 0.0845349i
\(626\) 0 0
\(627\) −0.670466 + 0.179651i −0.0267758 + 0.00717456i
\(628\) 0 0
\(629\) −11.2877 + 11.2877i −0.450070 + 0.450070i
\(630\) 0 0
\(631\) 4.58799i 0.182645i −0.995821 0.0913225i \(-0.970891\pi\)
0.995821 0.0913225i \(-0.0291094\pi\)
\(632\) 0 0
\(633\) 0.594458 + 0.343211i 0.0236276 + 0.0136414i
\(634\) 0 0
\(635\) −7.08533 1.89851i −0.281173 0.0753400i
\(636\) 0 0
\(637\) 9.06167 + 12.9445i 0.359037 + 0.512878i
\(638\) 0 0
\(639\) −10.8842 18.8519i −0.430571 0.745770i
\(640\) 0 0
\(641\) 24.9135 43.1515i 0.984025 1.70438i 0.337835 0.941205i \(-0.390305\pi\)
0.646190 0.763177i \(-0.276361\pi\)
\(642\) 0 0
\(643\) 31.1050 + 31.1050i 1.22666 + 1.22666i 0.965219 + 0.261443i \(0.0841985\pi\)
0.261443 + 0.965219i \(0.415802\pi\)
\(644\) 0 0
\(645\) −0.146161 + 0.146161i −0.00575509 + 0.00575509i
\(646\) 0 0
\(647\) −25.4255 14.6794i −0.999579 0.577107i −0.0914555 0.995809i \(-0.529152\pi\)
−0.908124 + 0.418702i \(0.862485\pi\)
\(648\) 0 0
\(649\) 4.13245 2.38587i 0.162213 0.0936536i
\(650\) 0 0
\(651\) 0.878977 + 0.319977i 0.0344498 + 0.0125409i
\(652\) 0 0
\(653\) 3.93761 14.6954i 0.154091 0.575075i −0.845091 0.534623i \(-0.820454\pi\)
0.999181 0.0404516i \(-0.0128797\pi\)
\(654\) 0 0
\(655\) 1.35165 2.34112i 0.0528132 0.0914752i
\(656\) 0 0
\(657\) 42.3531 1.65235
\(658\) 0 0
\(659\) 8.45620 + 8.45620i 0.329407 + 0.329407i 0.852361 0.522954i \(-0.175170\pi\)
−0.522954 + 0.852361i \(0.675170\pi\)
\(660\) 0 0
\(661\) 3.50720 + 13.0890i 0.136414 + 0.509105i 0.999988 + 0.00488232i \(0.00155410\pi\)
−0.863574 + 0.504222i \(0.831779\pi\)
\(662\) 0 0
\(663\) −0.323338 + 0.186679i −0.0125574 + 0.00725001i
\(664\) 0 0
\(665\) −22.3547 15.6547i −0.866876 0.607065i
\(666\) 0 0
\(667\) 12.7449 + 3.41498i 0.493484 + 0.132229i
\(668\) 0 0
\(669\) −1.22019 + 0.326949i −0.0471753 + 0.0126406i
\(670\) 0 0
\(671\) −15.6658 −0.604771
\(672\) 0 0
\(673\) −15.5552 −0.599610 −0.299805 0.954000i \(-0.596922\pi\)
−0.299805 + 0.954000i \(0.596922\pi\)
\(674\) 0 0
\(675\) 1.07747 0.288708i 0.0414720 0.0111124i
\(676\) 0 0
\(677\) 39.5868 + 10.6072i 1.52144 + 0.407669i 0.920217 0.391410i \(-0.128012\pi\)
0.601226 + 0.799079i \(0.294679\pi\)
\(678\) 0 0
\(679\) −2.23719 + 25.5549i −0.0858555 + 0.980707i
\(680\) 0 0
\(681\) 0.114030 0.0658350i 0.00436962 0.00252280i
\(682\) 0 0
\(683\) −3.19786 11.9346i −0.122363 0.456664i 0.877369 0.479816i \(-0.159296\pi\)
−0.999732 + 0.0231521i \(0.992630\pi\)
\(684\) 0 0
\(685\) −2.85672 2.85672i −0.109150 0.109150i
\(686\) 0 0
\(687\) 1.10632 0.0422089
\(688\) 0 0
\(689\) −13.1038 + 22.6964i −0.499214 + 0.864664i
\(690\) 0 0
\(691\) 1.44023 5.37500i 0.0547888 0.204475i −0.933106 0.359603i \(-0.882912\pi\)
0.987894 + 0.155128i \(0.0495789\pi\)
\(692\) 0 0
\(693\) −9.45497 + 7.93277i −0.359165 + 0.301341i
\(694\) 0 0
\(695\) 20.3263 11.7354i 0.771021 0.445149i
\(696\) 0 0
\(697\) 18.6796 + 10.7847i 0.707540 + 0.408498i
\(698\) 0 0
\(699\) −0.154214 + 0.154214i −0.00583290 + 0.00583290i
\(700\) 0 0
\(701\) −22.0458 22.0458i −0.832657 0.832657i 0.155223 0.987880i \(-0.450391\pi\)
−0.987880 + 0.155223i \(0.950391\pi\)
\(702\) 0 0
\(703\) 21.5184 37.2710i 0.811583 1.40570i
\(704\) 0 0
\(705\) −0.0717960 0.124354i −0.00270399 0.00468346i
\(706\) 0 0
\(707\) 27.5364 4.85384i 1.03561 0.182547i
\(708\) 0 0
\(709\) 11.9661 + 3.20632i 0.449398 + 0.120416i 0.476417 0.879219i \(-0.341935\pi\)
−0.0270200 + 0.999635i \(0.508602\pi\)
\(710\) 0 0
\(711\) 4.99113 + 2.88163i 0.187182 + 0.108070i
\(712\) 0 0
\(713\) 28.4126i 1.06406i
\(714\) 0 0
\(715\) −3.23532 + 3.23532i −0.120994 + 0.120994i
\(716\) 0 0
\(717\) −0.357122 + 0.0956906i −0.0133370 + 0.00357363i
\(718\) 0 0
\(719\) −7.64439 13.2405i −0.285088 0.493786i 0.687543 0.726144i \(-0.258689\pi\)
−0.972630 + 0.232358i \(0.925356\pi\)
\(720\) 0 0
\(721\) 3.82826 + 8.21091i 0.142572 + 0.305790i
\(722\) 0 0
\(723\) 0.193093 0.720631i 0.00718119 0.0268006i
\(724\) 0 0
\(725\) 2.49434 + 9.30902i 0.0926376 + 0.345728i
\(726\) 0 0
\(727\) 23.7860i 0.882173i −0.897465 0.441086i \(-0.854593\pi\)
0.897465 0.441086i \(-0.145407\pi\)
\(728\) 0 0
\(729\) 26.8290i 0.993668i
\(730\) 0 0
\(731\) −2.14436 8.00285i −0.0793119 0.295996i
\(732\) 0 0
\(733\) −5.32874 + 19.8871i −0.196822 + 0.734548i 0.794966 + 0.606654i \(0.207489\pi\)
−0.991788 + 0.127894i \(0.959178\pi\)
\(734\) 0 0
\(735\) 0.505322 + 0.0891596i 0.0186391 + 0.00328870i
\(736\) 0 0
\(737\) 1.70430 + 2.95194i 0.0627787 + 0.108736i
\(738\) 0 0
\(739\) −26.3224 + 7.05306i −0.968284 + 0.259451i −0.708103 0.706109i \(-0.750449\pi\)
−0.260181 + 0.965560i \(0.583782\pi\)
\(740\) 0 0
\(741\) 0.711756 0.711756i 0.0261470 0.0261470i
\(742\) 0 0
\(743\) 12.8386i 0.471002i −0.971874 0.235501i \(-0.924327\pi\)
0.971874 0.235501i \(-0.0756731\pi\)
\(744\) 0 0
\(745\) 16.9641 + 9.79426i 0.621518 + 0.358834i
\(746\) 0 0
\(747\) 36.1368 + 9.68282i 1.32218 + 0.354276i
\(748\) 0 0
\(749\) 10.3692 28.4842i 0.378882 1.04079i
\(750\) 0 0
\(751\) 7.23318 + 12.5282i 0.263942 + 0.457162i 0.967286 0.253688i \(-0.0816438\pi\)
−0.703344 + 0.710850i \(0.748310\pi\)
\(752\) 0 0
\(753\) 0.151625 0.262622i 0.00552552 0.00957048i
\(754\) 0 0
\(755\) −16.7506 16.7506i −0.609616 0.609616i
\(756\) 0 0
\(757\) 2.16062 2.16062i 0.0785291 0.0785291i −0.666751 0.745280i \(-0.732316\pi\)
0.745280 + 0.666751i \(0.232316\pi\)
\(758\) 0 0
\(759\) −0.343304 0.198207i −0.0124611 0.00719444i
\(760\) 0 0
\(761\) 2.04136 1.17858i 0.0739994 0.0427236i −0.462544 0.886596i \(-0.653063\pi\)
0.536543 + 0.843873i \(0.319730\pi\)
\(762\) 0 0
\(763\) 1.44006 + 8.16964i 0.0521337 + 0.295761i
\(764\) 0 0
\(765\) 2.96763 11.0753i 0.107295 0.400430i
\(766\) 0 0
\(767\) −3.45987 + 5.99267i −0.124929 + 0.216383i
\(768\) 0 0
\(769\) 7.96868 0.287358 0.143679 0.989624i \(-0.454107\pi\)
0.143679 + 0.989624i \(0.454107\pi\)
\(770\) 0 0
\(771\) 0.940923 + 0.940923i 0.0338865 + 0.0338865i
\(772\) 0 0
\(773\) 5.69575 + 21.2568i 0.204862 + 0.764555i 0.989492 + 0.144590i \(0.0461865\pi\)
−0.784630 + 0.619965i \(0.787147\pi\)
\(774\) 0 0
\(775\) 17.9725 10.3764i 0.645592 0.372733i
\(776\) 0 0
\(777\) −0.0705694 + 0.806097i −0.00253166 + 0.0289186i
\(778\) 0 0
\(779\) −56.1695 15.0506i −2.01248 0.539243i
\(780\) 0 0
\(781\) −10.9215 + 2.92640i −0.390801 + 0.104715i
\(782\) 0 0
\(783\) 0.984588 0.0351863
\(784\) 0 0
\(785\) 12.6611 0.451896
\(786\) 0 0
\(787\) 27.7816 7.44405i 0.990306 0.265352i 0.272927 0.962035i \(-0.412008\pi\)
0.717379 + 0.696683i \(0.245342\pi\)
\(788\) 0 0
\(789\) −0.968810 0.259592i −0.0344905 0.00924171i
\(790\) 0 0
\(791\) 1.07977 12.3340i 0.0383922 0.438545i
\(792\) 0 0
\(793\) 19.6741 11.3589i 0.698649 0.403365i
\(794\) 0 0
\(795\) 0.220273 + 0.822071i 0.00781229 + 0.0291558i
\(796\) 0 0
\(797\) 22.0411 + 22.0411i 0.780736 + 0.780736i 0.979955 0.199219i \(-0.0638405\pi\)
−0.199219 + 0.979955i \(0.563840\pi\)
\(798\) 0 0
\(799\) 5.75552 0.203616
\(800\) 0 0
\(801\) −19.9885 + 34.6210i −0.706258 + 1.22327i
\(802\) 0 0
\(803\) 5.69369 21.2491i 0.200926 0.749866i
\(804\) 0 0
\(805\) −2.70563 15.3494i −0.0953611 0.540995i
\(806\) 0 0
\(807\) 0.311270 0.179712i 0.0109572 0.00632616i
\(808\) 0 0
\(809\) 25.9855 + 15.0027i 0.913600 + 0.527467i 0.881588 0.472020i \(-0.156475\pi\)
0.0320125 + 0.999487i \(0.489808\pi\)
\(810\) 0 0
\(811\) 20.2976 20.2976i 0.712746 0.712746i −0.254363 0.967109i \(-0.581866\pi\)
0.967109 + 0.254363i \(0.0818658\pi\)
\(812\) 0 0
\(813\) 0.317411 + 0.317411i 0.0111321 + 0.0111321i
\(814\) 0 0
\(815\) −8.46625 + 14.6640i −0.296560 + 0.513657i
\(816\) 0 0
\(817\) 11.1684 + 19.3443i 0.390733 + 0.676770i
\(818\) 0 0
\(819\) 6.12233 16.8181i 0.213932 0.587671i
\(820\) 0 0
\(821\) 53.0609 + 14.2176i 1.85184 + 0.496199i 0.999635 0.0270111i \(-0.00859894\pi\)
0.852204 + 0.523210i \(0.175266\pi\)
\(822\) 0 0
\(823\) 20.1906 + 11.6571i 0.703800 + 0.406339i 0.808761 0.588137i \(-0.200138\pi\)
−0.104961 + 0.994476i \(0.533472\pi\)
\(824\) 0 0
\(825\) 0.289545i 0.0100807i
\(826\) 0 0
\(827\) −4.26358 + 4.26358i −0.148259 + 0.148259i −0.777340 0.629081i \(-0.783432\pi\)
0.629081 + 0.777340i \(0.283432\pi\)
\(828\) 0 0
\(829\) 40.5325 10.8606i 1.40775 0.377206i 0.526630 0.850095i \(-0.323455\pi\)
0.881122 + 0.472889i \(0.156789\pi\)
\(830\) 0 0
\(831\) −0.360624 0.624619i −0.0125099 0.0216678i
\(832\) 0 0
\(833\) −13.2222 + 15.7541i −0.458122 + 0.545846i
\(834\) 0 0
\(835\) −5.57502 + 20.8063i −0.192932 + 0.720030i
\(836\) 0 0
\(837\) −0.548743 2.04794i −0.0189673 0.0707871i
\(838\) 0 0
\(839\) 46.6970i 1.61216i 0.591806 + 0.806081i \(0.298415\pi\)
−0.591806 + 0.806081i \(0.701585\pi\)
\(840\) 0 0
\(841\) 20.4935i 0.706672i
\(842\) 0 0
\(843\) −0.190045 0.709257i −0.00654549 0.0244281i
\(844\) 0 0
\(845\) −2.66408 + 9.94249i −0.0916472 + 0.342032i
\(846\) 0 0
\(847\) −9.58920 20.5671i −0.329489 0.706693i
\(848\) 0 0
\(849\) 0.542493 + 0.939626i 0.0186183 + 0.0322479i
\(850\) 0 0
\(851\) 23.7410 6.36139i 0.813832 0.218066i
\(852\) 0 0
\(853\) 14.9036 14.9036i 0.510289 0.510289i −0.404326 0.914615i \(-0.632494\pi\)
0.914615 + 0.404326i \(0.132494\pi\)
\(854\) 0 0
\(855\) 30.9125i 1.05718i
\(856\) 0 0
\(857\) 12.5881 + 7.26772i 0.430000 + 0.248261i 0.699347 0.714783i \(-0.253474\pi\)
−0.269347 + 0.963043i \(0.586808\pi\)
\(858\) 0 0
\(859\) −37.9861 10.1784i −1.29607 0.347281i −0.456107 0.889925i \(-0.650757\pi\)
−0.839963 + 0.542644i \(0.817423\pi\)
\(860\) 0 0
\(861\) 1.07676 0.189800i 0.0366957 0.00646835i
\(862\) 0 0
\(863\) 6.49230 + 11.2450i 0.221000 + 0.382784i 0.955112 0.296245i \(-0.0957345\pi\)
−0.734112 + 0.679029i \(0.762401\pi\)
\(864\) 0 0
\(865\) −14.0678 + 24.3661i −0.478319 + 0.828473i
\(866\) 0 0
\(867\) 0.333052 + 0.333052i 0.0113110 + 0.0113110i
\(868\) 0 0
\(869\) 2.11673 2.11673i 0.0718052 0.0718052i
\(870\) 0 0
\(871\) −4.28075 2.47149i −0.145048 0.0837434i
\(872\) 0 0
\(873\) 25.1638 14.5283i 0.851665 0.491709i
\(874\) 0 0
\(875\) 21.9179 18.3892i 0.740959 0.621668i
\(876\) 0 0
\(877\) −5.80637 + 21.6697i −0.196067 + 0.731733i 0.795921 + 0.605401i \(0.206987\pi\)
−0.991988 + 0.126332i \(0.959679\pi\)
\(878\) 0 0
\(879\) −0.505614 + 0.875749i −0.0170539 + 0.0295383i
\(880\) 0 0
\(881\) −8.65332 −0.291538 −0.145769 0.989319i \(-0.546566\pi\)
−0.145769 + 0.989319i \(0.546566\pi\)
\(882\) 0 0
\(883\) −30.6837 30.6837i −1.03259 1.03259i −0.999451 0.0331374i \(-0.989450\pi\)
−0.0331374 0.999451i \(-0.510550\pi\)
\(884\) 0 0
\(885\) 0.0581601 + 0.217056i 0.00195503 + 0.00729627i
\(886\) 0 0
\(887\) 24.7803 14.3069i 0.832042 0.480380i −0.0225091 0.999747i \(-0.507165\pi\)
0.854551 + 0.519367i \(0.173832\pi\)
\(888\) 0 0
\(889\) 1.29977 14.8470i 0.0435929 0.497951i
\(890\) 0 0
\(891\) 13.4891 + 3.61439i 0.451902 + 0.121087i
\(892\) 0 0
\(893\) −14.9882 + 4.01607i −0.501560 + 0.134393i
\(894\) 0 0
\(895\) −24.7060 −0.825830
\(896\) 0 0
\(897\) 0.574859 0.0191940
\(898\) 0 0
\(899\) 17.6935 4.74096i 0.590112 0.158120i
\(900\) 0 0
\(901\) −32.9506 8.82909i −1.09774 0.294140i
\(902\) 0 0
\(903\) −0.344012 0.240908i −0.0114480 0.00801692i
\(904\) 0 0
\(905\) 10.2743 5.93185i 0.341528 0.197182i
\(906\) 0 0
\(907\) −4.82227 17.9969i −0.160121 0.597579i −0.998612 0.0526640i \(-0.983229\pi\)
0.838492 0.544915i \(-0.183438\pi\)
\(908\) 0 0
\(909\) −22.3949 22.3949i −0.742793 0.742793i
\(910\) 0 0
\(911\) −12.2041 −0.404341 −0.202170 0.979350i \(-0.564799\pi\)
−0.202170 + 0.979350i \(0.564799\pi\)
\(912\) 0 0
\(913\) 9.71601 16.8286i 0.321553 0.556946i
\(914\) 0 0
\(915\) 0.190942 0.712603i 0.00631233 0.0235579i
\(916\) 0 0
\(917\) 5.16119 + 1.87884i 0.170437 + 0.0620448i
\(918\) 0 0
\(919\) −3.57056 + 2.06146i −0.117782 + 0.0680014i −0.557734 0.830020i \(-0.688329\pi\)
0.439952 + 0.898021i \(0.354996\pi\)
\(920\) 0 0
\(921\) −1.06989 0.617699i −0.0352539 0.0203539i
\(922\) 0 0
\(923\) 11.5941 11.5941i 0.381623 0.381623i
\(924\) 0 0
\(925\) 12.6943 + 12.6943i 0.417386 + 0.417386i
\(926\) 0 0
\(927\) 5.13083 8.88686i 0.168519 0.291883i
\(928\) 0 0
\(929\) −22.7002 39.3180i −0.744771 1.28998i −0.950302 0.311330i \(-0.899225\pi\)
0.205531 0.978651i \(-0.434108\pi\)
\(930\) 0 0
\(931\) 23.4396 50.2519i 0.768203 1.64694i
\(932\) 0 0
\(933\) 0.197513 + 0.0529235i 0.00646629 + 0.00173264i
\(934\) 0 0
\(935\) −5.15770 2.97780i −0.168675 0.0973845i
\(936\) 0 0
\(937\) 8.69727i 0.284127i −0.989858 0.142064i \(-0.954626\pi\)
0.989858 0.142064i \(-0.0453738\pi\)
\(938\) 0 0
\(939\) 0.149141 0.149141i 0.00486704 0.00486704i
\(940\) 0 0
\(941\) 11.6093 3.11071i 0.378454 0.101406i −0.0645772 0.997913i \(-0.520570\pi\)
0.443031 + 0.896506i \(0.353903\pi\)
\(942\) 0 0
\(943\) −16.6051 28.7609i −0.540737 0.936584i
\(944\) 0 0
\(945\) −0.491467 1.05411i −0.0159874 0.0342901i
\(946\) 0 0
\(947\) 14.8879 55.5623i 0.483791 1.80553i −0.101652 0.994820i \(-0.532413\pi\)
0.585443 0.810713i \(-0.300920\pi\)
\(948\) 0 0
\(949\) 8.25671 + 30.8145i 0.268024 + 1.00028i
\(950\) 0 0
\(951\) 1.38499i 0.0449113i
\(952\) 0 0
\(953\) 8.69133i 0.281540i 0.990042 + 0.140770i \(0.0449578\pi\)
−0.990042 + 0.140770i \(0.955042\pi\)
\(954\) 0 0
\(955\) 8.73356 + 32.5941i 0.282611 + 1.05472i
\(956\) 0 0
\(957\) 0.0661460 0.246860i 0.00213820 0.00797986i
\(958\) 0 0
\(959\) 4.70855 6.72371i 0.152047 0.217120i
\(960\) 0 0
\(961\) −4.22236 7.31334i −0.136205 0.235914i
\(962\) 0 0
\(963\) −33.1653 + 8.88662i −1.06874 + 0.286367i
\(964\) 0 0
\(965\) 11.5537 11.5537i 0.371927 0.371927i
\(966\) 0 0
\(967\) 28.1636i 0.905681i −0.891592 0.452840i \(-0.850411\pi\)
0.891592 0.452840i \(-0.149589\pi\)
\(968\) 0 0
\(969\) 1.13467 + 0.655102i 0.0364509 + 0.0210449i
\(970\) 0 0
\(971\) −10.1276 2.71368i −0.325010 0.0870862i 0.0926248 0.995701i \(-0.470474\pi\)
−0.417635 + 0.908615i \(0.637141\pi\)
\(972\) 0 0
\(973\) 30.6511 + 36.5327i 0.982629 + 1.17118i
\(974\) 0 0
\(975\) 0.209942 + 0.363630i 0.00672352 + 0.0116455i
\(976\) 0 0
\(977\) −17.3812 + 30.1051i −0.556073 + 0.963147i 0.441746 + 0.897140i \(0.354359\pi\)
−0.997819 + 0.0660068i \(0.978974\pi\)
\(978\) 0 0
\(979\) 14.6827 + 14.6827i 0.469262 + 0.469262i
\(980\) 0 0
\(981\) 6.64424 6.64424i 0.212134 0.212134i
\(982\) 0 0
\(983\) 2.48718 + 1.43597i 0.0793286 + 0.0458004i 0.539140 0.842216i \(-0.318750\pi\)
−0.459811 + 0.888017i \(0.652083\pi\)
\(984\) 0 0
\(985\) −13.2635 + 7.65766i −0.422609 + 0.243993i
\(986\) 0 0
\(987\) 0.223503 0.187520i 0.00711418 0.00596884i
\(988\) 0 0
\(989\) −3.30166 + 12.3220i −0.104987 + 0.391816i
\(990\) 0 0
\(991\) 15.8744 27.4952i 0.504266 0.873414i −0.495722 0.868481i \(-0.665097\pi\)
0.999988 0.00493273i \(-0.00157014\pi\)
\(992\) 0 0
\(993\) −0.570832 −0.0181148
\(994\) 0 0
\(995\) −17.7327 17.7327i −0.562166 0.562166i
\(996\) 0 0
\(997\) −5.29788 19.7719i −0.167785 0.626184i −0.997668 0.0682464i \(-0.978260\pi\)
0.829883 0.557937i \(-0.188407\pi\)
\(998\) 0 0
\(999\) 1.58836 0.917039i 0.0502534 0.0290138i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.ba.f.417.7 48
4.3 odd 2 896.2.ba.e.417.6 48
7.2 even 3 inner 896.2.ba.f.289.6 48
8.3 odd 2 448.2.ba.c.81.7 48
8.5 even 2 112.2.w.c.109.10 yes 48
16.3 odd 4 448.2.ba.c.305.6 48
16.5 even 4 inner 896.2.ba.f.865.6 48
16.11 odd 4 896.2.ba.e.865.7 48
16.13 even 4 112.2.w.c.53.8 yes 48
28.23 odd 6 896.2.ba.e.289.7 48
56.5 odd 6 784.2.x.o.765.8 48
56.13 odd 2 784.2.x.o.557.10 48
56.37 even 6 112.2.w.c.93.8 yes 48
56.45 odd 6 784.2.m.k.589.1 24
56.51 odd 6 448.2.ba.c.401.6 48
56.53 even 6 784.2.m.j.589.1 24
112.13 odd 4 784.2.x.o.165.8 48
112.37 even 12 inner 896.2.ba.f.737.7 48
112.45 odd 12 784.2.m.k.197.1 24
112.51 odd 12 448.2.ba.c.177.7 48
112.61 odd 12 784.2.x.o.373.10 48
112.93 even 12 112.2.w.c.37.10 48
112.107 odd 12 896.2.ba.e.737.6 48
112.109 even 12 784.2.m.j.197.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.c.37.10 48 112.93 even 12
112.2.w.c.53.8 yes 48 16.13 even 4
112.2.w.c.93.8 yes 48 56.37 even 6
112.2.w.c.109.10 yes 48 8.5 even 2
448.2.ba.c.81.7 48 8.3 odd 2
448.2.ba.c.177.7 48 112.51 odd 12
448.2.ba.c.305.6 48 16.3 odd 4
448.2.ba.c.401.6 48 56.51 odd 6
784.2.m.j.197.1 24 112.109 even 12
784.2.m.j.589.1 24 56.53 even 6
784.2.m.k.197.1 24 112.45 odd 12
784.2.m.k.589.1 24 56.45 odd 6
784.2.x.o.165.8 48 112.13 odd 4
784.2.x.o.373.10 48 112.61 odd 12
784.2.x.o.557.10 48 56.13 odd 2
784.2.x.o.765.8 48 56.5 odd 6
896.2.ba.e.289.7 48 28.23 odd 6
896.2.ba.e.417.6 48 4.3 odd 2
896.2.ba.e.737.6 48 112.107 odd 12
896.2.ba.e.865.7 48 16.11 odd 4
896.2.ba.f.289.6 48 7.2 even 3 inner
896.2.ba.f.417.7 48 1.1 even 1 trivial
896.2.ba.f.737.7 48 112.37 even 12 inner
896.2.ba.f.865.6 48 16.5 even 4 inner