Properties

Label 784.2.x.o.373.10
Level $784$
Weight $2$
Character 784.373
Analytic conductor $6.260$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,2,Mod(165,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.165"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 3, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-4,0,-4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 373.10
Character \(\chi\) \(=\) 784.373
Dual form 784.2.x.o.557.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.945375 - 1.05179i) q^{2} +(0.0543752 + 0.0145698i) q^{3} +(-0.212530 - 1.98868i) q^{4} +(-1.25781 + 0.337028i) q^{5} +(0.0667293 - 0.0434174i) q^{6} +(-2.29259 - 1.65651i) q^{8} +(-2.59533 - 1.49842i) q^{9} +(-0.834616 + 1.64157i) q^{10} +(-0.402875 + 1.50355i) q^{11} +(0.0174182 - 0.111231i) q^{12} +(-1.59615 + 1.59615i) q^{13} -0.0733039 q^{15} +(-3.90966 + 0.845308i) q^{16} +(-1.46910 - 2.54455i) q^{17} +(-4.02958 + 1.31318i) q^{18} +(-2.05021 - 7.65147i) q^{19} +(0.937562 + 2.42974i) q^{20} +(1.20055 + 1.84516i) q^{22} +(-3.91784 - 2.26197i) q^{23} +(-0.100525 - 0.123475i) q^{24} +(-2.86164 + 1.65217i) q^{25} +(0.169855 + 3.18777i) q^{26} +(-0.238706 - 0.238706i) q^{27} +(2.06234 - 2.06234i) q^{29} +(-0.0692997 + 0.0771004i) q^{30} +(3.14025 + 5.43908i) q^{31} +(-2.80701 + 4.91128i) q^{32} +(-0.0438128 + 0.0758861i) q^{33} +(-4.06519 - 0.860373i) q^{34} +(-2.42828 + 5.47973i) q^{36} +(5.24787 - 1.40616i) q^{37} +(-9.98597 - 5.07713i) q^{38} +(-0.110046 + 0.0635352i) q^{39} +(3.44193 + 1.31090i) q^{40} +7.34101i q^{41} +(-1.99391 - 1.99391i) q^{43} +(3.07570 + 0.481638i) q^{44} +(3.76943 + 1.01002i) q^{45} +(-6.08295 + 1.98235i) q^{46} +(-0.979430 + 1.69642i) q^{47} +(-0.224904 - 0.0109992i) q^{48} +(-0.967587 + 4.57177i) q^{50} +(-0.0428089 - 0.159765i) q^{51} +(3.51345 + 2.83499i) q^{52} +(3.00493 - 11.2146i) q^{53} +(-0.476736 + 0.0254021i) q^{54} -2.02696i q^{55} -0.445921i q^{57} +(-0.219466 - 4.11884i) q^{58} +(-0.793411 + 2.96105i) q^{59} +(0.0155793 + 0.145778i) q^{60} +(-2.60480 - 9.72123i) q^{61} +(8.68949 + 1.83908i) q^{62} +(2.51197 + 7.59540i) q^{64} +(1.46970 - 2.54559i) q^{65} +(0.0383967 + 0.117823i) q^{66} +(-2.11517 - 0.566758i) q^{67} +(-4.74806 + 3.46236i) q^{68} +(-0.180077 - 0.180077i) q^{69} -7.26378i q^{71} +(3.46790 + 7.73444i) q^{72} +(12.2392 - 7.06631i) q^{73} +(3.48222 - 6.84902i) q^{74} +(-0.179674 + 0.0481435i) q^{75} +(-14.7806 + 5.70337i) q^{76} +(-0.0372092 + 0.175810i) q^{78} +(-0.961559 + 1.66547i) q^{79} +(4.63270 - 2.38090i) q^{80} +(4.48574 + 7.76954i) q^{81} +(7.72121 + 6.94001i) q^{82} +(-8.82731 + 8.82731i) q^{83} +(2.70543 + 2.70543i) q^{85} +(-3.98217 + 0.212184i) q^{86} +(0.142188 - 0.0820924i) q^{87} +(3.41427 - 2.77967i) q^{88} +(-11.5526 - 6.66987i) q^{89} +(4.62586 - 3.00981i) q^{90} +(-3.66566 + 8.27206i) q^{92} +(0.0915056 + 0.341503i) q^{93} +(0.858354 + 2.63391i) q^{94} +(5.15752 + 8.93309i) q^{95} +(-0.224188 + 0.226154i) q^{96} +9.69578 q^{97} +(3.29854 - 3.29854i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{2} - 4 q^{4} - 4 q^{5} + 4 q^{6} - 4 q^{8} + 2 q^{10} - 4 q^{11} - 2 q^{12} + 24 q^{13} - 40 q^{15} + 16 q^{16} - 8 q^{17} + 18 q^{18} + 4 q^{19} + 16 q^{20} - 18 q^{24} + 10 q^{26} + 24 q^{27}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.945375 1.05179i 0.668481 0.743729i
\(3\) 0.0543752 + 0.0145698i 0.0313935 + 0.00841187i 0.274482 0.961592i \(-0.411494\pi\)
−0.243088 + 0.970004i \(0.578160\pi\)
\(4\) −0.212530 1.98868i −0.106265 0.994338i
\(5\) −1.25781 + 0.337028i −0.562508 + 0.150724i −0.528858 0.848710i \(-0.677380\pi\)
−0.0336497 + 0.999434i \(0.510713\pi\)
\(6\) 0.0667293 0.0434174i 0.0272421 0.0177251i
\(7\) 0 0
\(8\) −2.29259 1.65651i −0.810554 0.585664i
\(9\) −2.59533 1.49842i −0.865111 0.499472i
\(10\) −0.834616 + 1.64157i −0.263929 + 0.519109i
\(11\) −0.402875 + 1.50355i −0.121472 + 0.453338i −0.999689 0.0249229i \(-0.992066\pi\)
0.878218 + 0.478261i \(0.158733\pi\)
\(12\) 0.0174182 0.111231i 0.00502820 0.0321097i
\(13\) −1.59615 + 1.59615i −0.442691 + 0.442691i −0.892916 0.450224i \(-0.851344\pi\)
0.450224 + 0.892916i \(0.351344\pi\)
\(14\) 0 0
\(15\) −0.0733039 −0.0189270
\(16\) −3.90966 + 0.845308i −0.977415 + 0.211327i
\(17\) −1.46910 2.54455i −0.356309 0.617145i 0.631032 0.775757i \(-0.282632\pi\)
−0.987341 + 0.158612i \(0.949298\pi\)
\(18\) −4.02958 + 1.31318i −0.949782 + 0.309520i
\(19\) −2.05021 7.65147i −0.470350 1.75537i −0.638514 0.769610i \(-0.720451\pi\)
0.168165 0.985759i \(-0.446216\pi\)
\(20\) 0.937562 + 2.42974i 0.209645 + 0.543306i
\(21\) 0 0
\(22\) 1.20055 + 1.84516i 0.255959 + 0.393390i
\(23\) −3.91784 2.26197i −0.816927 0.471653i 0.0324286 0.999474i \(-0.489676\pi\)
−0.849356 + 0.527821i \(0.823009\pi\)
\(24\) −0.100525 0.123475i −0.0205196 0.0252043i
\(25\) −2.86164 + 1.65217i −0.572328 + 0.330434i
\(26\) 0.169855 + 3.18777i 0.0333114 + 0.625173i
\(27\) −0.238706 0.238706i −0.0459390 0.0459390i
\(28\) 0 0
\(29\) 2.06234 2.06234i 0.382968 0.382968i −0.489203 0.872170i \(-0.662712\pi\)
0.872170 + 0.489203i \(0.162712\pi\)
\(30\) −0.0692997 + 0.0771004i −0.0126523 + 0.0140765i
\(31\) 3.14025 + 5.43908i 0.564006 + 0.976887i 0.997141 + 0.0755580i \(0.0240738\pi\)
−0.433136 + 0.901329i \(0.642593\pi\)
\(32\) −2.80701 + 4.91128i −0.496214 + 0.868200i
\(33\) −0.0438128 + 0.0758861i −0.00762684 + 0.0132101i
\(34\) −4.06519 0.860373i −0.697174 0.147553i
\(35\) 0 0
\(36\) −2.42828 + 5.47973i −0.404713 + 0.913289i
\(37\) 5.24787 1.40616i 0.862745 0.231172i 0.199797 0.979837i \(-0.435972\pi\)
0.662948 + 0.748666i \(0.269305\pi\)
\(38\) −9.98597 5.07713i −1.61994 0.823619i
\(39\) −0.110046 + 0.0635352i −0.0176215 + 0.0101738i
\(40\) 3.44193 + 1.31090i 0.544216 + 0.207271i
\(41\) 7.34101i 1.14647i 0.819390 + 0.573236i \(0.194312\pi\)
−0.819390 + 0.573236i \(0.805688\pi\)
\(42\) 0 0
\(43\) −1.99391 1.99391i −0.304068 0.304068i 0.538535 0.842603i \(-0.318978\pi\)
−0.842603 + 0.538535i \(0.818978\pi\)
\(44\) 3.07570 + 0.481638i 0.463679 + 0.0726097i
\(45\) 3.76943 + 1.01002i 0.561914 + 0.150564i
\(46\) −6.08295 + 1.98235i −0.896882 + 0.292281i
\(47\) −0.979430 + 1.69642i −0.142865 + 0.247449i −0.928574 0.371147i \(-0.878965\pi\)
0.785710 + 0.618596i \(0.212298\pi\)
\(48\) −0.224904 0.0109992i −0.0324622 0.00158759i
\(49\) 0 0
\(50\) −0.967587 + 4.57177i −0.136837 + 0.646545i
\(51\) −0.0428089 0.159765i −0.00599444 0.0223716i
\(52\) 3.51345 + 2.83499i 0.487228 + 0.393142i
\(53\) 3.00493 11.2146i 0.412759 1.54044i −0.376522 0.926408i \(-0.622880\pi\)
0.789282 0.614031i \(-0.210453\pi\)
\(54\) −0.476736 + 0.0254021i −0.0648756 + 0.00345679i
\(55\) 2.02696i 0.273315i
\(56\) 0 0
\(57\) 0.445921i 0.0590637i
\(58\) −0.219466 4.11884i −0.0288173 0.540831i
\(59\) −0.793411 + 2.96105i −0.103293 + 0.385496i −0.998146 0.0608657i \(-0.980614\pi\)
0.894853 + 0.446362i \(0.147281\pi\)
\(60\) 0.0155793 + 0.145778i 0.00201128 + 0.0188198i
\(61\) −2.60480 9.72123i −0.333510 1.24468i −0.905476 0.424398i \(-0.860486\pi\)
0.571966 0.820277i \(-0.306181\pi\)
\(62\) 8.68949 + 1.83908i 1.10357 + 0.233563i
\(63\) 0 0
\(64\) 2.51197 + 7.59540i 0.313996 + 0.949424i
\(65\) 1.46970 2.54559i 0.182293 0.315742i
\(66\) 0.0383967 + 0.117823i 0.00472631 + 0.0145030i
\(67\) −2.11517 0.566758i −0.258409 0.0692405i 0.127289 0.991866i \(-0.459373\pi\)
−0.385698 + 0.922625i \(0.626039\pi\)
\(68\) −4.74806 + 3.46236i −0.575787 + 0.419872i
\(69\) −0.180077 0.180077i −0.0216787 0.0216787i
\(70\) 0 0
\(71\) 7.26378i 0.862052i −0.902340 0.431026i \(-0.858152\pi\)
0.902340 0.431026i \(-0.141848\pi\)
\(72\) 3.46790 + 7.73444i 0.408696 + 0.911513i
\(73\) 12.2392 7.06631i 1.43249 0.827049i 0.435181 0.900343i \(-0.356684\pi\)
0.997310 + 0.0732936i \(0.0233510\pi\)
\(74\) 3.48222 6.84902i 0.404800 0.796182i
\(75\) −0.179674 + 0.0481435i −0.0207469 + 0.00555913i
\(76\) −14.7806 + 5.70337i −1.69545 + 0.654221i
\(77\) 0 0
\(78\) −0.0372092 + 0.175810i −0.00421311 + 0.0199066i
\(79\) −0.961559 + 1.66547i −0.108184 + 0.187380i −0.915035 0.403376i \(-0.867837\pi\)
0.806851 + 0.590755i \(0.201170\pi\)
\(80\) 4.63270 2.38090i 0.517952 0.266193i
\(81\) 4.48574 + 7.76954i 0.498416 + 0.863282i
\(82\) 7.72121 + 6.94001i 0.852665 + 0.766396i
\(83\) −8.82731 + 8.82731i −0.968923 + 0.968923i −0.999531 0.0306086i \(-0.990255\pi\)
0.0306086 + 0.999531i \(0.490255\pi\)
\(84\) 0 0
\(85\) 2.70543 + 2.70543i 0.293445 + 0.293445i
\(86\) −3.98217 + 0.212184i −0.429408 + 0.0228803i
\(87\) 0.142188 0.0820924i 0.0152442 0.00880123i
\(88\) 3.41427 2.77967i 0.363963 0.296313i
\(89\) −11.5526 6.66987i −1.22457 0.707005i −0.258680 0.965963i \(-0.583287\pi\)
−0.965888 + 0.258959i \(0.916621\pi\)
\(90\) 4.62586 3.00981i 0.487608 0.317262i
\(91\) 0 0
\(92\) −3.66566 + 8.27206i −0.382172 + 0.862422i
\(93\) 0.0915056 + 0.341503i 0.00948869 + 0.0354123i
\(94\) 0.858354 + 2.63391i 0.0885325 + 0.271667i
\(95\) 5.15752 + 8.93309i 0.529151 + 0.916516i
\(96\) −0.224188 + 0.226154i −0.0228811 + 0.0230818i
\(97\) 9.69578 0.984458 0.492229 0.870466i \(-0.336182\pi\)
0.492229 + 0.870466i \(0.336182\pi\)
\(98\) 0 0
\(99\) 3.29854 3.29854i 0.331516 0.331516i
\(100\) 3.89381 + 5.33974i 0.389381 + 0.533974i
\(101\) 2.73526 10.2081i 0.272168 1.01575i −0.685547 0.728029i \(-0.740437\pi\)
0.957715 0.287718i \(-0.0928966\pi\)
\(102\) −0.208510 0.106012i −0.0206456 0.0104967i
\(103\) 2.96542 + 1.71209i 0.292192 + 0.168697i 0.638930 0.769265i \(-0.279377\pi\)
−0.346738 + 0.937962i \(0.612711\pi\)
\(104\) 6.30334 1.01529i 0.618094 0.0995570i
\(105\) 0 0
\(106\) −8.95459 13.7625i −0.869747 1.33674i
\(107\) −11.0668 + 2.96534i −1.06987 + 0.286670i −0.750439 0.660940i \(-0.770158\pi\)
−0.319429 + 0.947610i \(0.603491\pi\)
\(108\) −0.423977 + 0.525441i −0.0407972 + 0.0505606i
\(109\) 3.02860 + 0.811511i 0.290087 + 0.0777287i 0.400928 0.916110i \(-0.368688\pi\)
−0.110841 + 0.993838i \(0.535354\pi\)
\(110\) −2.13194 1.91624i −0.203272 0.182706i
\(111\) 0.305841 0.0290292
\(112\) 0 0
\(113\) 4.67963 0.440223 0.220111 0.975475i \(-0.429358\pi\)
0.220111 + 0.975475i \(0.429358\pi\)
\(114\) −0.469016 0.421563i −0.0439274 0.0394830i
\(115\) 5.69024 + 1.52469i 0.530617 + 0.142178i
\(116\) −4.53964 3.66302i −0.421495 0.340103i
\(117\) 6.53422 1.75084i 0.604089 0.161865i
\(118\) 2.36434 + 3.63381i 0.217655 + 0.334519i
\(119\) 0 0
\(120\) 0.168056 + 0.121428i 0.0153413 + 0.0110848i
\(121\) 7.42792 + 4.28851i 0.675265 + 0.389865i
\(122\) −12.6872 6.45051i −1.14865 0.584002i
\(123\) −0.106957 + 0.399168i −0.00964398 + 0.0359918i
\(124\) 10.1492 7.40091i 0.911421 0.664621i
\(125\) 7.64645 7.64645i 0.683919 0.683919i
\(126\) 0 0
\(127\) 5.63308 0.499855 0.249928 0.968265i \(-0.419593\pi\)
0.249928 + 0.968265i \(0.419593\pi\)
\(128\) 10.3635 + 4.53844i 0.916015 + 0.401145i
\(129\) −0.0793683 0.137470i −0.00698799 0.0121035i
\(130\) −1.28801 3.95235i −0.112966 0.346644i
\(131\) −0.537304 2.00524i −0.0469444 0.175199i 0.938473 0.345352i \(-0.112240\pi\)
−0.985418 + 0.170153i \(0.945574\pi\)
\(132\) 0.160224 + 0.0710014i 0.0139457 + 0.00617988i
\(133\) 0 0
\(134\) −2.59574 + 1.68892i −0.224238 + 0.145900i
\(135\) 0.380697 + 0.219795i 0.0327652 + 0.0189170i
\(136\) −0.847027 + 8.26720i −0.0726319 + 0.708906i
\(137\) 2.68685 1.55125i 0.229553 0.132532i −0.380813 0.924652i \(-0.624356\pi\)
0.610366 + 0.792120i \(0.291022\pi\)
\(138\) −0.359644 + 0.0191631i −0.0306149 + 0.00163127i
\(139\) −12.7451 12.7451i −1.08103 1.08103i −0.996414 0.0846114i \(-0.973035\pi\)
−0.0846114 0.996414i \(-0.526965\pi\)
\(140\) 0 0
\(141\) −0.0779732 + 0.0779732i −0.00656653 + 0.00656653i
\(142\) −7.63998 6.86700i −0.641133 0.576266i
\(143\) −1.75684 3.04294i −0.146914 0.254463i
\(144\) 11.4135 + 3.66444i 0.951124 + 0.305370i
\(145\) −1.89896 + 3.28910i −0.157700 + 0.273145i
\(146\) 4.13836 19.5534i 0.342493 1.61825i
\(147\) 0 0
\(148\) −3.91173 10.1375i −0.321543 0.833294i
\(149\) 14.5303 3.89339i 1.19037 0.318959i 0.391338 0.920247i \(-0.372012\pi\)
0.799032 + 0.601288i \(0.205346\pi\)
\(150\) −0.119222 + 0.234493i −0.00973446 + 0.0191463i
\(151\) 15.7545 9.09588i 1.28209 0.740212i 0.304856 0.952398i \(-0.401392\pi\)
0.977229 + 0.212186i \(0.0680584\pi\)
\(152\) −7.97444 + 20.9379i −0.646812 + 1.69829i
\(153\) 8.80528i 0.711865i
\(154\) 0 0
\(155\) −5.78295 5.78295i −0.464498 0.464498i
\(156\) 0.149739 + 0.205343i 0.0119887 + 0.0164406i
\(157\) −9.39175 2.51651i −0.749544 0.200840i −0.136228 0.990678i \(-0.543498\pi\)
−0.613316 + 0.789838i \(0.710165\pi\)
\(158\) 0.842692 + 2.58585i 0.0670410 + 0.205719i
\(159\) 0.326788 0.566013i 0.0259159 0.0448877i
\(160\) 1.87543 7.12348i 0.148266 0.563161i
\(161\) 0 0
\(162\) 12.4126 + 2.62706i 0.975230 + 0.206402i
\(163\) −3.36548 12.5602i −0.263605 0.983787i −0.963099 0.269148i \(-0.913258\pi\)
0.699494 0.714639i \(-0.253409\pi\)
\(164\) 14.5989 1.56019i 1.13998 0.121830i
\(165\) 0.0295323 0.110216i 0.00229909 0.00858031i
\(166\) 0.939366 + 17.6296i 0.0729090 + 1.36832i
\(167\) 16.5417i 1.28004i −0.768360 0.640018i \(-0.778927\pi\)
0.768360 0.640018i \(-0.221073\pi\)
\(168\) 0 0
\(169\) 7.90463i 0.608049i
\(170\) 5.40319 0.287901i 0.414406 0.0220810i
\(171\) −6.14412 + 22.9302i −0.469853 + 1.75351i
\(172\) −3.54147 + 4.38900i −0.270035 + 0.334658i
\(173\) 5.59219 + 20.8703i 0.425166 + 1.58674i 0.763559 + 0.645738i \(0.223450\pi\)
−0.338393 + 0.941005i \(0.609883\pi\)
\(174\) 0.0480771 0.227160i 0.00364472 0.0172210i
\(175\) 0 0
\(176\) 0.304142 6.21893i 0.0229256 0.468770i
\(177\) −0.0862837 + 0.149448i −0.00648548 + 0.0112332i
\(178\) −17.9368 + 5.84534i −1.34442 + 0.438127i
\(179\) −18.3264 4.91053i −1.36978 0.367031i −0.502379 0.864647i \(-0.667542\pi\)
−0.867397 + 0.497617i \(0.834209\pi\)
\(180\) 1.20748 7.71084i 0.0899999 0.574732i
\(181\) −6.44222 6.44222i −0.478846 0.478846i 0.425916 0.904763i \(-0.359952\pi\)
−0.904763 + 0.425916i \(0.859952\pi\)
\(182\) 0 0
\(183\) 0.566545i 0.0418802i
\(184\) 5.23505 + 11.6757i 0.385933 + 0.860745i
\(185\) −6.12689 + 3.53736i −0.450458 + 0.260072i
\(186\) 0.445698 + 0.226604i 0.0326801 + 0.0166154i
\(187\) 4.41773 1.18373i 0.323057 0.0865627i
\(188\) 3.58179 + 1.58723i 0.261229 + 0.115760i
\(189\) 0 0
\(190\) 14.2716 + 3.02049i 1.03537 + 0.219129i
\(191\) −12.9567 + 22.4417i −0.937515 + 1.62382i −0.167429 + 0.985884i \(0.553546\pi\)
−0.770086 + 0.637940i \(0.779787\pi\)
\(192\) 0.0259253 + 0.449600i 0.00187100 + 0.0324471i
\(193\) −6.27389 10.8667i −0.451604 0.782202i 0.546881 0.837210i \(-0.315815\pi\)
−0.998486 + 0.0550082i \(0.982481\pi\)
\(194\) 9.16616 10.1979i 0.658092 0.732170i
\(195\) 0.117004 0.117004i 0.00837881 0.00837881i
\(196\) 0 0
\(197\) −8.31651 8.31651i −0.592527 0.592527i 0.345786 0.938313i \(-0.387612\pi\)
−0.938313 + 0.345786i \(0.887612\pi\)
\(198\) −0.351017 6.58774i −0.0249457 0.468170i
\(199\) −16.6783 + 9.62922i −1.18229 + 0.682597i −0.956544 0.291589i \(-0.905816\pi\)
−0.225749 + 0.974186i \(0.572483\pi\)
\(200\) 9.29740 + 0.952578i 0.657426 + 0.0673574i
\(201\) −0.106755 0.0616352i −0.00752993 0.00434741i
\(202\) −8.15097 12.5274i −0.573501 0.881427i
\(203\) 0 0
\(204\) −0.308623 + 0.119088i −0.0216079 + 0.00833782i
\(205\) −2.47413 9.23356i −0.172800 0.644900i
\(206\) 4.60419 1.50044i 0.320789 0.104541i
\(207\) 6.77874 + 11.7411i 0.471155 + 0.816064i
\(208\) 4.89116 7.58963i 0.339141 0.526246i
\(209\) 12.3304 0.852909
\(210\) 0 0
\(211\) −8.62222 + 8.62222i −0.593578 + 0.593578i −0.938596 0.345018i \(-0.887873\pi\)
0.345018 + 0.938596i \(0.387873\pi\)
\(212\) −22.9408 3.59240i −1.57558 0.246727i
\(213\) 0.105832 0.394969i 0.00725147 0.0270628i
\(214\) −7.34336 + 14.4433i −0.501982 + 0.987325i
\(215\) 3.17995 + 1.83595i 0.216871 + 0.125211i
\(216\) 0.151838 + 0.942675i 0.0103312 + 0.0641409i
\(217\) 0 0
\(218\) 3.71670 2.41827i 0.251727 0.163786i
\(219\) 0.768464 0.205909i 0.0519280 0.0139141i
\(220\) −4.03096 + 0.430790i −0.271767 + 0.0290439i
\(221\) 6.40638 + 1.71658i 0.430940 + 0.115470i
\(222\) 0.289135 0.321681i 0.0194055 0.0215898i
\(223\) 22.4402 1.50271 0.751354 0.659899i \(-0.229401\pi\)
0.751354 + 0.659899i \(0.229401\pi\)
\(224\) 0 0
\(225\) 9.90254 0.660169
\(226\) 4.42401 4.92200i 0.294281 0.327406i
\(227\) 2.25930 + 0.605377i 0.149955 + 0.0401803i 0.333016 0.942921i \(-0.391934\pi\)
−0.183061 + 0.983102i \(0.558600\pi\)
\(228\) −0.886793 + 0.0947718i −0.0587293 + 0.00627642i
\(229\) 18.9832 5.08653i 1.25444 0.336127i 0.430393 0.902642i \(-0.358375\pi\)
0.824052 + 0.566514i \(0.191708\pi\)
\(230\) 6.98307 4.54353i 0.460450 0.299592i
\(231\) 0 0
\(232\) −8.14440 + 1.31183i −0.534706 + 0.0861256i
\(233\) −3.35515 1.93710i −0.219803 0.126903i 0.386056 0.922475i \(-0.373837\pi\)
−0.605859 + 0.795572i \(0.707171\pi\)
\(234\) 4.33577 8.52784i 0.283438 0.557482i
\(235\) 0.660191 2.46387i 0.0430661 0.160725i
\(236\) 6.05719 + 0.948524i 0.394290 + 0.0617437i
\(237\) −0.0765505 + 0.0765505i −0.00497249 + 0.00497249i
\(238\) 0 0
\(239\) −6.56774 −0.424832 −0.212416 0.977179i \(-0.568133\pi\)
−0.212416 + 0.977179i \(0.568133\pi\)
\(240\) 0.286593 0.0619643i 0.0184995 0.00399978i
\(241\) −6.62647 11.4774i −0.426849 0.739323i 0.569742 0.821823i \(-0.307043\pi\)
−0.996591 + 0.0824998i \(0.973710\pi\)
\(242\) 11.5328 3.75837i 0.741356 0.241597i
\(243\) 0.392830 + 1.46606i 0.0252001 + 0.0940479i
\(244\) −18.7788 + 7.24615i −1.20219 + 0.463887i
\(245\) 0 0
\(246\) 0.318728 + 0.489860i 0.0203213 + 0.0312324i
\(247\) 15.4853 + 8.94045i 0.985306 + 0.568867i
\(248\) 1.81055 17.6714i 0.114970 1.12214i
\(249\) −0.608598 + 0.351374i −0.0385683 + 0.0222674i
\(250\) −0.813704 15.2712i −0.0514632 0.965838i
\(251\) 3.80916 + 3.80916i 0.240432 + 0.240432i 0.817029 0.576597i \(-0.195620\pi\)
−0.576597 + 0.817029i \(0.695620\pi\)
\(252\) 0 0
\(253\) 4.97939 4.97939i 0.313052 0.313052i
\(254\) 5.32538 5.92483i 0.334144 0.371757i
\(255\) 0.107691 + 0.186526i 0.00674385 + 0.0116807i
\(256\) 14.5709 6.60974i 0.910682 0.413109i
\(257\) −11.8190 + 20.4712i −0.737251 + 1.27696i 0.216477 + 0.976288i \(0.430543\pi\)
−0.953729 + 0.300669i \(0.902790\pi\)
\(258\) −0.219622 0.0464818i −0.0136731 0.00289383i
\(259\) 0 0
\(260\) −5.37471 2.38174i −0.333325 0.147709i
\(261\) −8.44271 + 2.26222i −0.522591 + 0.140028i
\(262\) −2.61705 1.33058i −0.161682 0.0822033i
\(263\) −15.4301 + 8.90857i −0.951460 + 0.549326i −0.893534 0.448995i \(-0.851782\pi\)
−0.0579260 + 0.998321i \(0.518449\pi\)
\(264\) 0.226151 0.101400i 0.0139186 0.00624071i
\(265\) 15.1185i 0.928722i
\(266\) 0 0
\(267\) −0.530993 0.530993i −0.0324963 0.0324963i
\(268\) −0.677560 + 4.32684i −0.0413886 + 0.264304i
\(269\) 6.16728 + 1.65252i 0.376026 + 0.100756i 0.441882 0.897073i \(-0.354311\pi\)
−0.0658559 + 0.997829i \(0.520978\pi\)
\(270\) 0.591080 0.192624i 0.0359720 0.0117228i
\(271\) −3.98703 + 6.90574i −0.242195 + 0.419494i −0.961339 0.275367i \(-0.911201\pi\)
0.719144 + 0.694861i \(0.244534\pi\)
\(272\) 7.89461 + 8.70650i 0.478681 + 0.527909i
\(273\) 0 0
\(274\) 0.908486 4.29252i 0.0548836 0.259320i
\(275\) −1.33124 4.96824i −0.0802765 0.299596i
\(276\) −0.319843 + 0.396387i −0.0192523 + 0.0238597i
\(277\) 3.31607 12.3757i 0.199243 0.743586i −0.791884 0.610671i \(-0.790900\pi\)
0.991127 0.132915i \(-0.0424337\pi\)
\(278\) −25.4541 + 1.35628i −1.52664 + 0.0813444i
\(279\) 18.8216i 1.12682i
\(280\) 0 0
\(281\) 13.0438i 0.778126i 0.921211 + 0.389063i \(0.127201\pi\)
−0.921211 + 0.389063i \(0.872799\pi\)
\(282\) 0.00829759 + 0.155726i 0.000494115 + 0.00927332i
\(283\) 4.98843 18.6171i 0.296531 1.10667i −0.643462 0.765478i \(-0.722503\pi\)
0.939994 0.341192i \(-0.110831\pi\)
\(284\) −14.4453 + 1.54377i −0.857171 + 0.0916061i
\(285\) 0.150288 + 0.560883i 0.00890229 + 0.0332238i
\(286\) −4.86141 1.02889i −0.287461 0.0608395i
\(287\) 0 0
\(288\) 14.6443 8.54034i 0.862922 0.503244i
\(289\) 4.18350 7.24603i 0.246088 0.426237i
\(290\) 1.66421 + 5.10674i 0.0977259 + 0.299878i
\(291\) 0.527210 + 0.141265i 0.0309056 + 0.00828113i
\(292\) −16.6538 22.8380i −0.974590 1.33649i
\(293\) −12.7021 12.7021i −0.742067 0.742067i 0.230908 0.972975i \(-0.425830\pi\)
−0.972975 + 0.230908i \(0.925830\pi\)
\(294\) 0 0
\(295\) 3.99183i 0.232413i
\(296\) −14.3605 5.46938i −0.834690 0.317901i
\(297\) 0.455076 0.262738i 0.0264062 0.0152456i
\(298\) 9.64158 18.9636i 0.558522 1.09853i
\(299\) 9.86389 2.64302i 0.570443 0.152850i
\(300\) 0.133928 + 0.347081i 0.00773233 + 0.0200387i
\(301\) 0 0
\(302\) 5.32697 25.1695i 0.306533 1.44834i
\(303\) 0.297460 0.515217i 0.0170887 0.0295984i
\(304\) 14.4835 + 28.1816i 0.830684 + 1.61633i
\(305\) 6.55265 + 11.3495i 0.375204 + 0.649872i
\(306\) 9.26132 + 8.32430i 0.529434 + 0.475868i
\(307\) −15.5180 + 15.5180i −0.885657 + 0.885657i −0.994102 0.108446i \(-0.965413\pi\)
0.108446 + 0.994102i \(0.465413\pi\)
\(308\) 0 0
\(309\) 0.136300 + 0.136300i 0.00775386 + 0.00775386i
\(310\) −11.5495 + 0.615398i −0.655968 + 0.0349523i
\(311\) −3.14576 + 1.81621i −0.178380 + 0.102988i −0.586531 0.809927i \(-0.699507\pi\)
0.408151 + 0.912914i \(0.366174\pi\)
\(312\) 0.357538 + 0.0366320i 0.0202416 + 0.00207388i
\(313\) −3.24479 1.87338i −0.183406 0.105890i 0.405486 0.914101i \(-0.367102\pi\)
−0.588892 + 0.808212i \(0.700436\pi\)
\(314\) −11.5256 + 7.49912i −0.650426 + 0.423200i
\(315\) 0 0
\(316\) 3.51644 + 1.55827i 0.197815 + 0.0876593i
\(317\) 6.36774 + 23.7647i 0.357648 + 1.33476i 0.877119 + 0.480272i \(0.159462\pi\)
−0.519472 + 0.854488i \(0.673871\pi\)
\(318\) −0.286390 0.878807i −0.0160600 0.0492810i
\(319\) 2.26997 + 3.93171i 0.127094 + 0.220133i
\(320\) −5.71943 8.70693i −0.319726 0.486732i
\(321\) −0.644963 −0.0359983
\(322\) 0 0
\(323\) −16.4576 + 16.4576i −0.915727 + 0.915727i
\(324\) 14.4977 10.5720i 0.805430 0.587331i
\(325\) 1.93049 7.20470i 0.107084 0.399645i
\(326\) −16.3923 8.33427i −0.907886 0.461593i
\(327\) 0.152857 + 0.0882521i 0.00845302 + 0.00488035i
\(328\) 12.1604 16.8299i 0.671448 0.929278i
\(329\) 0 0
\(330\) −0.0880053 0.135257i −0.00484453 0.00744568i
\(331\) 9.79479 2.62451i 0.538370 0.144256i 0.0206195 0.999787i \(-0.493436\pi\)
0.517751 + 0.855532i \(0.326769\pi\)
\(332\) 19.4307 + 15.6786i 1.06640 + 0.860474i
\(333\) −15.7270 4.21403i −0.861833 0.230928i
\(334\) −17.3984 15.6381i −0.952000 0.855680i
\(335\) 2.85149 0.155793
\(336\) 0 0
\(337\) −5.30745 −0.289115 −0.144558 0.989496i \(-0.546176\pi\)
−0.144558 + 0.989496i \(0.546176\pi\)
\(338\) 8.31402 + 7.47284i 0.452223 + 0.406469i
\(339\) 0.254456 + 0.0681812i 0.0138201 + 0.00370309i
\(340\) 4.80523 5.95520i 0.260600 0.322966i
\(341\) −9.44306 + 2.53026i −0.511370 + 0.137021i
\(342\) 18.3093 + 28.1400i 0.990051 + 1.52163i
\(343\) 0 0
\(344\) 1.26830 + 7.87414i 0.0683819 + 0.424545i
\(345\) 0.287193 + 0.165811i 0.0154620 + 0.00892696i
\(346\) 27.2380 + 13.8485i 1.46432 + 0.744499i
\(347\) 1.06753 3.98409i 0.0573082 0.213877i −0.931334 0.364166i \(-0.881354\pi\)
0.988642 + 0.150290i \(0.0480206\pi\)
\(348\) −0.193474 0.265319i −0.0103713 0.0142226i
\(349\) −11.4637 + 11.4637i −0.613639 + 0.613639i −0.943892 0.330253i \(-0.892866\pi\)
0.330253 + 0.943892i \(0.392866\pi\)
\(350\) 0 0
\(351\) 0.762020 0.0406736
\(352\) −6.25349 6.19912i −0.333312 0.330414i
\(353\) −1.93371 3.34929i −0.102921 0.178265i 0.809966 0.586477i \(-0.199486\pi\)
−0.912887 + 0.408212i \(0.866152\pi\)
\(354\) 0.0756174 + 0.232037i 0.00401902 + 0.0123326i
\(355\) 2.44810 + 9.13642i 0.129932 + 0.484911i
\(356\) −10.8089 + 24.3918i −0.572873 + 1.29276i
\(357\) 0 0
\(358\) −22.4901 + 14.6332i −1.18864 + 0.773389i
\(359\) −13.6977 7.90839i −0.722938 0.417389i 0.0928949 0.995676i \(-0.470388\pi\)
−0.815833 + 0.578287i \(0.803721\pi\)
\(360\) −6.96867 8.55965i −0.367281 0.451133i
\(361\) −37.8872 + 21.8742i −1.99407 + 1.15127i
\(362\) −12.8662 + 0.685555i −0.676232 + 0.0360320i
\(363\) 0.341412 + 0.341412i 0.0179195 + 0.0179195i
\(364\) 0 0
\(365\) −13.0130 + 13.0130i −0.681132 + 0.681132i
\(366\) −0.595887 0.535597i −0.0311475 0.0279961i
\(367\) −2.37345 4.11093i −0.123893 0.214589i 0.797407 0.603442i \(-0.206205\pi\)
−0.921300 + 0.388853i \(0.872871\pi\)
\(368\) 17.2295 + 5.53175i 0.898150 + 0.288362i
\(369\) 10.9999 19.0523i 0.572631 0.991826i
\(370\) −2.07164 + 9.78834i −0.107700 + 0.508872i
\(371\) 0 0
\(372\) 0.659692 0.254555i 0.0342034 0.0131980i
\(373\) 22.0083 5.89711i 1.13955 0.305341i 0.360779 0.932651i \(-0.382511\pi\)
0.778769 + 0.627310i \(0.215844\pi\)
\(374\) 2.93138 5.76560i 0.151578 0.298132i
\(375\) 0.527184 0.304370i 0.0272237 0.0157176i
\(376\) 5.05557 2.26677i 0.260721 0.116900i
\(377\) 6.58360i 0.339073i
\(378\) 0 0
\(379\) 20.1030 + 20.1030i 1.03262 + 1.03262i 0.999450 + 0.0331705i \(0.0105604\pi\)
0.0331705 + 0.999450i \(0.489440\pi\)
\(380\) 16.6689 12.1552i 0.855096 0.623549i
\(381\) 0.306300 + 0.0820728i 0.0156922 + 0.00420472i
\(382\) 11.3550 + 34.8436i 0.580973 + 1.78275i
\(383\) −11.7252 + 20.3087i −0.599131 + 1.03773i 0.393819 + 0.919188i \(0.371154\pi\)
−0.992950 + 0.118537i \(0.962180\pi\)
\(384\) 0.497394 + 0.397773i 0.0253825 + 0.0202987i
\(385\) 0 0
\(386\) −17.3607 3.67428i −0.883635 0.187016i
\(387\) 2.18715 + 8.16255i 0.111179 + 0.414926i
\(388\) −2.06065 19.2818i −0.104614 0.978883i
\(389\) 2.77356 10.3510i 0.140625 0.524819i −0.859286 0.511495i \(-0.829092\pi\)
0.999911 0.0133242i \(-0.00424136\pi\)
\(390\) −0.0124511 0.233676i −0.000630484 0.0118326i
\(391\) 13.2922i 0.672216i
\(392\) 0 0
\(393\) 0.116864i 0.00589500i
\(394\) −16.6095 + 0.885009i −0.836773 + 0.0445861i
\(395\) 0.648145 2.41891i 0.0326117 0.121709i
\(396\) −7.26077 5.85869i −0.364867 0.294410i
\(397\) −1.71548 6.40226i −0.0860975 0.321320i 0.909422 0.415874i \(-0.136524\pi\)
−0.995520 + 0.0945536i \(0.969858\pi\)
\(398\) −5.63932 + 26.6453i −0.282674 + 1.33561i
\(399\) 0 0
\(400\) 9.79145 8.87838i 0.489572 0.443919i
\(401\) −15.8657 + 27.4802i −0.792294 + 1.37229i 0.132250 + 0.991216i \(0.457780\pi\)
−0.924543 + 0.381077i \(0.875553\pi\)
\(402\) −0.165751 + 0.0540159i −0.00826691 + 0.00269407i
\(403\) −13.6939 3.66926i −0.682140 0.182779i
\(404\) −20.8820 3.27001i −1.03892 0.162689i
\(405\) −8.26075 8.26075i −0.410480 0.410480i
\(406\) 0 0
\(407\) 8.45695i 0.419196i
\(408\) −0.166509 + 0.437189i −0.00824340 + 0.0216441i
\(409\) 1.11952 0.646353i 0.0553565 0.0319601i −0.472066 0.881563i \(-0.656492\pi\)
0.527423 + 0.849603i \(0.323158\pi\)
\(410\) −12.0508 6.12692i −0.595145 0.302587i
\(411\) 0.168699 0.0452028i 0.00832131 0.00222969i
\(412\) 2.77454 6.26113i 0.136692 0.308464i
\(413\) 0 0
\(414\) 18.7577 + 3.96995i 0.921889 + 0.195112i
\(415\) 8.12799 14.0781i 0.398987 0.691066i
\(416\) −3.35873 12.3195i −0.164675 0.604015i
\(417\) −0.507324 0.878710i −0.0248437 0.0430306i
\(418\) 11.6568 12.9690i 0.570154 0.634333i
\(419\) −17.2788 + 17.2788i −0.844124 + 0.844124i −0.989392 0.145269i \(-0.953595\pi\)
0.145269 + 0.989392i \(0.453595\pi\)
\(420\) 0 0
\(421\) 3.36245 + 3.36245i 0.163876 + 0.163876i 0.784281 0.620405i \(-0.213032\pi\)
−0.620405 + 0.784281i \(0.713032\pi\)
\(422\) 0.917541 + 17.2200i 0.0446652 + 0.838257i
\(423\) 5.08389 2.93519i 0.247187 0.142714i
\(424\) −25.4661 + 20.7327i −1.23674 + 1.00687i
\(425\) 8.40806 + 4.85440i 0.407851 + 0.235473i
\(426\) −0.315374 0.484707i −0.0152799 0.0234841i
\(427\) 0 0
\(428\) 8.24913 + 21.3780i 0.398737 + 1.03335i
\(429\) −0.0511936 0.191057i −0.00247165 0.00922432i
\(430\) 4.93728 1.60899i 0.238097 0.0775923i
\(431\) −5.58722 9.67735i −0.269127 0.466141i 0.699510 0.714623i \(-0.253402\pi\)
−0.968637 + 0.248482i \(0.920068\pi\)
\(432\) 1.13504 + 0.731480i 0.0546097 + 0.0351934i
\(433\) 17.3943 0.835916 0.417958 0.908466i \(-0.362746\pi\)
0.417958 + 0.908466i \(0.362746\pi\)
\(434\) 0 0
\(435\) −0.151178 + 0.151178i −0.00724842 + 0.00724842i
\(436\) 0.970163 6.19537i 0.0464624 0.296705i
\(437\) −9.27500 + 34.6148i −0.443684 + 1.65585i
\(438\) 0.509913 1.00293i 0.0243646 0.0479216i
\(439\) 32.5115 + 18.7705i 1.55169 + 0.895867i 0.998005 + 0.0631399i \(0.0201114\pi\)
0.553683 + 0.832727i \(0.313222\pi\)
\(440\) −3.35767 + 4.64699i −0.160071 + 0.221536i
\(441\) 0 0
\(442\) 7.86192 5.11536i 0.373953 0.243313i
\(443\) 6.88186 1.84399i 0.326967 0.0876106i −0.0916015 0.995796i \(-0.529199\pi\)
0.418569 + 0.908185i \(0.362532\pi\)
\(444\) −0.0650006 0.608219i −0.00308479 0.0288648i
\(445\) 16.7788 + 4.49587i 0.795392 + 0.213125i
\(446\) 21.2144 23.6024i 1.00453 1.11761i
\(447\) 0.846815 0.0400530
\(448\) 0 0
\(449\) −7.84005 −0.369995 −0.184997 0.982739i \(-0.559228\pi\)
−0.184997 + 0.982739i \(0.559228\pi\)
\(450\) 9.36161 10.4154i 0.441311 0.490987i
\(451\) −11.0376 2.95751i −0.519739 0.139264i
\(452\) −0.994564 9.30627i −0.0467803 0.437730i
\(453\) 0.989180 0.265050i 0.0464757 0.0124531i
\(454\) 2.77262 1.80400i 0.130125 0.0846660i
\(455\) 0 0
\(456\) −0.738672 + 1.02232i −0.0345915 + 0.0478743i
\(457\) −22.2821 12.8646i −1.04231 0.601780i −0.121826 0.992551i \(-0.538875\pi\)
−0.920488 + 0.390771i \(0.872208\pi\)
\(458\) 12.5963 24.7750i 0.588585 1.15766i
\(459\) −0.256718 + 0.958084i −0.0119826 + 0.0447195i
\(460\) 1.82277 11.6401i 0.0849873 0.542721i
\(461\) 13.1661 13.1661i 0.613207 0.613207i −0.330573 0.943780i \(-0.607242\pi\)
0.943780 + 0.330573i \(0.107242\pi\)
\(462\) 0 0
\(463\) 6.88821 0.320122 0.160061 0.987107i \(-0.448831\pi\)
0.160061 + 0.987107i \(0.448831\pi\)
\(464\) −6.31975 + 9.80638i −0.293387 + 0.455250i
\(465\) −0.230193 0.398705i −0.0106749 0.0184895i
\(466\) −5.20930 + 1.69763i −0.241316 + 0.0786414i
\(467\) −10.2399 38.2159i −0.473847 1.76842i −0.625749 0.780025i \(-0.715206\pi\)
0.151902 0.988396i \(-0.451460\pi\)
\(468\) −4.87057 12.6223i −0.225142 0.583468i
\(469\) 0 0
\(470\) −1.96735 3.02366i −0.0907469 0.139471i
\(471\) −0.474013 0.273672i −0.0218414 0.0126101i
\(472\) 6.72397 5.47419i 0.309496 0.251970i
\(473\) 3.80124 2.19465i 0.174781 0.100910i
\(474\) 0.00814619 + 0.152884i 0.000374167 + 0.00702220i
\(475\) 18.5085 + 18.5085i 0.849227 + 0.849227i
\(476\) 0 0
\(477\) −24.6029 + 24.6029i −1.12649 + 1.12649i
\(478\) −6.20898 + 6.90790i −0.283992 + 0.315960i
\(479\) −0.261991 0.453782i −0.0119707 0.0207338i 0.859978 0.510331i \(-0.170477\pi\)
−0.871949 + 0.489597i \(0.837144\pi\)
\(480\) 0.205765 0.360016i 0.00939183 0.0164324i
\(481\) −6.13193 + 10.6208i −0.279592 + 0.484267i
\(482\) −18.3363 3.88077i −0.835197 0.176764i
\(483\) 0 0
\(484\) 6.94980 15.6832i 0.315900 0.712871i
\(485\) −12.1954 + 3.26775i −0.553765 + 0.148381i
\(486\) 1.91336 + 0.972804i 0.0867920 + 0.0441273i
\(487\) 2.46586 1.42366i 0.111739 0.0645124i −0.443089 0.896478i \(-0.646117\pi\)
0.554828 + 0.831965i \(0.312784\pi\)
\(488\) −10.1316 + 26.6017i −0.458634 + 1.20420i
\(489\) 0.731995i 0.0331019i
\(490\) 0 0
\(491\) −17.4826 17.4826i −0.788977 0.788977i 0.192349 0.981327i \(-0.438389\pi\)
−0.981327 + 0.192349i \(0.938389\pi\)
\(492\) 0.816548 + 0.127867i 0.0368128 + 0.00576469i
\(493\) −8.27753 2.21796i −0.372801 0.0998918i
\(494\) 24.0429 7.83523i 1.08174 0.352524i
\(495\) −3.03722 + 5.26063i −0.136513 + 0.236448i
\(496\) −16.8750 18.6105i −0.757711 0.835635i
\(497\) 0 0
\(498\) −0.205781 + 0.972299i −0.00922128 + 0.0435698i
\(499\) 0.350599 + 1.30845i 0.0156949 + 0.0585743i 0.973329 0.229413i \(-0.0736806\pi\)
−0.957634 + 0.287987i \(0.907014\pi\)
\(500\) −16.8314 13.5812i −0.752724 0.607370i
\(501\) 0.241009 0.899458i 0.0107675 0.0401848i
\(502\) 7.60752 0.405355i 0.339540 0.0180919i
\(503\) 15.4389i 0.688388i 0.938899 + 0.344194i \(0.111848\pi\)
−0.938899 + 0.344194i \(0.888152\pi\)
\(504\) 0 0
\(505\) 13.7617i 0.612388i
\(506\) −0.529886 9.94467i −0.0235563 0.442095i
\(507\) −0.115169 + 0.429816i −0.00511482 + 0.0190888i
\(508\) −1.19720 11.2024i −0.0531172 0.497025i
\(509\) 2.23550 + 8.34301i 0.0990869 + 0.369797i 0.997607 0.0691342i \(-0.0220237\pi\)
−0.898520 + 0.438932i \(0.855357\pi\)
\(510\) 0.297994 + 0.0630687i 0.0131954 + 0.00279273i
\(511\) 0 0
\(512\) 6.82291 21.5742i 0.301533 0.953456i
\(513\) −1.33706 + 2.31585i −0.0590325 + 0.102247i
\(514\) 10.3580 + 31.7841i 0.456871 + 1.40194i
\(515\) −4.30694 1.15404i −0.189787 0.0508532i
\(516\) −0.256515 + 0.187054i −0.0112924 + 0.00823461i
\(517\) −2.15607 2.15607i −0.0948239 0.0948239i
\(518\) 0 0
\(519\) 1.21631i 0.0533899i
\(520\) −7.58620 + 3.40144i −0.332677 + 0.149163i
\(521\) −3.08690 + 1.78222i −0.135240 + 0.0780807i −0.566093 0.824341i \(-0.691546\pi\)
0.430854 + 0.902422i \(0.358213\pi\)
\(522\) −5.60215 + 11.0186i −0.245200 + 0.482272i
\(523\) −19.5332 + 5.23389i −0.854125 + 0.228862i −0.659211 0.751958i \(-0.729110\pi\)
−0.194914 + 0.980820i \(0.562443\pi\)
\(524\) −3.87359 + 1.49470i −0.169218 + 0.0652962i
\(525\) 0 0
\(526\) −5.21728 + 24.6512i −0.227484 + 1.07484i
\(527\) 9.22668 15.9811i 0.401920 0.696147i
\(528\) 0.107146 0.333724i 0.00466294 0.0145235i
\(529\) −1.26700 2.19451i −0.0550869 0.0954133i
\(530\) 15.9015 + 14.2927i 0.690717 + 0.620833i
\(531\) 6.49605 6.49605i 0.281905 0.281905i
\(532\) 0 0
\(533\) −11.7173 11.7173i −0.507534 0.507534i
\(534\) −1.06048 + 0.0565062i −0.0458916 + 0.00244526i
\(535\) 12.9205 7.45964i 0.558601 0.322508i
\(536\) 3.91039 + 4.80314i 0.168903 + 0.207464i
\(537\) −0.924954 0.534022i −0.0399147 0.0230448i
\(538\) 7.56850 4.92444i 0.326301 0.212308i
\(539\) 0 0
\(540\) 0.356192 0.803796i 0.0153281 0.0345899i
\(541\) −1.90773 7.11973i −0.0820195 0.306101i 0.912714 0.408600i \(-0.133983\pi\)
−0.994733 + 0.102499i \(0.967316\pi\)
\(542\) 3.49416 + 10.7220i 0.150087 + 0.460551i
\(543\) −0.256435 0.444159i −0.0110047 0.0190607i
\(544\) 16.6208 0.0725695i 0.712611 0.00311139i
\(545\) −4.08289 −0.174892
\(546\) 0 0
\(547\) 17.8464 17.8464i 0.763058 0.763058i −0.213816 0.976874i \(-0.568589\pi\)
0.976874 + 0.213816i \(0.0685893\pi\)
\(548\) −3.65597 5.01358i −0.156175 0.214169i
\(549\) −7.80613 + 29.1329i −0.333158 + 1.24336i
\(550\) −6.48407 3.29667i −0.276482 0.140570i
\(551\) −20.0082 11.5517i −0.852378 0.492121i
\(552\) 0.114544 + 0.711142i 0.00487533 + 0.0302682i
\(553\) 0 0
\(554\) −9.88177 15.1875i −0.419836 0.645257i
\(555\) −0.384689 + 0.103077i −0.0163291 + 0.00437538i
\(556\) −22.6372 + 28.0546i −0.960029 + 1.18978i
\(557\) −14.4174 3.86313i −0.610884 0.163686i −0.0599038 0.998204i \(-0.519079\pi\)
−0.550980 + 0.834518i \(0.685746\pi\)
\(558\) −19.7964 17.7935i −0.838049 0.753258i
\(559\) 6.36514 0.269217
\(560\) 0 0
\(561\) 0.257462 0.0108700
\(562\) 13.7193 + 12.3313i 0.578715 + 0.520163i
\(563\) −7.71786 2.06799i −0.325269 0.0871556i 0.0924895 0.995714i \(-0.470518\pi\)
−0.417759 + 0.908558i \(0.637184\pi\)
\(564\) 0.171635 + 0.138492i 0.00722714 + 0.00583156i
\(565\) −5.88607 + 1.57717i −0.247629 + 0.0663519i
\(566\) −14.8653 22.8469i −0.624837 0.960327i
\(567\) 0 0
\(568\) −12.0325 + 16.6529i −0.504873 + 0.698740i
\(569\) −12.1275 7.00179i −0.508409 0.293530i 0.223770 0.974642i \(-0.428163\pi\)
−0.732180 + 0.681112i \(0.761497\pi\)
\(570\) 0.732010 + 0.372173i 0.0306605 + 0.0155886i
\(571\) −0.488992 + 1.82494i −0.0204637 + 0.0763715i −0.975403 0.220431i \(-0.929254\pi\)
0.954939 + 0.296802i \(0.0959203\pi\)
\(572\) −5.67803 + 4.14050i −0.237411 + 0.173123i
\(573\) −1.03149 + 1.03149i −0.0430913 + 0.0430913i
\(574\) 0 0
\(575\) 14.9486 0.623400
\(576\) 4.86167 23.4765i 0.202570 0.978189i
\(577\) 8.81809 + 15.2734i 0.367102 + 0.635839i 0.989111 0.147171i \(-0.0470167\pi\)
−0.622009 + 0.783010i \(0.713683\pi\)
\(578\) −3.66634 11.2504i −0.152500 0.467954i
\(579\) −0.182818 0.682288i −0.00759767 0.0283549i
\(580\) 6.94453 + 3.07738i 0.288356 + 0.127781i
\(581\) 0 0
\(582\) 0.646993 0.420966i 0.0268187 0.0174496i
\(583\) 15.6511 + 9.03615i 0.648201 + 0.374239i
\(584\) −39.7649 4.07417i −1.64548 0.168590i
\(585\) −7.62870 + 4.40443i −0.315408 + 0.182101i
\(586\) −25.3683 + 1.35171i −1.04795 + 0.0558386i
\(587\) −18.5150 18.5150i −0.764194 0.764194i 0.212883 0.977078i \(-0.431715\pi\)
−0.977078 + 0.212883i \(0.931715\pi\)
\(588\) 0 0
\(589\) 35.1788 35.1788i 1.44952 1.44952i
\(590\) −4.19857 3.77378i −0.172852 0.155364i
\(591\) −0.331042 0.573382i −0.0136172 0.0235858i
\(592\) −19.3288 + 9.93369i −0.794407 + 0.408272i
\(593\) 3.95463 6.84963i 0.162397 0.281281i −0.773331 0.634003i \(-0.781411\pi\)
0.935728 + 0.352722i \(0.114744\pi\)
\(594\) 0.153872 0.727031i 0.00631344 0.0298305i
\(595\) 0 0
\(596\) −10.8308 28.0686i −0.443648 1.14974i
\(597\) −1.04718 + 0.280591i −0.0428582 + 0.0114838i
\(598\) 6.54517 12.8734i 0.267652 0.526432i
\(599\) 18.5333 10.7002i 0.757251 0.437199i −0.0710572 0.997472i \(-0.522637\pi\)
0.828308 + 0.560273i \(0.189304\pi\)
\(600\) 0.491669 + 0.187258i 0.0200723 + 0.00764476i
\(601\) 0.974684i 0.0397582i −0.999802 0.0198791i \(-0.993672\pi\)
0.999802 0.0198791i \(-0.00632813\pi\)
\(602\) 0 0
\(603\) 4.64033 + 4.64033i 0.188969 + 0.188969i
\(604\) −21.4371 29.3975i −0.872262 1.19617i
\(605\) −10.7882 2.89070i −0.438604 0.117524i
\(606\) −0.260689 0.799939i −0.0105897 0.0324953i
\(607\) 3.01261 5.21800i 0.122278 0.211792i −0.798388 0.602144i \(-0.794313\pi\)
0.920666 + 0.390352i \(0.127647\pi\)
\(608\) 43.3335 + 11.4086i 1.75741 + 0.462681i
\(609\) 0 0
\(610\) 18.1321 + 3.83754i 0.734146 + 0.155378i
\(611\) −1.14443 4.27106i −0.0462985 0.172788i
\(612\) 17.5108 1.87139i 0.707834 0.0756465i
\(613\) −0.426012 + 1.58990i −0.0172065 + 0.0642155i −0.973995 0.226568i \(-0.927249\pi\)
0.956789 + 0.290784i \(0.0939160\pi\)
\(614\) 1.65136 + 30.9920i 0.0666434 + 1.25073i
\(615\) 0.538124i 0.0216993i
\(616\) 0 0
\(617\) 34.0864i 1.37227i −0.727476 0.686134i \(-0.759307\pi\)
0.727476 0.686134i \(-0.240693\pi\)
\(618\) 0.272215 0.0145045i 0.0109501 0.000583458i
\(619\) 8.65485 32.3004i 0.347868 1.29826i −0.541358 0.840792i \(-0.682090\pi\)
0.889226 0.457469i \(-0.151244\pi\)
\(620\) −10.2714 + 12.7295i −0.412508 + 0.511228i
\(621\) 0.395268 + 1.47516i 0.0158615 + 0.0591961i
\(622\) −1.06366 + 5.02568i −0.0426487 + 0.201512i
\(623\) 0 0
\(624\) 0.376537 0.341424i 0.0150735 0.0136679i
\(625\) 1.22016 2.11337i 0.0488063 0.0845349i
\(626\) −5.03795 + 1.64179i −0.201357 + 0.0656193i
\(627\) 0.670466 + 0.179651i 0.0267758 + 0.00717456i
\(628\) −3.00849 + 19.2120i −0.120052 + 0.766642i
\(629\) −11.2877 11.2877i −0.450070 0.450070i
\(630\) 0 0
\(631\) 4.58799i 0.182645i 0.995821 + 0.0913225i \(0.0291094\pi\)
−0.995821 + 0.0913225i \(0.970891\pi\)
\(632\) 4.96333 2.22541i 0.197430 0.0885222i
\(633\) −0.594458 + 0.343211i −0.0236276 + 0.0136414i
\(634\) 31.0154 + 15.7691i 1.23178 + 0.626269i
\(635\) −7.08533 + 1.89851i −0.281173 + 0.0753400i
\(636\) −1.19507 0.529580i −0.0473875 0.0209992i
\(637\) 0 0
\(638\) 6.28131 + 1.32940i 0.248680 + 0.0526315i
\(639\) −10.8842 + 18.8519i −0.430571 + 0.745770i
\(640\) −14.5649 2.21567i −0.575728 0.0875822i
\(641\) 24.9135 + 43.1515i 0.984025 + 1.70438i 0.646190 + 0.763177i \(0.276361\pi\)
0.337835 + 0.941205i \(0.390305\pi\)
\(642\) −0.609732 + 0.678367i −0.0240642 + 0.0267730i
\(643\) 31.1050 31.1050i 1.22666 1.22666i 0.261443 0.965219i \(-0.415802\pi\)
0.965219 0.261443i \(-0.0841985\pi\)
\(644\) 0 0
\(645\) 0.146161 + 0.146161i 0.00575509 + 0.00575509i
\(646\) 1.75135 + 32.8686i 0.0689061 + 1.29320i
\(647\) 25.4255 14.6794i 0.999579 0.577107i 0.0914555 0.995809i \(-0.470848\pi\)
0.908124 + 0.418702i \(0.137515\pi\)
\(648\) 2.58631 25.2431i 0.101600 0.991641i
\(649\) −4.13245 2.38587i −0.162213 0.0936536i
\(650\) −5.75280 8.84162i −0.225643 0.346797i
\(651\) 0 0
\(652\) −24.2628 + 9.36227i −0.950205 + 0.366655i
\(653\) −3.93761 14.6954i −0.154091 0.575075i −0.999181 0.0404516i \(-0.987120\pi\)
0.845091 0.534623i \(-0.179546\pi\)
\(654\) 0.237330 0.0773424i 0.00928034 0.00302433i
\(655\) 1.35165 + 2.34112i 0.0528132 + 0.0914752i
\(656\) −6.20541 28.7008i −0.242281 1.12058i
\(657\) −42.3531 −1.65235
\(658\) 0 0
\(659\) −8.45620 + 8.45620i −0.329407 + 0.329407i −0.852361 0.522954i \(-0.824830\pi\)
0.522954 + 0.852361i \(0.324830\pi\)
\(660\) −0.225461 0.0353059i −0.00877604 0.00137428i
\(661\) 3.50720 13.0890i 0.136414 0.509105i −0.863574 0.504222i \(-0.831779\pi\)
0.999988 0.00488232i \(-0.00155410\pi\)
\(662\) 6.49932 12.7832i 0.252603 0.496834i
\(663\) 0.323338 + 0.186679i 0.0125574 + 0.00725001i
\(664\) 34.8599 5.61492i 1.35283 0.217901i
\(665\) 0 0
\(666\) −19.3002 + 12.5577i −0.747867 + 0.486599i
\(667\) −12.7449 + 3.41498i −0.493484 + 0.132229i
\(668\) −32.8961 + 3.51562i −1.27279 + 0.136023i
\(669\) 1.22019 + 0.326949i 0.0471753 + 0.0126406i
\(670\) 2.69573 2.99917i 0.104145 0.115868i
\(671\) 15.6658 0.604771
\(672\) 0 0
\(673\) −15.5552 −0.599610 −0.299805 0.954000i \(-0.596922\pi\)
−0.299805 + 0.954000i \(0.596922\pi\)
\(674\) −5.01753 + 5.58233i −0.193268 + 0.215023i
\(675\) 1.07747 + 0.288708i 0.0414720 + 0.0111124i
\(676\) 15.7197 1.67997i 0.604606 0.0646144i
\(677\) 39.5868 10.6072i 1.52144 0.407669i 0.601226 0.799079i \(-0.294679\pi\)
0.920217 + 0.391410i \(0.128012\pi\)
\(678\) 0.312269 0.203178i 0.0119926 0.00780299i
\(679\) 0 0
\(680\) −1.72088 10.6840i −0.0659929 0.409713i
\(681\) 0.114030 + 0.0658350i 0.00436962 + 0.00252280i
\(682\) −6.26593 + 12.3242i −0.239935 + 0.471917i
\(683\) 3.19786 11.9346i 0.122363 0.456664i −0.877369 0.479816i \(-0.840704\pi\)
0.999732 + 0.0231521i \(0.00737021\pi\)
\(684\) 46.9065 + 7.34531i 1.79351 + 0.280855i
\(685\) −2.85672 + 2.85672i −0.109150 + 0.109150i
\(686\) 0 0
\(687\) 1.10632 0.0422089
\(688\) 9.48097 + 6.11004i 0.361459 + 0.232943i
\(689\) 13.1038 + 22.6964i 0.499214 + 0.864664i
\(690\) 0.445904 0.145314i 0.0169753 0.00553199i
\(691\) 1.44023 + 5.37500i 0.0547888 + 0.204475i 0.987894 0.155128i \(-0.0495789\pi\)
−0.933106 + 0.359603i \(0.882912\pi\)
\(692\) 40.3158 15.5566i 1.53258 0.591375i
\(693\) 0 0
\(694\) −3.18121 4.88928i −0.120757 0.185594i
\(695\) 20.3263 + 11.7354i 0.771021 + 0.445149i
\(696\) −0.461966 0.0473314i −0.0175108 0.00179409i
\(697\) 18.6796 10.7847i 0.707540 0.408498i
\(698\) 1.21992 + 22.8950i 0.0461748 + 0.866587i
\(699\) −0.154214 0.154214i −0.00583290 0.00583290i
\(700\) 0 0
\(701\) 22.0458 22.0458i 0.832657 0.832657i −0.155223 0.987880i \(-0.549609\pi\)
0.987880 + 0.155223i \(0.0496095\pi\)
\(702\) 0.720395 0.801486i 0.0271896 0.0302502i
\(703\) −21.5184 37.2710i −0.811583 1.40570i
\(704\) −12.4321 + 0.716872i −0.468552 + 0.0270181i
\(705\) 0.0717960 0.124354i 0.00270399 0.00468346i
\(706\) −5.35084 1.13247i −0.201381 0.0426212i
\(707\) 0 0
\(708\) 0.315541 + 0.139828i 0.0118588 + 0.00525506i
\(709\) −11.9661 + 3.20632i −0.449398 + 0.120416i −0.476417 0.879219i \(-0.658065\pi\)
0.0270200 + 0.999635i \(0.491398\pi\)
\(710\) 11.9240 + 6.06246i 0.447499 + 0.227520i
\(711\) 4.99113 2.88163i 0.187182 0.108070i
\(712\) 15.4366 + 34.4282i 0.578511 + 1.29025i
\(713\) 28.4126i 1.06406i
\(714\) 0 0
\(715\) 3.23532 + 3.23532i 0.120994 + 0.120994i
\(716\) −5.87055 + 37.4888i −0.219393 + 1.40102i
\(717\) −0.357122 0.0956906i −0.0133370 0.00357363i
\(718\) −21.2675 + 6.93076i −0.793695 + 0.258654i
\(719\) 7.64439 13.2405i 0.285088 0.493786i −0.687543 0.726144i \(-0.741311\pi\)
0.972630 + 0.232358i \(0.0746440\pi\)
\(720\) −15.5910 0.762491i −0.581042 0.0284164i
\(721\) 0 0
\(722\) −12.8106 + 60.5288i −0.476760 + 2.25265i
\(723\) −0.193093 0.720631i −0.00718119 0.0268006i
\(724\) −11.4423 + 14.1807i −0.425250 + 0.527020i
\(725\) −2.49434 + 9.30902i −0.0926376 + 0.345728i
\(726\) 0.681856 0.0363317i 0.0253061 0.00134839i
\(727\) 23.7860i 0.882173i −0.897465 0.441086i \(-0.854593\pi\)
0.897465 0.441086i \(-0.145407\pi\)
\(728\) 0 0
\(729\) 26.8290i 0.993668i
\(730\) 1.38479 + 25.9892i 0.0512534 + 0.961902i
\(731\) −2.14436 + 8.00285i −0.0793119 + 0.295996i
\(732\) −1.12667 + 0.120408i −0.0416431 + 0.00445041i
\(733\) −5.32874 19.8871i −0.196822 0.734548i −0.991788 0.127894i \(-0.959178\pi\)
0.794966 0.606654i \(-0.207489\pi\)
\(734\) −6.56764 1.39000i −0.242416 0.0513059i
\(735\) 0 0
\(736\) 22.1066 12.8923i 0.814860 0.475215i
\(737\) 1.70430 2.95194i 0.0627787 0.108736i
\(738\) −9.64008 29.5812i −0.354856 1.08890i
\(739\) 26.3224 + 7.05306i 0.968284 + 0.259451i 0.708103 0.706109i \(-0.249551\pi\)
0.260181 + 0.965560i \(0.416218\pi\)
\(740\) 8.33681 + 11.4326i 0.306467 + 0.420271i
\(741\) 0.711756 + 0.711756i 0.0261470 + 0.0261470i
\(742\) 0 0
\(743\) 12.8386i 0.471002i 0.971874 + 0.235501i \(0.0756731\pi\)
−0.971874 + 0.235501i \(0.924327\pi\)
\(744\) 0.355918 0.934508i 0.0130486 0.0342607i
\(745\) −16.9641 + 9.79426i −0.621518 + 0.358834i
\(746\) 14.6036 28.7232i 0.534676 1.05163i
\(747\) 36.1368 9.68282i 1.32218 0.354276i
\(748\) −3.29295 8.53386i −0.120402 0.312029i
\(749\) 0 0
\(750\) 0.178253 0.842232i 0.00650889 0.0307539i
\(751\) 7.23318 12.5282i 0.263942 0.457162i −0.703344 0.710850i \(-0.748310\pi\)
0.967286 + 0.253688i \(0.0816438\pi\)
\(752\) 2.39524 7.46036i 0.0873455 0.272051i
\(753\) 0.151625 + 0.262622i 0.00552552 + 0.00957048i
\(754\) 6.92458 + 6.22398i 0.252178 + 0.226664i
\(755\) −16.7506 + 16.7506i −0.609616 + 0.609616i
\(756\) 0 0
\(757\) −2.16062 2.16062i −0.0785291 0.0785291i 0.666751 0.745280i \(-0.267684\pi\)
−0.745280 + 0.666751i \(0.767684\pi\)
\(758\) 40.1490 2.13928i 1.45828 0.0777020i
\(759\) 0.343304 0.198207i 0.0124611 0.00719444i
\(760\) 2.97363 29.0234i 0.107865 1.05279i
\(761\) −2.04136 1.17858i −0.0739994 0.0427236i 0.462544 0.886596i \(-0.346937\pi\)
−0.536543 + 0.843873i \(0.680270\pi\)
\(762\) 0.375892 0.244574i 0.0136171 0.00885998i
\(763\) 0 0
\(764\) 47.3829 + 20.9972i 1.71425 + 0.759651i
\(765\) −2.96763 11.0753i −0.107295 0.400430i
\(766\) 10.2758 + 31.5318i 0.371278 + 1.13929i
\(767\) −3.45987 5.99267i −0.124929 0.216383i
\(768\) 0.888598 0.147111i 0.0320645 0.00530840i
\(769\) −7.96868 −0.287358 −0.143679 0.989624i \(-0.545893\pi\)
−0.143679 + 0.989624i \(0.545893\pi\)
\(770\) 0 0
\(771\) −0.940923 + 0.940923i −0.0338865 + 0.0338865i
\(772\) −20.2769 + 14.7862i −0.729783 + 0.532168i
\(773\) 5.69575 21.2568i 0.204862 0.764555i −0.784630 0.619965i \(-0.787147\pi\)
0.989492 0.144590i \(-0.0461865\pi\)
\(774\) 10.6530 + 5.41625i 0.382914 + 0.194683i
\(775\) −17.9725 10.3764i −0.645592 0.372733i
\(776\) −22.2285 16.0611i −0.797956 0.576561i
\(777\) 0 0
\(778\) −8.26509 12.7028i −0.296318 0.455418i
\(779\) 56.1695 15.0506i 2.01248 0.539243i
\(780\) −0.257549 0.207816i −0.00922174 0.00744099i
\(781\) 10.9215 + 2.92640i 0.390801 + 0.104715i
\(782\) 13.9806 + 12.5661i 0.499947 + 0.449364i
\(783\) −0.984588 −0.0351863
\(784\) 0 0
\(785\) 12.6611 0.451896
\(786\) −0.122916 0.110480i −0.00438428 0.00394070i
\(787\) 27.7816 + 7.44405i 0.990306 + 0.265352i 0.717379 0.696683i \(-0.245342\pi\)
0.272927 + 0.962035i \(0.412008\pi\)
\(788\) −14.7713 + 18.3064i −0.526207 + 0.652137i
\(789\) −0.968810 + 0.259592i −0.0344905 + 0.00924171i
\(790\) −1.93145 2.96849i −0.0687178 0.105614i
\(791\) 0 0
\(792\) −13.0263 + 2.09815i −0.462868 + 0.0745547i
\(793\) 19.6741 + 11.3589i 0.698649 + 0.403365i
\(794\) −8.35562 4.24821i −0.296530 0.150764i
\(795\) −0.220273 + 0.822071i −0.00781229 + 0.0291558i
\(796\) 22.6940 + 31.1212i 0.804369 + 1.10306i
\(797\) 22.0411 22.0411i 0.780736 0.780736i −0.199219 0.979955i \(-0.563840\pi\)
0.979955 + 0.199219i \(0.0638405\pi\)
\(798\) 0 0
\(799\) 5.75552 0.203616
\(800\) −0.0816127 18.6920i −0.00288544 0.660861i
\(801\) 19.9885 + 34.6210i 0.706258 + 1.22327i
\(802\) 13.9044 + 42.6664i 0.490980 + 1.50660i
\(803\) 5.69369 + 21.2491i 0.200926 + 0.749866i
\(804\) −0.0998836 + 0.225401i −0.00352262 + 0.00794928i
\(805\) 0 0
\(806\) −16.8051 + 10.9343i −0.591936 + 0.385143i
\(807\) 0.311270 + 0.179712i 0.0109572 + 0.00632616i
\(808\) −23.1807 + 18.8721i −0.815493 + 0.663918i
\(809\) 25.9855 15.0027i 0.913600 0.527467i 0.0320125 0.999487i \(-0.489808\pi\)
0.881588 + 0.472020i \(0.156475\pi\)
\(810\) −16.4981 + 0.879076i −0.579684 + 0.0308876i
\(811\) 20.2976 + 20.2976i 0.712746 + 0.712746i 0.967109 0.254363i \(-0.0818658\pi\)
−0.254363 + 0.967109i \(0.581866\pi\)
\(812\) 0 0
\(813\) −0.317411 + 0.317411i −0.0111321 + 0.0111321i
\(814\) 8.89495 + 7.99500i 0.311768 + 0.280224i
\(815\) 8.46625 + 14.6640i 0.296560 + 0.513657i
\(816\) 0.302419 + 0.588440i 0.0105868 + 0.0205995i
\(817\) −11.1684 + 19.3443i −0.390733 + 0.676770i
\(818\) 0.378535 1.78854i 0.0132351 0.0625349i
\(819\) 0 0
\(820\) −17.8367 + 6.88265i −0.622886 + 0.240352i
\(821\) −53.0609 + 14.2176i −1.85184 + 0.496199i −0.999635 0.0270111i \(-0.991401\pi\)
−0.852204 + 0.523210i \(0.824734\pi\)
\(822\) 0.111940 0.220170i 0.00390436 0.00767931i
\(823\) 20.1906 11.6571i 0.703800 0.406339i −0.104961 0.994476i \(-0.533472\pi\)
0.808761 + 0.588137i \(0.200138\pi\)
\(824\) −3.96242 8.83736i −0.138037 0.307864i
\(825\) 0.289545i 0.0100807i
\(826\) 0 0
\(827\) 4.26358 + 4.26358i 0.148259 + 0.148259i 0.777340 0.629081i \(-0.216568\pi\)
−0.629081 + 0.777340i \(0.716568\pi\)
\(828\) 21.9086 15.9761i 0.761376 0.555206i
\(829\) 40.5325 + 10.8606i 1.40775 + 0.377206i 0.881122 0.472889i \(-0.156789\pi\)
0.526630 + 0.850095i \(0.323455\pi\)
\(830\) −7.12321 21.8580i −0.247250 0.758703i
\(831\) 0.360624 0.624619i 0.0125099 0.0216678i
\(832\) −16.1328 8.11390i −0.559305 0.281299i
\(833\) 0 0
\(834\) −1.40383 0.297113i −0.0486107 0.0102882i
\(835\) 5.57502 + 20.8063i 0.192932 + 0.720030i
\(836\) −2.62058 24.5211i −0.0906346 0.848080i
\(837\) 0.548743 2.04794i 0.0189673 0.0707871i
\(838\) 1.83874 + 34.5086i 0.0635181 + 1.19208i
\(839\) 46.6970i 1.61216i 0.591806 + 0.806081i \(0.298415\pi\)
−0.591806 + 0.806081i \(0.701585\pi\)
\(840\) 0 0
\(841\) 20.4935i 0.706672i
\(842\) 6.71538 0.357819i 0.231427 0.0123312i
\(843\) −0.190045 + 0.709257i −0.00654549 + 0.0244281i
\(844\) 18.9793 + 15.3143i 0.653294 + 0.527140i
\(845\) −2.66408 9.94249i −0.0916472 0.342032i
\(846\) 1.71898 8.12205i 0.0590999 0.279242i
\(847\) 0 0
\(848\) −2.26851 + 46.3853i −0.0779010 + 1.59288i
\(849\) 0.542493 0.939626i 0.0186183 0.0322479i
\(850\) 13.0546 4.25430i 0.447769 0.145921i
\(851\) −23.7410 6.36139i −0.813832 0.218066i
\(852\) −0.807958 0.126522i −0.0276802 0.00433457i
\(853\) 14.9036 + 14.9036i 0.510289 + 0.510289i 0.914615 0.404326i \(-0.132494\pi\)
−0.404326 + 0.914615i \(0.632494\pi\)
\(854\) 0 0
\(855\) 30.9125i 1.05718i
\(856\) 30.2838 + 11.5339i 1.03508 + 0.394221i
\(857\) −12.5881 + 7.26772i −0.430000 + 0.248261i −0.699347 0.714783i \(-0.746526\pi\)
0.269347 + 0.963043i \(0.413192\pi\)
\(858\) −0.249349 0.126776i −0.00851265 0.00432805i
\(859\) −37.9861 + 10.1784i −1.29607 + 0.347281i −0.839963 0.542644i \(-0.817423\pi\)
−0.456107 + 0.889925i \(0.650757\pi\)
\(860\) 2.97527 6.71409i 0.101456 0.228949i
\(861\) 0 0
\(862\) −15.4606 3.27214i −0.526589 0.111449i
\(863\) 6.49230 11.2450i 0.221000 0.382784i −0.734112 0.679029i \(-0.762401\pi\)
0.955112 + 0.296245i \(0.0957345\pi\)
\(864\) 1.84240 0.502303i 0.0626799 0.0170887i
\(865\) −14.0678 24.3661i −0.478319 0.828473i
\(866\) 16.4441 18.2952i 0.558795 0.621695i
\(867\) 0.333052 0.333052i 0.0113110 0.0113110i
\(868\) 0 0
\(869\) −2.11673 2.11673i −0.0718052 0.0718052i
\(870\) 0.0160877 + 0.301927i 0.000545425 + 0.0102363i
\(871\) 4.28075 2.47149i 0.145048 0.0837434i
\(872\) −5.59907 6.87736i −0.189609 0.232897i
\(873\) −25.1638 14.5283i −0.851665 0.491709i
\(874\) 27.6392 + 42.4793i 0.934909 + 1.43689i
\(875\) 0 0
\(876\) −0.572809 1.48446i −0.0193534 0.0501554i
\(877\) 5.80637 + 21.6697i 0.196067 + 0.731733i 0.991988 + 0.126332i \(0.0403205\pi\)
−0.795921 + 0.605401i \(0.793013\pi\)
\(878\) 50.4782 16.4501i 1.70356 0.555164i
\(879\) −0.505614 0.875749i −0.0170539 0.0295383i
\(880\) 1.71340 + 7.92472i 0.0577588 + 0.267142i
\(881\) 8.65332 0.291538 0.145769 0.989319i \(-0.453434\pi\)
0.145769 + 0.989319i \(0.453434\pi\)
\(882\) 0 0
\(883\) 30.6837 30.6837i 1.03259 1.03259i 0.0331374 0.999451i \(-0.489450\pi\)
0.999451 0.0331374i \(-0.0105499\pi\)
\(884\) 2.05218 13.1050i 0.0690222 0.440770i
\(885\) 0.0581601 0.217056i 0.00195503 0.00729627i
\(886\) 4.56645 8.98155i 0.153413 0.301741i
\(887\) −24.7803 14.3069i −0.832042 0.480380i 0.0225091 0.999747i \(-0.492835\pi\)
−0.854551 + 0.519367i \(0.826168\pi\)
\(888\) −0.701170 0.506628i −0.0235297 0.0170013i
\(889\) 0 0
\(890\) 20.5910 13.3975i 0.690211 0.449086i
\(891\) −13.4891 + 3.61439i −0.451902 + 0.121087i
\(892\) −4.76923 44.6263i −0.159686 1.49420i
\(893\) 14.9882 + 4.01607i 0.501560 + 0.134393i
\(894\) 0.800558 0.890672i 0.0267747 0.0297885i
\(895\) 24.7060 0.825830
\(896\) 0 0
\(897\) 0.574859 0.0191940
\(898\) −7.41179 + 8.24610i −0.247335 + 0.275176i
\(899\) 17.6935 + 4.74096i 0.590112 + 0.158120i
\(900\) −2.10459 19.6929i −0.0701530 0.656431i
\(901\) −32.9506 + 8.82909i −1.09774 + 0.294140i
\(902\) −13.5453 + 8.81328i −0.451011 + 0.293450i
\(903\) 0 0
\(904\) −10.7285 7.75184i −0.356824 0.257822i
\(905\) 10.2743 + 5.93185i 0.341528 + 0.197182i
\(906\) 0.656369 1.29098i 0.0218064 0.0428900i
\(907\) 4.82227 17.9969i 0.160121 0.597579i −0.838492 0.544915i \(-0.816562\pi\)
0.998612 0.0526640i \(-0.0167712\pi\)
\(908\) 0.723729 4.62167i 0.0240178 0.153376i
\(909\) −22.3949 + 22.3949i −0.742793 + 0.742793i
\(910\) 0 0
\(911\) −12.2041 −0.404341 −0.202170 0.979350i \(-0.564799\pi\)
−0.202170 + 0.979350i \(0.564799\pi\)
\(912\) 0.376941 + 1.74340i 0.0124818 + 0.0577298i
\(913\) −9.71601 16.8286i −0.321553 0.556946i
\(914\) −34.5958 + 11.2743i −1.14433 + 0.372920i
\(915\) 0.190942 + 0.712603i 0.00631233 + 0.0235579i
\(916\) −14.1500 36.6704i −0.467528 1.21162i
\(917\) 0 0
\(918\) 0.765009 + 1.17576i 0.0252491 + 0.0388059i
\(919\) −3.57056 2.06146i −0.117782 0.0680014i 0.439952 0.898021i \(-0.354996\pi\)
−0.557734 + 0.830020i \(0.688329\pi\)
\(920\) −10.5197 12.9214i −0.346825 0.426007i
\(921\) −1.06989 + 0.617699i −0.0352539 + 0.0203539i
\(922\) −1.40109 26.2949i −0.0461423 0.865978i
\(923\) 11.5941 + 11.5941i 0.381623 + 0.381623i
\(924\) 0 0
\(925\) −12.6943 + 12.6943i −0.417386 + 0.417386i
\(926\) 6.51195 7.24496i 0.213996 0.238084i
\(927\) −5.13083 8.88686i −0.168519 0.291883i
\(928\) 4.33973 + 15.9178i 0.142459 + 0.522526i
\(929\) 22.7002 39.3180i 0.744771 1.28998i −0.205531 0.978651i \(-0.565892\pi\)
0.950302 0.311330i \(-0.100775\pi\)
\(930\) −0.636973 0.134812i −0.0208872 0.00442064i
\(931\) 0 0
\(932\) −3.13919 + 7.08400i −0.102827 + 0.232044i
\(933\) −0.197513 + 0.0529235i −0.00646629 + 0.00173264i
\(934\) −49.8757 25.3581i −1.63198 0.829743i
\(935\) −5.15770 + 2.97780i −0.168675 + 0.0973845i
\(936\) −17.8806 6.81003i −0.584445 0.222593i
\(937\) 8.69727i 0.284127i −0.989858 0.142064i \(-0.954626\pi\)
0.989858 0.142064i \(-0.0453738\pi\)
\(938\) 0 0
\(939\) −0.149141 0.149141i −0.00486704 0.00486704i
\(940\) −5.04014 0.789260i −0.164391 0.0257428i
\(941\) 11.6093 + 3.11071i 0.378454 + 0.101406i 0.443031 0.896506i \(-0.353903\pi\)
−0.0645772 + 0.997913i \(0.520570\pi\)
\(942\) −0.735966 + 0.239841i −0.0239791 + 0.00781443i
\(943\) 16.6051 28.7609i 0.540737 0.936584i
\(944\) 0.598969 12.2474i 0.0194948 0.398618i
\(945\) 0 0
\(946\) 1.28529 6.07288i 0.0417883 0.197446i
\(947\) −14.8879 55.5623i −0.483791 1.80553i −0.585443 0.810713i \(-0.699080\pi\)
0.101652 0.994820i \(-0.467587\pi\)
\(948\) 0.168503 + 0.135965i 0.00547273 + 0.00441593i
\(949\) −8.25671 + 30.8145i −0.268024 + 1.00028i
\(950\) 36.9645 1.96960i 1.19929 0.0639021i
\(951\) 1.38499i 0.0449113i
\(952\) 0 0
\(953\) 8.69133i 0.281540i −0.990042 0.140770i \(-0.955042\pi\)
0.990042 0.140770i \(-0.0449578\pi\)
\(954\) 2.61814 + 49.1361i 0.0847654 + 1.59084i
\(955\) 8.73356 32.5941i 0.282611 1.05472i
\(956\) 1.39585 + 13.0611i 0.0451449 + 0.422427i
\(957\) 0.0661460 + 0.246860i 0.00213820 + 0.00797986i
\(958\) −0.724965 0.153434i −0.0234225 0.00495724i
\(959\) 0 0
\(960\) −0.184137 0.556772i −0.00594299 0.0179697i
\(961\) −4.22236 + 7.31334i −0.136205 + 0.235914i
\(962\) 5.37390 + 16.4902i 0.173262 + 0.531664i
\(963\) 33.1653 + 8.88662i 1.06874 + 0.286367i
\(964\) −21.4165 + 15.6172i −0.689778 + 0.502996i
\(965\) 11.5537 + 11.5537i 0.371927 + 0.371927i
\(966\) 0 0
\(967\) 28.1636i 0.905681i 0.891592 + 0.452840i \(0.149589\pi\)
−0.891592 + 0.452840i \(0.850411\pi\)
\(968\) −9.92525 22.1362i −0.319009 0.711485i
\(969\) −1.13467 + 0.655102i −0.0364509 + 0.0210449i
\(970\) −8.09225 + 15.9163i −0.259827 + 0.511041i
\(971\) −10.1276 + 2.71368i −0.325010 + 0.0870862i −0.417635 0.908615i \(-0.637141\pi\)
0.0926248 + 0.995701i \(0.470474\pi\)
\(972\) 2.83203 1.09279i 0.0908375 0.0350514i
\(973\) 0 0
\(974\) 0.833765 3.93947i 0.0267155 0.126229i
\(975\) 0.209942 0.363630i 0.00672352 0.0116455i
\(976\) 18.4013 + 35.8049i 0.589011 + 1.14609i
\(977\) −17.3812 30.1051i −0.556073 0.963147i −0.997819 0.0660068i \(-0.978974\pi\)
0.441746 0.897140i \(-0.354359\pi\)
\(978\) −0.769906 0.692010i −0.0246189 0.0221280i
\(979\) 14.6827 14.6827i 0.469262 0.469262i
\(980\) 0 0
\(981\) −6.64424 6.64424i −0.212134 0.212134i
\(982\) −34.9156 + 1.86042i −1.11420 + 0.0593685i
\(983\) −2.48718 + 1.43597i −0.0793286 + 0.0458004i −0.539140 0.842216i \(-0.681250\pi\)
0.459811 + 0.888017i \(0.347917\pi\)
\(984\) 0.906434 0.737956i 0.0288961 0.0235252i
\(985\) 13.2635 + 7.65766i 0.422609 + 0.243993i
\(986\) −10.1582 + 6.60943i −0.323503 + 0.210487i
\(987\) 0 0
\(988\) 14.4885 32.6954i 0.460942 1.04018i
\(989\) 3.30166 + 12.3220i 0.104987 + 0.391816i
\(990\) 2.66176 + 8.16779i 0.0845964 + 0.259590i
\(991\) 15.8744 + 27.4952i 0.504266 + 0.873414i 0.999988 + 0.00493273i \(0.00157014\pi\)
−0.495722 + 0.868481i \(0.665097\pi\)
\(992\) −35.5276 + 0.155120i −1.12800 + 0.00492506i
\(993\) 0.570832 0.0181148
\(994\) 0 0
\(995\) 17.7327 17.7327i 0.562166 0.562166i
\(996\) 0.828115 + 1.13563i 0.0262398 + 0.0359837i
\(997\) −5.29788 + 19.7719i −0.167785 + 0.626184i 0.829883 + 0.557937i \(0.188407\pi\)
−0.997668 + 0.0682464i \(0.978260\pi\)
\(998\) 1.70767 + 0.868222i 0.0540552 + 0.0274831i
\(999\) −1.58836 0.917039i −0.0502534 0.0290138i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.x.o.373.10 48
7.2 even 3 784.2.m.k.197.1 24
7.3 odd 6 112.2.w.c.53.8 yes 48
7.4 even 3 inner 784.2.x.o.165.8 48
7.5 odd 6 784.2.m.j.197.1 24
7.6 odd 2 112.2.w.c.37.10 48
16.13 even 4 inner 784.2.x.o.765.8 48
28.3 even 6 448.2.ba.c.305.6 48
28.27 even 2 448.2.ba.c.177.7 48
56.3 even 6 896.2.ba.e.865.7 48
56.13 odd 2 896.2.ba.f.737.7 48
56.27 even 2 896.2.ba.e.737.6 48
56.45 odd 6 896.2.ba.f.865.6 48
112.3 even 12 448.2.ba.c.81.7 48
112.13 odd 4 112.2.w.c.93.8 yes 48
112.27 even 4 896.2.ba.e.289.7 48
112.45 odd 12 112.2.w.c.109.10 yes 48
112.59 even 12 896.2.ba.e.417.6 48
112.61 odd 12 784.2.m.j.589.1 24
112.69 odd 4 896.2.ba.f.289.6 48
112.83 even 4 448.2.ba.c.401.6 48
112.93 even 12 784.2.m.k.589.1 24
112.101 odd 12 896.2.ba.f.417.7 48
112.109 even 12 inner 784.2.x.o.557.10 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.c.37.10 48 7.6 odd 2
112.2.w.c.53.8 yes 48 7.3 odd 6
112.2.w.c.93.8 yes 48 112.13 odd 4
112.2.w.c.109.10 yes 48 112.45 odd 12
448.2.ba.c.81.7 48 112.3 even 12
448.2.ba.c.177.7 48 28.27 even 2
448.2.ba.c.305.6 48 28.3 even 6
448.2.ba.c.401.6 48 112.83 even 4
784.2.m.j.197.1 24 7.5 odd 6
784.2.m.j.589.1 24 112.61 odd 12
784.2.m.k.197.1 24 7.2 even 3
784.2.m.k.589.1 24 112.93 even 12
784.2.x.o.165.8 48 7.4 even 3 inner
784.2.x.o.373.10 48 1.1 even 1 trivial
784.2.x.o.557.10 48 112.109 even 12 inner
784.2.x.o.765.8 48 16.13 even 4 inner
896.2.ba.e.289.7 48 112.27 even 4
896.2.ba.e.417.6 48 112.59 even 12
896.2.ba.e.737.6 48 56.27 even 2
896.2.ba.e.865.7 48 56.3 even 6
896.2.ba.f.289.6 48 112.69 odd 4
896.2.ba.f.417.7 48 112.101 odd 12
896.2.ba.f.737.7 48 56.13 odd 2
896.2.ba.f.865.6 48 56.45 odd 6