Newspace parameters
| Level: | \( N \) | \(=\) | \( 89 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 89.f (of order \(22\), degree \(10\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(0.710668577989\) |
| Analytic rank: | \(0\) |
| Dimension: | \(60\) |
| Relative dimension: | \(6\) over \(\Q(\zeta_{22})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 11.1 | −1.48394 | − | 1.71256i | 0.872351 | − | 0.125425i | −0.446146 | + | 3.10301i | 2.82308 | − | 1.81428i | −1.50931 | − | 1.30783i | −1.07923 | − | 1.67931i | 2.16351 | − | 1.39041i | −2.13321 | + | 0.626368i | −7.29634 | − | 2.14240i |
| 11.2 | −1.31415 | − | 1.51661i | −1.98015 | + | 0.284702i | −0.288487 | + | 2.00647i | −1.65151 | + | 1.06136i | 3.03399 | + | 2.62897i | 1.37650 | + | 2.14187i | 0.0457543 | − | 0.0294045i | 0.961445 | − | 0.282306i | 3.77999 | + | 1.10991i |
| 11.3 | −0.382053 | − | 0.440912i | 1.76256 | − | 0.253417i | 0.236190 | − | 1.64274i | −1.04570 | + | 0.672030i | −0.785124 | − | 0.680313i | 0.0536672 | + | 0.0835078i | −1.79613 | + | 1.15430i | 0.163903 | − | 0.0481262i | 0.695818 | + | 0.204311i |
| 11.4 | −0.00273185 | − | 0.00315273i | −2.32529 | + | 0.334326i | 0.284627 | − | 1.97963i | 3.08866 | − | 1.98496i | 0.00740638 | + | 0.00641766i | 0.0818830 | + | 0.127413i | −0.0140376 | + | 0.00902143i | 2.41670 | − | 0.709608i | −0.0146958 | − | 0.00431508i |
| 11.5 | 0.842240 | + | 0.971996i | 0.387160 | − | 0.0556652i | 0.0492204 | − | 0.342335i | −0.677335 | + | 0.435297i | 0.380188 | + | 0.329435i | 1.28980 | + | 2.00696i | 2.53814 | − | 1.63116i | −2.73168 | + | 0.802095i | −0.993585 | − | 0.291743i |
| 11.6 | 1.48295 | + | 1.71141i | −0.517381 | + | 0.0743881i | −0.445172 | + | 3.09624i | 0.719151 | − | 0.462170i | −0.894558 | − | 0.775139i | −2.30720 | − | 3.59007i | −2.14903 | + | 1.38110i | −2.61633 | + | 0.768224i | 1.85743 | + | 0.545390i |
| 22.1 | −2.22383 | − | 1.42917i | −0.119759 | − | 0.0546921i | 2.07205 | + | 4.53717i | −0.462825 | + | 3.21902i | 0.188159 | + | 0.292781i | 2.54671 | + | 0.366161i | 1.12407 | − | 7.81806i | −1.95323 | − | 2.25415i | 5.62976 | − | 6.49708i |
| 22.2 | −1.12960 | − | 0.725947i | 2.11558 | + | 0.966153i | −0.0818420 | − | 0.179209i | 0.0525329 | − | 0.365374i | −1.68837 | − | 2.62716i | 1.87109 | + | 0.269022i | −0.419835 | + | 2.92002i | 1.57764 | + | 1.82070i | −0.324584 | + | 0.374589i |
| 22.3 | −0.699304 | − | 0.449415i | −2.19264 | − | 1.00134i | −0.543778 | − | 1.19071i | −0.533702 | + | 3.71198i | 1.08330 | + | 1.68565i | −3.21377 | − | 0.462070i | −0.391459 | + | 2.72266i | 1.84038 | + | 2.12392i | 2.04144 | − | 2.35595i |
| 22.4 | 0.0470506 | + | 0.0302376i | −1.16192 | − | 0.530631i | −0.829531 | − | 1.81642i | 0.280294 | − | 1.94949i | −0.0386240 | − | 0.0601002i | 2.23576 | + | 0.321454i | 0.0318133 | − | 0.221266i | −0.896092 | − | 1.03415i | 0.0721357 | − | 0.0832490i |
| 22.5 | 0.717209 | + | 0.460922i | 1.90233 | + | 0.868765i | −0.528891 | − | 1.15811i | −0.104983 | + | 0.730173i | 0.963935 | + | 1.49991i | −5.03396 | − | 0.723774i | 0.397133 | − | 2.76212i | 0.899524 | + | 1.03811i | −0.411848 | + | 0.475298i |
| 22.6 | 1.87305 | + | 1.20374i | −1.05614 | − | 0.482322i | 1.22851 | + | 2.69006i | −0.0474779 | + | 0.330216i | −1.39761 | − | 2.17473i | −0.365320 | − | 0.0525251i | −0.303335 | + | 2.10974i | −1.08179 | − | 1.24845i | −0.486422 | + | 0.561361i |
| 25.1 | −0.349474 | − | 2.43064i | 0.521935 | − | 1.77755i | −3.86692 | + | 1.13543i | 0.567391 | + | 1.24241i | −4.50299 | − | 0.647432i | 1.55636 | − | 0.710764i | 2.07099 | + | 4.53484i | −0.363498 | − | 0.233606i | 2.82158 | − | 1.81332i |
| 25.2 | −0.220044 | − | 1.53044i | −0.308654 | + | 1.05118i | −0.374846 | + | 0.110065i | −1.41670 | − | 3.10213i | 1.67669 | + | 0.241071i | 2.37239 | − | 1.08343i | −1.03368 | − | 2.26345i | 1.51405 | + | 0.973020i | −4.43589 | + | 2.85078i |
| 25.3 | −0.125840 | − | 0.875240i | 0.380201 | − | 1.29485i | 1.16878 | − | 0.343184i | 0.405702 | + | 0.888363i | −1.18115 | − | 0.169823i | −3.78551 | + | 1.72878i | −1.18210 | − | 2.58844i | 0.991685 | + | 0.637317i | 0.726477 | − | 0.466879i |
| 25.4 | 0.0849017 | + | 0.590504i | −0.651489 | + | 2.21877i | 1.57750 | − | 0.463196i | −0.296239 | − | 0.648674i | −1.36550 | − | 0.196330i | −1.92972 | + | 0.881274i | 0.903105 | + | 1.97752i | −1.97473 | − | 1.26908i | 0.357893 | − | 0.230004i |
| 25.5 | 0.226216 | + | 1.57337i | 0.754338 | − | 2.56904i | −0.505329 | + | 0.148378i | −0.524671 | − | 1.14887i | 4.21269 | + | 0.605693i | −1.15210 | + | 0.526149i | 0.972877 | + | 2.13030i | −3.50718 | − | 2.25393i | 1.68890 | − | 1.08539i |
| 25.6 | 0.343734 | + | 2.39072i | −0.270493 | + | 0.921214i | −3.67841 | + | 1.08008i | −0.444850 | − | 0.974085i | −2.29534 | − | 0.330021i | 1.28373 | − | 0.586259i | −1.83985 | − | 4.02871i | 1.74829 | + | 1.12356i | 2.17586 | − | 1.39834i |
| 44.1 | −2.48992 | − | 0.731108i | −0.137920 | − | 0.214607i | 3.98270 | + | 2.55953i | 0.244739 | + | 0.282444i | 0.186508 | + | 0.635189i | 0.818937 | − | 0.709613i | −4.64655 | − | 5.36241i | 1.21921 | − | 2.66970i | −0.402884 | − | 0.882194i |
| 44.2 | −1.28676 | − | 0.377826i | 1.52617 | + | 2.37476i | −0.169514 | − | 0.108940i | 0.528006 | + | 0.609351i | −1.06656 | − | 3.63237i | −1.88467 | + | 1.63308i | 1.93341 | + | 2.23127i | −2.06407 | + | 4.51968i | −0.449187 | − | 0.983582i |
| See all 60 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 89.f | even | 22 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 89.2.f.a | ✓ | 60 |
| 3.b | odd | 2 | 1 | 801.2.p.a | 60 | ||
| 89.f | even | 22 | 1 | inner | 89.2.f.a | ✓ | 60 |
| 89.g | even | 44 | 2 | 7921.2.a.t | 60 | ||
| 267.l | odd | 22 | 1 | 801.2.p.a | 60 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 89.2.f.a | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
| 89.2.f.a | ✓ | 60 | 89.f | even | 22 | 1 | inner |
| 801.2.p.a | 60 | 3.b | odd | 2 | 1 | ||
| 801.2.p.a | 60 | 267.l | odd | 22 | 1 | ||
| 7921.2.a.t | 60 | 89.g | even | 44 | 2 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(89, [\chi])\).