Properties

Label 888.2.br.a.569.34
Level $888$
Weight $2$
Character 888.569
Analytic conductor $7.091$
Analytic rank $0$
Dimension $152$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [888,2,Mod(473,888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(888, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("888.473"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 888 = 2^{3} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 888.br (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.09071569949\)
Analytic rank: \(0\)
Dimension: \(152\)
Relative dimension: \(38\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 569.34
Character \(\chi\) \(=\) 888.569
Dual form 888.2.br.a.785.34

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70098 + 0.326592i) q^{3} +(-0.0585783 + 0.218617i) q^{5} +(1.23175 + 2.13345i) q^{7} +(2.78668 + 1.11105i) q^{9} -4.45126 q^{11} +(1.45800 + 0.390671i) q^{13} +(-0.171039 + 0.352732i) q^{15} +(1.17157 - 0.313921i) q^{17} +(4.74490 + 1.27139i) q^{19} +(1.39841 + 4.03123i) q^{21} +(3.28903 + 3.28903i) q^{23} +(4.28577 + 2.47439i) q^{25} +(4.37722 + 2.79999i) q^{27} +(-5.98185 + 5.98185i) q^{29} +(-7.24947 - 7.24947i) q^{31} +(-7.57150 - 1.45374i) q^{33} +(-0.538561 + 0.144307i) q^{35} +(5.17282 + 3.20030i) q^{37} +(2.35245 + 1.14070i) q^{39} +(-5.48131 - 9.49391i) q^{41} +(-1.65145 + 1.65145i) q^{43} +(-0.406134 + 0.544131i) q^{45} +1.96589i q^{47} +(0.465605 - 0.806452i) q^{49} +(2.09534 - 0.151349i) q^{51} +(9.27137 + 5.35283i) q^{53} +(0.260747 - 0.973120i) q^{55} +(7.65576 + 3.71226i) q^{57} +(6.54296 - 1.75318i) q^{59} +(3.26812 - 12.1968i) q^{61} +(1.06210 + 7.31376i) q^{63} +(-0.170815 + 0.295860i) q^{65} +(-12.3822 + 7.14887i) q^{67} +(4.52041 + 6.66875i) q^{69} +(-3.52135 + 2.03305i) q^{71} -8.68620i q^{73} +(6.48189 + 5.60858i) q^{75} +(-5.48281 - 9.49651i) q^{77} +(-2.07721 - 0.556587i) q^{79} +(6.53112 + 6.19229i) q^{81} +(-1.03984 - 0.600350i) q^{83} +0.274514i q^{85} +(-12.1286 + 8.22139i) q^{87} +(-3.33227 - 12.4362i) q^{89} +(0.962415 + 3.59178i) q^{91} +(-9.96360 - 14.6988i) q^{93} +(-0.555896 + 0.962840i) q^{95} +(7.22624 - 7.22624i) q^{97} +(-12.4042 - 4.94558i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 152 q + 4 q^{13} - 12 q^{15} + 4 q^{19} - 44 q^{31} - 12 q^{39} + 28 q^{43} + 20 q^{45} - 80 q^{49} - 12 q^{51} - 8 q^{55} - 40 q^{57} - 28 q^{61} + 48 q^{63} + 56 q^{69} + 64 q^{75} + 20 q^{79} + 16 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/888\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(409\) \(445\) \(593\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.70098 + 0.326592i 0.982062 + 0.188558i
\(4\) 0 0
\(5\) −0.0585783 + 0.218617i −0.0261970 + 0.0977685i −0.977787 0.209603i \(-0.932783\pi\)
0.951590 + 0.307372i \(0.0994495\pi\)
\(6\) 0 0
\(7\) 1.23175 + 2.13345i 0.465556 + 0.806367i 0.999226 0.0393258i \(-0.0125210\pi\)
−0.533670 + 0.845693i \(0.679188\pi\)
\(8\) 0 0
\(9\) 2.78668 + 1.11105i 0.928892 + 0.370351i
\(10\) 0 0
\(11\) −4.45126 −1.34210 −0.671052 0.741410i \(-0.734157\pi\)
−0.671052 + 0.741410i \(0.734157\pi\)
\(12\) 0 0
\(13\) 1.45800 + 0.390671i 0.404378 + 0.108353i 0.455274 0.890351i \(-0.349541\pi\)
−0.0508965 + 0.998704i \(0.516208\pi\)
\(14\) 0 0
\(15\) −0.171039 + 0.352732i −0.0441621 + 0.0910751i
\(16\) 0 0
\(17\) 1.17157 0.313921i 0.284147 0.0761370i −0.113931 0.993489i \(-0.536344\pi\)
0.398078 + 0.917352i \(0.369677\pi\)
\(18\) 0 0
\(19\) 4.74490 + 1.27139i 1.08856 + 0.291677i 0.758096 0.652143i \(-0.226130\pi\)
0.330459 + 0.943820i \(0.392796\pi\)
\(20\) 0 0
\(21\) 1.39841 + 4.03123i 0.305158 + 0.879687i
\(22\) 0 0
\(23\) 3.28903 + 3.28903i 0.685810 + 0.685810i 0.961303 0.275493i \(-0.0888410\pi\)
−0.275493 + 0.961303i \(0.588841\pi\)
\(24\) 0 0
\(25\) 4.28577 + 2.47439i 0.857153 + 0.494878i
\(26\) 0 0
\(27\) 4.37722 + 2.79999i 0.842397 + 0.538858i
\(28\) 0 0
\(29\) −5.98185 + 5.98185i −1.11080 + 1.11080i −0.117759 + 0.993042i \(0.537571\pi\)
−0.993042 + 0.117759i \(0.962429\pi\)
\(30\) 0 0
\(31\) −7.24947 7.24947i −1.30204 1.30204i −0.927012 0.375032i \(-0.877632\pi\)
−0.375032 0.927012i \(-0.622368\pi\)
\(32\) 0 0
\(33\) −7.57150 1.45374i −1.31803 0.253064i
\(34\) 0 0
\(35\) −0.538561 + 0.144307i −0.0910334 + 0.0243923i
\(36\) 0 0
\(37\) 5.17282 + 3.20030i 0.850407 + 0.526126i
\(38\) 0 0
\(39\) 2.35245 + 1.14070i 0.376693 + 0.182658i
\(40\) 0 0
\(41\) −5.48131 9.49391i −0.856037 1.48270i −0.875680 0.482892i \(-0.839586\pi\)
0.0196432 0.999807i \(-0.493747\pi\)
\(42\) 0 0
\(43\) −1.65145 + 1.65145i −0.251843 + 0.251843i −0.821726 0.569883i \(-0.806989\pi\)
0.569883 + 0.821726i \(0.306989\pi\)
\(44\) 0 0
\(45\) −0.406134 + 0.544131i −0.0605429 + 0.0811143i
\(46\) 0 0
\(47\) 1.96589i 0.286755i 0.989668 + 0.143377i \(0.0457963\pi\)
−0.989668 + 0.143377i \(0.954204\pi\)
\(48\) 0 0
\(49\) 0.465605 0.806452i 0.0665150 0.115207i
\(50\) 0 0
\(51\) 2.09534 0.151349i 0.293406 0.0211930i
\(52\) 0 0
\(53\) 9.27137 + 5.35283i 1.27352 + 0.735267i 0.975649 0.219339i \(-0.0703899\pi\)
0.297872 + 0.954606i \(0.403723\pi\)
\(54\) 0 0
\(55\) 0.260747 0.973120i 0.0351591 0.131215i
\(56\) 0 0
\(57\) 7.65576 + 3.71226i 1.01403 + 0.491701i
\(58\) 0 0
\(59\) 6.54296 1.75318i 0.851820 0.228245i 0.193610 0.981079i \(-0.437980\pi\)
0.658210 + 0.752834i \(0.271314\pi\)
\(60\) 0 0
\(61\) 3.26812 12.1968i 0.418440 1.56164i −0.359403 0.933182i \(-0.617020\pi\)
0.777844 0.628458i \(-0.216314\pi\)
\(62\) 0 0
\(63\) 1.06210 + 7.31376i 0.133812 + 0.921447i
\(64\) 0 0
\(65\) −0.170815 + 0.295860i −0.0211870 + 0.0366969i
\(66\) 0 0
\(67\) −12.3822 + 7.14887i −1.51273 + 0.873374i −0.512838 + 0.858485i \(0.671406\pi\)
−0.999889 + 0.0148885i \(0.995261\pi\)
\(68\) 0 0
\(69\) 4.52041 + 6.66875i 0.544193 + 0.802823i
\(70\) 0 0
\(71\) −3.52135 + 2.03305i −0.417907 + 0.241279i −0.694181 0.719800i \(-0.744233\pi\)
0.276274 + 0.961079i \(0.410900\pi\)
\(72\) 0 0
\(73\) 8.68620i 1.01664i −0.861168 0.508321i \(-0.830266\pi\)
0.861168 0.508321i \(-0.169734\pi\)
\(74\) 0 0
\(75\) 6.48189 + 5.60858i 0.748464 + 0.647623i
\(76\) 0 0
\(77\) −5.48281 9.49651i −0.624825 1.08223i
\(78\) 0 0
\(79\) −2.07721 0.556587i −0.233705 0.0626210i 0.140066 0.990142i \(-0.455269\pi\)
−0.373770 + 0.927521i \(0.621935\pi\)
\(80\) 0 0
\(81\) 6.53112 + 6.19229i 0.725680 + 0.688032i
\(82\) 0 0
\(83\) −1.03984 0.600350i −0.114137 0.0658970i 0.441845 0.897092i \(-0.354324\pi\)
−0.555982 + 0.831195i \(0.687658\pi\)
\(84\) 0 0
\(85\) 0.274514i 0.0297752i
\(86\) 0 0
\(87\) −12.1286 + 8.22139i −1.30033 + 0.881426i
\(88\) 0 0
\(89\) −3.33227 12.4362i −0.353220 1.31824i −0.882709 0.469919i \(-0.844283\pi\)
0.529489 0.848317i \(-0.322384\pi\)
\(90\) 0 0
\(91\) 0.962415 + 3.59178i 0.100889 + 0.376521i
\(92\) 0 0
\(93\) −9.96360 14.6988i −1.03318 1.52420i
\(94\) 0 0
\(95\) −0.555896 + 0.962840i −0.0570337 + 0.0987853i
\(96\) 0 0
\(97\) 7.22624 7.22624i 0.733713 0.733713i −0.237640 0.971353i \(-0.576374\pi\)
0.971353 + 0.237640i \(0.0763738\pi\)
\(98\) 0 0
\(99\) −12.4042 4.94558i −1.24667 0.497050i
\(100\) 0 0
\(101\) −0.0671349 −0.00668017 −0.00334008 0.999994i \(-0.501063\pi\)
−0.00334008 + 0.999994i \(0.501063\pi\)
\(102\) 0 0
\(103\) 3.59033 + 3.59033i 0.353766 + 0.353766i 0.861509 0.507743i \(-0.169520\pi\)
−0.507743 + 0.861509i \(0.669520\pi\)
\(104\) 0 0
\(105\) −0.963212 + 0.0695738i −0.0939999 + 0.00678971i
\(106\) 0 0
\(107\) −1.23880 + 0.715223i −0.119760 + 0.0691432i −0.558683 0.829381i \(-0.688693\pi\)
0.438924 + 0.898524i \(0.355360\pi\)
\(108\) 0 0
\(109\) 1.39660 + 5.21219i 0.133770 + 0.499237i 1.00000 0.000408725i \(-0.000130101\pi\)
−0.866230 + 0.499646i \(0.833463\pi\)
\(110\) 0 0
\(111\) 7.75368 + 7.13305i 0.735947 + 0.677039i
\(112\) 0 0
\(113\) 0.172540 + 0.643927i 0.0162312 + 0.0605756i 0.973566 0.228404i \(-0.0733507\pi\)
−0.957335 + 0.288980i \(0.906684\pi\)
\(114\) 0 0
\(115\) −0.911704 + 0.526372i −0.0850168 + 0.0490845i
\(116\) 0 0
\(117\) 3.62893 + 2.70860i 0.335495 + 0.250410i
\(118\) 0 0
\(119\) 2.11281 + 2.11281i 0.193681 + 0.193681i
\(120\) 0 0
\(121\) 8.81367 0.801243
\(122\) 0 0
\(123\) −6.22297 17.9391i −0.561106 1.61752i
\(124\) 0 0
\(125\) −1.59219 + 1.59219i −0.142410 + 0.142410i
\(126\) 0 0
\(127\) −7.31452 + 12.6691i −0.649059 + 1.12420i 0.334290 + 0.942470i \(0.391504\pi\)
−0.983348 + 0.181732i \(0.941830\pi\)
\(128\) 0 0
\(129\) −3.34843 + 2.26973i −0.294813 + 0.199839i
\(130\) 0 0
\(131\) −3.39004 12.6518i −0.296189 1.10539i −0.940269 0.340434i \(-0.889426\pi\)
0.644080 0.764958i \(-0.277241\pi\)
\(132\) 0 0
\(133\) 3.13206 + 11.6890i 0.271584 + 1.01357i
\(134\) 0 0
\(135\) −0.868535 + 0.792917i −0.0747516 + 0.0682434i
\(136\) 0 0
\(137\) 23.1334i 1.97642i −0.153117 0.988208i \(-0.548931\pi\)
0.153117 0.988208i \(-0.451069\pi\)
\(138\) 0 0
\(139\) −9.94218 5.74012i −0.843284 0.486870i 0.0150949 0.999886i \(-0.495195\pi\)
−0.858379 + 0.513016i \(0.828528\pi\)
\(140\) 0 0
\(141\) −0.642044 + 3.34394i −0.0540699 + 0.281611i
\(142\) 0 0
\(143\) −6.48995 1.73898i −0.542717 0.145421i
\(144\) 0 0
\(145\) −0.957328 1.65814i −0.0795017 0.137701i
\(146\) 0 0
\(147\) 1.05537 1.21970i 0.0870452 0.100599i
\(148\) 0 0
\(149\) 5.83665i 0.478157i −0.971000 0.239078i \(-0.923155\pi\)
0.971000 0.239078i \(-0.0768453\pi\)
\(150\) 0 0
\(151\) 4.70939 2.71897i 0.383245 0.221267i −0.295984 0.955193i \(-0.595648\pi\)
0.679229 + 0.733926i \(0.262314\pi\)
\(152\) 0 0
\(153\) 3.61356 + 0.426880i 0.292139 + 0.0345112i
\(154\) 0 0
\(155\) 2.00952 1.16020i 0.161408 0.0931892i
\(156\) 0 0
\(157\) −10.2984 + 17.8374i −0.821902 + 1.42358i 0.0823617 + 0.996603i \(0.473754\pi\)
−0.904264 + 0.426974i \(0.859580\pi\)
\(158\) 0 0
\(159\) 14.0222 + 12.1330i 1.11204 + 0.962211i
\(160\) 0 0
\(161\) −2.96572 + 11.0682i −0.233732 + 0.872298i
\(162\) 0 0
\(163\) 7.33801 1.96621i 0.574757 0.154006i 0.0402796 0.999188i \(-0.487175\pi\)
0.534477 + 0.845183i \(0.320508\pi\)
\(164\) 0 0
\(165\) 0.761339 1.57010i 0.0592701 0.122232i
\(166\) 0 0
\(167\) −2.79944 + 10.4476i −0.216627 + 0.808462i 0.768961 + 0.639296i \(0.220774\pi\)
−0.985588 + 0.169166i \(0.945893\pi\)
\(168\) 0 0
\(169\) −9.28518 5.36080i −0.714244 0.412369i
\(170\) 0 0
\(171\) 11.8099 + 8.81480i 0.903127 + 0.674085i
\(172\) 0 0
\(173\) 8.63122 14.9497i 0.656220 1.13661i −0.325367 0.945588i \(-0.605488\pi\)
0.981587 0.191018i \(-0.0611789\pi\)
\(174\) 0 0
\(175\) 12.1913i 0.921573i
\(176\) 0 0
\(177\) 11.7020 0.845249i 0.879578 0.0635328i
\(178\) 0 0
\(179\) 11.4532 11.4532i 0.856050 0.856050i −0.134820 0.990870i \(-0.543046\pi\)
0.990870 + 0.134820i \(0.0430456\pi\)
\(180\) 0 0
\(181\) 1.12019 + 1.94023i 0.0832634 + 0.144216i 0.904650 0.426156i \(-0.140132\pi\)
−0.821386 + 0.570372i \(0.806799\pi\)
\(182\) 0 0
\(183\) 9.54239 19.6792i 0.705394 1.45473i
\(184\) 0 0
\(185\) −1.00265 + 0.943399i −0.0737167 + 0.0693601i
\(186\) 0 0
\(187\) −5.21495 + 1.39734i −0.381355 + 0.102184i
\(188\) 0 0
\(189\) −0.581998 + 12.7874i −0.0423341 + 0.930149i
\(190\) 0 0
\(191\) −9.50724 9.50724i −0.687920 0.687920i 0.273852 0.961772i \(-0.411702\pi\)
−0.961772 + 0.273852i \(0.911702\pi\)
\(192\) 0 0
\(193\) 17.9607 17.9607i 1.29284 1.29284i 0.359815 0.933024i \(-0.382840\pi\)
0.933024 0.359815i \(-0.117160\pi\)
\(194\) 0 0
\(195\) −0.387178 + 0.447465i −0.0277264 + 0.0320437i
\(196\) 0 0
\(197\) 0.506502 + 0.292429i 0.0360868 + 0.0208347i 0.517935 0.855420i \(-0.326701\pi\)
−0.481848 + 0.876255i \(0.660034\pi\)
\(198\) 0 0
\(199\) −9.17777 9.17777i −0.650595 0.650595i 0.302541 0.953136i \(-0.402165\pi\)
−0.953136 + 0.302541i \(0.902165\pi\)
\(200\) 0 0
\(201\) −23.3967 + 8.11617i −1.65027 + 0.572470i
\(202\) 0 0
\(203\) −20.1301 5.39384i −1.41285 0.378573i
\(204\) 0 0
\(205\) 2.39662 0.642171i 0.167387 0.0448512i
\(206\) 0 0
\(207\) 5.51117 + 12.8198i 0.383053 + 0.891034i
\(208\) 0 0
\(209\) −21.1208 5.65929i −1.46095 0.391461i
\(210\) 0 0
\(211\) −9.11565 −0.627547 −0.313774 0.949498i \(-0.601593\pi\)
−0.313774 + 0.949498i \(0.601593\pi\)
\(212\) 0 0
\(213\) −6.65372 + 2.30814i −0.455906 + 0.158151i
\(214\) 0 0
\(215\) −0.264295 0.457773i −0.0180248 0.0312199i
\(216\) 0 0
\(217\) 6.53685 24.3959i 0.443750 1.65610i
\(218\) 0 0
\(219\) 2.83684 14.7751i 0.191696 0.998406i
\(220\) 0 0
\(221\) 1.83079 0.123152
\(222\) 0 0
\(223\) −19.6194 −1.31381 −0.656907 0.753971i \(-0.728136\pi\)
−0.656907 + 0.753971i \(0.728136\pi\)
\(224\) 0 0
\(225\) 9.19386 + 11.6570i 0.612924 + 0.777135i
\(226\) 0 0
\(227\) 2.22664 8.30994i 0.147787 0.551550i −0.851828 0.523821i \(-0.824506\pi\)
0.999615 0.0277286i \(-0.00882742\pi\)
\(228\) 0 0
\(229\) −8.10744 14.0425i −0.535755 0.927954i −0.999126 0.0417901i \(-0.986694\pi\)
0.463372 0.886164i \(-0.346639\pi\)
\(230\) 0 0
\(231\) −6.22468 17.9440i −0.409554 1.18063i
\(232\) 0 0
\(233\) 0.377103 0.0247049 0.0123524 0.999924i \(-0.496068\pi\)
0.0123524 + 0.999924i \(0.496068\pi\)
\(234\) 0 0
\(235\) −0.429777 0.115158i −0.0280356 0.00751211i
\(236\) 0 0
\(237\) −3.35152 1.62515i −0.217705 0.105565i
\(238\) 0 0
\(239\) 12.8354 3.43923i 0.830251 0.222465i 0.181428 0.983404i \(-0.441928\pi\)
0.648823 + 0.760939i \(0.275261\pi\)
\(240\) 0 0
\(241\) −12.9634 3.47352i −0.835044 0.223749i −0.184131 0.982902i \(-0.558947\pi\)
−0.650913 + 0.759152i \(0.725614\pi\)
\(242\) 0 0
\(243\) 9.08696 + 12.6660i 0.582929 + 0.812523i
\(244\) 0 0
\(245\) 0.149030 + 0.149030i 0.00952116 + 0.00952116i
\(246\) 0 0
\(247\) 6.42139 + 3.70739i 0.408583 + 0.235896i
\(248\) 0 0
\(249\) −1.57267 1.36079i −0.0996641 0.0862363i
\(250\) 0 0
\(251\) −5.07555 + 5.07555i −0.320366 + 0.320366i −0.848907 0.528542i \(-0.822739\pi\)
0.528542 + 0.848907i \(0.322739\pi\)
\(252\) 0 0
\(253\) −14.6403 14.6403i −0.920429 0.920429i
\(254\) 0 0
\(255\) −0.0896539 + 0.466943i −0.00561435 + 0.0292411i
\(256\) 0 0
\(257\) 15.1582 4.06162i 0.945541 0.253357i 0.247072 0.968997i \(-0.420532\pi\)
0.698469 + 0.715640i \(0.253865\pi\)
\(258\) 0 0
\(259\) −0.456068 + 14.9779i −0.0283387 + 0.930681i
\(260\) 0 0
\(261\) −23.3156 + 10.0233i −1.44320 + 0.620428i
\(262\) 0 0
\(263\) 8.53905 + 14.7901i 0.526541 + 0.911995i 0.999522 + 0.0309225i \(0.00984449\pi\)
−0.472981 + 0.881072i \(0.656822\pi\)
\(264\) 0 0
\(265\) −1.71332 + 1.71332i −0.105248 + 0.105248i
\(266\) 0 0
\(267\) −1.60657 22.2421i −0.0983203 1.36119i
\(268\) 0 0
\(269\) 1.45662i 0.0888118i −0.999014 0.0444059i \(-0.985861\pi\)
0.999014 0.0444059i \(-0.0141395\pi\)
\(270\) 0 0
\(271\) −3.79443 + 6.57214i −0.230495 + 0.399229i −0.957954 0.286922i \(-0.907368\pi\)
0.727459 + 0.686151i \(0.240701\pi\)
\(272\) 0 0
\(273\) 0.464003 + 6.42387i 0.0280827 + 0.388790i
\(274\) 0 0
\(275\) −19.0770 11.0141i −1.15039 0.664177i
\(276\) 0 0
\(277\) −2.23675 + 8.34768i −0.134393 + 0.501563i 0.865606 + 0.500725i \(0.166933\pi\)
−1.00000 0.000837887i \(0.999733\pi\)
\(278\) 0 0
\(279\) −12.1474 28.2565i −0.727244 1.69167i
\(280\) 0 0
\(281\) −3.23004 + 0.865487i −0.192688 + 0.0516307i −0.353872 0.935294i \(-0.615135\pi\)
0.161184 + 0.986924i \(0.448469\pi\)
\(282\) 0 0
\(283\) −4.34988 + 16.2340i −0.258574 + 0.965010i 0.707494 + 0.706720i \(0.249826\pi\)
−0.966067 + 0.258291i \(0.916841\pi\)
\(284\) 0 0
\(285\) −1.26002 + 1.45622i −0.0746374 + 0.0862592i
\(286\) 0 0
\(287\) 13.5032 23.3882i 0.797066 1.38056i
\(288\) 0 0
\(289\) −13.4484 + 7.76444i −0.791083 + 0.456732i
\(290\) 0 0
\(291\) 14.6517 9.93167i 0.858899 0.582205i
\(292\) 0 0
\(293\) 3.69152 2.13130i 0.215661 0.124512i −0.388279 0.921542i \(-0.626930\pi\)
0.603939 + 0.797030i \(0.293597\pi\)
\(294\) 0 0
\(295\) 1.53310i 0.0892605i
\(296\) 0 0
\(297\) −19.4841 12.4635i −1.13058 0.723203i
\(298\) 0 0
\(299\) 3.51049 + 6.08035i 0.203017 + 0.351636i
\(300\) 0 0
\(301\) −5.55743 1.48911i −0.320325 0.0858308i
\(302\) 0 0
\(303\) −0.114195 0.0219257i −0.00656034 0.00125960i
\(304\) 0 0
\(305\) 2.47499 + 1.42893i 0.141717 + 0.0818205i
\(306\) 0 0
\(307\) 2.48057i 0.141574i 0.997491 + 0.0707869i \(0.0225510\pi\)
−0.997491 + 0.0707869i \(0.977449\pi\)
\(308\) 0 0
\(309\) 4.93451 + 7.27965i 0.280714 + 0.414125i
\(310\) 0 0
\(311\) −1.33321 4.97559i −0.0755992 0.282140i 0.917769 0.397114i \(-0.129988\pi\)
−0.993369 + 0.114974i \(0.963322\pi\)
\(312\) 0 0
\(313\) 5.40623 + 20.1763i 0.305578 + 1.14043i 0.932447 + 0.361308i \(0.117670\pi\)
−0.626869 + 0.779125i \(0.715664\pi\)
\(314\) 0 0
\(315\) −1.66113 0.196233i −0.0935940 0.0110565i
\(316\) 0 0
\(317\) −11.8164 + 20.4666i −0.663676 + 1.14952i 0.315967 + 0.948770i \(0.397671\pi\)
−0.979643 + 0.200750i \(0.935662\pi\)
\(318\) 0 0
\(319\) 26.6267 26.6267i 1.49081 1.49081i
\(320\) 0 0
\(321\) −2.34077 + 0.811998i −0.130649 + 0.0453213i
\(322\) 0 0
\(323\) 5.95809 0.331517
\(324\) 0 0
\(325\) 5.28199 + 5.28199i 0.292992 + 0.292992i
\(326\) 0 0
\(327\) 0.673335 + 9.32196i 0.0372355 + 0.515505i
\(328\) 0 0
\(329\) −4.19412 + 2.42148i −0.231229 + 0.133500i
\(330\) 0 0
\(331\) −0.552844 2.06324i −0.0303871 0.113406i 0.949067 0.315076i \(-0.102030\pi\)
−0.979454 + 0.201670i \(0.935363\pi\)
\(332\) 0 0
\(333\) 10.8593 + 14.6655i 0.595084 + 0.803663i
\(334\) 0 0
\(335\) −0.837537 3.12573i −0.0457595 0.170777i
\(336\) 0 0
\(337\) 12.4013 7.15988i 0.675540 0.390023i −0.122632 0.992452i \(-0.539134\pi\)
0.798173 + 0.602429i \(0.205800\pi\)
\(338\) 0 0
\(339\) 0.0831855 + 1.15166i 0.00451802 + 0.0625495i
\(340\) 0 0
\(341\) 32.2693 + 32.2693i 1.74748 + 1.74748i
\(342\) 0 0
\(343\) 19.5385 1.05498
\(344\) 0 0
\(345\) −1.72270 + 0.597595i −0.0927471 + 0.0321734i
\(346\) 0 0
\(347\) 0.460002 0.460002i 0.0246942 0.0246942i −0.694652 0.719346i \(-0.744442\pi\)
0.719346 + 0.694652i \(0.244442\pi\)
\(348\) 0 0
\(349\) 5.36611 9.29437i 0.287241 0.497516i −0.685909 0.727687i \(-0.740595\pi\)
0.973150 + 0.230171i \(0.0739285\pi\)
\(350\) 0 0
\(351\) 5.28814 + 5.79245i 0.282260 + 0.309178i
\(352\) 0 0
\(353\) 4.60846 + 17.1990i 0.245283 + 0.915410i 0.973241 + 0.229788i \(0.0738032\pi\)
−0.727957 + 0.685622i \(0.759530\pi\)
\(354\) 0 0
\(355\) −0.238185 0.888919i −0.0126416 0.0471789i
\(356\) 0 0
\(357\) 2.90382 + 4.28387i 0.153686 + 0.226726i
\(358\) 0 0
\(359\) 19.1592i 1.01118i −0.862773 0.505592i \(-0.831274\pi\)
0.862773 0.505592i \(-0.168726\pi\)
\(360\) 0 0
\(361\) 4.44317 + 2.56527i 0.233851 + 0.135014i
\(362\) 0 0
\(363\) 14.9919 + 2.87847i 0.786870 + 0.151081i
\(364\) 0 0
\(365\) 1.89895 + 0.508822i 0.0993956 + 0.0266330i
\(366\) 0 0
\(367\) −12.0629 20.8936i −0.629681 1.09064i −0.987616 0.156893i \(-0.949852\pi\)
0.357935 0.933747i \(-0.383481\pi\)
\(368\) 0 0
\(369\) −4.72639 32.5465i −0.246046 1.69430i
\(370\) 0 0
\(371\) 26.3733i 1.36923i
\(372\) 0 0
\(373\) −18.6091 + 10.7439i −0.963541 + 0.556300i −0.897261 0.441501i \(-0.854446\pi\)
−0.0662798 + 0.997801i \(0.521113\pi\)
\(374\) 0 0
\(375\) −3.22828 + 2.18829i −0.166708 + 0.113003i
\(376\) 0 0
\(377\) −11.0585 + 6.38463i −0.569542 + 0.328825i
\(378\) 0 0
\(379\) −1.12950 + 1.95636i −0.0580187 + 0.100491i −0.893576 0.448912i \(-0.851812\pi\)
0.835557 + 0.549403i \(0.185145\pi\)
\(380\) 0 0
\(381\) −16.5795 + 19.1611i −0.849393 + 0.981651i
\(382\) 0 0
\(383\) 1.52675 5.69790i 0.0780131 0.291149i −0.915887 0.401437i \(-0.868511\pi\)
0.993900 + 0.110288i \(0.0351774\pi\)
\(384\) 0 0
\(385\) 2.39727 0.642347i 0.122176 0.0327371i
\(386\) 0 0
\(387\) −6.43689 + 2.76720i −0.327205 + 0.140665i
\(388\) 0 0
\(389\) −4.33825 + 16.1906i −0.219958 + 0.820894i 0.764404 + 0.644737i \(0.223033\pi\)
−0.984362 + 0.176157i \(0.943634\pi\)
\(390\) 0 0
\(391\) 4.88582 + 2.82083i 0.247086 + 0.142655i
\(392\) 0 0
\(393\) −1.63442 22.6276i −0.0824455 1.14141i
\(394\) 0 0
\(395\) 0.243359 0.421510i 0.0122447 0.0212085i
\(396\) 0 0
\(397\) 21.7296i 1.09058i 0.838249 + 0.545288i \(0.183580\pi\)
−0.838249 + 0.545288i \(0.816420\pi\)
\(398\) 0 0
\(399\) 1.51004 + 20.9057i 0.0755967 + 1.04660i
\(400\) 0 0
\(401\) −11.1869 + 11.1869i −0.558649 + 0.558649i −0.928923 0.370274i \(-0.879264\pi\)
0.370274 + 0.928923i \(0.379264\pi\)
\(402\) 0 0
\(403\) −7.73760 13.4019i −0.385438 0.667597i
\(404\) 0 0
\(405\) −1.73632 + 1.06508i −0.0862785 + 0.0529243i
\(406\) 0 0
\(407\) −23.0255 14.2454i −1.14133 0.706116i
\(408\) 0 0
\(409\) 24.2104 6.48715i 1.19713 0.320769i 0.395427 0.918498i \(-0.370597\pi\)
0.801698 + 0.597729i \(0.203930\pi\)
\(410\) 0 0
\(411\) 7.55517 39.3494i 0.372669 1.94096i
\(412\) 0 0
\(413\) 11.7996 + 11.7996i 0.580619 + 0.580619i
\(414\) 0 0
\(415\) 0.192158 0.192158i 0.00943269 0.00943269i
\(416\) 0 0
\(417\) −15.0368 13.0109i −0.736354 0.637145i
\(418\) 0 0
\(419\) 26.5640 + 15.3367i 1.29774 + 0.749249i 0.980013 0.198935i \(-0.0637482\pi\)
0.317724 + 0.948183i \(0.397082\pi\)
\(420\) 0 0
\(421\) 26.0674 + 26.0674i 1.27045 + 1.27045i 0.945854 + 0.324591i \(0.105227\pi\)
0.324591 + 0.945854i \(0.394773\pi\)
\(422\) 0 0
\(423\) −2.18421 + 5.47830i −0.106200 + 0.266364i
\(424\) 0 0
\(425\) 5.79783 + 1.55352i 0.281236 + 0.0753569i
\(426\) 0 0
\(427\) 30.0467 8.05099i 1.45406 0.389615i
\(428\) 0 0
\(429\) −10.4714 5.07753i −0.505562 0.245146i
\(430\) 0 0
\(431\) 36.5952 + 9.80565i 1.76273 + 0.472321i 0.987267 0.159074i \(-0.0508509\pi\)
0.775461 + 0.631396i \(0.217518\pi\)
\(432\) 0 0
\(433\) −18.1410 −0.871802 −0.435901 0.899995i \(-0.643570\pi\)
−0.435901 + 0.899995i \(0.643570\pi\)
\(434\) 0 0
\(435\) −1.08686 3.13312i −0.0521110 0.150222i
\(436\) 0 0
\(437\) 11.4245 + 19.7878i 0.546507 + 0.946578i
\(438\) 0 0
\(439\) 7.02768 26.2276i 0.335413 1.25178i −0.568009 0.823023i \(-0.692286\pi\)
0.903421 0.428754i \(-0.141047\pi\)
\(440\) 0 0
\(441\) 2.19350 1.73001i 0.104452 0.0823813i
\(442\) 0 0
\(443\) −20.1006 −0.955006 −0.477503 0.878630i \(-0.658458\pi\)
−0.477503 + 0.878630i \(0.658458\pi\)
\(444\) 0 0
\(445\) 2.91397 0.138135
\(446\) 0 0
\(447\) 1.90620 9.92803i 0.0901603 0.469580i
\(448\) 0 0
\(449\) −1.70335 + 6.35701i −0.0803863 + 0.300006i −0.994401 0.105676i \(-0.966299\pi\)
0.914014 + 0.405682i \(0.132966\pi\)
\(450\) 0 0
\(451\) 24.3987 + 42.2598i 1.14889 + 1.98994i
\(452\) 0 0
\(453\) 8.89859 3.08687i 0.418092 0.145034i
\(454\) 0 0
\(455\) −0.841601 −0.0394549
\(456\) 0 0
\(457\) 22.9313 + 6.14442i 1.07268 + 0.287424i 0.751594 0.659626i \(-0.229285\pi\)
0.321086 + 0.947050i \(0.395952\pi\)
\(458\) 0 0
\(459\) 6.00719 + 1.90628i 0.280392 + 0.0889773i
\(460\) 0 0
\(461\) −2.41743 + 0.647749i −0.112591 + 0.0301687i −0.314675 0.949200i \(-0.601895\pi\)
0.202084 + 0.979368i \(0.435229\pi\)
\(462\) 0 0
\(463\) 7.65932 + 2.05231i 0.355959 + 0.0953789i 0.432367 0.901698i \(-0.357679\pi\)
−0.0764081 + 0.997077i \(0.524345\pi\)
\(464\) 0 0
\(465\) 3.79707 1.31718i 0.176085 0.0610828i
\(466\) 0 0
\(467\) 21.6777 + 21.6777i 1.00312 + 1.00312i 0.999995 + 0.00312870i \(0.000995898\pi\)
0.00312870 + 0.999995i \(0.499004\pi\)
\(468\) 0 0
\(469\) −30.5035 17.6112i −1.40852 0.813209i
\(470\) 0 0
\(471\) −23.3429 + 26.9776i −1.07559 + 1.24306i
\(472\) 0 0
\(473\) 7.35101 7.35101i 0.338000 0.338000i
\(474\) 0 0
\(475\) 17.1896 + 17.1896i 0.788714 + 0.788714i
\(476\) 0 0
\(477\) 19.8890 + 25.2176i 0.910656 + 1.15463i
\(478\) 0 0
\(479\) −32.7324 + 8.77062i −1.49558 + 0.400740i −0.911617 0.411040i \(-0.865166\pi\)
−0.583963 + 0.811780i \(0.698499\pi\)
\(480\) 0 0
\(481\) 6.29173 + 6.68692i 0.286878 + 0.304898i
\(482\) 0 0
\(483\) −8.65943 + 17.8583i −0.394018 + 0.812579i
\(484\) 0 0
\(485\) 1.15648 + 2.00308i 0.0525130 + 0.0909551i
\(486\) 0 0
\(487\) 10.5292 10.5292i 0.477123 0.477123i −0.427087 0.904210i \(-0.640460\pi\)
0.904210 + 0.427087i \(0.140460\pi\)
\(488\) 0 0
\(489\) 13.1240 0.947958i 0.593486 0.0428681i
\(490\) 0 0
\(491\) 31.0545i 1.40147i 0.713421 + 0.700735i \(0.247145\pi\)
−0.713421 + 0.700735i \(0.752855\pi\)
\(492\) 0 0
\(493\) −5.13032 + 8.88597i −0.231058 + 0.400204i
\(494\) 0 0
\(495\) 1.80781 2.42207i 0.0812548 0.108864i
\(496\) 0 0
\(497\) −8.67481 5.00840i −0.389118 0.224658i
\(498\) 0 0
\(499\) −8.68332 + 32.4066i −0.388719 + 1.45072i 0.443501 + 0.896274i \(0.353736\pi\)
−0.832220 + 0.554445i \(0.812931\pi\)
\(500\) 0 0
\(501\) −8.17390 + 16.8570i −0.365183 + 0.753113i
\(502\) 0 0
\(503\) 11.6298 3.11619i 0.518547 0.138944i 0.00995261 0.999950i \(-0.496832\pi\)
0.508594 + 0.861006i \(0.330165\pi\)
\(504\) 0 0
\(505\) 0.00393264 0.0146768i 0.000175000 0.000653110i
\(506\) 0 0
\(507\) −14.0431 12.1511i −0.623677 0.539649i
\(508\) 0 0
\(509\) −0.107609 + 0.186384i −0.00476967 + 0.00826130i −0.868400 0.495864i \(-0.834852\pi\)
0.863631 + 0.504125i \(0.168185\pi\)
\(510\) 0 0
\(511\) 18.5315 10.6992i 0.819787 0.473304i
\(512\) 0 0
\(513\) 17.2096 + 18.8508i 0.759823 + 0.832285i
\(514\) 0 0
\(515\) −0.995222 + 0.574592i −0.0438547 + 0.0253195i
\(516\) 0 0
\(517\) 8.75068i 0.384855i
\(518\) 0 0
\(519\) 19.5640 22.6103i 0.858765 0.992482i
\(520\) 0 0
\(521\) 7.89146 + 13.6684i 0.345731 + 0.598824i 0.985486 0.169755i \(-0.0542976\pi\)
−0.639755 + 0.768579i \(0.720964\pi\)
\(522\) 0 0
\(523\) −21.7748 5.83454i −0.952146 0.255127i −0.250873 0.968020i \(-0.580718\pi\)
−0.701273 + 0.712893i \(0.747384\pi\)
\(524\) 0 0
\(525\) −3.98157 + 20.7371i −0.173770 + 0.905042i
\(526\) 0 0
\(527\) −10.7690 6.21749i −0.469105 0.270838i
\(528\) 0 0
\(529\) 1.36455i 0.0593282i
\(530\) 0 0
\(531\) 20.1810 + 2.38403i 0.875780 + 0.103458i
\(532\) 0 0
\(533\) −4.28278 15.9835i −0.185508 0.692324i
\(534\) 0 0
\(535\) −0.0837930 0.312720i −0.00362269 0.0135201i
\(536\) 0 0
\(537\) 23.2221 15.7411i 1.00211 0.679279i
\(538\) 0 0
\(539\) −2.07253 + 3.58972i −0.0892701 + 0.154620i
\(540\) 0 0
\(541\) 14.4643 14.4643i 0.621867 0.621867i −0.324141 0.946009i \(-0.605075\pi\)
0.946009 + 0.324141i \(0.105075\pi\)
\(542\) 0 0
\(543\) 1.27177 + 3.66615i 0.0545767 + 0.157330i
\(544\) 0 0
\(545\) −1.22128 −0.0523141
\(546\) 0 0
\(547\) −0.426209 0.426209i −0.0182234 0.0182234i 0.697936 0.716160i \(-0.254102\pi\)
−0.716160 + 0.697936i \(0.754102\pi\)
\(548\) 0 0
\(549\) 22.6585 30.3575i 0.967041 1.29562i
\(550\) 0 0
\(551\) −35.9886 + 20.7780i −1.53316 + 0.885173i
\(552\) 0 0
\(553\) −1.37115 5.11719i −0.0583071 0.217605i
\(554\) 0 0
\(555\) −2.01360 + 1.27724i −0.0854727 + 0.0542160i
\(556\) 0 0
\(557\) −0.394978 1.47408i −0.0167358 0.0624587i 0.957053 0.289913i \(-0.0936264\pi\)
−0.973789 + 0.227454i \(0.926960\pi\)
\(558\) 0 0
\(559\) −3.05299 + 1.76264i −0.129128 + 0.0745519i
\(560\) 0 0
\(561\) −9.32689 + 0.673691i −0.393782 + 0.0284433i
\(562\) 0 0
\(563\) 5.46656 + 5.46656i 0.230388 + 0.230388i 0.812855 0.582467i \(-0.197912\pi\)
−0.582467 + 0.812855i \(0.697912\pi\)
\(564\) 0 0
\(565\) −0.150881 −0.00634759
\(566\) 0 0
\(567\) −5.16624 + 21.5611i −0.216962 + 0.905482i
\(568\) 0 0
\(569\) −19.3464 + 19.3464i −0.811041 + 0.811041i −0.984790 0.173749i \(-0.944412\pi\)
0.173749 + 0.984790i \(0.444412\pi\)
\(570\) 0 0
\(571\) −3.95833 + 6.85602i −0.165651 + 0.286916i −0.936886 0.349634i \(-0.886306\pi\)
0.771235 + 0.636550i \(0.219639\pi\)
\(572\) 0 0
\(573\) −13.0666 19.2766i −0.545867 0.805293i
\(574\) 0 0
\(575\) 5.95768 + 22.2344i 0.248452 + 0.927237i
\(576\) 0 0
\(577\) −7.45957 27.8395i −0.310546 1.15897i −0.928065 0.372417i \(-0.878529\pi\)
0.617520 0.786556i \(-0.288138\pi\)
\(578\) 0 0
\(579\) 36.4166 24.6850i 1.51342 1.02587i
\(580\) 0 0
\(581\) 2.95791i 0.122715i
\(582\) 0 0
\(583\) −41.2692 23.8268i −1.70920 0.986805i
\(584\) 0 0
\(585\) −0.804721 + 0.634681i −0.0332711 + 0.0262408i
\(586\) 0 0
\(587\) 46.6306 + 12.4946i 1.92465 + 0.515709i 0.984652 + 0.174531i \(0.0558409\pi\)
0.939999 + 0.341177i \(0.110826\pi\)
\(588\) 0 0
\(589\) −25.1811 43.6150i −1.03757 1.79712i
\(590\) 0 0
\(591\) 0.766046 + 0.662836i 0.0315109 + 0.0272654i
\(592\) 0 0
\(593\) 46.7556i 1.92002i −0.279964 0.960011i \(-0.590323\pi\)
0.279964 0.960011i \(-0.409677\pi\)
\(594\) 0 0
\(595\) −0.585660 + 0.338131i −0.0240097 + 0.0138620i
\(596\) 0 0
\(597\) −12.6138 18.6086i −0.516250 0.761599i
\(598\) 0 0
\(599\) −16.1108 + 9.30155i −0.658267 + 0.380051i −0.791617 0.611018i \(-0.790760\pi\)
0.133349 + 0.991069i \(0.457427\pi\)
\(600\) 0 0
\(601\) 7.42846 12.8665i 0.303013 0.524835i −0.673804 0.738910i \(-0.735341\pi\)
0.976817 + 0.214076i \(0.0686740\pi\)
\(602\) 0 0
\(603\) −42.4480 + 6.16429i −1.72862 + 0.251029i
\(604\) 0 0
\(605\) −0.516290 + 1.92682i −0.0209902 + 0.0783363i
\(606\) 0 0
\(607\) −34.4637 + 9.23452i −1.39884 + 0.374817i −0.877927 0.478794i \(-0.841074\pi\)
−0.520910 + 0.853611i \(0.674407\pi\)
\(608\) 0 0
\(609\) −32.4793 15.7491i −1.31613 0.638187i
\(610\) 0 0
\(611\) −0.768017 + 2.86628i −0.0310706 + 0.115957i
\(612\) 0 0
\(613\) 15.9482 + 9.20773i 0.644144 + 0.371897i 0.786209 0.617961i \(-0.212041\pi\)
−0.142065 + 0.989857i \(0.545374\pi\)
\(614\) 0 0
\(615\) 4.28633 0.309606i 0.172841 0.0124845i
\(616\) 0 0
\(617\) −17.5649 + 30.4233i −0.707137 + 1.22480i 0.258777 + 0.965937i \(0.416680\pi\)
−0.965915 + 0.258861i \(0.916653\pi\)
\(618\) 0 0
\(619\) 31.7751i 1.27715i −0.769560 0.638574i \(-0.779525\pi\)
0.769560 0.638574i \(-0.220475\pi\)
\(620\) 0 0
\(621\) 5.18757 + 23.6061i 0.208170 + 0.947279i
\(622\) 0 0
\(623\) 22.4275 22.4275i 0.898538 0.898538i
\(624\) 0 0
\(625\) 12.1171 + 20.9875i 0.484685 + 0.839499i
\(626\) 0 0
\(627\) −34.0778 16.5242i −1.36093 0.659914i
\(628\) 0 0
\(629\) 7.06495 + 2.12551i 0.281698 + 0.0847498i
\(630\) 0 0
\(631\) 27.3099 7.31765i 1.08719 0.291311i 0.329651 0.944103i \(-0.393069\pi\)
0.757537 + 0.652792i \(0.226402\pi\)
\(632\) 0 0
\(633\) −15.5056 2.97710i −0.616290 0.118329i
\(634\) 0 0
\(635\) −2.34121 2.34121i −0.0929082 0.0929082i
\(636\) 0 0
\(637\) 0.993912 0.993912i 0.0393802 0.0393802i
\(638\) 0 0
\(639\) −12.0717 + 1.75305i −0.477548 + 0.0693495i
\(640\) 0 0
\(641\) 25.0815 + 14.4808i 0.990659 + 0.571957i 0.905471 0.424408i \(-0.139518\pi\)
0.0851877 + 0.996365i \(0.472851\pi\)
\(642\) 0 0
\(643\) 18.1755 + 18.1755i 0.716774 + 0.716774i 0.967943 0.251170i \(-0.0808152\pi\)
−0.251170 + 0.967943i \(0.580815\pi\)
\(644\) 0 0
\(645\) −0.300056 0.864980i −0.0118147 0.0340586i
\(646\) 0 0
\(647\) 36.1138 + 9.67667i 1.41978 + 0.380429i 0.885406 0.464818i \(-0.153880\pi\)
0.534375 + 0.845248i \(0.320547\pi\)
\(648\) 0 0
\(649\) −29.1244 + 7.80385i −1.14323 + 0.306328i
\(650\) 0 0
\(651\) 19.0866 39.3620i 0.748061 1.54272i
\(652\) 0 0
\(653\) 5.03318 + 1.34864i 0.196964 + 0.0527762i 0.355952 0.934504i \(-0.384157\pi\)
−0.158989 + 0.987280i \(0.550823\pi\)
\(654\) 0 0
\(655\) 2.96448 0.115832
\(656\) 0 0
\(657\) 9.65083 24.2056i 0.376515 0.944351i
\(658\) 0 0
\(659\) −22.7117 39.3379i −0.884724 1.53239i −0.846030 0.533136i \(-0.821014\pi\)
−0.0386941 0.999251i \(-0.512320\pi\)
\(660\) 0 0
\(661\) 2.16031 8.06239i 0.0840264 0.313591i −0.911102 0.412182i \(-0.864767\pi\)
0.995128 + 0.0985910i \(0.0314336\pi\)
\(662\) 0 0
\(663\) 3.11414 + 0.597922i 0.120943 + 0.0232214i
\(664\) 0 0
\(665\) −2.73889 −0.106210
\(666\) 0 0
\(667\) −39.3490 −1.52360
\(668\) 0 0
\(669\) −33.3723 6.40755i −1.29025 0.247730i
\(670\) 0 0
\(671\) −14.5472 + 54.2911i −0.561590 + 2.09588i
\(672\) 0 0
\(673\) 14.5856 + 25.2629i 0.562232 + 0.973814i 0.997301 + 0.0734172i \(0.0233905\pi\)
−0.435069 + 0.900397i \(0.643276\pi\)
\(674\) 0 0
\(675\) 11.8315 + 22.8310i 0.455394 + 0.878767i
\(676\) 0 0
\(677\) −2.45041 −0.0941769 −0.0470885 0.998891i \(-0.514994\pi\)
−0.0470885 + 0.998891i \(0.514994\pi\)
\(678\) 0 0
\(679\) 24.3177 + 6.51590i 0.933227 + 0.250057i
\(680\) 0 0
\(681\) 6.50143 13.4078i 0.249136 0.513790i
\(682\) 0 0
\(683\) 1.09874 0.294408i 0.0420423 0.0112652i −0.237737 0.971330i \(-0.576406\pi\)
0.279779 + 0.960064i \(0.409739\pi\)
\(684\) 0 0
\(685\) 5.05735 + 1.35511i 0.193231 + 0.0517762i
\(686\) 0 0
\(687\) −9.20443 26.5338i −0.351171 1.01233i
\(688\) 0 0
\(689\) 11.4265 + 11.4265i 0.435315 + 0.435315i
\(690\) 0 0
\(691\) −21.2531 12.2705i −0.808505 0.466791i 0.0379311 0.999280i \(-0.487923\pi\)
−0.846437 + 0.532489i \(0.821257\pi\)
\(692\) 0 0
\(693\) −4.72769 32.5554i −0.179590 1.23668i
\(694\) 0 0
\(695\) 1.83728 1.83728i 0.0696921 0.0696921i
\(696\) 0 0
\(697\) −9.40206 9.40206i −0.356128 0.356128i
\(698\) 0 0
\(699\) 0.641446 + 0.123159i 0.0242617 + 0.00465830i
\(700\) 0 0
\(701\) 39.4724 10.5766i 1.49085 0.399472i 0.580827 0.814027i \(-0.302729\pi\)
0.910024 + 0.414555i \(0.136063\pi\)
\(702\) 0 0
\(703\) 20.4757 + 21.7618i 0.772255 + 0.820762i
\(704\) 0 0
\(705\) −0.693433 0.336244i −0.0261162 0.0126637i
\(706\) 0 0
\(707\) −0.0826931 0.143229i −0.00310999 0.00538667i
\(708\) 0 0
\(709\) −28.2172 + 28.2172i −1.05972 + 1.05972i −0.0616179 + 0.998100i \(0.519626\pi\)
−0.998100 + 0.0616179i \(0.980374\pi\)
\(710\) 0 0
\(711\) −5.17012 3.85892i −0.193895 0.144721i
\(712\) 0 0
\(713\) 47.6875i 1.78591i
\(714\) 0 0
\(715\) 0.760340 1.31695i 0.0284351 0.0492510i
\(716\) 0 0
\(717\) 22.9559 1.65813i 0.857306 0.0619241i
\(718\) 0 0
\(719\) −12.4163 7.16857i −0.463051 0.267342i 0.250275 0.968175i \(-0.419479\pi\)
−0.713326 + 0.700832i \(0.752812\pi\)
\(720\) 0 0
\(721\) −3.23740 + 12.0821i −0.120567 + 0.449962i
\(722\) 0 0
\(723\) −20.9160 10.1421i −0.777875 0.377190i
\(724\) 0 0
\(725\) −40.4382 + 10.8354i −1.50184 + 0.402416i
\(726\) 0 0
\(727\) 0.397199 1.48237i 0.0147313 0.0549779i −0.958169 0.286203i \(-0.907607\pi\)
0.972900 + 0.231225i \(0.0742734\pi\)
\(728\) 0 0
\(729\) 11.3201 + 24.5123i 0.419265 + 0.907864i
\(730\) 0 0
\(731\) −1.41636 + 2.45320i −0.0523859 + 0.0907350i
\(732\) 0 0
\(733\) −20.1897 + 11.6565i −0.745724 + 0.430544i −0.824147 0.566376i \(-0.808345\pi\)
0.0784226 + 0.996920i \(0.475012\pi\)
\(734\) 0 0
\(735\) 0.204825 + 0.302169i 0.00755508 + 0.0111457i
\(736\) 0 0
\(737\) 55.1164 31.8215i 2.03024 1.17216i
\(738\) 0 0
\(739\) 24.0696i 0.885413i 0.896667 + 0.442706i \(0.145982\pi\)
−0.896667 + 0.442706i \(0.854018\pi\)
\(740\) 0 0
\(741\) 9.71186 + 8.40338i 0.356774 + 0.308706i
\(742\) 0 0
\(743\) −17.3243 30.0065i −0.635566 1.10083i −0.986395 0.164393i \(-0.947434\pi\)
0.350829 0.936439i \(-0.385900\pi\)
\(744\) 0 0
\(745\) 1.27599 + 0.341901i 0.0467487 + 0.0125263i
\(746\) 0 0
\(747\) −2.23067 2.82829i −0.0816158 0.103482i
\(748\) 0 0
\(749\) −3.05178 1.76195i −0.111510 0.0643801i
\(750\) 0 0
\(751\) 37.0885i 1.35338i 0.736269 + 0.676689i \(0.236586\pi\)
−0.736269 + 0.676689i \(0.763414\pi\)
\(752\) 0 0
\(753\) −10.2911 + 6.97578i −0.375027 + 0.254212i
\(754\) 0 0
\(755\) 0.318545 + 1.18883i 0.0115930 + 0.0432658i
\(756\) 0 0
\(757\) −0.237085 0.884814i −0.00861700 0.0321591i 0.961483 0.274863i \(-0.0886324\pi\)
−0.970100 + 0.242704i \(0.921966\pi\)
\(758\) 0 0
\(759\) −20.1215 29.6843i −0.730364 1.07747i
\(760\) 0 0
\(761\) −24.6401 + 42.6779i −0.893203 + 1.54707i −0.0571905 + 0.998363i \(0.518214\pi\)
−0.836013 + 0.548710i \(0.815119\pi\)
\(762\) 0 0
\(763\) −9.39967 + 9.39967i −0.340291 + 0.340291i
\(764\) 0 0
\(765\) −0.304999 + 0.764980i −0.0110273 + 0.0276579i
\(766\) 0 0
\(767\) 10.2246 0.369188
\(768\) 0 0
\(769\) 18.2063 + 18.2063i 0.656535 + 0.656535i 0.954559 0.298023i \(-0.0963273\pi\)
−0.298023 + 0.954559i \(0.596327\pi\)
\(770\) 0 0
\(771\) 27.1103 1.95820i 0.976352 0.0705230i
\(772\) 0 0
\(773\) 26.6079 15.3621i 0.957019 0.552535i 0.0617647 0.998091i \(-0.480327\pi\)
0.895254 + 0.445556i \(0.146994\pi\)
\(774\) 0 0
\(775\) −13.1315 49.0075i −0.471698 1.76040i
\(776\) 0 0
\(777\) −5.66742 + 25.3282i −0.203318 + 0.908643i
\(778\) 0 0
\(779\) −13.9378 52.0165i −0.499373 1.86369i
\(780\) 0 0
\(781\) 15.6744 9.04963i 0.560875 0.323821i
\(782\) 0 0
\(783\) −42.9330 + 9.43478i −1.53430 + 0.337172i
\(784\) 0 0
\(785\) −3.29629 3.29629i −0.117650 0.117650i
\(786\) 0 0
\(787\) −31.3695 −1.11820 −0.559101 0.829099i \(-0.688854\pi\)
−0.559101 + 0.829099i \(0.688854\pi\)
\(788\) 0 0
\(789\) 9.69445 + 27.9464i 0.345132 + 0.994919i
\(790\) 0 0
\(791\) −1.16126 + 1.16126i −0.0412896 + 0.0412896i
\(792\) 0 0
\(793\) 9.52988 16.5062i 0.338416 0.586153i
\(794\) 0 0
\(795\) −3.47388 + 2.35477i −0.123206 + 0.0835150i
\(796\) 0 0
\(797\) −9.28165 34.6396i −0.328773 1.22700i −0.910464 0.413588i \(-0.864275\pi\)
0.581691 0.813410i \(-0.302391\pi\)
\(798\) 0 0
\(799\) 0.617134 + 2.30318i 0.0218326 + 0.0814805i
\(800\) 0 0
\(801\) 4.53133 38.3580i 0.160107 1.35531i
\(802\) 0 0
\(803\) 38.6645i 1.36444i
\(804\) 0 0
\(805\) −2.24597 1.29671i −0.0791602 0.0457032i
\(806\) 0 0
\(807\) 0.475721 2.47769i 0.0167462 0.0872187i
\(808\) 0 0
\(809\) 0.633818 + 0.169831i 0.0222839 + 0.00597094i 0.269944 0.962876i \(-0.412995\pi\)
−0.247660 + 0.968847i \(0.579662\pi\)
\(810\) 0 0
\(811\) −5.99623 10.3858i −0.210556 0.364694i 0.741332 0.671138i \(-0.234194\pi\)
−0.951889 + 0.306444i \(0.900861\pi\)
\(812\) 0 0
\(813\) −8.60066 + 9.93986i −0.301638 + 0.348606i
\(814\) 0 0
\(815\) 1.71939i 0.0602276i
\(816\) 0 0
\(817\) −9.93558 + 5.73631i −0.347602 + 0.200688i
\(818\) 0 0
\(819\) −1.30872 + 11.0784i −0.0457305 + 0.387112i
\(820\) 0 0
\(821\) −13.5599 + 7.82883i −0.473245 + 0.273228i −0.717597 0.696458i \(-0.754758\pi\)
0.244352 + 0.969687i \(0.421425\pi\)
\(822\) 0 0
\(823\) 13.2593 22.9659i 0.462192 0.800539i −0.536878 0.843660i \(-0.680397\pi\)
0.999070 + 0.0431204i \(0.0137299\pi\)
\(824\) 0 0
\(825\) −28.8526 24.9652i −1.00452 0.869178i
\(826\) 0 0
\(827\) −5.59905 + 20.8959i −0.194698 + 0.726623i 0.797647 + 0.603125i \(0.206078\pi\)
−0.992345 + 0.123498i \(0.960589\pi\)
\(828\) 0 0
\(829\) −1.37988 + 0.369737i −0.0479251 + 0.0128415i −0.282702 0.959208i \(-0.591231\pi\)
0.234777 + 0.972049i \(0.424564\pi\)
\(830\) 0 0
\(831\) −6.53096 + 13.4687i −0.226557 + 0.467225i
\(832\) 0 0
\(833\) 0.292326 1.09098i 0.0101285 0.0378001i
\(834\) 0 0
\(835\) −2.12004 1.22401i −0.0733672 0.0423586i
\(836\) 0 0
\(837\) −11.4341 52.0310i −0.395221 1.79845i
\(838\) 0 0
\(839\) 22.8111 39.5099i 0.787525 1.36403i −0.139953 0.990158i \(-0.544695\pi\)
0.927479 0.373876i \(-0.121971\pi\)
\(840\) 0 0
\(841\) 42.5650i 1.46776i
\(842\) 0 0
\(843\) −5.77690 + 0.417272i −0.198967 + 0.0143716i
\(844\) 0 0
\(845\) 1.71587 1.71587i 0.0590278 0.0590278i
\(846\) 0 0
\(847\) 10.8562 + 18.8035i 0.373024 + 0.646096i
\(848\) 0 0
\(849\) −12.7010 + 26.1931i −0.435896 + 0.898944i
\(850\) 0 0
\(851\) 6.48768 + 27.5395i 0.222395 + 0.944040i
\(852\) 0 0
\(853\) −32.0094 + 8.57690i −1.09598 + 0.293668i −0.761128 0.648602i \(-0.775354\pi\)
−0.334855 + 0.942270i \(0.608687\pi\)
\(854\) 0 0
\(855\) −2.61887 + 2.06549i −0.0895634 + 0.0706384i
\(856\) 0 0
\(857\) −22.2267 22.2267i −0.759250 0.759250i 0.216936 0.976186i \(-0.430394\pi\)
−0.976186 + 0.216936i \(0.930394\pi\)
\(858\) 0 0
\(859\) 14.3461 14.3461i 0.489482 0.489482i −0.418660 0.908143i \(-0.637500\pi\)
0.908143 + 0.418660i \(0.137500\pi\)
\(860\) 0 0
\(861\) 30.6070 35.3728i 1.04308 1.20550i
\(862\) 0 0
\(863\) 4.58633 + 2.64792i 0.156120 + 0.0901362i 0.576025 0.817432i \(-0.304603\pi\)
−0.419905 + 0.907568i \(0.637936\pi\)
\(864\) 0 0
\(865\) 2.76266 + 2.76266i 0.0939333 + 0.0939333i
\(866\) 0 0
\(867\) −25.4113 + 8.81503i −0.863013 + 0.299374i
\(868\) 0 0
\(869\) 9.24620 + 2.47751i 0.313656 + 0.0840438i
\(870\) 0 0
\(871\) −20.8462 + 5.58572i −0.706346 + 0.189265i
\(872\) 0 0
\(873\) 28.1659 12.1084i 0.953272 0.409809i
\(874\) 0 0
\(875\) −5.35802 1.43568i −0.181134 0.0485348i
\(876\) 0 0
\(877\) 11.0306 0.372478 0.186239 0.982504i \(-0.440370\pi\)
0.186239 + 0.982504i \(0.440370\pi\)
\(878\) 0 0
\(879\) 6.97527 2.41968i 0.235270 0.0816138i
\(880\) 0 0
\(881\) 5.69886 + 9.87071i 0.191999 + 0.332553i 0.945913 0.324421i \(-0.105170\pi\)
−0.753913 + 0.656974i \(0.771836\pi\)
\(882\) 0 0
\(883\) 2.09452 7.81687i 0.0704863 0.263058i −0.921686 0.387938i \(-0.873188\pi\)
0.992172 + 0.124879i \(0.0398543\pi\)
\(884\) 0 0
\(885\) −0.500698 + 2.60777i −0.0168308 + 0.0876594i
\(886\) 0 0
\(887\) −20.8997 −0.701744 −0.350872 0.936423i \(-0.614115\pi\)
−0.350872 + 0.936423i \(0.614115\pi\)
\(888\) 0 0
\(889\) −36.0385 −1.20869
\(890\) 0 0
\(891\) −29.0717 27.5635i −0.973938 0.923411i
\(892\) 0 0
\(893\) −2.49942 + 9.32796i −0.0836399 + 0.312148i
\(894\) 0 0
\(895\) 1.83295 + 3.17476i 0.0612688 + 0.106121i
\(896\) 0 0
\(897\) 3.98549 + 11.4891i 0.133072 + 0.383609i
\(898\) 0 0
\(899\) 86.7305 2.89262
\(900\) 0 0
\(901\) 12.5424 + 3.36073i 0.417848 + 0.111962i
\(902\) 0 0
\(903\) −8.96676 4.34796i −0.298395 0.144691i
\(904\) 0 0
\(905\) −0.489787 + 0.131238i −0.0162811 + 0.00436250i
\(906\) 0 0
\(907\) 6.39589 + 1.71377i 0.212372 + 0.0569049i 0.363436 0.931619i \(-0.381603\pi\)
−0.151064 + 0.988524i \(0.548270\pi\)
\(908\) 0 0
\(909\) −0.187083 0.0745904i −0.00620515 0.00247401i
\(910\) 0 0
\(911\) 9.09846 + 9.09846i 0.301445 + 0.301445i 0.841579 0.540134i \(-0.181626\pi\)
−0.540134 + 0.841579i \(0.681626\pi\)
\(912\) 0 0
\(913\) 4.62858 + 2.67231i 0.153184 + 0.0884406i
\(914\) 0 0
\(915\) 3.74323 + 3.23890i 0.123747 + 0.107075i
\(916\) 0 0
\(917\) 22.8163 22.8163i 0.753459 0.753459i
\(918\) 0 0
\(919\) −9.52431 9.52431i −0.314178 0.314178i 0.532348 0.846526i \(-0.321310\pi\)
−0.846526 + 0.532348i \(0.821310\pi\)
\(920\) 0 0
\(921\) −0.810135 + 4.21941i −0.0266949 + 0.139034i
\(922\) 0 0
\(923\) −5.92839 + 1.58851i −0.195135 + 0.0522864i
\(924\) 0 0
\(925\) 14.2507 + 26.5153i 0.468561 + 0.871818i
\(926\) 0 0
\(927\) 6.01603 + 13.9941i 0.197592 + 0.459627i
\(928\) 0 0
\(929\) 24.4271 + 42.3091i 0.801429 + 1.38812i 0.918676 + 0.395012i \(0.129260\pi\)
−0.117247 + 0.993103i \(0.537407\pi\)
\(930\) 0 0
\(931\) 3.23457 3.23457i 0.106009 0.106009i
\(932\) 0 0
\(933\) −0.642770 8.89880i −0.0210433 0.291334i
\(934\) 0 0
\(935\) 1.22193i 0.0399614i
\(936\) 0 0
\(937\) −7.40825 + 12.8315i −0.242017 + 0.419186i −0.961289 0.275543i \(-0.911142\pi\)
0.719272 + 0.694729i \(0.244476\pi\)
\(938\) 0 0
\(939\) 2.60647 + 36.0852i 0.0850589 + 1.17759i
\(940\) 0 0
\(941\) −49.0237 28.3039i −1.59813 0.922679i −0.991848 0.127428i \(-0.959328\pi\)
−0.606280 0.795251i \(-0.707339\pi\)
\(942\) 0 0
\(943\) 13.1976 49.2540i 0.429772 1.60393i
\(944\) 0 0
\(945\) −2.76146 0.876300i −0.0898303 0.0285061i
\(946\) 0 0
\(947\) −11.2784 + 3.02204i −0.366499 + 0.0982031i −0.437368 0.899283i \(-0.644089\pi\)
0.0708693 + 0.997486i \(0.477423\pi\)
\(948\) 0 0
\(949\) 3.39345 12.6645i 0.110156 0.411108i
\(950\) 0 0
\(951\) −26.7837 + 30.9542i −0.868522 + 1.00376i
\(952\) 0 0
\(953\) −0.551659 + 0.955501i −0.0178700 + 0.0309517i −0.874822 0.484444i \(-0.839022\pi\)
0.856952 + 0.515396i \(0.172355\pi\)
\(954\) 0 0
\(955\) 2.63536 1.52153i 0.0852783 0.0492355i
\(956\) 0 0
\(957\) 53.9877 36.5955i 1.74517 1.18296i
\(958\) 0 0
\(959\) 49.3538 28.4944i 1.59372 0.920133i
\(960\) 0 0
\(961\) 74.1097i 2.39064i
\(962\) 0 0
\(963\) −4.24679 + 0.616718i −0.136851 + 0.0198735i
\(964\) 0 0
\(965\) 2.87441 + 4.97862i 0.0925304 + 0.160267i
\(966\) 0 0
\(967\) −35.4927 9.51023i −1.14137 0.305828i −0.361867 0.932230i \(-0.617860\pi\)
−0.779501 + 0.626402i \(0.784527\pi\)
\(968\) 0 0
\(969\) 10.1346 + 1.94586i 0.325570 + 0.0625102i
\(970\) 0 0
\(971\) −41.6117 24.0245i −1.33538 0.770983i −0.349263 0.937025i \(-0.613568\pi\)
−0.986119 + 0.166042i \(0.946901\pi\)
\(972\) 0 0
\(973\) 28.2815i 0.906662i
\(974\) 0 0
\(975\) 7.25952 + 10.7096i 0.232491 + 0.342983i
\(976\) 0 0
\(977\) −1.90353 7.10405i −0.0608992 0.227279i 0.928768 0.370661i \(-0.120869\pi\)
−0.989667 + 0.143382i \(0.954202\pi\)
\(978\) 0 0
\(979\) 14.8328 + 55.3567i 0.474058 + 1.76921i
\(980\) 0 0
\(981\) −1.89915 + 16.0764i −0.0606351 + 0.513279i
\(982\) 0 0
\(983\) 10.1160 17.5214i 0.322649 0.558844i −0.658385 0.752682i \(-0.728760\pi\)
0.981034 + 0.193837i \(0.0620933\pi\)
\(984\) 0 0
\(985\) −0.0936000 + 0.0936000i −0.00298234 + 0.00298234i
\(986\) 0 0
\(987\) −7.92496 + 2.74912i −0.252254 + 0.0875055i
\(988\) 0 0
\(989\) −10.8633 −0.345433
\(990\) 0 0
\(991\) 2.69940 + 2.69940i 0.0857491 + 0.0857491i 0.748680 0.662931i \(-0.230688\pi\)
−0.662931 + 0.748680i \(0.730688\pi\)
\(992\) 0 0
\(993\) −0.266539 3.69009i −0.00845837 0.117102i
\(994\) 0 0
\(995\) 2.54403 1.46880i 0.0806513 0.0465641i
\(996\) 0 0
\(997\) −9.90893 36.9806i −0.313819 1.17119i −0.925084 0.379763i \(-0.876006\pi\)
0.611265 0.791426i \(-0.290661\pi\)
\(998\) 0 0
\(999\) 13.6818 + 28.4923i 0.432873 + 0.901455i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 888.2.br.a.569.34 yes 152
3.2 odd 2 inner 888.2.br.a.569.22 152
37.8 odd 12 inner 888.2.br.a.785.22 yes 152
111.8 even 12 inner 888.2.br.a.785.34 yes 152
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
888.2.br.a.569.22 152 3.2 odd 2 inner
888.2.br.a.569.34 yes 152 1.1 even 1 trivial
888.2.br.a.785.22 yes 152 37.8 odd 12 inner
888.2.br.a.785.34 yes 152 111.8 even 12 inner