Properties

Label 888.2.br.a.569.22
Level $888$
Weight $2$
Character 888.569
Analytic conductor $7.091$
Analytic rank $0$
Dimension $152$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [888,2,Mod(473,888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(888, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 0, 6, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("888.473"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 888 = 2^{3} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 888.br (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.09071569949\)
Analytic rank: \(0\)
Dimension: \(152\)
Relative dimension: \(38\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 569.22
Character \(\chi\) \(=\) 888.569
Dual form 888.2.br.a.785.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.567654 - 1.63639i) q^{3} +(0.0585783 - 0.218617i) q^{5} +(1.23175 + 2.13345i) q^{7} +(-2.35554 - 1.85780i) q^{9} +4.45126 q^{11} +(1.45800 + 0.390671i) q^{13} +(-0.324490 - 0.219956i) q^{15} +(-1.17157 + 0.313921i) q^{17} +(4.74490 + 1.27139i) q^{19} +(4.19035 - 0.804556i) q^{21} +(-3.28903 - 3.28903i) q^{23} +(4.28577 + 2.47439i) q^{25} +(-4.37722 + 2.79999i) q^{27} +(5.98185 - 5.98185i) q^{29} +(-7.24947 - 7.24947i) q^{31} +(2.52677 - 7.28399i) q^{33} +(0.538561 - 0.144307i) q^{35} +(5.17282 + 3.20030i) q^{37} +(1.46693 - 2.16410i) q^{39} +(5.48131 + 9.49391i) q^{41} +(-1.65145 + 1.65145i) q^{43} +(-0.544131 + 0.406134i) q^{45} -1.96589i q^{47} +(0.465605 - 0.806452i) q^{49} +(-0.151349 + 2.09534i) q^{51} +(-9.27137 - 5.35283i) q^{53} +(0.260747 - 0.973120i) q^{55} +(4.77395 - 7.04279i) q^{57} +(-6.54296 + 1.75318i) q^{59} +(3.26812 - 12.1968i) q^{61} +(1.06210 - 7.31376i) q^{63} +(0.170815 - 0.295860i) q^{65} +(-12.3822 + 7.14887i) q^{67} +(-7.24917 + 3.51510i) q^{69} +(3.52135 - 2.03305i) q^{71} -8.68620i q^{73} +(6.48189 - 5.60858i) q^{75} +(5.48281 + 9.49651i) q^{77} +(-2.07721 - 0.556587i) q^{79} +(2.09712 + 8.75226i) q^{81} +(1.03984 + 0.600350i) q^{83} +0.274514i q^{85} +(-6.39301 - 13.1843i) q^{87} +(3.33227 + 12.4362i) q^{89} +(0.962415 + 3.59178i) q^{91} +(-15.9781 + 7.74777i) q^{93} +(0.555896 - 0.962840i) q^{95} +(7.22624 - 7.22624i) q^{97} +(-10.4851 - 8.26956i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 152 q + 4 q^{13} - 12 q^{15} + 4 q^{19} - 44 q^{31} - 12 q^{39} + 28 q^{43} + 20 q^{45} - 80 q^{49} - 12 q^{51} - 8 q^{55} - 40 q^{57} - 28 q^{61} + 48 q^{63} + 56 q^{69} + 64 q^{75} + 20 q^{79} + 16 q^{81}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/888\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(409\) \(445\) \(593\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.567654 1.63639i 0.327735 0.944770i
\(4\) 0 0
\(5\) 0.0585783 0.218617i 0.0261970 0.0977685i −0.951590 0.307372i \(-0.900551\pi\)
0.977787 + 0.209603i \(0.0672172\pi\)
\(6\) 0 0
\(7\) 1.23175 + 2.13345i 0.465556 + 0.806367i 0.999226 0.0393258i \(-0.0125210\pi\)
−0.533670 + 0.845693i \(0.679188\pi\)
\(8\) 0 0
\(9\) −2.35554 1.85780i −0.785179 0.619268i
\(10\) 0 0
\(11\) 4.45126 1.34210 0.671052 0.741410i \(-0.265843\pi\)
0.671052 + 0.741410i \(0.265843\pi\)
\(12\) 0 0
\(13\) 1.45800 + 0.390671i 0.404378 + 0.108353i 0.455274 0.890351i \(-0.349541\pi\)
−0.0508965 + 0.998704i \(0.516208\pi\)
\(14\) 0 0
\(15\) −0.324490 0.219956i −0.0837830 0.0567923i
\(16\) 0 0
\(17\) −1.17157 + 0.313921i −0.284147 + 0.0761370i −0.398078 0.917352i \(-0.630323\pi\)
0.113931 + 0.993489i \(0.463656\pi\)
\(18\) 0 0
\(19\) 4.74490 + 1.27139i 1.08856 + 0.291677i 0.758096 0.652143i \(-0.226130\pi\)
0.330459 + 0.943820i \(0.392796\pi\)
\(20\) 0 0
\(21\) 4.19035 0.804556i 0.914410 0.175569i
\(22\) 0 0
\(23\) −3.28903 3.28903i −0.685810 0.685810i 0.275493 0.961303i \(-0.411159\pi\)
−0.961303 + 0.275493i \(0.911159\pi\)
\(24\) 0 0
\(25\) 4.28577 + 2.47439i 0.857153 + 0.494878i
\(26\) 0 0
\(27\) −4.37722 + 2.79999i −0.842397 + 0.538858i
\(28\) 0 0
\(29\) 5.98185 5.98185i 1.11080 1.11080i 0.117759 0.993042i \(-0.462429\pi\)
0.993042 0.117759i \(-0.0375712\pi\)
\(30\) 0 0
\(31\) −7.24947 7.24947i −1.30204 1.30204i −0.927012 0.375032i \(-0.877632\pi\)
−0.375032 0.927012i \(-0.622368\pi\)
\(32\) 0 0
\(33\) 2.52677 7.28399i 0.439855 1.26798i
\(34\) 0 0
\(35\) 0.538561 0.144307i 0.0910334 0.0243923i
\(36\) 0 0
\(37\) 5.17282 + 3.20030i 0.850407 + 0.526126i
\(38\) 0 0
\(39\) 1.46693 2.16410i 0.234897 0.346533i
\(40\) 0 0
\(41\) 5.48131 + 9.49391i 0.856037 + 1.48270i 0.875680 + 0.482892i \(0.160414\pi\)
−0.0196432 + 0.999807i \(0.506253\pi\)
\(42\) 0 0
\(43\) −1.65145 + 1.65145i −0.251843 + 0.251843i −0.821726 0.569883i \(-0.806989\pi\)
0.569883 + 0.821726i \(0.306989\pi\)
\(44\) 0 0
\(45\) −0.544131 + 0.406134i −0.0811143 + 0.0605429i
\(46\) 0 0
\(47\) 1.96589i 0.286755i −0.989668 0.143377i \(-0.954204\pi\)
0.989668 0.143377i \(-0.0457963\pi\)
\(48\) 0 0
\(49\) 0.465605 0.806452i 0.0665150 0.115207i
\(50\) 0 0
\(51\) −0.151349 + 2.09534i −0.0211930 + 0.293406i
\(52\) 0 0
\(53\) −9.27137 5.35283i −1.27352 0.735267i −0.297872 0.954606i \(-0.596277\pi\)
−0.975649 + 0.219339i \(0.929610\pi\)
\(54\) 0 0
\(55\) 0.260747 0.973120i 0.0351591 0.131215i
\(56\) 0 0
\(57\) 4.77395 7.04279i 0.632326 0.932841i
\(58\) 0 0
\(59\) −6.54296 + 1.75318i −0.851820 + 0.228245i −0.658210 0.752834i \(-0.728686\pi\)
−0.193610 + 0.981079i \(0.562020\pi\)
\(60\) 0 0
\(61\) 3.26812 12.1968i 0.418440 1.56164i −0.359403 0.933182i \(-0.617020\pi\)
0.777844 0.628458i \(-0.216314\pi\)
\(62\) 0 0
\(63\) 1.06210 7.31376i 0.133812 0.921447i
\(64\) 0 0
\(65\) 0.170815 0.295860i 0.0211870 0.0366969i
\(66\) 0 0
\(67\) −12.3822 + 7.14887i −1.51273 + 0.873374i −0.512838 + 0.858485i \(0.671406\pi\)
−0.999889 + 0.0148885i \(0.995261\pi\)
\(68\) 0 0
\(69\) −7.24917 + 3.51510i −0.872697 + 0.423169i
\(70\) 0 0
\(71\) 3.52135 2.03305i 0.417907 0.241279i −0.276274 0.961079i \(-0.589100\pi\)
0.694181 + 0.719800i \(0.255767\pi\)
\(72\) 0 0
\(73\) 8.68620i 1.01664i −0.861168 0.508321i \(-0.830266\pi\)
0.861168 0.508321i \(-0.169734\pi\)
\(74\) 0 0
\(75\) 6.48189 5.60858i 0.748464 0.647623i
\(76\) 0 0
\(77\) 5.48281 + 9.49651i 0.624825 + 1.08223i
\(78\) 0 0
\(79\) −2.07721 0.556587i −0.233705 0.0626210i 0.140066 0.990142i \(-0.455269\pi\)
−0.373770 + 0.927521i \(0.621935\pi\)
\(80\) 0 0
\(81\) 2.09712 + 8.75226i 0.233014 + 0.972473i
\(82\) 0 0
\(83\) 1.03984 + 0.600350i 0.114137 + 0.0658970i 0.555982 0.831195i \(-0.312342\pi\)
−0.441845 + 0.897092i \(0.645676\pi\)
\(84\) 0 0
\(85\) 0.274514i 0.0297752i
\(86\) 0 0
\(87\) −6.39301 13.1843i −0.685403 1.41350i
\(88\) 0 0
\(89\) 3.33227 + 12.4362i 0.353220 + 1.31824i 0.882709 + 0.469919i \(0.155717\pi\)
−0.529489 + 0.848317i \(0.677616\pi\)
\(90\) 0 0
\(91\) 0.962415 + 3.59178i 0.100889 + 0.376521i
\(92\) 0 0
\(93\) −15.9781 + 7.74777i −1.65686 + 0.803406i
\(94\) 0 0
\(95\) 0.555896 0.962840i 0.0570337 0.0987853i
\(96\) 0 0
\(97\) 7.22624 7.22624i 0.733713 0.733713i −0.237640 0.971353i \(-0.576374\pi\)
0.971353 + 0.237640i \(0.0763738\pi\)
\(98\) 0 0
\(99\) −10.4851 8.26956i −1.05379 0.831122i
\(100\) 0 0
\(101\) 0.0671349 0.00668017 0.00334008 0.999994i \(-0.498937\pi\)
0.00334008 + 0.999994i \(0.498937\pi\)
\(102\) 0 0
\(103\) 3.59033 + 3.59033i 0.353766 + 0.353766i 0.861509 0.507743i \(-0.169520\pi\)
−0.507743 + 0.861509i \(0.669520\pi\)
\(104\) 0 0
\(105\) 0.0695738 0.963212i 0.00678971 0.0939999i
\(106\) 0 0
\(107\) 1.23880 0.715223i 0.119760 0.0691432i −0.438924 0.898524i \(-0.644640\pi\)
0.558683 + 0.829381i \(0.311307\pi\)
\(108\) 0 0
\(109\) 1.39660 + 5.21219i 0.133770 + 0.499237i 1.00000 0.000408725i \(-0.000130101\pi\)
−0.866230 + 0.499646i \(0.833463\pi\)
\(110\) 0 0
\(111\) 8.17331 6.64809i 0.775776 0.631008i
\(112\) 0 0
\(113\) −0.172540 0.643927i −0.0162312 0.0605756i 0.957335 0.288980i \(-0.0933160\pi\)
−0.973566 + 0.228404i \(0.926649\pi\)
\(114\) 0 0
\(115\) −0.911704 + 0.526372i −0.0850168 + 0.0490845i
\(116\) 0 0
\(117\) −2.70860 3.62893i −0.250410 0.335495i
\(118\) 0 0
\(119\) −2.11281 2.11281i −0.193681 0.193681i
\(120\) 0 0
\(121\) 8.81367 0.801243
\(122\) 0 0
\(123\) 18.6472 3.58030i 1.68136 0.322825i
\(124\) 0 0
\(125\) 1.59219 1.59219i 0.142410 0.142410i
\(126\) 0 0
\(127\) −7.31452 + 12.6691i −0.649059 + 1.12420i 0.334290 + 0.942470i \(0.391504\pi\)
−0.983348 + 0.181732i \(0.941830\pi\)
\(128\) 0 0
\(129\) 1.76496 + 3.63986i 0.155396 + 0.320472i
\(130\) 0 0
\(131\) 3.39004 + 12.6518i 0.296189 + 1.10539i 0.940269 + 0.340434i \(0.110574\pi\)
−0.644080 + 0.764958i \(0.722759\pi\)
\(132\) 0 0
\(133\) 3.13206 + 11.6890i 0.271584 + 1.01357i
\(134\) 0 0
\(135\) 0.355715 + 1.12095i 0.0306151 + 0.0964763i
\(136\) 0 0
\(137\) 23.1334i 1.97642i 0.153117 + 0.988208i \(0.451069\pi\)
−0.153117 + 0.988208i \(0.548931\pi\)
\(138\) 0 0
\(139\) −9.94218 5.74012i −0.843284 0.486870i 0.0150949 0.999886i \(-0.495195\pi\)
−0.858379 + 0.513016i \(0.828528\pi\)
\(140\) 0 0
\(141\) −3.21696 1.11595i −0.270917 0.0939796i
\(142\) 0 0
\(143\) 6.48995 + 1.73898i 0.542717 + 0.145421i
\(144\) 0 0
\(145\) −0.957328 1.65814i −0.0795017 0.137701i
\(146\) 0 0
\(147\) −1.05537 1.21970i −0.0870452 0.100599i
\(148\) 0 0
\(149\) 5.83665i 0.478157i 0.971000 + 0.239078i \(0.0768453\pi\)
−0.971000 + 0.239078i \(0.923155\pi\)
\(150\) 0 0
\(151\) 4.70939 2.71897i 0.383245 0.221267i −0.295984 0.955193i \(-0.595648\pi\)
0.679229 + 0.733926i \(0.262314\pi\)
\(152\) 0 0
\(153\) 3.34288 + 1.43709i 0.270256 + 0.116182i
\(154\) 0 0
\(155\) −2.00952 + 1.16020i −0.161408 + 0.0931892i
\(156\) 0 0
\(157\) −10.2984 + 17.8374i −0.821902 + 1.42358i 0.0823617 + 0.996603i \(0.473754\pi\)
−0.904264 + 0.426974i \(0.859580\pi\)
\(158\) 0 0
\(159\) −14.0222 + 12.1330i −1.11204 + 0.962211i
\(160\) 0 0
\(161\) 2.96572 11.0682i 0.233732 0.872298i
\(162\) 0 0
\(163\) 7.33801 1.96621i 0.574757 0.154006i 0.0402796 0.999188i \(-0.487175\pi\)
0.534477 + 0.845183i \(0.320508\pi\)
\(164\) 0 0
\(165\) −1.44439 0.979079i −0.112446 0.0762212i
\(166\) 0 0
\(167\) 2.79944 10.4476i 0.216627 0.808462i −0.768961 0.639296i \(-0.779226\pi\)
0.985588 0.169166i \(-0.0541075\pi\)
\(168\) 0 0
\(169\) −9.28518 5.36080i −0.714244 0.412369i
\(170\) 0 0
\(171\) −8.81480 11.8099i −0.674085 0.903127i
\(172\) 0 0
\(173\) −8.63122 + 14.9497i −0.656220 + 1.13661i 0.325367 + 0.945588i \(0.394512\pi\)
−0.981587 + 0.191018i \(0.938821\pi\)
\(174\) 0 0
\(175\) 12.1913i 0.921573i
\(176\) 0 0
\(177\) −0.845249 + 11.7020i −0.0635328 + 0.879578i
\(178\) 0 0
\(179\) −11.4532 + 11.4532i −0.856050 + 0.856050i −0.990870 0.134820i \(-0.956954\pi\)
0.134820 + 0.990870i \(0.456954\pi\)
\(180\) 0 0
\(181\) 1.12019 + 1.94023i 0.0832634 + 0.144216i 0.904650 0.426156i \(-0.140132\pi\)
−0.821386 + 0.570372i \(0.806799\pi\)
\(182\) 0 0
\(183\) −18.1035 12.2715i −1.33825 0.907134i
\(184\) 0 0
\(185\) 1.00265 0.943399i 0.0737167 0.0693601i
\(186\) 0 0
\(187\) −5.21495 + 1.39734i −0.381355 + 0.102184i
\(188\) 0 0
\(189\) −11.3652 5.88969i −0.826700 0.428412i
\(190\) 0 0
\(191\) 9.50724 + 9.50724i 0.687920 + 0.687920i 0.961772 0.273852i \(-0.0882979\pi\)
−0.273852 + 0.961772i \(0.588298\pi\)
\(192\) 0 0
\(193\) 17.9607 17.9607i 1.29284 1.29284i 0.359815 0.933024i \(-0.382840\pi\)
0.933024 0.359815i \(-0.117160\pi\)
\(194\) 0 0
\(195\) −0.387178 0.447465i −0.0277264 0.0320437i
\(196\) 0 0
\(197\) −0.506502 0.292429i −0.0360868 0.0208347i 0.481848 0.876255i \(-0.339966\pi\)
−0.517935 + 0.855420i \(0.673299\pi\)
\(198\) 0 0
\(199\) −9.17777 9.17777i −0.650595 0.650595i 0.302541 0.953136i \(-0.402165\pi\)
−0.953136 + 0.302541i \(0.902165\pi\)
\(200\) 0 0
\(201\) 4.66953 + 24.3202i 0.329363 + 1.71541i
\(202\) 0 0
\(203\) 20.1301 + 5.39384i 1.41285 + 0.378573i
\(204\) 0 0
\(205\) 2.39662 0.642171i 0.167387 0.0448512i
\(206\) 0 0
\(207\) 1.63706 + 13.8578i 0.113784 + 0.963185i
\(208\) 0 0
\(209\) 21.1208 + 5.65929i 1.46095 + 0.391461i
\(210\) 0 0
\(211\) −9.11565 −0.627547 −0.313774 0.949498i \(-0.601593\pi\)
−0.313774 + 0.949498i \(0.601593\pi\)
\(212\) 0 0
\(213\) −1.32796 6.91636i −0.0909900 0.473901i
\(214\) 0 0
\(215\) 0.264295 + 0.457773i 0.0180248 + 0.0312199i
\(216\) 0 0
\(217\) 6.53685 24.3959i 0.443750 1.65610i
\(218\) 0 0
\(219\) −14.2140 4.93075i −0.960493 0.333189i
\(220\) 0 0
\(221\) −1.83079 −0.123152
\(222\) 0 0
\(223\) −19.6194 −1.31381 −0.656907 0.753971i \(-0.728136\pi\)
−0.656907 + 0.753971i \(0.728136\pi\)
\(224\) 0 0
\(225\) −5.49835 13.7906i −0.366557 0.919375i
\(226\) 0 0
\(227\) −2.22664 + 8.30994i −0.147787 + 0.551550i 0.851828 + 0.523821i \(0.175494\pi\)
−0.999615 + 0.0277286i \(0.991173\pi\)
\(228\) 0 0
\(229\) −8.10744 14.0425i −0.535755 0.927954i −0.999126 0.0417901i \(-0.986694\pi\)
0.463372 0.886164i \(-0.346639\pi\)
\(230\) 0 0
\(231\) 18.6523 3.58129i 1.22723 0.235631i
\(232\) 0 0
\(233\) −0.377103 −0.0247049 −0.0123524 0.999924i \(-0.503932\pi\)
−0.0123524 + 0.999924i \(0.503932\pi\)
\(234\) 0 0
\(235\) −0.429777 0.115158i −0.0280356 0.00751211i
\(236\) 0 0
\(237\) −2.08993 + 3.08318i −0.135756 + 0.200274i
\(238\) 0 0
\(239\) −12.8354 + 3.43923i −0.830251 + 0.222465i −0.648823 0.760939i \(-0.724739\pi\)
−0.181428 + 0.983404i \(0.558072\pi\)
\(240\) 0 0
\(241\) −12.9634 3.47352i −0.835044 0.223749i −0.184131 0.982902i \(-0.558947\pi\)
−0.650913 + 0.759152i \(0.725614\pi\)
\(242\) 0 0
\(243\) 15.5125 + 1.53655i 0.995130 + 0.0985695i
\(244\) 0 0
\(245\) −0.149030 0.149030i −0.00952116 0.00952116i
\(246\) 0 0
\(247\) 6.42139 + 3.70739i 0.408583 + 0.235896i
\(248\) 0 0
\(249\) 1.57267 1.36079i 0.0996641 0.0862363i
\(250\) 0 0
\(251\) 5.07555 5.07555i 0.320366 0.320366i −0.528542 0.848907i \(-0.677261\pi\)
0.848907 + 0.528542i \(0.177261\pi\)
\(252\) 0 0
\(253\) −14.6403 14.6403i −0.920429 0.920429i
\(254\) 0 0
\(255\) 0.449211 + 0.155829i 0.0281307 + 0.00975837i
\(256\) 0 0
\(257\) −15.1582 + 4.06162i −0.945541 + 0.253357i −0.698469 0.715640i \(-0.746135\pi\)
−0.247072 + 0.968997i \(0.579468\pi\)
\(258\) 0 0
\(259\) −0.456068 + 14.9779i −0.0283387 + 0.930681i
\(260\) 0 0
\(261\) −25.2036 + 2.97737i −1.56006 + 0.184294i
\(262\) 0 0
\(263\) −8.53905 14.7901i −0.526541 0.911995i −0.999522 0.0309225i \(-0.990156\pi\)
0.472981 0.881072i \(-0.343178\pi\)
\(264\) 0 0
\(265\) −1.71332 + 1.71332i −0.105248 + 0.105248i
\(266\) 0 0
\(267\) 22.2421 + 1.60657i 1.36119 + 0.0983203i
\(268\) 0 0
\(269\) 1.45662i 0.0888118i 0.999014 + 0.0444059i \(0.0141395\pi\)
−0.999014 + 0.0444059i \(0.985861\pi\)
\(270\) 0 0
\(271\) −3.79443 + 6.57214i −0.230495 + 0.399229i −0.957954 0.286922i \(-0.907368\pi\)
0.727459 + 0.686151i \(0.240701\pi\)
\(272\) 0 0
\(273\) 6.42387 + 0.464003i 0.388790 + 0.0280827i
\(274\) 0 0
\(275\) 19.0770 + 11.0141i 1.15039 + 0.664177i
\(276\) 0 0
\(277\) −2.23675 + 8.34768i −0.134393 + 0.501563i 0.865606 + 0.500725i \(0.166933\pi\)
−1.00000 0.000837887i \(0.999733\pi\)
\(278\) 0 0
\(279\) 3.60830 + 30.5445i 0.216024 + 1.82865i
\(280\) 0 0
\(281\) 3.23004 0.865487i 0.192688 0.0516307i −0.161184 0.986924i \(-0.551531\pi\)
0.353872 + 0.935294i \(0.384865\pi\)
\(282\) 0 0
\(283\) −4.34988 + 16.2340i −0.258574 + 0.965010i 0.707494 + 0.706720i \(0.249826\pi\)
−0.966067 + 0.258291i \(0.916841\pi\)
\(284\) 0 0
\(285\) −1.26002 1.45622i −0.0746374 0.0862592i
\(286\) 0 0
\(287\) −13.5032 + 23.3882i −0.797066 + 1.38056i
\(288\) 0 0
\(289\) −13.4484 + 7.76444i −0.791083 + 0.456732i
\(290\) 0 0
\(291\) −7.72294 15.9269i −0.452727 0.933654i
\(292\) 0 0
\(293\) −3.69152 + 2.13130i −0.215661 + 0.124512i −0.603939 0.797030i \(-0.706403\pi\)
0.388279 + 0.921542i \(0.373070\pi\)
\(294\) 0 0
\(295\) 1.53310i 0.0892605i
\(296\) 0 0
\(297\) −19.4841 + 12.4635i −1.13058 + 0.723203i
\(298\) 0 0
\(299\) −3.51049 6.08035i −0.203017 0.351636i
\(300\) 0 0
\(301\) −5.55743 1.48911i −0.320325 0.0858308i
\(302\) 0 0
\(303\) 0.0381094 0.109859i 0.00218933 0.00631122i
\(304\) 0 0
\(305\) −2.47499 1.42893i −0.141717 0.0818205i
\(306\) 0 0
\(307\) 2.48057i 0.141574i 0.997491 + 0.0707869i \(0.0225510\pi\)
−0.997491 + 0.0707869i \(0.977449\pi\)
\(308\) 0 0
\(309\) 7.91324 3.83711i 0.450168 0.218286i
\(310\) 0 0
\(311\) 1.33321 + 4.97559i 0.0755992 + 0.282140i 0.993369 0.114974i \(-0.0366785\pi\)
−0.917769 + 0.397114i \(0.870012\pi\)
\(312\) 0 0
\(313\) 5.40623 + 20.1763i 0.305578 + 1.14043i 0.932447 + 0.361308i \(0.117670\pi\)
−0.626869 + 0.779125i \(0.715664\pi\)
\(314\) 0 0
\(315\) −1.53670 0.660621i −0.0865830 0.0372218i
\(316\) 0 0
\(317\) 11.8164 20.4666i 0.663676 1.14952i −0.315967 0.948770i \(-0.602329\pi\)
0.979643 0.200750i \(-0.0643378\pi\)
\(318\) 0 0
\(319\) 26.6267 26.6267i 1.49081 1.49081i
\(320\) 0 0
\(321\) −0.467172 2.43316i −0.0260750 0.135806i
\(322\) 0 0
\(323\) −5.95809 −0.331517
\(324\) 0 0
\(325\) 5.28199 + 5.28199i 0.292992 + 0.292992i
\(326\) 0 0
\(327\) 9.32196 + 0.673335i 0.515505 + 0.0372355i
\(328\) 0 0
\(329\) 4.19412 2.42148i 0.231229 0.133500i
\(330\) 0 0
\(331\) −0.552844 2.06324i −0.0303871 0.113406i 0.949067 0.315076i \(-0.102030\pi\)
−0.979454 + 0.201670i \(0.935363\pi\)
\(332\) 0 0
\(333\) −6.23925 17.1485i −0.341909 0.939733i
\(334\) 0 0
\(335\) 0.837537 + 3.12573i 0.0457595 + 0.170777i
\(336\) 0 0
\(337\) 12.4013 7.15988i 0.675540 0.390023i −0.122632 0.992452i \(-0.539134\pi\)
0.798173 + 0.602429i \(0.205800\pi\)
\(338\) 0 0
\(339\) −1.15166 0.0831855i −0.0625495 0.00451802i
\(340\) 0 0
\(341\) −32.2693 32.2693i −1.74748 1.74748i
\(342\) 0 0
\(343\) 19.5385 1.05498
\(344\) 0 0
\(345\) 0.343818 + 1.79070i 0.0185105 + 0.0964080i
\(346\) 0 0
\(347\) −0.460002 + 0.460002i −0.0246942 + 0.0246942i −0.719346 0.694652i \(-0.755558\pi\)
0.694652 + 0.719346i \(0.255558\pi\)
\(348\) 0 0
\(349\) 5.36611 9.29437i 0.287241 0.497516i −0.685909 0.727687i \(-0.740595\pi\)
0.973150 + 0.230171i \(0.0739285\pi\)
\(350\) 0 0
\(351\) −7.47588 + 2.37234i −0.399033 + 0.126626i
\(352\) 0 0
\(353\) −4.60846 17.1990i −0.245283 0.915410i −0.973241 0.229788i \(-0.926197\pi\)
0.727957 0.685622i \(-0.240470\pi\)
\(354\) 0 0
\(355\) −0.238185 0.888919i −0.0126416 0.0471789i
\(356\) 0 0
\(357\) −4.65672 + 2.25803i −0.246460 + 0.119508i
\(358\) 0 0
\(359\) 19.1592i 1.01118i 0.862773 + 0.505592i \(0.168726\pi\)
−0.862773 + 0.505592i \(0.831274\pi\)
\(360\) 0 0
\(361\) 4.44317 + 2.56527i 0.233851 + 0.135014i
\(362\) 0 0
\(363\) 5.00312 14.4226i 0.262595 0.756990i
\(364\) 0 0
\(365\) −1.89895 0.508822i −0.0993956 0.0266330i
\(366\) 0 0
\(367\) −12.0629 20.8936i −0.629681 1.09064i −0.987616 0.156893i \(-0.949852\pi\)
0.357935 0.933747i \(-0.383481\pi\)
\(368\) 0 0
\(369\) 4.72639 32.5465i 0.246046 1.69430i
\(370\) 0 0
\(371\) 26.3733i 1.36923i
\(372\) 0 0
\(373\) −18.6091 + 10.7439i −0.963541 + 0.556300i −0.897261 0.441501i \(-0.854446\pi\)
−0.0662798 + 0.997801i \(0.521113\pi\)
\(374\) 0 0
\(375\) −1.70163 3.50925i −0.0878718 0.181217i
\(376\) 0 0
\(377\) 11.0585 6.38463i 0.569542 0.328825i
\(378\) 0 0
\(379\) −1.12950 + 1.95636i −0.0580187 + 0.100491i −0.893576 0.448912i \(-0.851812\pi\)
0.835557 + 0.549403i \(0.185145\pi\)
\(380\) 0 0
\(381\) 16.5795 + 19.1611i 0.849393 + 0.981651i
\(382\) 0 0
\(383\) −1.52675 + 5.69790i −0.0780131 + 0.291149i −0.993900 0.110288i \(-0.964823\pi\)
0.915887 + 0.401437i \(0.131489\pi\)
\(384\) 0 0
\(385\) 2.39727 0.642347i 0.122176 0.0327371i
\(386\) 0 0
\(387\) 6.95811 0.821980i 0.353700 0.0417836i
\(388\) 0 0
\(389\) 4.33825 16.1906i 0.219958 0.820894i −0.764404 0.644737i \(-0.776967\pi\)
0.984362 0.176157i \(-0.0563665\pi\)
\(390\) 0 0
\(391\) 4.88582 + 2.82083i 0.247086 + 0.142655i
\(392\) 0 0
\(393\) 22.6276 + 1.63442i 1.14141 + 0.0824455i
\(394\) 0 0
\(395\) −0.243359 + 0.421510i −0.0122447 + 0.0212085i
\(396\) 0 0
\(397\) 21.7296i 1.09058i 0.838249 + 0.545288i \(0.183580\pi\)
−0.838249 + 0.545288i \(0.816420\pi\)
\(398\) 0 0
\(399\) 20.9057 + 1.51004i 1.04660 + 0.0755967i
\(400\) 0 0
\(401\) 11.1869 11.1869i 0.558649 0.558649i −0.370274 0.928923i \(-0.620736\pi\)
0.928923 + 0.370274i \(0.120736\pi\)
\(402\) 0 0
\(403\) −7.73760 13.4019i −0.385438 0.667597i
\(404\) 0 0
\(405\) 2.03624 + 0.0542257i 0.101182 + 0.00269449i
\(406\) 0 0
\(407\) 23.0255 + 14.2454i 1.14133 + 0.706116i
\(408\) 0 0
\(409\) 24.2104 6.48715i 1.19713 0.320769i 0.395427 0.918498i \(-0.370597\pi\)
0.801698 + 0.597729i \(0.203930\pi\)
\(410\) 0 0
\(411\) 37.8552 + 13.1317i 1.86726 + 0.647741i
\(412\) 0 0
\(413\) −11.7996 11.7996i −0.580619 0.580619i
\(414\) 0 0
\(415\) 0.192158 0.192158i 0.00943269 0.00943269i
\(416\) 0 0
\(417\) −15.0368 + 13.0109i −0.736354 + 0.637145i
\(418\) 0 0
\(419\) −26.5640 15.3367i −1.29774 0.749249i −0.317724 0.948183i \(-0.602918\pi\)
−0.980013 + 0.198935i \(0.936252\pi\)
\(420\) 0 0
\(421\) 26.0674 + 26.0674i 1.27045 + 1.27045i 0.945854 + 0.324591i \(0.105227\pi\)
0.324591 + 0.945854i \(0.394773\pi\)
\(422\) 0 0
\(423\) −3.65224 + 4.63073i −0.177578 + 0.225154i
\(424\) 0 0
\(425\) −5.79783 1.55352i −0.281236 0.0753569i
\(426\) 0 0
\(427\) 30.0467 8.05099i 1.45406 0.389615i
\(428\) 0 0
\(429\) 6.52969 9.63295i 0.315256 0.465083i
\(430\) 0 0
\(431\) −36.5952 9.80565i −1.76273 0.472321i −0.775461 0.631396i \(-0.782482\pi\)
−0.987267 + 0.159074i \(0.949149\pi\)
\(432\) 0 0
\(433\) −18.1410 −0.871802 −0.435901 0.899995i \(-0.643570\pi\)
−0.435901 + 0.899995i \(0.643570\pi\)
\(434\) 0 0
\(435\) −3.25679 + 0.625311i −0.156151 + 0.0299814i
\(436\) 0 0
\(437\) −11.4245 19.7878i −0.546507 0.946578i
\(438\) 0 0
\(439\) 7.02768 26.2276i 0.335413 1.25178i −0.568009 0.823023i \(-0.692286\pi\)
0.903421 0.428754i \(-0.141047\pi\)
\(440\) 0 0
\(441\) −2.59498 + 1.03462i −0.123571 + 0.0492678i
\(442\) 0 0
\(443\) 20.1006 0.955006 0.477503 0.878630i \(-0.341542\pi\)
0.477503 + 0.878630i \(0.341542\pi\)
\(444\) 0 0
\(445\) 2.91397 0.138135
\(446\) 0 0
\(447\) 9.55103 + 3.31320i 0.451748 + 0.156709i
\(448\) 0 0
\(449\) 1.70335 6.35701i 0.0803863 0.300006i −0.914014 0.405682i \(-0.867034\pi\)
0.994401 + 0.105676i \(0.0337007\pi\)
\(450\) 0 0
\(451\) 24.3987 + 42.2598i 1.14889 + 1.98994i
\(452\) 0 0
\(453\) −1.77599 9.24984i −0.0834432 0.434595i
\(454\) 0 0
\(455\) 0.841601 0.0394549
\(456\) 0 0
\(457\) 22.9313 + 6.14442i 1.07268 + 0.287424i 0.751594 0.659626i \(-0.229285\pi\)
0.321086 + 0.947050i \(0.395952\pi\)
\(458\) 0 0
\(459\) 4.24924 4.65448i 0.198338 0.217252i
\(460\) 0 0
\(461\) 2.41743 0.647749i 0.112591 0.0301687i −0.202084 0.979368i \(-0.564771\pi\)
0.314675 + 0.949200i \(0.398105\pi\)
\(462\) 0 0
\(463\) 7.65932 + 2.05231i 0.355959 + 0.0953789i 0.432367 0.901698i \(-0.357679\pi\)
−0.0764081 + 0.997077i \(0.524345\pi\)
\(464\) 0 0
\(465\) 0.757822 + 3.94695i 0.0351431 + 0.183035i
\(466\) 0 0
\(467\) −21.6777 21.6777i −1.00312 1.00312i −0.999995 0.00312870i \(-0.999004\pi\)
−0.00312870 0.999995i \(-0.500996\pi\)
\(468\) 0 0
\(469\) −30.5035 17.6112i −1.40852 0.813209i
\(470\) 0 0
\(471\) 23.3429 + 26.9776i 1.07559 + 1.24306i
\(472\) 0 0
\(473\) −7.35101 + 7.35101i −0.338000 + 0.338000i
\(474\) 0 0
\(475\) 17.1896 + 17.1896i 0.788714 + 0.788714i
\(476\) 0 0
\(477\) 11.8946 + 29.8332i 0.544614 + 1.36597i
\(478\) 0 0
\(479\) 32.7324 8.77062i 1.49558 0.400740i 0.583963 0.811780i \(-0.301501\pi\)
0.911617 + 0.411040i \(0.134834\pi\)
\(480\) 0 0
\(481\) 6.29173 + 6.68692i 0.286878 + 0.304898i
\(482\) 0 0
\(483\) −16.4284 11.1360i −0.747519 0.506705i
\(484\) 0 0
\(485\) −1.15648 2.00308i −0.0525130 0.0909551i
\(486\) 0 0
\(487\) 10.5292 10.5292i 0.477123 0.477123i −0.427087 0.904210i \(-0.640460\pi\)
0.904210 + 0.427087i \(0.140460\pi\)
\(488\) 0 0
\(489\) 0.947958 13.1240i 0.0428681 0.593486i
\(490\) 0 0
\(491\) 31.0545i 1.40147i −0.713421 0.700735i \(-0.752855\pi\)
0.713421 0.700735i \(-0.247145\pi\)
\(492\) 0 0
\(493\) −5.13032 + 8.88597i −0.231058 + 0.400204i
\(494\) 0 0
\(495\) −2.42207 + 1.80781i −0.108864 + 0.0812548i
\(496\) 0 0
\(497\) 8.67481 + 5.00840i 0.389118 + 0.224658i
\(498\) 0 0
\(499\) −8.68332 + 32.4066i −0.388719 + 1.45072i 0.443501 + 0.896274i \(0.353736\pi\)
−0.832220 + 0.554445i \(0.812931\pi\)
\(500\) 0 0
\(501\) −15.5073 10.5116i −0.692814 0.469624i
\(502\) 0 0
\(503\) −11.6298 + 3.11619i −0.518547 + 0.138944i −0.508594 0.861006i \(-0.669835\pi\)
−0.00995261 + 0.999950i \(0.503168\pi\)
\(504\) 0 0
\(505\) 0.00393264 0.0146768i 0.000175000 0.000653110i
\(506\) 0 0
\(507\) −14.0431 + 12.1511i −0.623677 + 0.539649i
\(508\) 0 0
\(509\) 0.107609 0.186384i 0.00476967 0.00826130i −0.863631 0.504125i \(-0.831815\pi\)
0.868400 + 0.495864i \(0.165148\pi\)
\(510\) 0 0
\(511\) 18.5315 10.6992i 0.819787 0.473304i
\(512\) 0 0
\(513\) −24.3294 + 7.72050i −1.07417 + 0.340868i
\(514\) 0 0
\(515\) 0.995222 0.574592i 0.0438547 0.0253195i
\(516\) 0 0
\(517\) 8.75068i 0.384855i
\(518\) 0 0
\(519\) 19.5640 + 22.6103i 0.858765 + 0.992482i
\(520\) 0 0
\(521\) −7.89146 13.6684i −0.345731 0.598824i 0.639755 0.768579i \(-0.279036\pi\)
−0.985486 + 0.169755i \(0.945702\pi\)
\(522\) 0 0
\(523\) −21.7748 5.83454i −0.952146 0.255127i −0.250873 0.968020i \(-0.580718\pi\)
−0.701273 + 0.712893i \(0.747384\pi\)
\(524\) 0 0
\(525\) 19.9497 + 6.92042i 0.870674 + 0.302032i
\(526\) 0 0
\(527\) 10.7690 + 6.21749i 0.469105 + 0.270838i
\(528\) 0 0
\(529\) 1.36455i 0.0593282i
\(530\) 0 0
\(531\) 18.6692 + 8.02585i 0.810176 + 0.348292i
\(532\) 0 0
\(533\) 4.28278 + 15.9835i 0.185508 + 0.692324i
\(534\) 0 0
\(535\) −0.0837930 0.312720i −0.00362269 0.0135201i
\(536\) 0 0
\(537\) 12.2404 + 25.2433i 0.528213 + 1.08933i
\(538\) 0 0
\(539\) 2.07253 3.58972i 0.0892701 0.154620i
\(540\) 0 0
\(541\) 14.4643 14.4643i 0.621867 0.621867i −0.324141 0.946009i \(-0.605075\pi\)
0.946009 + 0.324141i \(0.105075\pi\)
\(542\) 0 0
\(543\) 3.81086 0.731693i 0.163540 0.0314000i
\(544\) 0 0
\(545\) 1.22128 0.0523141
\(546\) 0 0
\(547\) −0.426209 0.426209i −0.0182234 0.0182234i 0.697936 0.716160i \(-0.254102\pi\)
−0.716160 + 0.697936i \(0.754102\pi\)
\(548\) 0 0
\(549\) −30.3575 + 22.6585i −1.29562 + 0.967041i
\(550\) 0 0
\(551\) 35.9886 20.7780i 1.53316 0.885173i
\(552\) 0 0
\(553\) −1.37115 5.11719i −0.0583071 0.217605i
\(554\) 0 0
\(555\) −0.974607 2.17626i −0.0413697 0.0923770i
\(556\) 0 0
\(557\) 0.394978 + 1.47408i 0.0167358 + 0.0624587i 0.973789 0.227454i \(-0.0730403\pi\)
−0.957053 + 0.289913i \(0.906374\pi\)
\(558\) 0 0
\(559\) −3.05299 + 1.76264i −0.129128 + 0.0745519i
\(560\) 0 0
\(561\) −0.673691 + 9.32689i −0.0284433 + 0.393782i
\(562\) 0 0
\(563\) −5.46656 5.46656i −0.230388 0.230388i 0.582467 0.812855i \(-0.302088\pi\)
−0.812855 + 0.582467i \(0.802088\pi\)
\(564\) 0 0
\(565\) −0.150881 −0.00634759
\(566\) 0 0
\(567\) −16.0894 + 15.2547i −0.675689 + 0.640635i
\(568\) 0 0
\(569\) 19.3464 19.3464i 0.811041 0.811041i −0.173749 0.984790i \(-0.555588\pi\)
0.984790 + 0.173749i \(0.0555881\pi\)
\(570\) 0 0
\(571\) −3.95833 + 6.85602i −0.165651 + 0.286916i −0.936886 0.349634i \(-0.886306\pi\)
0.771235 + 0.636550i \(0.219639\pi\)
\(572\) 0 0
\(573\) 20.9544 10.1607i 0.875381 0.424470i
\(574\) 0 0
\(575\) −5.95768 22.2344i −0.248452 0.927237i
\(576\) 0 0
\(577\) −7.45957 27.8395i −0.310546 1.15897i −0.928065 0.372417i \(-0.878529\pi\)
0.617520 0.786556i \(-0.288138\pi\)
\(578\) 0 0
\(579\) −19.1952 39.5861i −0.797726 1.64514i
\(580\) 0 0
\(581\) 2.95791i 0.122715i
\(582\) 0 0
\(583\) −41.2692 23.8268i −1.70920 0.986805i
\(584\) 0 0
\(585\) −0.952010 + 0.379569i −0.0393608 + 0.0156932i
\(586\) 0 0
\(587\) −46.6306 12.4946i −1.92465 0.515709i −0.984652 0.174531i \(-0.944159\pi\)
−0.939999 0.341177i \(-0.889174\pi\)
\(588\) 0 0
\(589\) −25.1811 43.6150i −1.03757 1.79712i
\(590\) 0 0
\(591\) −0.766046 + 0.662836i −0.0315109 + 0.0272654i
\(592\) 0 0
\(593\) 46.7556i 1.92002i 0.279964 + 0.960011i \(0.409677\pi\)
−0.279964 + 0.960011i \(0.590323\pi\)
\(594\) 0 0
\(595\) −0.585660 + 0.338131i −0.0240097 + 0.0138620i
\(596\) 0 0
\(597\) −20.2282 + 9.80861i −0.827885 + 0.401440i
\(598\) 0 0
\(599\) 16.1108 9.30155i 0.658267 0.380051i −0.133349 0.991069i \(-0.542573\pi\)
0.791617 + 0.611018i \(0.209240\pi\)
\(600\) 0 0
\(601\) 7.42846 12.8665i 0.303013 0.524835i −0.673804 0.738910i \(-0.735341\pi\)
0.976817 + 0.214076i \(0.0686740\pi\)
\(602\) 0 0
\(603\) 42.4480 + 6.16429i 1.72862 + 0.251029i
\(604\) 0 0
\(605\) 0.516290 1.92682i 0.0209902 0.0783363i
\(606\) 0 0
\(607\) −34.4637 + 9.23452i −1.39884 + 0.374817i −0.877927 0.478794i \(-0.841074\pi\)
−0.520910 + 0.853611i \(0.674407\pi\)
\(608\) 0 0
\(609\) 20.2533 29.8788i 0.820706 1.21075i
\(610\) 0 0
\(611\) 0.768017 2.86628i 0.0310706 0.115957i
\(612\) 0 0
\(613\) 15.9482 + 9.20773i 0.644144 + 0.371897i 0.786209 0.617961i \(-0.212041\pi\)
−0.142065 + 0.989857i \(0.545374\pi\)
\(614\) 0 0
\(615\) 0.309606 4.28633i 0.0124845 0.172841i
\(616\) 0 0
\(617\) 17.5649 30.4233i 0.707137 1.22480i −0.258777 0.965937i \(-0.583320\pi\)
0.965915 0.258861i \(-0.0833471\pi\)
\(618\) 0 0
\(619\) 31.7751i 1.27715i −0.769560 0.638574i \(-0.779525\pi\)
0.769560 0.638574i \(-0.220475\pi\)
\(620\) 0 0
\(621\) 23.6061 + 5.18757i 0.947279 + 0.208170i
\(622\) 0 0
\(623\) −22.4275 + 22.4275i −0.898538 + 0.898538i
\(624\) 0 0
\(625\) 12.1171 + 20.9875i 0.484685 + 0.839499i
\(626\) 0 0
\(627\) 21.2501 31.3493i 0.848647 1.25197i
\(628\) 0 0
\(629\) −7.06495 2.12551i −0.281698 0.0847498i
\(630\) 0 0
\(631\) 27.3099 7.31765i 1.08719 0.291311i 0.329651 0.944103i \(-0.393069\pi\)
0.757537 + 0.652792i \(0.226402\pi\)
\(632\) 0 0
\(633\) −5.17453 + 14.9168i −0.205669 + 0.592888i
\(634\) 0 0
\(635\) 2.34121 + 2.34121i 0.0929082 + 0.0929082i
\(636\) 0 0
\(637\) 0.993912 0.993912i 0.0393802 0.0393802i
\(638\) 0 0
\(639\) −12.0717 1.75305i −0.477548 0.0693495i
\(640\) 0 0
\(641\) −25.0815 14.4808i −0.990659 0.571957i −0.0851877 0.996365i \(-0.527149\pi\)
−0.905471 + 0.424408i \(0.860482\pi\)
\(642\) 0 0
\(643\) 18.1755 + 18.1755i 0.716774 + 0.716774i 0.967943 0.251170i \(-0.0808152\pi\)
−0.251170 + 0.967943i \(0.580815\pi\)
\(644\) 0 0
\(645\) 0.899123 0.172633i 0.0354029 0.00679743i
\(646\) 0 0
\(647\) −36.1138 9.67667i −1.41978 0.380429i −0.534375 0.845248i \(-0.679453\pi\)
−0.885406 + 0.464818i \(0.846120\pi\)
\(648\) 0 0
\(649\) −29.1244 + 7.80385i −1.14323 + 0.306328i
\(650\) 0 0
\(651\) −36.2105 24.5452i −1.41920 0.962004i
\(652\) 0 0
\(653\) −5.03318 1.34864i −0.196964 0.0527762i 0.158989 0.987280i \(-0.449177\pi\)
−0.355952 + 0.934504i \(0.615843\pi\)
\(654\) 0 0
\(655\) 2.96448 0.115832
\(656\) 0 0
\(657\) −16.1373 + 20.4607i −0.629574 + 0.798247i
\(658\) 0 0
\(659\) 22.7117 + 39.3379i 0.884724 + 1.53239i 0.846030 + 0.533136i \(0.178986\pi\)
0.0386941 + 0.999251i \(0.487680\pi\)
\(660\) 0 0
\(661\) 2.16031 8.06239i 0.0840264 0.313591i −0.911102 0.412182i \(-0.864767\pi\)
0.995128 + 0.0985910i \(0.0314336\pi\)
\(662\) 0 0
\(663\) −1.03926 + 2.99589i −0.0403614 + 0.116351i
\(664\) 0 0
\(665\) 2.73889 0.106210
\(666\) 0 0
\(667\) −39.3490 −1.52360
\(668\) 0 0
\(669\) −11.1370 + 32.1050i −0.430583 + 1.24125i
\(670\) 0 0
\(671\) 14.5472 54.2911i 0.561590 2.09588i
\(672\) 0 0
\(673\) 14.5856 + 25.2629i 0.562232 + 0.973814i 0.997301 + 0.0734172i \(0.0233905\pi\)
−0.435069 + 0.900397i \(0.643276\pi\)
\(674\) 0 0
\(675\) −25.6880 + 1.16914i −0.988732 + 0.0450004i
\(676\) 0 0
\(677\) 2.45041 0.0941769 0.0470885 0.998891i \(-0.485006\pi\)
0.0470885 + 0.998891i \(0.485006\pi\)
\(678\) 0 0
\(679\) 24.3177 + 6.51590i 0.933227 + 0.250057i
\(680\) 0 0
\(681\) 12.3343 + 8.36082i 0.472653 + 0.320387i
\(682\) 0 0
\(683\) −1.09874 + 0.294408i −0.0420423 + 0.0112652i −0.279779 0.960064i \(-0.590261\pi\)
0.237737 + 0.971330i \(0.423594\pi\)
\(684\) 0 0
\(685\) 5.05735 + 1.35511i 0.193231 + 0.0517762i
\(686\) 0 0
\(687\) −27.5812 + 5.29565i −1.05229 + 0.202042i
\(688\) 0 0
\(689\) −11.4265 11.4265i −0.435315 0.435315i
\(690\) 0 0
\(691\) −21.2531 12.2705i −0.808505 0.466791i 0.0379311 0.999280i \(-0.487923\pi\)
−0.846437 + 0.532489i \(0.821257\pi\)
\(692\) 0 0
\(693\) 4.72769 32.5554i 0.179590 1.23668i
\(694\) 0 0
\(695\) −1.83728 + 1.83728i −0.0696921 + 0.0696921i
\(696\) 0 0
\(697\) −9.40206 9.40206i −0.356128 0.356128i
\(698\) 0 0
\(699\) −0.214064 + 0.617088i −0.00809665 + 0.0233404i
\(700\) 0 0
\(701\) −39.4724 + 10.5766i −1.49085 + 0.399472i −0.910024 0.414555i \(-0.863937\pi\)
−0.580827 + 0.814027i \(0.697271\pi\)
\(702\) 0 0
\(703\) 20.4757 + 21.7618i 0.772255 + 0.820762i
\(704\) 0 0
\(705\) −0.432409 + 0.637913i −0.0162855 + 0.0240252i
\(706\) 0 0
\(707\) 0.0826931 + 0.143229i 0.00310999 + 0.00538667i
\(708\) 0 0
\(709\) −28.2172 + 28.2172i −1.05972 + 1.05972i −0.0616179 + 0.998100i \(0.519626\pi\)
−0.998100 + 0.0616179i \(0.980374\pi\)
\(710\) 0 0
\(711\) 3.85892 + 5.17012i 0.144721 + 0.193895i
\(712\) 0 0
\(713\) 47.6875i 1.78591i
\(714\) 0 0
\(715\) 0.760340 1.31695i 0.0284351 0.0492510i
\(716\) 0 0
\(717\) −1.65813 + 22.9559i −0.0619241 + 0.857306i
\(718\) 0 0
\(719\) 12.4163 + 7.16857i 0.463051 + 0.267342i 0.713326 0.700832i \(-0.247188\pi\)
−0.250275 + 0.968175i \(0.580521\pi\)
\(720\) 0 0
\(721\) −3.23740 + 12.0821i −0.120567 + 0.449962i
\(722\) 0 0
\(723\) −13.0427 + 19.2414i −0.485065 + 0.715594i
\(724\) 0 0
\(725\) 40.4382 10.8354i 1.50184 0.402416i
\(726\) 0 0
\(727\) 0.397199 1.48237i 0.0147313 0.0549779i −0.958169 0.286203i \(-0.907607\pi\)
0.972900 + 0.231225i \(0.0742734\pi\)
\(728\) 0 0
\(729\) 11.3201 24.5123i 0.419265 0.907864i
\(730\) 0 0
\(731\) 1.41636 2.45320i 0.0523859 0.0907350i
\(732\) 0 0
\(733\) −20.1897 + 11.6565i −0.745724 + 0.430544i −0.824147 0.566376i \(-0.808345\pi\)
0.0784226 + 0.996920i \(0.475012\pi\)
\(734\) 0 0
\(735\) −0.328468 + 0.159273i −0.0121157 + 0.00587489i
\(736\) 0 0
\(737\) −55.1164 + 31.8215i −2.03024 + 1.17216i
\(738\) 0 0
\(739\) 24.0696i 0.885413i 0.896667 + 0.442706i \(0.145982\pi\)
−0.896667 + 0.442706i \(0.854018\pi\)
\(740\) 0 0
\(741\) 9.71186 8.40338i 0.356774 0.308706i
\(742\) 0 0
\(743\) 17.3243 + 30.0065i 0.635566 + 1.10083i 0.986395 + 0.164393i \(0.0525664\pi\)
−0.350829 + 0.936439i \(0.614100\pi\)
\(744\) 0 0
\(745\) 1.27599 + 0.341901i 0.0467487 + 0.0125263i
\(746\) 0 0
\(747\) −1.33404 3.34596i −0.0488100 0.122422i
\(748\) 0 0
\(749\) 3.05178 + 1.76195i 0.111510 + 0.0643801i
\(750\) 0 0
\(751\) 37.0885i 1.35338i 0.736269 + 0.676689i \(0.236586\pi\)
−0.736269 + 0.676689i \(0.763414\pi\)
\(752\) 0 0
\(753\) −5.42442 11.1867i −0.197677 0.407667i
\(754\) 0 0
\(755\) −0.318545 1.18883i −0.0115930 0.0432658i
\(756\) 0 0
\(757\) −0.237085 0.884814i −0.00861700 0.0321591i 0.961483 0.274863i \(-0.0886324\pi\)
−0.970100 + 0.242704i \(0.921966\pi\)
\(758\) 0 0
\(759\) −32.2679 + 15.6466i −1.17125 + 0.567936i
\(760\) 0 0
\(761\) 24.6401 42.6779i 0.893203 1.54707i 0.0571905 0.998363i \(-0.481786\pi\)
0.836013 0.548710i \(-0.184881\pi\)
\(762\) 0 0
\(763\) −9.39967 + 9.39967i −0.340291 + 0.340291i
\(764\) 0 0
\(765\) 0.509993 0.646627i 0.0184388 0.0233789i
\(766\) 0 0
\(767\) −10.2246 −0.369188
\(768\) 0 0
\(769\) 18.2063 + 18.2063i 0.656535 + 0.656535i 0.954559 0.298023i \(-0.0963273\pi\)
−0.298023 + 0.954559i \(0.596327\pi\)
\(770\) 0 0
\(771\) −1.95820 + 27.1103i −0.0705230 + 0.976352i
\(772\) 0 0
\(773\) −26.6079 + 15.3621i −0.957019 + 0.552535i −0.895254 0.445556i \(-0.853006\pi\)
−0.0617647 + 0.998091i \(0.519673\pi\)
\(774\) 0 0
\(775\) −13.1315 49.0075i −0.471698 1.76040i
\(776\) 0 0
\(777\) 24.2508 + 9.24856i 0.869991 + 0.331790i
\(778\) 0 0
\(779\) 13.9378 + 52.0165i 0.499373 + 1.86369i
\(780\) 0 0
\(781\) 15.6744 9.04963i 0.560875 0.323821i
\(782\) 0 0
\(783\) −9.43478 + 42.9330i −0.337172 + 1.53430i
\(784\) 0 0
\(785\) 3.29629 + 3.29629i 0.117650 + 0.117650i
\(786\) 0 0
\(787\) −31.3695 −1.11820 −0.559101 0.829099i \(-0.688854\pi\)
−0.559101 + 0.829099i \(0.688854\pi\)
\(788\) 0 0
\(789\) −29.0495 + 5.57757i −1.03419 + 0.198567i
\(790\) 0 0
\(791\) 1.16126 1.16126i 0.0412896 0.0412896i
\(792\) 0 0
\(793\) 9.52988 16.5062i 0.338416 0.586153i
\(794\) 0 0
\(795\) 1.83109 + 3.77623i 0.0649419 + 0.133929i
\(796\) 0 0
\(797\) 9.28165 + 34.6396i 0.328773 + 1.22700i 0.910464 + 0.413588i \(0.135725\pi\)
−0.581691 + 0.813410i \(0.697609\pi\)
\(798\) 0 0
\(799\) 0.617134 + 2.30318i 0.0218326 + 0.0814805i
\(800\) 0 0
\(801\) 15.2548 35.4847i 0.539000 1.25379i
\(802\) 0 0
\(803\) 38.6645i 1.36444i
\(804\) 0 0
\(805\) −2.24597 1.29671i −0.0791602 0.0457032i
\(806\) 0 0
\(807\) 2.38360 + 0.826857i 0.0839067 + 0.0291067i
\(808\) 0 0
\(809\) −0.633818 0.169831i −0.0222839 0.00597094i 0.247660 0.968847i \(-0.420338\pi\)
−0.269944 + 0.962876i \(0.587005\pi\)
\(810\) 0 0
\(811\) −5.99623 10.3858i −0.210556 0.364694i 0.741332 0.671138i \(-0.234194\pi\)
−0.951889 + 0.306444i \(0.900861\pi\)
\(812\) 0 0
\(813\) 8.60066 + 9.93986i 0.301638 + 0.348606i
\(814\) 0 0
\(815\) 1.71939i 0.0602276i
\(816\) 0 0
\(817\) −9.93558 + 5.73631i −0.347602 + 0.200688i
\(818\) 0 0
\(819\) 4.40582 10.2486i 0.153952 0.358114i
\(820\) 0 0
\(821\) 13.5599 7.82883i 0.473245 0.273228i −0.244352 0.969687i \(-0.578575\pi\)
0.717597 + 0.696458i \(0.245242\pi\)
\(822\) 0 0
\(823\) 13.2593 22.9659i 0.462192 0.800539i −0.536878 0.843660i \(-0.680397\pi\)
0.999070 + 0.0431204i \(0.0137299\pi\)
\(824\) 0 0
\(825\) 28.8526 24.9652i 1.00452 0.869178i
\(826\) 0 0
\(827\) 5.59905 20.8959i 0.194698 0.726623i −0.797647 0.603125i \(-0.793922\pi\)
0.992345 0.123498i \(-0.0394112\pi\)
\(828\) 0 0
\(829\) −1.37988 + 0.369737i −0.0479251 + 0.0128415i −0.282702 0.959208i \(-0.591231\pi\)
0.234777 + 0.972049i \(0.424564\pi\)
\(830\) 0 0
\(831\) 12.3903 + 8.39879i 0.429816 + 0.291351i
\(832\) 0 0
\(833\) −0.292326 + 1.09098i −0.0101285 + 0.0378001i
\(834\) 0 0
\(835\) −2.12004 1.22401i −0.0733672 0.0423586i
\(836\) 0 0
\(837\) 52.0310 + 11.4341i 1.79845 + 0.395221i
\(838\) 0 0
\(839\) −22.8111 + 39.5099i −0.787525 + 1.36403i 0.139953 + 0.990158i \(0.455305\pi\)
−0.927479 + 0.373876i \(0.878029\pi\)
\(840\) 0 0
\(841\) 42.5650i 1.46776i
\(842\) 0 0
\(843\) 0.417272 5.77690i 0.0143716 0.198967i
\(844\) 0 0
\(845\) −1.71587 + 1.71587i −0.0590278 + 0.0590278i
\(846\) 0 0
\(847\) 10.8562 + 18.8035i 0.373024 + 0.646096i
\(848\) 0 0
\(849\) 24.0959 + 16.3334i 0.826969 + 0.560560i
\(850\) 0 0
\(851\) −6.48768 27.5395i −0.222395 0.944040i
\(852\) 0 0
\(853\) −32.0094 + 8.57690i −1.09598 + 0.293668i −0.761128 0.648602i \(-0.775354\pi\)
−0.334855 + 0.942270i \(0.608687\pi\)
\(854\) 0 0
\(855\) −3.09820 + 1.23526i −0.105956 + 0.0422450i
\(856\) 0 0
\(857\) 22.2267 + 22.2267i 0.759250 + 0.759250i 0.976186 0.216936i \(-0.0696063\pi\)
−0.216936 + 0.976186i \(0.569606\pi\)
\(858\) 0 0
\(859\) 14.3461 14.3461i 0.489482 0.489482i −0.418660 0.908143i \(-0.637500\pi\)
0.908143 + 0.418660i \(0.137500\pi\)
\(860\) 0 0
\(861\) 30.6070 + 35.3728i 1.04308 + 1.20550i
\(862\) 0 0
\(863\) −4.58633 2.64792i −0.156120 0.0901362i 0.419905 0.907568i \(-0.362064\pi\)
−0.576025 + 0.817432i \(0.695397\pi\)
\(864\) 0 0
\(865\) 2.76266 + 2.76266i 0.0939333 + 0.0939333i
\(866\) 0 0
\(867\) 5.07161 + 26.4143i 0.172241 + 0.897078i
\(868\) 0 0
\(869\) −9.24620 2.47751i −0.313656 0.0840438i
\(870\) 0 0
\(871\) −20.8462 + 5.58572i −0.706346 + 0.189265i
\(872\) 0 0
\(873\) −30.4466 + 3.59674i −1.03046 + 0.121731i
\(874\) 0 0
\(875\) 5.35802 + 1.43568i 0.181134 + 0.0485348i
\(876\) 0 0
\(877\) 11.0306 0.372478 0.186239 0.982504i \(-0.440370\pi\)
0.186239 + 0.982504i \(0.440370\pi\)
\(878\) 0 0
\(879\) 1.39213 + 7.25060i 0.0469554 + 0.244557i
\(880\) 0 0
\(881\) −5.69886 9.87071i −0.191999 0.332553i 0.753913 0.656974i \(-0.228164\pi\)
−0.945913 + 0.324421i \(0.894830\pi\)
\(882\) 0 0
\(883\) 2.09452 7.81687i 0.0704863 0.263058i −0.921686 0.387938i \(-0.873188\pi\)
0.992172 + 0.124879i \(0.0398543\pi\)
\(884\) 0 0
\(885\) 2.50875 + 0.870270i 0.0843306 + 0.0292538i
\(886\) 0 0
\(887\) 20.8997 0.701744 0.350872 0.936423i \(-0.385885\pi\)
0.350872 + 0.936423i \(0.385885\pi\)
\(888\) 0 0
\(889\) −36.0385 −1.20869
\(890\) 0 0
\(891\) 9.33483 + 38.9586i 0.312728 + 1.30516i
\(892\) 0 0
\(893\) 2.49942 9.32796i 0.0836399 0.312148i
\(894\) 0 0
\(895\) 1.83295 + 3.17476i 0.0612688 + 0.106121i
\(896\) 0 0
\(897\) −11.9426 + 2.29300i −0.398751 + 0.0765610i
\(898\) 0 0
\(899\) −86.7305 −2.89262
\(900\) 0 0
\(901\) 12.5424 + 3.36073i 0.417848 + 0.111962i
\(902\) 0 0
\(903\) −5.59146 + 8.24882i −0.186072 + 0.274504i
\(904\) 0 0
\(905\) 0.489787 0.131238i 0.0162811 0.00436250i
\(906\) 0 0
\(907\) 6.39589 + 1.71377i 0.212372 + 0.0569049i 0.363436 0.931619i \(-0.381603\pi\)
−0.151064 + 0.988524i \(0.548270\pi\)
\(908\) 0 0
\(909\) −0.158139 0.124723i −0.00524513 0.00413682i
\(910\) 0 0
\(911\) −9.09846 9.09846i −0.301445 0.301445i 0.540134 0.841579i \(-0.318374\pi\)
−0.841579 + 0.540134i \(0.818374\pi\)
\(912\) 0 0
\(913\) 4.62858 + 2.67231i 0.153184 + 0.0884406i
\(914\) 0 0
\(915\) −3.74323 + 3.23890i −0.123747 + 0.107075i
\(916\) 0 0
\(917\) −22.8163 + 22.8163i −0.753459 + 0.753459i
\(918\) 0 0
\(919\) −9.52431 9.52431i −0.314178 0.314178i 0.532348 0.846526i \(-0.321310\pi\)
−0.846526 + 0.532348i \(0.821310\pi\)
\(920\) 0 0
\(921\) 4.05918 + 1.40811i 0.133755 + 0.0463987i
\(922\) 0 0
\(923\) 5.92839 1.58851i 0.195135 0.0522864i
\(924\) 0 0
\(925\) 14.2507 + 26.5153i 0.468561 + 0.871818i
\(926\) 0 0
\(927\) −1.78703 15.1273i −0.0586936 0.496845i
\(928\) 0 0
\(929\) −24.4271 42.3091i −0.801429 1.38812i −0.918676 0.395012i \(-0.870740\pi\)
0.117247 0.993103i \(-0.462593\pi\)
\(930\) 0 0
\(931\) 3.23457 3.23457i 0.106009 0.106009i
\(932\) 0 0
\(933\) 8.89880 + 0.642770i 0.291334 + 0.0210433i
\(934\) 0 0
\(935\) 1.22193i 0.0399614i
\(936\) 0 0
\(937\) −7.40825 + 12.8315i −0.242017 + 0.419186i −0.961289 0.275543i \(-0.911142\pi\)
0.719272 + 0.694729i \(0.244476\pi\)
\(938\) 0 0
\(939\) 36.0852 + 2.60647i 1.17759 + 0.0850589i
\(940\) 0 0
\(941\) 49.0237 + 28.3039i 1.59813 + 0.922679i 0.991848 + 0.127428i \(0.0406721\pi\)
0.606280 + 0.795251i \(0.292661\pi\)
\(942\) 0 0
\(943\) 13.1976 49.2540i 0.429772 1.60393i
\(944\) 0 0
\(945\) −1.95334 + 2.13963i −0.0635423 + 0.0696021i
\(946\) 0 0
\(947\) 11.2784 3.02204i 0.366499 0.0982031i −0.0708693 0.997486i \(-0.522577\pi\)
0.437368 + 0.899283i \(0.355911\pi\)
\(948\) 0 0
\(949\) 3.39345 12.6645i 0.110156 0.411108i
\(950\) 0 0
\(951\) −26.7837 30.9542i −0.868522 1.00376i
\(952\) 0 0
\(953\) 0.551659 0.955501i 0.0178700 0.0309517i −0.856952 0.515396i \(-0.827645\pi\)
0.874822 + 0.484444i \(0.160978\pi\)
\(954\) 0 0
\(955\) 2.63536 1.52153i 0.0852783 0.0492355i
\(956\) 0 0
\(957\) −28.4569 58.6865i −0.919882 1.89706i
\(958\) 0 0
\(959\) −49.3538 + 28.4944i −1.59372 + 0.920133i
\(960\) 0 0
\(961\) 74.1097i 2.39064i
\(962\) 0 0
\(963\) −4.24679 0.616718i −0.136851 0.0198735i
\(964\) 0 0
\(965\) −2.87441 4.97862i −0.0925304 0.160267i
\(966\) 0 0
\(967\) −35.4927 9.51023i −1.14137 0.305828i −0.361867 0.932230i \(-0.617860\pi\)
−0.779501 + 0.626402i \(0.784527\pi\)
\(968\) 0 0
\(969\) −3.38213 + 9.74976i −0.108650 + 0.313207i
\(970\) 0 0
\(971\) 41.6117 + 24.0245i 1.33538 + 0.770983i 0.986119 0.166042i \(-0.0530986\pi\)
0.349263 + 0.937025i \(0.386432\pi\)
\(972\) 0 0
\(973\) 28.2815i 0.906662i
\(974\) 0 0
\(975\) 11.6417 5.64505i 0.372834 0.180786i
\(976\) 0 0
\(977\) 1.90353 + 7.10405i 0.0608992 + 0.227279i 0.989667 0.143382i \(-0.0457978\pi\)
−0.928768 + 0.370661i \(0.879131\pi\)
\(978\) 0 0
\(979\) 14.8328 + 55.3567i 0.474058 + 1.76921i
\(980\) 0 0
\(981\) 6.39348 14.8721i 0.204128 0.474831i
\(982\) 0 0
\(983\) −10.1160 + 17.5214i −0.322649 + 0.558844i −0.981034 0.193837i \(-0.937907\pi\)
0.658385 + 0.752682i \(0.271240\pi\)
\(984\) 0 0
\(985\) −0.0936000 + 0.0936000i −0.00298234 + 0.00298234i
\(986\) 0 0
\(987\) −1.58167 8.23778i −0.0503451 0.262211i
\(988\) 0 0
\(989\) 10.8633 0.345433
\(990\) 0 0
\(991\) 2.69940 + 2.69940i 0.0857491 + 0.0857491i 0.748680 0.662931i \(-0.230688\pi\)
−0.662931 + 0.748680i \(0.730688\pi\)
\(992\) 0 0
\(993\) −3.69009 0.266539i −0.117102 0.00845837i
\(994\) 0 0
\(995\) −2.54403 + 1.46880i −0.0806513 + 0.0465641i
\(996\) 0 0
\(997\) −9.90893 36.9806i −0.313819 1.17119i −0.925084 0.379763i \(-0.876006\pi\)
0.611265 0.791426i \(-0.290661\pi\)
\(998\) 0 0
\(999\) −31.6034 + 0.475409i −0.999887 + 0.0150413i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 888.2.br.a.569.22 152
3.2 odd 2 inner 888.2.br.a.569.34 yes 152
37.8 odd 12 inner 888.2.br.a.785.34 yes 152
111.8 even 12 inner 888.2.br.a.785.22 yes 152
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
888.2.br.a.569.22 152 1.1 even 1 trivial
888.2.br.a.569.34 yes 152 3.2 odd 2 inner
888.2.br.a.785.22 yes 152 111.8 even 12 inner
888.2.br.a.785.34 yes 152 37.8 odd 12 inner