Properties

Label 882.5.c.b.685.4
Level $882$
Weight $5$
Character 882.685
Analytic conductor $91.172$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,5,Mod(685,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.685"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 882.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,32,0,0,0,0,0,0,-108,0,0,0,0,256,0,0,0,0,0,192,-972] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(91.1723074400\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 685.4
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 882.685
Dual form 882.5.c.b.685.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82843 q^{2} +8.00000 q^{4} +5.79050i q^{5} +22.6274 q^{8} +16.3780i q^{10} -10.0294 q^{11} -190.220i q^{13} +64.0000 q^{16} -421.771i q^{17} +432.248i q^{19} +46.3240i q^{20} -28.3675 q^{22} -921.823 q^{23} +591.470 q^{25} -538.022i q^{26} -877.882 q^{29} +724.200i q^{31} +181.019 q^{32} -1192.95i q^{34} -540.675 q^{37} +1222.58i q^{38} +131.024i q^{40} -894.280i q^{41} -1246.82 q^{43} -80.2355 q^{44} -2607.31 q^{46} +1750.73i q^{47} +1672.93 q^{50} -1521.76i q^{52} -812.203 q^{53} -58.0754i q^{55} -2483.03 q^{58} -2854.51i q^{59} -5834.20i q^{61} +2048.35i q^{62} +512.000 q^{64} +1101.47 q^{65} -2203.79 q^{67} -3374.17i q^{68} -3408.24 q^{71} -9395.66i q^{73} -1529.26 q^{74} +3457.98i q^{76} +2352.23 q^{79} +370.592i q^{80} -2529.41i q^{82} +3750.16i q^{83} +2442.26 q^{85} -3526.54 q^{86} -226.940 q^{88} -6363.96i q^{89} -7374.58 q^{92} +4951.81i q^{94} -2502.93 q^{95} -6370.47i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{4} - 108 q^{11} + 256 q^{16} + 192 q^{22} - 972 q^{23} + 1144 q^{25} - 3240 q^{29} + 892 q^{37} + 2344 q^{43} - 864 q^{44} - 7680 q^{46} + 3456 q^{50} + 5508 q^{53} - 768 q^{58} + 2048 q^{64}+ \cdots + 17820 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.82843 0.707107
\(3\) 0 0
\(4\) 8.00000 0.500000
\(5\) 5.79050i 0.231620i 0.993271 + 0.115810i \(0.0369464\pi\)
−0.993271 + 0.115810i \(0.963054\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 22.6274 0.353553
\(9\) 0 0
\(10\) 16.3780i 0.163780i
\(11\) −10.0294 −0.0828879 −0.0414440 0.999141i \(-0.513196\pi\)
−0.0414440 + 0.999141i \(0.513196\pi\)
\(12\) 0 0
\(13\) − 190.220i − 1.12556i −0.826607 0.562780i \(-0.809732\pi\)
0.826607 0.562780i \(-0.190268\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 64.0000 0.250000
\(17\) − 421.771i − 1.45942i −0.683759 0.729708i \(-0.739656\pi\)
0.683759 0.729708i \(-0.260344\pi\)
\(18\) 0 0
\(19\) 432.248i 1.19736i 0.800987 + 0.598681i \(0.204308\pi\)
−0.800987 + 0.598681i \(0.795692\pi\)
\(20\) 46.3240i 0.115810i
\(21\) 0 0
\(22\) −28.3675 −0.0586106
\(23\) −921.823 −1.74258 −0.871288 0.490772i \(-0.836715\pi\)
−0.871288 + 0.490772i \(0.836715\pi\)
\(24\) 0 0
\(25\) 591.470 0.946352
\(26\) − 538.022i − 0.795891i
\(27\) 0 0
\(28\) 0 0
\(29\) −877.882 −1.04386 −0.521928 0.852990i \(-0.674787\pi\)
−0.521928 + 0.852990i \(0.674787\pi\)
\(30\) 0 0
\(31\) 724.200i 0.753590i 0.926297 + 0.376795i \(0.122974\pi\)
−0.926297 + 0.376795i \(0.877026\pi\)
\(32\) 181.019 0.176777
\(33\) 0 0
\(34\) − 1192.95i − 1.03196i
\(35\) 0 0
\(36\) 0 0
\(37\) −540.675 −0.394942 −0.197471 0.980309i \(-0.563273\pi\)
−0.197471 + 0.980309i \(0.563273\pi\)
\(38\) 1222.58i 0.846663i
\(39\) 0 0
\(40\) 131.024i 0.0818900i
\(41\) − 894.280i − 0.531993i −0.963974 0.265996i \(-0.914299\pi\)
0.963974 0.265996i \(-0.0857009\pi\)
\(42\) 0 0
\(43\) −1246.82 −0.674322 −0.337161 0.941447i \(-0.609467\pi\)
−0.337161 + 0.941447i \(0.609467\pi\)
\(44\) −80.2355 −0.0414440
\(45\) 0 0
\(46\) −2607.31 −1.23219
\(47\) 1750.73i 0.792543i 0.918133 + 0.396271i \(0.129696\pi\)
−0.918133 + 0.396271i \(0.870304\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1672.93 0.669172
\(51\) 0 0
\(52\) − 1521.76i − 0.562780i
\(53\) −812.203 −0.289143 −0.144571 0.989494i \(-0.546180\pi\)
−0.144571 + 0.989494i \(0.546180\pi\)
\(54\) 0 0
\(55\) − 58.0754i − 0.0191985i
\(56\) 0 0
\(57\) 0 0
\(58\) −2483.03 −0.738117
\(59\) − 2854.51i − 0.820025i −0.912080 0.410012i \(-0.865524\pi\)
0.912080 0.410012i \(-0.134476\pi\)
\(60\) 0 0
\(61\) − 5834.20i − 1.56791i −0.620816 0.783956i \(-0.713199\pi\)
0.620816 0.783956i \(-0.286801\pi\)
\(62\) 2048.35i 0.532868i
\(63\) 0 0
\(64\) 512.000 0.125000
\(65\) 1101.47 0.260702
\(66\) 0 0
\(67\) −2203.79 −0.490930 −0.245465 0.969405i \(-0.578941\pi\)
−0.245465 + 0.969405i \(0.578941\pi\)
\(68\) − 3374.17i − 0.729708i
\(69\) 0 0
\(70\) 0 0
\(71\) −3408.24 −0.676103 −0.338052 0.941128i \(-0.609768\pi\)
−0.338052 + 0.941128i \(0.609768\pi\)
\(72\) 0 0
\(73\) − 9395.66i − 1.76312i −0.472074 0.881559i \(-0.656494\pi\)
0.472074 0.881559i \(-0.343506\pi\)
\(74\) −1529.26 −0.279266
\(75\) 0 0
\(76\) 3457.98i 0.598681i
\(77\) 0 0
\(78\) 0 0
\(79\) 2352.23 0.376900 0.188450 0.982083i \(-0.439654\pi\)
0.188450 + 0.982083i \(0.439654\pi\)
\(80\) 370.592i 0.0579050i
\(81\) 0 0
\(82\) − 2529.41i − 0.376176i
\(83\) 3750.16i 0.544370i 0.962245 + 0.272185i \(0.0877462\pi\)
−0.962245 + 0.272185i \(0.912254\pi\)
\(84\) 0 0
\(85\) 2442.26 0.338030
\(86\) −3526.54 −0.476817
\(87\) 0 0
\(88\) −226.940 −0.0293053
\(89\) − 6363.96i − 0.803429i −0.915765 0.401714i \(-0.868414\pi\)
0.915765 0.401714i \(-0.131586\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −7374.58 −0.871288
\(93\) 0 0
\(94\) 4951.81i 0.560413i
\(95\) −2502.93 −0.277333
\(96\) 0 0
\(97\) − 6370.47i − 0.677062i −0.940955 0.338531i \(-0.890070\pi\)
0.940955 0.338531i \(-0.109930\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 4731.76 0.473176
\(101\) − 9110.83i − 0.893131i −0.894751 0.446566i \(-0.852647\pi\)
0.894751 0.446566i \(-0.147353\pi\)
\(102\) 0 0
\(103\) 16111.8i 1.51869i 0.650686 + 0.759347i \(0.274482\pi\)
−0.650686 + 0.759347i \(0.725518\pi\)
\(104\) − 4304.18i − 0.397946i
\(105\) 0 0
\(106\) −2297.26 −0.204455
\(107\) −20551.4 −1.79504 −0.897518 0.440977i \(-0.854632\pi\)
−0.897518 + 0.440977i \(0.854632\pi\)
\(108\) 0 0
\(109\) −14257.7 −1.20005 −0.600023 0.799983i \(-0.704842\pi\)
−0.600023 + 0.799983i \(0.704842\pi\)
\(110\) − 164.262i − 0.0135754i
\(111\) 0 0
\(112\) 0 0
\(113\) 10304.7 0.807010 0.403505 0.914978i \(-0.367792\pi\)
0.403505 + 0.914978i \(0.367792\pi\)
\(114\) 0 0
\(115\) − 5337.81i − 0.403615i
\(116\) −7023.06 −0.521928
\(117\) 0 0
\(118\) − 8073.76i − 0.579845i
\(119\) 0 0
\(120\) 0 0
\(121\) −14540.4 −0.993130
\(122\) − 16501.6i − 1.10868i
\(123\) 0 0
\(124\) 5793.60i 0.376795i
\(125\) 7043.97i 0.450814i
\(126\) 0 0
\(127\) −2116.70 −0.131236 −0.0656179 0.997845i \(-0.520902\pi\)
−0.0656179 + 0.997845i \(0.520902\pi\)
\(128\) 1448.15 0.0883883
\(129\) 0 0
\(130\) 3115.42 0.184344
\(131\) − 6057.15i − 0.352960i −0.984304 0.176480i \(-0.943529\pi\)
0.984304 0.176480i \(-0.0564711\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −6233.25 −0.347140
\(135\) 0 0
\(136\) − 9543.59i − 0.515981i
\(137\) −2860.25 −0.152392 −0.0761962 0.997093i \(-0.524278\pi\)
−0.0761962 + 0.997093i \(0.524278\pi\)
\(138\) 0 0
\(139\) − 16966.2i − 0.878124i −0.898457 0.439062i \(-0.855311\pi\)
0.898457 0.439062i \(-0.144689\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −9639.95 −0.478077
\(143\) 1907.80i 0.0932953i
\(144\) 0 0
\(145\) − 5083.38i − 0.241778i
\(146\) − 26574.9i − 1.24671i
\(147\) 0 0
\(148\) −4325.40 −0.197471
\(149\) 14910.1 0.671596 0.335798 0.941934i \(-0.390994\pi\)
0.335798 + 0.941934i \(0.390994\pi\)
\(150\) 0 0
\(151\) −2161.45 −0.0947961 −0.0473981 0.998876i \(-0.515093\pi\)
−0.0473981 + 0.998876i \(0.515093\pi\)
\(152\) 9780.65i 0.423332i
\(153\) 0 0
\(154\) 0 0
\(155\) −4193.48 −0.174546
\(156\) 0 0
\(157\) − 41553.7i − 1.68582i −0.538056 0.842909i \(-0.680841\pi\)
0.538056 0.842909i \(-0.319159\pi\)
\(158\) 6653.11 0.266508
\(159\) 0 0
\(160\) 1048.19i 0.0409450i
\(161\) 0 0
\(162\) 0 0
\(163\) −11765.1 −0.442814 −0.221407 0.975182i \(-0.571065\pi\)
−0.221407 + 0.975182i \(0.571065\pi\)
\(164\) − 7154.24i − 0.265996i
\(165\) 0 0
\(166\) 10607.1i 0.384927i
\(167\) − 13600.3i − 0.487660i −0.969818 0.243830i \(-0.921596\pi\)
0.969818 0.243830i \(-0.0784038\pi\)
\(168\) 0 0
\(169\) −7622.52 −0.266886
\(170\) 6907.77 0.239023
\(171\) 0 0
\(172\) −9974.57 −0.337161
\(173\) 45153.1i 1.50867i 0.656487 + 0.754337i \(0.272042\pi\)
−0.656487 + 0.754337i \(0.727958\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −641.884 −0.0207220
\(177\) 0 0
\(178\) − 18000.0i − 0.568110i
\(179\) −19852.4 −0.619593 −0.309797 0.950803i \(-0.600261\pi\)
−0.309797 + 0.950803i \(0.600261\pi\)
\(180\) 0 0
\(181\) 21398.5i 0.653170i 0.945168 + 0.326585i \(0.105898\pi\)
−0.945168 + 0.326585i \(0.894102\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −20858.5 −0.616094
\(185\) − 3130.78i − 0.0914764i
\(186\) 0 0
\(187\) 4230.13i 0.120968i
\(188\) 14005.8i 0.396271i
\(189\) 0 0
\(190\) −7079.36 −0.196104
\(191\) −11625.9 −0.318683 −0.159341 0.987224i \(-0.550937\pi\)
−0.159341 + 0.987224i \(0.550937\pi\)
\(192\) 0 0
\(193\) −52546.9 −1.41069 −0.705347 0.708862i \(-0.749209\pi\)
−0.705347 + 0.708862i \(0.749209\pi\)
\(194\) − 18018.4i − 0.478755i
\(195\) 0 0
\(196\) 0 0
\(197\) 54811.7 1.41235 0.706173 0.708039i \(-0.250420\pi\)
0.706173 + 0.708039i \(0.250420\pi\)
\(198\) 0 0
\(199\) 5972.87i 0.150826i 0.997152 + 0.0754131i \(0.0240276\pi\)
−0.997152 + 0.0754131i \(0.975972\pi\)
\(200\) 13383.4 0.334586
\(201\) 0 0
\(202\) − 25769.3i − 0.631539i
\(203\) 0 0
\(204\) 0 0
\(205\) 5178.33 0.123220
\(206\) 45571.1i 1.07388i
\(207\) 0 0
\(208\) − 12174.1i − 0.281390i
\(209\) − 4335.20i − 0.0992469i
\(210\) 0 0
\(211\) 3042.82 0.0683457 0.0341729 0.999416i \(-0.489120\pi\)
0.0341729 + 0.999416i \(0.489120\pi\)
\(212\) −6497.62 −0.144571
\(213\) 0 0
\(214\) −58128.1 −1.26928
\(215\) − 7219.71i − 0.156186i
\(216\) 0 0
\(217\) 0 0
\(218\) −40327.0 −0.848560
\(219\) 0 0
\(220\) − 464.604i − 0.00959925i
\(221\) −80229.2 −1.64266
\(222\) 0 0
\(223\) − 42104.7i − 0.846683i −0.905970 0.423341i \(-0.860857\pi\)
0.905970 0.423341i \(-0.139143\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 29146.1 0.570642
\(227\) − 92189.5i − 1.78908i −0.446989 0.894540i \(-0.647504\pi\)
0.446989 0.894540i \(-0.352496\pi\)
\(228\) 0 0
\(229\) 23963.1i 0.456953i 0.973549 + 0.228477i \(0.0733745\pi\)
−0.973549 + 0.228477i \(0.926626\pi\)
\(230\) − 15097.6i − 0.285399i
\(231\) 0 0
\(232\) −19864.2 −0.369059
\(233\) 35348.1 0.651110 0.325555 0.945523i \(-0.394449\pi\)
0.325555 + 0.945523i \(0.394449\pi\)
\(234\) 0 0
\(235\) −10137.6 −0.183569
\(236\) − 22836.0i − 0.410012i
\(237\) 0 0
\(238\) 0 0
\(239\) −14393.5 −0.251983 −0.125992 0.992031i \(-0.540211\pi\)
−0.125992 + 0.992031i \(0.540211\pi\)
\(240\) 0 0
\(241\) 7499.94i 0.129129i 0.997914 + 0.0645645i \(0.0205658\pi\)
−0.997914 + 0.0645645i \(0.979434\pi\)
\(242\) −41126.5 −0.702249
\(243\) 0 0
\(244\) − 46673.6i − 0.783956i
\(245\) 0 0
\(246\) 0 0
\(247\) 82222.1 1.34770
\(248\) 16386.8i 0.266434i
\(249\) 0 0
\(250\) 19923.4i 0.318774i
\(251\) − 45414.9i − 0.720860i −0.932786 0.360430i \(-0.882630\pi\)
0.932786 0.360430i \(-0.117370\pi\)
\(252\) 0 0
\(253\) 9245.36 0.144438
\(254\) −5986.94 −0.0927977
\(255\) 0 0
\(256\) 4096.00 0.0625000
\(257\) 51727.9i 0.783175i 0.920141 + 0.391588i \(0.128074\pi\)
−0.920141 + 0.391588i \(0.871926\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 8811.73 0.130351
\(261\) 0 0
\(262\) − 17132.2i − 0.249580i
\(263\) 89833.9 1.29876 0.649380 0.760464i \(-0.275029\pi\)
0.649380 + 0.760464i \(0.275029\pi\)
\(264\) 0 0
\(265\) − 4703.06i − 0.0669713i
\(266\) 0 0
\(267\) 0 0
\(268\) −17630.3 −0.245465
\(269\) 23763.8i 0.328406i 0.986427 + 0.164203i \(0.0525052\pi\)
−0.986427 + 0.164203i \(0.947495\pi\)
\(270\) 0 0
\(271\) 110819.i 1.50895i 0.656331 + 0.754473i \(0.272108\pi\)
−0.656331 + 0.754473i \(0.727892\pi\)
\(272\) − 26993.4i − 0.364854i
\(273\) 0 0
\(274\) −8090.01 −0.107758
\(275\) −5932.11 −0.0784412
\(276\) 0 0
\(277\) −7122.38 −0.0928252 −0.0464126 0.998922i \(-0.514779\pi\)
−0.0464126 + 0.998922i \(0.514779\pi\)
\(278\) − 47987.7i − 0.620927i
\(279\) 0 0
\(280\) 0 0
\(281\) −90209.2 −1.14245 −0.571226 0.820792i \(-0.693532\pi\)
−0.571226 + 0.820792i \(0.693532\pi\)
\(282\) 0 0
\(283\) − 72449.3i − 0.904610i −0.891863 0.452305i \(-0.850602\pi\)
0.891863 0.452305i \(-0.149398\pi\)
\(284\) −27265.9 −0.338052
\(285\) 0 0
\(286\) 5396.06i 0.0659698i
\(287\) 0 0
\(288\) 0 0
\(289\) −94369.9 −1.12989
\(290\) − 14378.0i − 0.170963i
\(291\) 0 0
\(292\) − 75165.2i − 0.881559i
\(293\) 89167.8i 1.03866i 0.854574 + 0.519329i \(0.173818\pi\)
−0.854574 + 0.519329i \(0.826182\pi\)
\(294\) 0 0
\(295\) 16529.0 0.189934
\(296\) −12234.1 −0.139633
\(297\) 0 0
\(298\) 42172.2 0.474890
\(299\) 175349.i 1.96137i
\(300\) 0 0
\(301\) 0 0
\(302\) −6113.49 −0.0670310
\(303\) 0 0
\(304\) 27663.9i 0.299341i
\(305\) 33782.9 0.363160
\(306\) 0 0
\(307\) − 113110.i − 1.20012i −0.799954 0.600061i \(-0.795143\pi\)
0.799954 0.600061i \(-0.204857\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −11860.9 −0.123423
\(311\) 65344.2i 0.675595i 0.941219 + 0.337797i \(0.109682\pi\)
−0.941219 + 0.337797i \(0.890318\pi\)
\(312\) 0 0
\(313\) − 1958.86i − 0.0199947i −0.999950 0.00999734i \(-0.996818\pi\)
0.999950 0.00999734i \(-0.00318231\pi\)
\(314\) − 117532.i − 1.19205i
\(315\) 0 0
\(316\) 18817.8 0.188450
\(317\) 86151.2 0.857320 0.428660 0.903466i \(-0.358986\pi\)
0.428660 + 0.903466i \(0.358986\pi\)
\(318\) 0 0
\(319\) 8804.66 0.0865230
\(320\) 2964.74i 0.0289525i
\(321\) 0 0
\(322\) 0 0
\(323\) 182310. 1.74745
\(324\) 0 0
\(325\) − 112509.i − 1.06518i
\(326\) −33276.8 −0.313117
\(327\) 0 0
\(328\) − 20235.2i − 0.188088i
\(329\) 0 0
\(330\) 0 0
\(331\) −90622.3 −0.827140 −0.413570 0.910472i \(-0.635718\pi\)
−0.413570 + 0.910472i \(0.635718\pi\)
\(332\) 30001.3i 0.272185i
\(333\) 0 0
\(334\) − 38467.6i − 0.344827i
\(335\) − 12761.0i − 0.113709i
\(336\) 0 0
\(337\) −26197.5 −0.230675 −0.115338 0.993326i \(-0.536795\pi\)
−0.115338 + 0.993326i \(0.536795\pi\)
\(338\) −21559.7 −0.188717
\(339\) 0 0
\(340\) 19538.1 0.169015
\(341\) − 7263.32i − 0.0624635i
\(342\) 0 0
\(343\) 0 0
\(344\) −28212.3 −0.238409
\(345\) 0 0
\(346\) 127712.i 1.06679i
\(347\) 160661. 1.33429 0.667146 0.744927i \(-0.267516\pi\)
0.667146 + 0.744927i \(0.267516\pi\)
\(348\) 0 0
\(349\) 18120.2i 0.148769i 0.997230 + 0.0743845i \(0.0236992\pi\)
−0.997230 + 0.0743845i \(0.976301\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1815.52 −0.0146527
\(353\) 13229.5i 0.106168i 0.998590 + 0.0530839i \(0.0169051\pi\)
−0.998590 + 0.0530839i \(0.983095\pi\)
\(354\) 0 0
\(355\) − 19735.4i − 0.156599i
\(356\) − 50911.7i − 0.401714i
\(357\) 0 0
\(358\) −56151.0 −0.438119
\(359\) 107735. 0.835924 0.417962 0.908464i \(-0.362744\pi\)
0.417962 + 0.908464i \(0.362744\pi\)
\(360\) 0 0
\(361\) −56517.2 −0.433677
\(362\) 60524.1i 0.461861i
\(363\) 0 0
\(364\) 0 0
\(365\) 54405.5 0.408373
\(366\) 0 0
\(367\) 70427.2i 0.522887i 0.965219 + 0.261444i \(0.0841986\pi\)
−0.965219 + 0.261444i \(0.915801\pi\)
\(368\) −58996.6 −0.435644
\(369\) 0 0
\(370\) − 8855.18i − 0.0646836i
\(371\) 0 0
\(372\) 0 0
\(373\) 191053. 1.37321 0.686605 0.727030i \(-0.259100\pi\)
0.686605 + 0.727030i \(0.259100\pi\)
\(374\) 11964.6i 0.0855372i
\(375\) 0 0
\(376\) 39614.4i 0.280206i
\(377\) 166990.i 1.17492i
\(378\) 0 0
\(379\) 74979.5 0.521992 0.260996 0.965340i \(-0.415949\pi\)
0.260996 + 0.965340i \(0.415949\pi\)
\(380\) −20023.4 −0.138667
\(381\) 0 0
\(382\) −32882.9 −0.225343
\(383\) − 128637.i − 0.876936i −0.898747 0.438468i \(-0.855521\pi\)
0.898747 0.438468i \(-0.144479\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −148625. −0.997511
\(387\) 0 0
\(388\) − 50963.8i − 0.338531i
\(389\) −26308.0 −0.173856 −0.0869278 0.996215i \(-0.527705\pi\)
−0.0869278 + 0.996215i \(0.527705\pi\)
\(390\) 0 0
\(391\) 388798.i 2.54314i
\(392\) 0 0
\(393\) 0 0
\(394\) 155031. 0.998679
\(395\) 13620.6i 0.0872975i
\(396\) 0 0
\(397\) 88026.3i 0.558511i 0.960217 + 0.279255i \(0.0900876\pi\)
−0.960217 + 0.279255i \(0.909912\pi\)
\(398\) 16893.8i 0.106650i
\(399\) 0 0
\(400\) 37854.1 0.236588
\(401\) −264600. −1.64551 −0.822755 0.568397i \(-0.807564\pi\)
−0.822755 + 0.568397i \(0.807564\pi\)
\(402\) 0 0
\(403\) 137757. 0.848211
\(404\) − 72886.6i − 0.446566i
\(405\) 0 0
\(406\) 0 0
\(407\) 5422.67 0.0327359
\(408\) 0 0
\(409\) 140171.i 0.837937i 0.908001 + 0.418968i \(0.137608\pi\)
−0.908001 + 0.418968i \(0.862392\pi\)
\(410\) 14646.5 0.0871298
\(411\) 0 0
\(412\) 128895.i 0.759347i
\(413\) 0 0
\(414\) 0 0
\(415\) −21715.3 −0.126087
\(416\) − 34433.4i − 0.198973i
\(417\) 0 0
\(418\) − 12261.8i − 0.0701781i
\(419\) 319409.i 1.81936i 0.415306 + 0.909682i \(0.363675\pi\)
−0.415306 + 0.909682i \(0.636325\pi\)
\(420\) 0 0
\(421\) 315726. 1.78134 0.890670 0.454651i \(-0.150236\pi\)
0.890670 + 0.454651i \(0.150236\pi\)
\(422\) 8606.40 0.0483277
\(423\) 0 0
\(424\) −18378.0 −0.102227
\(425\) − 249465.i − 1.38112i
\(426\) 0 0
\(427\) 0 0
\(428\) −164411. −0.897518
\(429\) 0 0
\(430\) − 20420.4i − 0.110440i
\(431\) −168531. −0.907245 −0.453623 0.891194i \(-0.649869\pi\)
−0.453623 + 0.891194i \(0.649869\pi\)
\(432\) 0 0
\(433\) − 17104.3i − 0.0912284i −0.998959 0.0456142i \(-0.985476\pi\)
0.998959 0.0456142i \(-0.0145245\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −114062. −0.600023
\(437\) − 398456.i − 2.08649i
\(438\) 0 0
\(439\) − 221981.i − 1.15183i −0.817511 0.575913i \(-0.804647\pi\)
0.817511 0.575913i \(-0.195353\pi\)
\(440\) − 1314.10i − 0.00678769i
\(441\) 0 0
\(442\) −226922. −1.16154
\(443\) −34230.7 −0.174425 −0.0872124 0.996190i \(-0.527796\pi\)
−0.0872124 + 0.996190i \(0.527796\pi\)
\(444\) 0 0
\(445\) 36850.5 0.186090
\(446\) − 119090.i − 0.598695i
\(447\) 0 0
\(448\) 0 0
\(449\) 187206. 0.928598 0.464299 0.885679i \(-0.346306\pi\)
0.464299 + 0.885679i \(0.346306\pi\)
\(450\) 0 0
\(451\) 8969.13i 0.0440958i
\(452\) 82437.6 0.403505
\(453\) 0 0
\(454\) − 260751.i − 1.26507i
\(455\) 0 0
\(456\) 0 0
\(457\) 147845. 0.707904 0.353952 0.935264i \(-0.384838\pi\)
0.353952 + 0.935264i \(0.384838\pi\)
\(458\) 67777.9i 0.323115i
\(459\) 0 0
\(460\) − 42702.5i − 0.201808i
\(461\) − 73979.5i − 0.348105i −0.984736 0.174052i \(-0.944314\pi\)
0.984736 0.174052i \(-0.0556862\pi\)
\(462\) 0 0
\(463\) −66987.3 −0.312486 −0.156243 0.987719i \(-0.549938\pi\)
−0.156243 + 0.987719i \(0.549938\pi\)
\(464\) −56184.5 −0.260964
\(465\) 0 0
\(466\) 99979.6 0.460405
\(467\) 232034.i 1.06394i 0.846763 + 0.531970i \(0.178548\pi\)
−0.846763 + 0.531970i \(0.821452\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −28673.4 −0.129803
\(471\) 0 0
\(472\) − 64590.1i − 0.289922i
\(473\) 12504.9 0.0558931
\(474\) 0 0
\(475\) 255662.i 1.13313i
\(476\) 0 0
\(477\) 0 0
\(478\) −40711.1 −0.178179
\(479\) 220049.i 0.959065i 0.877524 + 0.479532i \(0.159194\pi\)
−0.877524 + 0.479532i \(0.840806\pi\)
\(480\) 0 0
\(481\) 102847.i 0.444531i
\(482\) 21213.0i 0.0913079i
\(483\) 0 0
\(484\) −116323. −0.496565
\(485\) 36888.2 0.156821
\(486\) 0 0
\(487\) 139656. 0.588847 0.294423 0.955675i \(-0.404872\pi\)
0.294423 + 0.955675i \(0.404872\pi\)
\(488\) − 132013.i − 0.554341i
\(489\) 0 0
\(490\) 0 0
\(491\) 284872. 1.18164 0.590821 0.806802i \(-0.298804\pi\)
0.590821 + 0.806802i \(0.298804\pi\)
\(492\) 0 0
\(493\) 370265.i 1.52342i
\(494\) 232559. 0.952970
\(495\) 0 0
\(496\) 46348.8i 0.188397i
\(497\) 0 0
\(498\) 0 0
\(499\) −313573. −1.25933 −0.629663 0.776869i \(-0.716807\pi\)
−0.629663 + 0.776869i \(0.716807\pi\)
\(500\) 56351.7i 0.225407i
\(501\) 0 0
\(502\) − 128453.i − 0.509725i
\(503\) − 192865.i − 0.762285i −0.924516 0.381143i \(-0.875531\pi\)
0.924516 0.381143i \(-0.124469\pi\)
\(504\) 0 0
\(505\) 52756.2 0.206867
\(506\) 26149.8 0.102133
\(507\) 0 0
\(508\) −16933.6 −0.0656179
\(509\) 173256.i 0.668734i 0.942443 + 0.334367i \(0.108523\pi\)
−0.942443 + 0.334367i \(0.891477\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 11585.2 0.0441942
\(513\) 0 0
\(514\) 146309.i 0.553789i
\(515\) −93295.5 −0.351760
\(516\) 0 0
\(517\) − 17558.8i − 0.0656922i
\(518\) 0 0
\(519\) 0 0
\(520\) 24923.3 0.0921721
\(521\) 168311.i 0.620064i 0.950726 + 0.310032i \(0.100340\pi\)
−0.950726 + 0.310032i \(0.899660\pi\)
\(522\) 0 0
\(523\) − 452722.i − 1.65512i −0.561380 0.827558i \(-0.689729\pi\)
0.561380 0.827558i \(-0.310271\pi\)
\(524\) − 48457.2i − 0.176480i
\(525\) 0 0
\(526\) 254089. 0.918362
\(527\) 305447. 1.09980
\(528\) 0 0
\(529\) 569916. 2.03657
\(530\) − 13302.3i − 0.0473558i
\(531\) 0 0
\(532\) 0 0
\(533\) −170110. −0.598790
\(534\) 0 0
\(535\) − 119003.i − 0.415766i
\(536\) −49866.0 −0.173570
\(537\) 0 0
\(538\) 67214.1i 0.232218i
\(539\) 0 0
\(540\) 0 0
\(541\) −14472.4 −0.0494477 −0.0247238 0.999694i \(-0.507871\pi\)
−0.0247238 + 0.999694i \(0.507871\pi\)
\(542\) 313442.i 1.06699i
\(543\) 0 0
\(544\) − 76348.7i − 0.257991i
\(545\) − 82559.4i − 0.277954i
\(546\) 0 0
\(547\) −370524. −1.23835 −0.619173 0.785255i \(-0.712532\pi\)
−0.619173 + 0.785255i \(0.712532\pi\)
\(548\) −22882.0 −0.0761962
\(549\) 0 0
\(550\) −16778.5 −0.0554663
\(551\) − 379463.i − 1.24987i
\(552\) 0 0
\(553\) 0 0
\(554\) −20145.1 −0.0656373
\(555\) 0 0
\(556\) − 135730.i − 0.439062i
\(557\) 437281. 1.40945 0.704727 0.709479i \(-0.251070\pi\)
0.704727 + 0.709479i \(0.251070\pi\)
\(558\) 0 0
\(559\) 237170.i 0.758990i
\(560\) 0 0
\(561\) 0 0
\(562\) −255150. −0.807836
\(563\) 4062.71i 0.0128174i 0.999979 + 0.00640869i \(0.00203996\pi\)
−0.999979 + 0.00640869i \(0.997960\pi\)
\(564\) 0 0
\(565\) 59669.4i 0.186919i
\(566\) − 204918.i − 0.639656i
\(567\) 0 0
\(568\) −77119.6 −0.239039
\(569\) −433364. −1.33853 −0.669266 0.743023i \(-0.733391\pi\)
−0.669266 + 0.743023i \(0.733391\pi\)
\(570\) 0 0
\(571\) 47636.6 0.146106 0.0730530 0.997328i \(-0.476726\pi\)
0.0730530 + 0.997328i \(0.476726\pi\)
\(572\) 15262.4i 0.0466477i
\(573\) 0 0
\(574\) 0 0
\(575\) −545230. −1.64909
\(576\) 0 0
\(577\) 24131.0i 0.0724809i 0.999343 + 0.0362404i \(0.0115382\pi\)
−0.999343 + 0.0362404i \(0.988462\pi\)
\(578\) −266918. −0.798956
\(579\) 0 0
\(580\) − 40667.0i − 0.120889i
\(581\) 0 0
\(582\) 0 0
\(583\) 8145.93 0.0239665
\(584\) − 212599.i − 0.623356i
\(585\) 0 0
\(586\) 252205.i 0.734442i
\(587\) 680260.i 1.97423i 0.160003 + 0.987117i \(0.448850\pi\)
−0.160003 + 0.987117i \(0.551150\pi\)
\(588\) 0 0
\(589\) −313034. −0.902320
\(590\) 46751.1 0.134304
\(591\) 0 0
\(592\) −34603.2 −0.0987354
\(593\) 352622.i 1.00277i 0.865225 + 0.501383i \(0.167175\pi\)
−0.865225 + 0.501383i \(0.832825\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 119281. 0.335798
\(597\) 0 0
\(598\) 495961.i 1.38690i
\(599\) 382596. 1.06632 0.533159 0.846015i \(-0.321005\pi\)
0.533159 + 0.846015i \(0.321005\pi\)
\(600\) 0 0
\(601\) − 8474.87i − 0.0234630i −0.999931 0.0117315i \(-0.996266\pi\)
0.999931 0.0117315i \(-0.00373434\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −17291.6 −0.0473981
\(605\) − 84196.2i − 0.230029i
\(606\) 0 0
\(607\) 222052.i 0.602668i 0.953519 + 0.301334i \(0.0974319\pi\)
−0.953519 + 0.301334i \(0.902568\pi\)
\(608\) 78245.2i 0.211666i
\(609\) 0 0
\(610\) 95552.6 0.256793
\(611\) 333023. 0.892055
\(612\) 0 0
\(613\) 13140.4 0.0349694 0.0174847 0.999847i \(-0.494434\pi\)
0.0174847 + 0.999847i \(0.494434\pi\)
\(614\) − 319924.i − 0.848615i
\(615\) 0 0
\(616\) 0 0
\(617\) 235797. 0.619394 0.309697 0.950835i \(-0.399772\pi\)
0.309697 + 0.950835i \(0.399772\pi\)
\(618\) 0 0
\(619\) 617960.i 1.61279i 0.591374 + 0.806397i \(0.298586\pi\)
−0.591374 + 0.806397i \(0.701414\pi\)
\(620\) −33547.8 −0.0872732
\(621\) 0 0
\(622\) 184821.i 0.477718i
\(623\) 0 0
\(624\) 0 0
\(625\) 328881. 0.841935
\(626\) − 5540.49i − 0.0141384i
\(627\) 0 0
\(628\) − 332430.i − 0.842909i
\(629\) 228041.i 0.576384i
\(630\) 0 0
\(631\) 453628. 1.13931 0.569653 0.821885i \(-0.307077\pi\)
0.569653 + 0.821885i \(0.307077\pi\)
\(632\) 53224.9 0.133254
\(633\) 0 0
\(634\) 243672. 0.606217
\(635\) − 12256.8i − 0.0303968i
\(636\) 0 0
\(637\) 0 0
\(638\) 24903.4 0.0611810
\(639\) 0 0
\(640\) 8385.54i 0.0204725i
\(641\) 144938. 0.352750 0.176375 0.984323i \(-0.443563\pi\)
0.176375 + 0.984323i \(0.443563\pi\)
\(642\) 0 0
\(643\) − 238775.i − 0.577520i −0.957401 0.288760i \(-0.906757\pi\)
0.957401 0.288760i \(-0.0932430\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 515650. 1.23563
\(647\) − 33276.6i − 0.0794933i −0.999210 0.0397466i \(-0.987345\pi\)
0.999210 0.0397466i \(-0.0126551\pi\)
\(648\) 0 0
\(649\) 28629.1i 0.0679701i
\(650\) − 318224.i − 0.753193i
\(651\) 0 0
\(652\) −94121.0 −0.221407
\(653\) −77564.4 −0.181901 −0.0909507 0.995855i \(-0.528991\pi\)
−0.0909507 + 0.995855i \(0.528991\pi\)
\(654\) 0 0
\(655\) 35073.9 0.0817526
\(656\) − 57233.9i − 0.132998i
\(657\) 0 0
\(658\) 0 0
\(659\) 762599. 1.75600 0.878001 0.478658i \(-0.158877\pi\)
0.878001 + 0.478658i \(0.158877\pi\)
\(660\) 0 0
\(661\) − 499668.i − 1.14361i −0.820389 0.571805i \(-0.806243\pi\)
0.820389 0.571805i \(-0.193757\pi\)
\(662\) −256318. −0.584876
\(663\) 0 0
\(664\) 84856.5i 0.192464i
\(665\) 0 0
\(666\) 0 0
\(667\) 809252. 1.81900
\(668\) − 108803.i − 0.243830i
\(669\) 0 0
\(670\) − 36093.6i − 0.0804046i
\(671\) 58513.8i 0.129961i
\(672\) 0 0
\(673\) 601790. 1.32866 0.664332 0.747438i \(-0.268716\pi\)
0.664332 + 0.747438i \(0.268716\pi\)
\(674\) −74097.8 −0.163112
\(675\) 0 0
\(676\) −60980.2 −0.133443
\(677\) − 161904.i − 0.353248i −0.984278 0.176624i \(-0.943482\pi\)
0.984278 0.176624i \(-0.0565177\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 55262.1 0.119512
\(681\) 0 0
\(682\) − 20543.8i − 0.0441683i
\(683\) 13434.3 0.0287987 0.0143994 0.999896i \(-0.495416\pi\)
0.0143994 + 0.999896i \(0.495416\pi\)
\(684\) 0 0
\(685\) − 16562.3i − 0.0352971i
\(686\) 0 0
\(687\) 0 0
\(688\) −79796.5 −0.168580
\(689\) 154497.i 0.325448i
\(690\) 0 0
\(691\) 246175.i 0.515571i 0.966202 + 0.257785i \(0.0829927\pi\)
−0.966202 + 0.257785i \(0.917007\pi\)
\(692\) 361225.i 0.754337i
\(693\) 0 0
\(694\) 454417. 0.943487
\(695\) 98242.9 0.203391
\(696\) 0 0
\(697\) −377182. −0.776399
\(698\) 51251.7i 0.105196i
\(699\) 0 0
\(700\) 0 0
\(701\) −750473. −1.52721 −0.763605 0.645683i \(-0.776573\pi\)
−0.763605 + 0.645683i \(0.776573\pi\)
\(702\) 0 0
\(703\) − 233706.i − 0.472889i
\(704\) −5135.07 −0.0103610
\(705\) 0 0
\(706\) 37418.6i 0.0750720i
\(707\) 0 0
\(708\) 0 0
\(709\) −595336. −1.18432 −0.592161 0.805820i \(-0.701725\pi\)
−0.592161 + 0.805820i \(0.701725\pi\)
\(710\) − 55820.1i − 0.110732i
\(711\) 0 0
\(712\) − 144000.i − 0.284055i
\(713\) − 667584.i − 1.31319i
\(714\) 0 0
\(715\) −11047.1 −0.0216091
\(716\) −158819. −0.309797
\(717\) 0 0
\(718\) 304720. 0.591088
\(719\) − 26728.2i − 0.0517026i −0.999666 0.0258513i \(-0.991770\pi\)
0.999666 0.0258513i \(-0.00822964\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −159855. −0.306656
\(723\) 0 0
\(724\) 171188.i 0.326585i
\(725\) −519241. −0.987855
\(726\) 0 0
\(727\) 514869.i 0.974154i 0.873359 + 0.487077i \(0.161937\pi\)
−0.873359 + 0.487077i \(0.838063\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 153882. 0.288764
\(731\) 525873.i 0.984116i
\(732\) 0 0
\(733\) − 241789.i − 0.450016i −0.974357 0.225008i \(-0.927759\pi\)
0.974357 0.225008i \(-0.0722409\pi\)
\(734\) 199198.i 0.369737i
\(735\) 0 0
\(736\) −166868. −0.308047
\(737\) 22102.7 0.0406922
\(738\) 0 0
\(739\) −671522. −1.22962 −0.614811 0.788675i \(-0.710768\pi\)
−0.614811 + 0.788675i \(0.710768\pi\)
\(740\) − 25046.2i − 0.0457382i
\(741\) 0 0
\(742\) 0 0
\(743\) 134542. 0.243714 0.121857 0.992548i \(-0.461115\pi\)
0.121857 + 0.992548i \(0.461115\pi\)
\(744\) 0 0
\(745\) 86337.0i 0.155555i
\(746\) 540381. 0.971006
\(747\) 0 0
\(748\) 33841.0i 0.0604840i
\(749\) 0 0
\(750\) 0 0
\(751\) 446561. 0.791774 0.395887 0.918299i \(-0.370437\pi\)
0.395887 + 0.918299i \(0.370437\pi\)
\(752\) 112047.i 0.198136i
\(753\) 0 0
\(754\) 472320.i 0.830795i
\(755\) − 12515.9i − 0.0219567i
\(756\) 0 0
\(757\) −939360. −1.63923 −0.819616 0.572913i \(-0.805813\pi\)
−0.819616 + 0.572913i \(0.805813\pi\)
\(758\) 212074. 0.369104
\(759\) 0 0
\(760\) −56634.9 −0.0980520
\(761\) 991448.i 1.71199i 0.516986 + 0.855994i \(0.327054\pi\)
−0.516986 + 0.855994i \(0.672946\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −93007.0 −0.159341
\(765\) 0 0
\(766\) − 363840.i − 0.620087i
\(767\) −542983. −0.922987
\(768\) 0 0
\(769\) − 180922.i − 0.305942i −0.988231 0.152971i \(-0.951116\pi\)
0.988231 0.152971i \(-0.0488841\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −420375. −0.705347
\(773\) 19270.4i 0.0322502i 0.999870 + 0.0161251i \(0.00513300\pi\)
−0.999870 + 0.0161251i \(0.994867\pi\)
\(774\) 0 0
\(775\) 428342.i 0.713161i
\(776\) − 144147.i − 0.239377i
\(777\) 0 0
\(778\) −74410.3 −0.122935
\(779\) 386551. 0.636988
\(780\) 0 0
\(781\) 34182.7 0.0560408
\(782\) 1.09969e6i 1.79827i
\(783\) 0 0
\(784\) 0 0
\(785\) 240617. 0.390469
\(786\) 0 0
\(787\) 278163.i 0.449107i 0.974462 + 0.224553i \(0.0720923\pi\)
−0.974462 + 0.224553i \(0.927908\pi\)
\(788\) 438494. 0.706173
\(789\) 0 0
\(790\) 38524.8i 0.0617286i
\(791\) 0 0
\(792\) 0 0
\(793\) −1.10978e6 −1.76478
\(794\) 248976.i 0.394927i
\(795\) 0 0
\(796\) 47783.0i 0.0754131i
\(797\) 60214.6i 0.0947950i 0.998876 + 0.0473975i \(0.0150927\pi\)
−0.998876 + 0.0473975i \(0.984907\pi\)
\(798\) 0 0
\(799\) 738406. 1.15665
\(800\) 107068. 0.167293
\(801\) 0 0
\(802\) −748400. −1.16355
\(803\) 94233.1i 0.146141i
\(804\) 0 0
\(805\) 0 0
\(806\) 389636. 0.599775
\(807\) 0 0
\(808\) − 206155.i − 0.315770i
\(809\) −70473.9 −0.107679 −0.0538395 0.998550i \(-0.517146\pi\)
−0.0538395 + 0.998550i \(0.517146\pi\)
\(810\) 0 0
\(811\) − 1.08434e6i − 1.64863i −0.566133 0.824314i \(-0.691561\pi\)
0.566133 0.824314i \(-0.308439\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 15337.6 0.0231478
\(815\) − 68125.9i − 0.102565i
\(816\) 0 0
\(817\) − 538936.i − 0.807408i
\(818\) 396463.i 0.592511i
\(819\) 0 0
\(820\) 41426.6 0.0616101
\(821\) 647690. 0.960906 0.480453 0.877020i \(-0.340472\pi\)
0.480453 + 0.877020i \(0.340472\pi\)
\(822\) 0 0
\(823\) 1.07902e6 1.59306 0.796529 0.604600i \(-0.206667\pi\)
0.796529 + 0.604600i \(0.206667\pi\)
\(824\) 364569.i 0.536940i
\(825\) 0 0
\(826\) 0 0
\(827\) −9026.16 −0.0131975 −0.00659875 0.999978i \(-0.502100\pi\)
−0.00659875 + 0.999978i \(0.502100\pi\)
\(828\) 0 0
\(829\) − 756024.i − 1.10009i −0.835136 0.550043i \(-0.814611\pi\)
0.835136 0.550043i \(-0.185389\pi\)
\(830\) −61420.2 −0.0891569
\(831\) 0 0
\(832\) − 97392.5i − 0.140695i
\(833\) 0 0
\(834\) 0 0
\(835\) 78752.7 0.112952
\(836\) − 34681.6i − 0.0496234i
\(837\) 0 0
\(838\) 903426.i 1.28648i
\(839\) − 654438.i − 0.929704i −0.885388 0.464852i \(-0.846107\pi\)
0.885388 0.464852i \(-0.153893\pi\)
\(840\) 0 0
\(841\) 63396.2 0.0896337
\(842\) 893009. 1.25960
\(843\) 0 0
\(844\) 24342.6 0.0341729
\(845\) − 44138.2i − 0.0618160i
\(846\) 0 0
\(847\) 0 0
\(848\) −51981.0 −0.0722857
\(849\) 0 0
\(850\) − 705594.i − 0.976600i
\(851\) 498407. 0.688216
\(852\) 0 0
\(853\) − 123790.i − 0.170133i −0.996375 0.0850664i \(-0.972890\pi\)
0.996375 0.0850664i \(-0.0271102\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −465025. −0.634641
\(857\) 173232.i 0.235866i 0.993022 + 0.117933i \(0.0376268\pi\)
−0.993022 + 0.117933i \(0.962373\pi\)
\(858\) 0 0
\(859\) − 267312.i − 0.362270i −0.983458 0.181135i \(-0.942023\pi\)
0.983458 0.181135i \(-0.0579770\pi\)
\(860\) − 57757.7i − 0.0780932i
\(861\) 0 0
\(862\) −476677. −0.641519
\(863\) −1.23904e6 −1.66366 −0.831830 0.555030i \(-0.812707\pi\)
−0.831830 + 0.555030i \(0.812707\pi\)
\(864\) 0 0
\(865\) −261459. −0.349439
\(866\) − 48378.4i − 0.0645083i
\(867\) 0 0
\(868\) 0 0
\(869\) −23591.6 −0.0312404
\(870\) 0 0
\(871\) 419204.i 0.552572i
\(872\) −322616. −0.424280
\(873\) 0 0
\(874\) − 1.12700e6i − 1.47537i
\(875\) 0 0
\(876\) 0 0
\(877\) 697922. 0.907419 0.453710 0.891150i \(-0.350100\pi\)
0.453710 + 0.891150i \(0.350100\pi\)
\(878\) − 627857.i − 0.814464i
\(879\) 0 0
\(880\) − 3716.83i − 0.00479962i
\(881\) − 1.44660e6i − 1.86378i −0.362735 0.931892i \(-0.618157\pi\)
0.362735 0.931892i \(-0.381843\pi\)
\(882\) 0 0
\(883\) −539049. −0.691364 −0.345682 0.938352i \(-0.612352\pi\)
−0.345682 + 0.938352i \(0.612352\pi\)
\(884\) −641833. −0.821330
\(885\) 0 0
\(886\) −96819.1 −0.123337
\(887\) − 983274.i − 1.24976i −0.780720 0.624881i \(-0.785147\pi\)
0.780720 0.624881i \(-0.214853\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 104229. 0.131586
\(891\) 0 0
\(892\) − 336838.i − 0.423341i
\(893\) −756748. −0.948961
\(894\) 0 0
\(895\) − 114955.i − 0.143510i
\(896\) 0 0
\(897\) 0 0
\(898\) 529499. 0.656618
\(899\) − 635762.i − 0.786639i
\(900\) 0 0
\(901\) 342564.i 0.421980i
\(902\) 25368.5i 0.0311804i
\(903\) 0 0
\(904\) 233169. 0.285321
\(905\) −123908. −0.151287
\(906\) 0 0
\(907\) 293081. 0.356266 0.178133 0.984006i \(-0.442994\pi\)
0.178133 + 0.984006i \(0.442994\pi\)
\(908\) − 737516.i − 0.894540i
\(909\) 0 0
\(910\) 0 0
\(911\) −1.39546e6 −1.68143 −0.840716 0.541477i \(-0.817865\pi\)
−0.840716 + 0.541477i \(0.817865\pi\)
\(912\) 0 0
\(913\) − 37612.0i − 0.0451217i
\(914\) 418169. 0.500564
\(915\) 0 0
\(916\) 191705.i 0.228477i
\(917\) 0 0
\(918\) 0 0
\(919\) −860318. −1.01866 −0.509328 0.860572i \(-0.670106\pi\)
−0.509328 + 0.860572i \(0.670106\pi\)
\(920\) − 120781.i − 0.142700i
\(921\) 0 0
\(922\) − 209246.i − 0.246147i
\(923\) 648314.i 0.760995i
\(924\) 0 0
\(925\) −319793. −0.373754
\(926\) −189469. −0.220961
\(927\) 0 0
\(928\) −158914. −0.184529
\(929\) − 1.08037e6i − 1.25182i −0.779894 0.625911i \(-0.784727\pi\)
0.779894 0.625911i \(-0.215273\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 282785. 0.325555
\(933\) 0 0
\(934\) 656290.i 0.752319i
\(935\) −24494.5 −0.0280186
\(936\) 0 0
\(937\) − 659462.i − 0.751122i −0.926798 0.375561i \(-0.877450\pi\)
0.926798 0.375561i \(-0.122550\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −81100.7 −0.0917844
\(941\) − 890694.i − 1.00589i −0.864319 0.502944i \(-0.832250\pi\)
0.864319 0.502944i \(-0.167750\pi\)
\(942\) 0 0
\(943\) 824368.i 0.927038i
\(944\) − 182688.i − 0.205006i
\(945\) 0 0
\(946\) 35369.2 0.0395224
\(947\) −1.52254e6 −1.69773 −0.848863 0.528613i \(-0.822712\pi\)
−0.848863 + 0.528613i \(0.822712\pi\)
\(948\) 0 0
\(949\) −1.78724e6 −1.98450
\(950\) 723121.i 0.801242i
\(951\) 0 0
\(952\) 0 0
\(953\) 464150. 0.511061 0.255530 0.966801i \(-0.417750\pi\)
0.255530 + 0.966801i \(0.417750\pi\)
\(954\) 0 0
\(955\) − 67319.6i − 0.0738133i
\(956\) −115148. −0.125992
\(957\) 0 0
\(958\) 622392.i 0.678161i
\(959\) 0 0
\(960\) 0 0
\(961\) 399056. 0.432103
\(962\) 290895.i 0.314331i
\(963\) 0 0
\(964\) 59999.5i 0.0645645i
\(965\) − 304273.i − 0.326745i
\(966\) 0 0
\(967\) 61596.4 0.0658723 0.0329361 0.999457i \(-0.489514\pi\)
0.0329361 + 0.999457i \(0.489514\pi\)
\(968\) −329012. −0.351124
\(969\) 0 0
\(970\) 104336. 0.110889
\(971\) − 772298.i − 0.819118i −0.912284 0.409559i \(-0.865683\pi\)
0.912284 0.409559i \(-0.134317\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 395007. 0.416378
\(975\) 0 0
\(976\) − 373389.i − 0.391978i
\(977\) −1.00334e6 −1.05114 −0.525570 0.850750i \(-0.676148\pi\)
−0.525570 + 0.850750i \(0.676148\pi\)
\(978\) 0 0
\(979\) 63826.9i 0.0665945i
\(980\) 0 0
\(981\) 0 0
\(982\) 805739. 0.835548
\(983\) 523081.i 0.541330i 0.962674 + 0.270665i \(0.0872435\pi\)
−0.962674 + 0.270665i \(0.912756\pi\)
\(984\) 0 0
\(985\) 317387.i 0.327127i
\(986\) 1.04727e6i 1.07722i
\(987\) 0 0
\(988\) 657776. 0.673852
\(989\) 1.14935e6 1.17506
\(990\) 0 0
\(991\) −1.67549e6 −1.70606 −0.853029 0.521863i \(-0.825237\pi\)
−0.853029 + 0.521863i \(0.825237\pi\)
\(992\) 131094.i 0.133217i
\(993\) 0 0
\(994\) 0 0
\(995\) −34585.9 −0.0349344
\(996\) 0 0
\(997\) − 656503.i − 0.660460i −0.943901 0.330230i \(-0.892874\pi\)
0.943901 0.330230i \(-0.107126\pi\)
\(998\) −886919. −0.890477
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.5.c.b.685.4 4
3.2 odd 2 98.5.b.b.97.2 4
7.4 even 3 126.5.n.a.19.1 4
7.5 odd 6 126.5.n.a.73.1 4
7.6 odd 2 inner 882.5.c.b.685.3 4
12.11 even 2 784.5.c.b.97.2 4
21.2 odd 6 98.5.d.a.31.2 4
21.5 even 6 14.5.d.a.3.2 4
21.11 odd 6 14.5.d.a.5.2 yes 4
21.17 even 6 98.5.d.a.19.2 4
21.20 even 2 98.5.b.b.97.1 4
84.11 even 6 112.5.s.b.33.1 4
84.47 odd 6 112.5.s.b.17.1 4
84.83 odd 2 784.5.c.b.97.3 4
105.32 even 12 350.5.i.a.299.4 8
105.47 odd 12 350.5.i.a.199.1 8
105.53 even 12 350.5.i.a.299.1 8
105.68 odd 12 350.5.i.a.199.4 8
105.74 odd 6 350.5.k.a.201.1 4
105.89 even 6 350.5.k.a.101.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.5.d.a.3.2 4 21.5 even 6
14.5.d.a.5.2 yes 4 21.11 odd 6
98.5.b.b.97.1 4 21.20 even 2
98.5.b.b.97.2 4 3.2 odd 2
98.5.d.a.19.2 4 21.17 even 6
98.5.d.a.31.2 4 21.2 odd 6
112.5.s.b.17.1 4 84.47 odd 6
112.5.s.b.33.1 4 84.11 even 6
126.5.n.a.19.1 4 7.4 even 3
126.5.n.a.73.1 4 7.5 odd 6
350.5.i.a.199.1 8 105.47 odd 12
350.5.i.a.199.4 8 105.68 odd 12
350.5.i.a.299.1 8 105.53 even 12
350.5.i.a.299.4 8 105.32 even 12
350.5.k.a.101.1 4 105.89 even 6
350.5.k.a.201.1 4 105.74 odd 6
784.5.c.b.97.2 4 12.11 even 2
784.5.c.b.97.3 4 84.83 odd 2
882.5.c.b.685.3 4 7.6 odd 2 inner
882.5.c.b.685.4 4 1.1 even 1 trivial