Properties

Label 126.5.n.a.19.1
Level $126$
Weight $5$
Character 126.19
Analytic conductor $13.025$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,5,Mod(19,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.19"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 126.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16,-54] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0246153486\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 126.19
Dual form 126.5.n.a.73.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 + 2.44949i) q^{2} +(-4.00000 - 6.92820i) q^{4} +(-5.01472 - 2.89525i) q^{5} +(-7.00000 + 48.4974i) q^{7} +22.6274 q^{8} +(14.1838 - 8.18900i) q^{10} +(5.01472 + 8.68575i) q^{11} -190.220i q^{13} +(-108.894 - 85.7321i) q^{14} +(-32.0000 + 55.4256i) q^{16} +(-365.265 + 210.886i) q^{17} +(-374.338 - 216.124i) q^{19} +46.3240i q^{20} -28.3675 q^{22} +(460.911 - 798.322i) q^{23} +(-295.735 - 512.228i) q^{25} +(465.941 + 269.011i) q^{26} +(364.000 - 145.492i) q^{28} -877.882 q^{29} +(627.175 - 362.100i) q^{31} +(-90.5097 - 156.767i) q^{32} -1192.95i q^{34} +(175.515 - 222.934i) q^{35} +(270.338 - 468.239i) q^{37} +(1058.79 - 611.291i) q^{38} +(-113.470 - 65.5120i) q^{40} -894.280i q^{41} -1246.82 q^{43} +(40.1177 - 69.4860i) q^{44} +(1303.65 + 2257.99i) q^{46} +(-1516.17 - 875.364i) q^{47} +(-2303.00 - 678.964i) q^{49} +1672.93 q^{50} +(-1317.88 + 760.879i) q^{52} +(406.101 + 703.388i) q^{53} -58.0754i q^{55} +(-158.392 + 1097.37i) q^{56} +(1241.51 - 2150.36i) q^{58} +(-2472.07 + 1427.25i) q^{59} +(5052.57 + 2917.10i) q^{61} +2048.35i q^{62} +512.000 q^{64} +(-550.733 + 953.898i) q^{65} +(1101.89 + 1908.54i) q^{67} +(2922.12 + 1687.08i) q^{68} +(297.859 + 745.199i) q^{70} -3408.24 q^{71} +(-8136.88 + 4697.83i) q^{73} +(764.630 + 1324.38i) q^{74} +3457.98i q^{76} +(-456.339 + 182.401i) q^{77} +(-1176.12 + 2037.09i) q^{79} +(320.942 - 185.296i) q^{80} +(2190.53 + 1264.70i) q^{82} +3750.16i q^{83} +2442.26 q^{85} +(1763.27 - 3054.07i) q^{86} +(113.470 + 196.536i) q^{88} +(5511.35 + 3181.98i) q^{89} +(9225.16 + 1331.54i) q^{91} -7374.58 q^{92} +(4288.39 - 2475.90i) q^{94} +(1251.47 + 2167.60i) q^{95} -6370.47i q^{97} +(4920.05 - 4680.97i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} - 54 q^{5} - 28 q^{7} - 96 q^{10} + 54 q^{11} - 128 q^{16} - 918 q^{17} + 30 q^{19} + 192 q^{22} + 486 q^{23} - 572 q^{25} + 1728 q^{26} + 1456 q^{28} - 3240 q^{29} - 546 q^{31} + 1890 q^{35}+ \cdots - 8910 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 + 2.44949i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −4.00000 6.92820i −0.250000 0.433013i
\(5\) −5.01472 2.89525i −0.200589 0.115810i 0.396341 0.918103i \(-0.370280\pi\)
−0.596930 + 0.802293i \(0.703613\pi\)
\(6\) 0 0
\(7\) −7.00000 + 48.4974i −0.142857 + 0.989743i
\(8\) 22.6274 0.353553
\(9\) 0 0
\(10\) 14.1838 8.18900i 0.141838 0.0818900i
\(11\) 5.01472 + 8.68575i 0.0414440 + 0.0717830i 0.886003 0.463679i \(-0.153471\pi\)
−0.844559 + 0.535462i \(0.820138\pi\)
\(12\) 0 0
\(13\) 190.220i 1.12556i −0.826607 0.562780i \(-0.809732\pi\)
0.826607 0.562780i \(-0.190268\pi\)
\(14\) −108.894 85.7321i −0.555584 0.437409i
\(15\) 0 0
\(16\) −32.0000 + 55.4256i −0.125000 + 0.216506i
\(17\) −365.265 + 210.886i −1.26389 + 0.729708i −0.973825 0.227299i \(-0.927011\pi\)
−0.290066 + 0.957007i \(0.593677\pi\)
\(18\) 0 0
\(19\) −374.338 216.124i −1.03695 0.598681i −0.117980 0.993016i \(-0.537642\pi\)
−0.918967 + 0.394335i \(0.870975\pi\)
\(20\) 46.3240i 0.115810i
\(21\) 0 0
\(22\) −28.3675 −0.0586106
\(23\) 460.911 798.322i 0.871288 1.50911i 0.0106225 0.999944i \(-0.496619\pi\)
0.860665 0.509171i \(-0.170048\pi\)
\(24\) 0 0
\(25\) −295.735 512.228i −0.473176 0.819565i
\(26\) 465.941 + 269.011i 0.689262 + 0.397946i
\(27\) 0 0
\(28\) 364.000 145.492i 0.464286 0.185577i
\(29\) −877.882 −1.04386 −0.521928 0.852990i \(-0.674787\pi\)
−0.521928 + 0.852990i \(0.674787\pi\)
\(30\) 0 0
\(31\) 627.175 362.100i 0.652628 0.376795i −0.136834 0.990594i \(-0.543693\pi\)
0.789462 + 0.613799i \(0.210360\pi\)
\(32\) −90.5097 156.767i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 1192.95i 1.03196i
\(35\) 175.515 222.934i 0.143278 0.181987i
\(36\) 0 0
\(37\) 270.338 468.239i 0.197471 0.342030i −0.750237 0.661169i \(-0.770061\pi\)
0.947708 + 0.319140i \(0.103394\pi\)
\(38\) 1058.79 611.291i 0.733232 0.423332i
\(39\) 0 0
\(40\) −113.470 65.5120i −0.0709188 0.0409450i
\(41\) 894.280i 0.531993i −0.963974 0.265996i \(-0.914299\pi\)
0.963974 0.265996i \(-0.0857009\pi\)
\(42\) 0 0
\(43\) −1246.82 −0.674322 −0.337161 0.941447i \(-0.609467\pi\)
−0.337161 + 0.941447i \(0.609467\pi\)
\(44\) 40.1177 69.4860i 0.0207220 0.0358915i
\(45\) 0 0
\(46\) 1303.65 + 2257.99i 0.616094 + 1.06711i
\(47\) −1516.17 875.364i −0.686362 0.396271i 0.115886 0.993263i \(-0.463029\pi\)
−0.802248 + 0.596991i \(0.796363\pi\)
\(48\) 0 0
\(49\) −2303.00 678.964i −0.959184 0.282784i
\(50\) 1672.93 0.669172
\(51\) 0 0
\(52\) −1317.88 + 760.879i −0.487382 + 0.281390i
\(53\) 406.101 + 703.388i 0.144571 + 0.250405i 0.929213 0.369545i \(-0.120486\pi\)
−0.784642 + 0.619950i \(0.787153\pi\)
\(54\) 0 0
\(55\) 58.0754i 0.0191985i
\(56\) −158.392 + 1097.37i −0.0505076 + 0.349927i
\(57\) 0 0
\(58\) 1241.51 2150.36i 0.369059 0.639228i
\(59\) −2472.07 + 1427.25i −0.710162 + 0.410012i −0.811121 0.584878i \(-0.801142\pi\)
0.100959 + 0.994891i \(0.467809\pi\)
\(60\) 0 0
\(61\) 5052.57 + 2917.10i 1.35785 + 0.783956i 0.989334 0.145664i \(-0.0465319\pi\)
0.368518 + 0.929620i \(0.379865\pi\)
\(62\) 2048.35i 0.532868i
\(63\) 0 0
\(64\) 512.000 0.125000
\(65\) −550.733 + 953.898i −0.130351 + 0.225775i
\(66\) 0 0
\(67\) 1101.89 + 1908.54i 0.245465 + 0.425158i 0.962262 0.272124i \(-0.0877259\pi\)
−0.716797 + 0.697282i \(0.754393\pi\)
\(68\) 2922.12 + 1687.08i 0.631946 + 0.364854i
\(69\) 0 0
\(70\) 297.859 + 745.199i 0.0607876 + 0.152081i
\(71\) −3408.24 −0.676103 −0.338052 0.941128i \(-0.609768\pi\)
−0.338052 + 0.941128i \(0.609768\pi\)
\(72\) 0 0
\(73\) −8136.88 + 4697.83i −1.52690 + 0.881559i −0.527416 + 0.849607i \(0.676839\pi\)
−0.999489 + 0.0319515i \(0.989828\pi\)
\(74\) 764.630 + 1324.38i 0.139633 + 0.241851i
\(75\) 0 0
\(76\) 3457.98i 0.598681i
\(77\) −456.339 + 182.401i −0.0769673 + 0.0307642i
\(78\) 0 0
\(79\) −1176.12 + 2037.09i −0.188450 + 0.326405i −0.944734 0.327839i \(-0.893680\pi\)
0.756284 + 0.654244i \(0.227013\pi\)
\(80\) 320.942 185.296i 0.0501472 0.0289525i
\(81\) 0 0
\(82\) 2190.53 + 1264.70i 0.325778 + 0.188088i
\(83\) 3750.16i 0.544370i 0.962245 + 0.272185i \(0.0877462\pi\)
−0.962245 + 0.272185i \(0.912254\pi\)
\(84\) 0 0
\(85\) 2442.26 0.338030
\(86\) 1763.27 3054.07i 0.238409 0.412936i
\(87\) 0 0
\(88\) 113.470 + 196.536i 0.0146527 + 0.0253791i
\(89\) 5511.35 + 3181.98i 0.695790 + 0.401714i 0.805777 0.592219i \(-0.201748\pi\)
−0.109988 + 0.993933i \(0.535081\pi\)
\(90\) 0 0
\(91\) 9225.16 + 1331.54i 1.11402 + 0.160794i
\(92\) −7374.58 −0.871288
\(93\) 0 0
\(94\) 4288.39 2475.90i 0.485331 0.280206i
\(95\) 1251.47 + 2167.60i 0.138667 + 0.240177i
\(96\) 0 0
\(97\) 6370.47i 0.677062i −0.940955 0.338531i \(-0.890070\pi\)
0.940955 0.338531i \(-0.109930\pi\)
\(98\) 4920.05 4680.97i 0.512292 0.487398i
\(99\) 0 0
\(100\) −2365.88 + 4097.83i −0.236588 + 0.409783i
\(101\) −7890.21 + 4555.42i −0.773474 + 0.446566i −0.834113 0.551594i \(-0.814020\pi\)
0.0606384 + 0.998160i \(0.480686\pi\)
\(102\) 0 0
\(103\) −13953.3 8055.91i −1.31523 0.759347i −0.332271 0.943184i \(-0.607815\pi\)
−0.982957 + 0.183837i \(0.941148\pi\)
\(104\) 4304.18i 0.397946i
\(105\) 0 0
\(106\) −2297.26 −0.204455
\(107\) 10275.7 17798.0i 0.897518 1.55455i 0.0668618 0.997762i \(-0.478701\pi\)
0.830657 0.556785i \(-0.187965\pi\)
\(108\) 0 0
\(109\) 7128.87 + 12347.6i 0.600023 + 1.03927i 0.992817 + 0.119643i \(0.0381751\pi\)
−0.392794 + 0.919626i \(0.628492\pi\)
\(110\) 142.255 + 82.1311i 0.0117566 + 0.00678769i
\(111\) 0 0
\(112\) −2464.00 1939.90i −0.196429 0.154647i
\(113\) 10304.7 0.807010 0.403505 0.914978i \(-0.367792\pi\)
0.403505 + 0.914978i \(0.367792\pi\)
\(114\) 0 0
\(115\) −4622.68 + 2668.91i −0.349541 + 0.201808i
\(116\) 3511.53 + 6082.15i 0.260964 + 0.452003i
\(117\) 0 0
\(118\) 8073.76i 0.579845i
\(119\) −7670.55 19190.6i −0.541668 1.35517i
\(120\) 0 0
\(121\) 7270.21 12592.4i 0.496565 0.860075i
\(122\) −14290.8 + 8250.81i −0.960147 + 0.554341i
\(123\) 0 0
\(124\) −5017.40 2896.80i −0.326314 0.188397i
\(125\) 7043.97i 0.450814i
\(126\) 0 0
\(127\) −2116.70 −0.131236 −0.0656179 0.997845i \(-0.520902\pi\)
−0.0656179 + 0.997845i \(0.520902\pi\)
\(128\) −724.077 + 1254.14i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −1557.71 2698.03i −0.0921721 0.159647i
\(131\) 5245.64 + 3028.57i 0.305672 + 0.176480i 0.644988 0.764192i \(-0.276862\pi\)
−0.339316 + 0.940672i \(0.610196\pi\)
\(132\) 0 0
\(133\) 13101.8 16641.5i 0.740676 0.940785i
\(134\) −6233.25 −0.347140
\(135\) 0 0
\(136\) −8264.99 + 4771.80i −0.446853 + 0.257991i
\(137\) 1430.13 + 2477.05i 0.0761962 + 0.131976i 0.901606 0.432559i \(-0.142389\pi\)
−0.825410 + 0.564534i \(0.809056\pi\)
\(138\) 0 0
\(139\) 16966.2i 0.878124i −0.898457 0.439062i \(-0.855311\pi\)
0.898457 0.439062i \(-0.144689\pi\)
\(140\) −2246.59 324.268i −0.114622 0.0165443i
\(141\) 0 0
\(142\) 4819.98 8348.44i 0.239039 0.414027i
\(143\) 1652.20 953.898i 0.0807961 0.0466477i
\(144\) 0 0
\(145\) 4402.33 + 2541.69i 0.209386 + 0.120889i
\(146\) 26574.9i 1.24671i
\(147\) 0 0
\(148\) −4325.40 −0.197471
\(149\) −7455.05 + 12912.5i −0.335798 + 0.581619i −0.983638 0.180157i \(-0.942339\pi\)
0.647840 + 0.761777i \(0.275673\pi\)
\(150\) 0 0
\(151\) 1080.72 + 1871.87i 0.0473981 + 0.0820959i 0.888751 0.458390i \(-0.151574\pi\)
−0.841353 + 0.540486i \(0.818240\pi\)
\(152\) −8470.29 4890.33i −0.366616 0.211666i
\(153\) 0 0
\(154\) 198.573 1375.75i 0.00837294 0.0580095i
\(155\) −4193.48 −0.174546
\(156\) 0 0
\(157\) −35986.6 + 20776.9i −1.45996 + 0.842909i −0.999009 0.0445152i \(-0.985826\pi\)
−0.460953 + 0.887425i \(0.652492\pi\)
\(158\) −3326.56 5761.77i −0.133254 0.230803i
\(159\) 0 0
\(160\) 1048.19i 0.0409450i
\(161\) 35490.2 + 27941.3i 1.36917 + 1.07794i
\(162\) 0 0
\(163\) 5882.56 10188.9i 0.221407 0.383488i −0.733828 0.679335i \(-0.762268\pi\)
0.955235 + 0.295847i \(0.0956018\pi\)
\(164\) −6195.75 + 3577.12i −0.230360 + 0.132998i
\(165\) 0 0
\(166\) −9185.98 5303.53i −0.333357 0.192464i
\(167\) 13600.3i 0.487660i −0.969818 0.243830i \(-0.921596\pi\)
0.969818 0.243830i \(-0.0784038\pi\)
\(168\) 0 0
\(169\) −7622.52 −0.266886
\(170\) −3453.88 + 5982.30i −0.119512 + 0.207000i
\(171\) 0 0
\(172\) 4987.28 + 8638.23i 0.168580 + 0.291990i
\(173\) −39103.8 22576.6i −1.30655 0.754337i −0.325032 0.945703i \(-0.605375\pi\)
−0.981519 + 0.191366i \(0.938708\pi\)
\(174\) 0 0
\(175\) 26911.9 10756.8i 0.878756 0.351242i
\(176\) −641.884 −0.0207220
\(177\) 0 0
\(178\) −15588.4 + 9000.00i −0.491998 + 0.284055i
\(179\) 9926.19 + 17192.7i 0.309797 + 0.536583i 0.978318 0.207110i \(-0.0664057\pi\)
−0.668521 + 0.743693i \(0.733072\pi\)
\(180\) 0 0
\(181\) 21398.5i 0.653170i 0.945168 + 0.326585i \(0.105898\pi\)
−0.945168 + 0.326585i \(0.894102\pi\)
\(182\) −16307.9 + 20713.9i −0.492330 + 0.625343i
\(183\) 0 0
\(184\) 10429.2 18064.0i 0.308047 0.533553i
\(185\) −2711.33 + 1565.39i −0.0792209 + 0.0457382i
\(186\) 0 0
\(187\) −3663.40 2115.06i −0.104761 0.0604840i
\(188\) 14005.8i 0.396271i
\(189\) 0 0
\(190\) −7079.36 −0.196104
\(191\) 5812.94 10068.3i 0.159341 0.275988i −0.775290 0.631606i \(-0.782396\pi\)
0.934631 + 0.355618i \(0.115730\pi\)
\(192\) 0 0
\(193\) 26273.5 + 45507.0i 0.705347 + 1.22170i 0.966566 + 0.256417i \(0.0825420\pi\)
−0.261220 + 0.965279i \(0.584125\pi\)
\(194\) 15604.4 + 9009.21i 0.414614 + 0.239377i
\(195\) 0 0
\(196\) 4508.00 + 18671.5i 0.117347 + 0.486035i
\(197\) 54811.7 1.41235 0.706173 0.708039i \(-0.250420\pi\)
0.706173 + 0.708039i \(0.250420\pi\)
\(198\) 0 0
\(199\) 5172.66 2986.44i 0.130619 0.0754131i −0.433266 0.901266i \(-0.642639\pi\)
0.563886 + 0.825853i \(0.309306\pi\)
\(200\) −6691.72 11590.4i −0.167293 0.289760i
\(201\) 0 0
\(202\) 25769.3i 0.631539i
\(203\) 6145.18 42575.0i 0.149122 1.03315i
\(204\) 0 0
\(205\) −2589.16 + 4484.56i −0.0616101 + 0.106712i
\(206\) 39465.8 22785.6i 0.930007 0.536940i
\(207\) 0 0
\(208\) 10543.0 + 6087.03i 0.243691 + 0.140695i
\(209\) 4335.20i 0.0992469i
\(210\) 0 0
\(211\) 3042.82 0.0683457 0.0341729 0.999416i \(-0.489120\pi\)
0.0341729 + 0.999416i \(0.489120\pi\)
\(212\) 3248.81 5627.10i 0.0722857 0.125203i
\(213\) 0 0
\(214\) 29064.0 + 50340.4i 0.634641 + 1.09923i
\(215\) 6252.46 + 3609.86i 0.135261 + 0.0780932i
\(216\) 0 0
\(217\) 13170.7 + 32951.1i 0.279698 + 0.699762i
\(218\) −40327.0 −0.848560
\(219\) 0 0
\(220\) −402.358 + 232.302i −0.00831319 + 0.00479962i
\(221\) 40114.6 + 69480.5i 0.821330 + 1.42259i
\(222\) 0 0
\(223\) 42104.7i 0.846683i −0.905970 0.423341i \(-0.860857\pi\)
0.905970 0.423341i \(-0.139143\pi\)
\(224\) 8236.38 3292.11i 0.164150 0.0656113i
\(225\) 0 0
\(226\) −14573.1 + 25241.3i −0.285321 + 0.494190i
\(227\) −79838.4 + 46094.7i −1.54939 + 0.894540i −0.551200 + 0.834373i \(0.685830\pi\)
−0.998188 + 0.0601663i \(0.980837\pi\)
\(228\) 0 0
\(229\) −20752.6 11981.5i −0.395733 0.228477i 0.288908 0.957357i \(-0.406708\pi\)
−0.684641 + 0.728880i \(0.740041\pi\)
\(230\) 15097.6i 0.285399i
\(231\) 0 0
\(232\) −19864.2 −0.369059
\(233\) −17674.1 + 30612.4i −0.325555 + 0.563878i −0.981625 0.190822i \(-0.938885\pi\)
0.656069 + 0.754701i \(0.272218\pi\)
\(234\) 0 0
\(235\) 5068.79 + 8779.41i 0.0917844 + 0.158975i
\(236\) 19776.6 + 11418.0i 0.355081 + 0.205006i
\(237\) 0 0
\(238\) 57854.9 + 8350.64i 1.02138 + 0.147423i
\(239\) −14393.5 −0.251983 −0.125992 0.992031i \(-0.540211\pi\)
−0.125992 + 0.992031i \(0.540211\pi\)
\(240\) 0 0
\(241\) 6495.14 3749.97i 0.111829 0.0645645i −0.443042 0.896501i \(-0.646101\pi\)
0.554871 + 0.831936i \(0.312768\pi\)
\(242\) 20563.2 + 35616.6i 0.351124 + 0.608165i
\(243\) 0 0
\(244\) 46673.6i 0.783956i
\(245\) 9583.13 + 10072.6i 0.159652 + 0.167806i
\(246\) 0 0
\(247\) −41111.0 + 71206.4i −0.673852 + 1.16715i
\(248\) 14191.4 8193.38i 0.230739 0.133217i
\(249\) 0 0
\(250\) −17254.1 9961.68i −0.276066 0.159387i
\(251\) 45414.9i 0.720860i −0.932786 0.360430i \(-0.882630\pi\)
0.932786 0.360430i \(-0.117370\pi\)
\(252\) 0 0
\(253\) 9245.36 0.144438
\(254\) 2993.47 5184.84i 0.0463988 0.0803652i
\(255\) 0 0
\(256\) −2048.00 3547.24i −0.0312500 0.0541266i
\(257\) −44797.7 25864.0i −0.678250 0.391588i 0.120946 0.992659i \(-0.461407\pi\)
−0.799195 + 0.601072i \(0.794741\pi\)
\(258\) 0 0
\(259\) 20816.0 + 16388.3i 0.310311 + 0.244307i
\(260\) 8811.73 0.130351
\(261\) 0 0
\(262\) −14836.9 + 8566.10i −0.216143 + 0.124790i
\(263\) −44917.0 77798.4i −0.649380 1.12476i −0.983271 0.182147i \(-0.941695\pi\)
0.333891 0.942612i \(-0.391638\pi\)
\(264\) 0 0
\(265\) 4703.06i 0.0669713i
\(266\) 22234.5 + 55627.5i 0.314242 + 0.786187i
\(267\) 0 0
\(268\) 8815.15 15268.3i 0.122733 0.212579i
\(269\) 20580.0 11881.9i 0.284408 0.164203i −0.351009 0.936372i \(-0.614162\pi\)
0.635417 + 0.772169i \(0.280828\pi\)
\(270\) 0 0
\(271\) −95971.7 55409.3i −1.30679 0.754473i −0.325228 0.945636i \(-0.605441\pi\)
−0.981558 + 0.191162i \(0.938774\pi\)
\(272\) 26993.4i 0.364854i
\(273\) 0 0
\(274\) −8090.01 −0.107758
\(275\) 2966.06 5137.36i 0.0392206 0.0679320i
\(276\) 0 0
\(277\) 3561.19 + 6168.17i 0.0464126 + 0.0803890i 0.888298 0.459267i \(-0.151888\pi\)
−0.841886 + 0.539656i \(0.818554\pi\)
\(278\) 41558.6 + 23993.9i 0.537739 + 0.310464i
\(279\) 0 0
\(280\) 3971.45 5044.42i 0.0506563 0.0643422i
\(281\) −90209.2 −1.14245 −0.571226 0.820792i \(-0.693532\pi\)
−0.571226 + 0.820792i \(0.693532\pi\)
\(282\) 0 0
\(283\) −62743.0 + 36224.7i −0.783415 + 0.452305i −0.837639 0.546224i \(-0.816065\pi\)
0.0542240 + 0.998529i \(0.482732\pi\)
\(284\) 13632.9 + 23613.0i 0.169026 + 0.292761i
\(285\) 0 0
\(286\) 5396.06i 0.0659698i
\(287\) 43370.3 + 6259.96i 0.526536 + 0.0759990i
\(288\) 0 0
\(289\) 47184.9 81726.7i 0.564947 0.978517i
\(290\) −12451.7 + 7188.98i −0.148058 + 0.0854813i
\(291\) 0 0
\(292\) 65095.0 + 37582.6i 0.763452 + 0.440779i
\(293\) 89167.8i 1.03866i 0.854574 + 0.519329i \(0.173818\pi\)
−0.854574 + 0.519329i \(0.826182\pi\)
\(294\) 0 0
\(295\) 16529.0 0.189934
\(296\) 6117.04 10595.0i 0.0698165 0.120926i
\(297\) 0 0
\(298\) −21086.1 36522.2i −0.237445 0.411267i
\(299\) −151856. 87674.4i −1.69860 0.980687i
\(300\) 0 0
\(301\) 8727.75 60467.6i 0.0963317 0.667405i
\(302\) −6113.49 −0.0670310
\(303\) 0 0
\(304\) 23957.6 13831.9i 0.259237 0.149670i
\(305\) −16891.5 29256.9i −0.181580 0.314506i
\(306\) 0 0
\(307\) 113110.i 1.20012i −0.799954 0.600061i \(-0.795143\pi\)
0.799954 0.600061i \(-0.204857\pi\)
\(308\) 3089.07 + 2432.01i 0.0325631 + 0.0256368i
\(309\) 0 0
\(310\) 5930.47 10271.9i 0.0617115 0.106887i
\(311\) 56589.7 32672.1i 0.585082 0.337797i −0.178068 0.984018i \(-0.556985\pi\)
0.763151 + 0.646221i \(0.223651\pi\)
\(312\) 0 0
\(313\) 1696.42 + 979.430i 0.0173159 + 0.00999734i 0.508633 0.860983i \(-0.330151\pi\)
−0.491317 + 0.870981i \(0.663484\pi\)
\(314\) 117532.i 1.19205i
\(315\) 0 0
\(316\) 18817.8 0.188450
\(317\) −43075.6 + 74609.1i −0.428660 + 0.742461i −0.996754 0.0805027i \(-0.974347\pi\)
0.568095 + 0.822963i \(0.307681\pi\)
\(318\) 0 0
\(319\) −4402.33 7625.06i −0.0432615 0.0749311i
\(320\) −2567.54 1482.37i −0.0250736 0.0144762i
\(321\) 0 0
\(322\) −118633. + 47417.9i −1.14417 + 0.457331i
\(323\) 182310. 1.74745
\(324\) 0 0
\(325\) −97435.9 + 56254.6i −0.922470 + 0.532588i
\(326\) 16638.4 + 28818.5i 0.156558 + 0.271167i
\(327\) 0 0
\(328\) 20235.2i 0.188088i
\(329\) 53066.1 67403.0i 0.490259 0.622712i
\(330\) 0 0
\(331\) 45311.1 78481.2i 0.413570 0.716324i −0.581707 0.813398i \(-0.697615\pi\)
0.995277 + 0.0970742i \(0.0309484\pi\)
\(332\) 25981.9 15000.6i 0.235719 0.136092i
\(333\) 0 0
\(334\) 33313.9 + 19233.8i 0.298629 + 0.172414i
\(335\) 12761.0i 0.113709i
\(336\) 0 0
\(337\) −26197.5 −0.230675 −0.115338 0.993326i \(-0.536795\pi\)
−0.115338 + 0.993326i \(0.536795\pi\)
\(338\) 10779.9 18671.3i 0.0943583 0.163433i
\(339\) 0 0
\(340\) −9769.06 16920.5i −0.0845074 0.146371i
\(341\) 6290.22 + 3631.66i 0.0540950 + 0.0312317i
\(342\) 0 0
\(343\) 49049.0 106937.i 0.416910 0.908948i
\(344\) −28212.3 −0.238409
\(345\) 0 0
\(346\) 110602. 63856.2i 0.923871 0.533397i
\(347\) −80330.4 139136.i −0.667146 1.15553i −0.978699 0.205302i \(-0.934182\pi\)
0.311553 0.950229i \(-0.399151\pi\)
\(348\) 0 0
\(349\) 18120.2i 0.148769i 0.997230 + 0.0743845i \(0.0236992\pi\)
−0.997230 + 0.0743845i \(0.976301\pi\)
\(350\) −11710.5 + 81132.8i −0.0955960 + 0.662309i
\(351\) 0 0
\(352\) 907.761 1572.29i 0.00732633 0.0126896i
\(353\) 11457.1 6614.74i 0.0919441 0.0530839i −0.453323 0.891346i \(-0.649762\pi\)
0.545267 + 0.838262i \(0.316428\pi\)
\(354\) 0 0
\(355\) 17091.4 + 9867.70i 0.135619 + 0.0782995i
\(356\) 50911.7i 0.401714i
\(357\) 0 0
\(358\) −56151.0 −0.438119
\(359\) −53867.4 + 93301.1i −0.417962 + 0.723932i −0.995734 0.0922663i \(-0.970589\pi\)
0.577772 + 0.816198i \(0.303922\pi\)
\(360\) 0 0
\(361\) 28258.6 + 48945.4i 0.216839 + 0.375575i
\(362\) −52415.4 30262.0i −0.399983 0.230930i
\(363\) 0 0
\(364\) −27675.5 69240.0i −0.208878 0.522582i
\(365\) 54405.5 0.408373
\(366\) 0 0
\(367\) 60991.7 35213.6i 0.452834 0.261444i −0.256192 0.966626i \(-0.582468\pi\)
0.709026 + 0.705182i \(0.249135\pi\)
\(368\) 29498.3 + 51092.6i 0.217822 + 0.377279i
\(369\) 0 0
\(370\) 8855.18i 0.0646836i
\(371\) −36955.2 + 14771.1i −0.268490 + 0.107316i
\(372\) 0 0
\(373\) −95526.7 + 165457.i −0.686605 + 1.18924i 0.286324 + 0.958133i \(0.407567\pi\)
−0.972929 + 0.231102i \(0.925767\pi\)
\(374\) 10361.7 5982.30i 0.0740774 0.0427686i
\(375\) 0 0
\(376\) −34307.1 19807.2i −0.242666 0.140103i
\(377\) 166990.i 1.17492i
\(378\) 0 0
\(379\) 74979.5 0.521992 0.260996 0.965340i \(-0.415949\pi\)
0.260996 + 0.965340i \(0.415949\pi\)
\(380\) 10011.7 17340.8i 0.0693333 0.120089i
\(381\) 0 0
\(382\) 16441.5 + 28477.5i 0.112671 + 0.195153i
\(383\) 111403. + 64318.4i 0.759449 + 0.438468i 0.829098 0.559104i \(-0.188855\pi\)
−0.0696492 + 0.997572i \(0.522188\pi\)
\(384\) 0 0
\(385\) 2816.51 + 406.528i 0.0190016 + 0.00274264i
\(386\) −148625. −0.997511
\(387\) 0 0
\(388\) −44135.9 + 25481.9i −0.293176 + 0.169265i
\(389\) 13154.0 + 22783.4i 0.0869278 + 0.150563i 0.906211 0.422826i \(-0.138962\pi\)
−0.819283 + 0.573389i \(0.805628\pi\)
\(390\) 0 0
\(391\) 388798.i 2.54314i
\(392\) −52110.9 15363.2i −0.339123 0.0999792i
\(393\) 0 0
\(394\) −77515.5 + 134261.i −0.499340 + 0.864882i
\(395\) 11795.8 6810.30i 0.0756018 0.0436487i
\(396\) 0 0
\(397\) −76233.0 44013.1i −0.483684 0.279255i 0.238266 0.971200i \(-0.423421\pi\)
−0.721951 + 0.691945i \(0.756754\pi\)
\(398\) 16893.8i 0.106650i
\(399\) 0 0
\(400\) 37854.1 0.236588
\(401\) 132300. 229150.i 0.822755 1.42505i −0.0808687 0.996725i \(-0.525769\pi\)
0.903623 0.428328i \(-0.140897\pi\)
\(402\) 0 0
\(403\) −68878.5 119301.i −0.424105 0.734572i
\(404\) 63121.7 + 36443.3i 0.386737 + 0.223283i
\(405\) 0 0
\(406\) 95596.5 + 75262.7i 0.579949 + 0.456592i
\(407\) 5422.67 0.0327359
\(408\) 0 0
\(409\) 121392. 70085.4i 0.725674 0.418968i −0.0911633 0.995836i \(-0.529059\pi\)
0.816838 + 0.576868i \(0.195725\pi\)
\(410\) −7323.26 12684.3i −0.0435649 0.0754566i
\(411\) 0 0
\(412\) 128895.i 0.759347i
\(413\) −51913.6 129880.i −0.304355 0.761451i
\(414\) 0 0
\(415\) 10857.7 18806.0i 0.0630434 0.109194i
\(416\) −29820.2 + 17216.7i −0.172316 + 0.0994864i
\(417\) 0 0
\(418\) 10619.0 + 6130.90i 0.0607761 + 0.0350891i
\(419\) 319409.i 1.81936i 0.415306 + 0.909682i \(0.363675\pi\)
−0.415306 + 0.909682i \(0.636325\pi\)
\(420\) 0 0
\(421\) 315726. 1.78134 0.890670 0.454651i \(-0.150236\pi\)
0.890670 + 0.454651i \(0.150236\pi\)
\(422\) −4303.20 + 7453.36i −0.0241639 + 0.0418530i
\(423\) 0 0
\(424\) 9189.02 + 15915.9i 0.0511137 + 0.0885316i
\(425\) 216043. + 124733.i 1.19609 + 0.690561i
\(426\) 0 0
\(427\) −176840. + 224617.i −0.969895 + 1.23193i
\(428\) −164411. −0.897518
\(429\) 0 0
\(430\) −17684.6 + 10210.2i −0.0956442 + 0.0552202i
\(431\) 84265.4 + 145952.i 0.453623 + 0.785698i 0.998608 0.0527481i \(-0.0167980\pi\)
−0.544985 + 0.838446i \(0.683465\pi\)
\(432\) 0 0
\(433\) 17104.3i 0.0912284i −0.998959 0.0456142i \(-0.985476\pi\)
0.998959 0.0456142i \(-0.0145245\pi\)
\(434\) −99339.5 14338.4i −0.527403 0.0761241i
\(435\) 0 0
\(436\) 57030.9 98780.5i 0.300011 0.519635i
\(437\) −345073. + 199228.i −1.80696 + 1.04325i
\(438\) 0 0
\(439\) 192241. + 110991.i 0.997511 + 0.575913i 0.907511 0.420029i \(-0.137980\pi\)
0.0899998 + 0.995942i \(0.471313\pi\)
\(440\) 1314.10i 0.00678769i
\(441\) 0 0
\(442\) −226922. −1.16154
\(443\) 17115.4 29644.7i 0.0872124 0.151056i −0.819119 0.573623i \(-0.805537\pi\)
0.906332 + 0.422567i \(0.138871\pi\)
\(444\) 0 0
\(445\) −18425.2 31913.5i −0.0930450 0.161159i
\(446\) 103135. + 59545.0i 0.518485 + 0.299348i
\(447\) 0 0
\(448\) −3584.00 + 24830.7i −0.0178571 + 0.123718i
\(449\) 187206. 0.928598 0.464299 0.885679i \(-0.346306\pi\)
0.464299 + 0.885679i \(0.346306\pi\)
\(450\) 0 0
\(451\) 7767.49 4484.56i 0.0381881 0.0220479i
\(452\) −41218.8 71393.1i −0.201752 0.349445i
\(453\) 0 0
\(454\) 260751.i 1.26507i
\(455\) −42406.5 33386.4i −0.204837 0.161268i
\(456\) 0 0
\(457\) −73922.5 + 128038.i −0.353952 + 0.613063i −0.986938 0.161100i \(-0.948496\pi\)
0.632986 + 0.774163i \(0.281829\pi\)
\(458\) 58697.3 33888.9i 0.279826 0.161557i
\(459\) 0 0
\(460\) 36981.4 + 21351.2i 0.174771 + 0.100904i
\(461\) 73979.5i 0.348105i −0.984736 0.174052i \(-0.944314\pi\)
0.984736 0.174052i \(-0.0556862\pi\)
\(462\) 0 0
\(463\) −66987.3 −0.312486 −0.156243 0.987719i \(-0.549938\pi\)
−0.156243 + 0.987719i \(0.549938\pi\)
\(464\) 28092.2 48657.2i 0.130482 0.226001i
\(465\) 0 0
\(466\) −49989.8 86584.9i −0.230202 0.398722i
\(467\) −200947. 116017.i −0.921399 0.531970i −0.0373181 0.999303i \(-0.511881\pi\)
−0.884081 + 0.467333i \(0.845215\pi\)
\(468\) 0 0
\(469\) −100272. + 40079.2i −0.455864 + 0.182211i
\(470\) −28673.4 −0.129803
\(471\) 0 0
\(472\) −55936.7 + 32295.0i −0.251080 + 0.144961i
\(473\) −6252.46 10829.6i −0.0279466 0.0484049i
\(474\) 0 0
\(475\) 255662.i 1.13313i
\(476\) −102274. + 129906.i −0.451390 + 0.573342i
\(477\) 0 0
\(478\) 20355.5 35256.8i 0.0890895 0.154308i
\(479\) 190568. 110024.i 0.830575 0.479532i −0.0234748 0.999724i \(-0.507473\pi\)
0.854049 + 0.520192i \(0.174140\pi\)
\(480\) 0 0
\(481\) −89068.2 51423.5i −0.384975 0.222265i
\(482\) 21213.0i 0.0913079i
\(483\) 0 0
\(484\) −116323. −0.496565
\(485\) −18444.1 + 31946.1i −0.0784105 + 0.135811i
\(486\) 0 0
\(487\) −69828.1 120946.i −0.294423 0.509956i 0.680427 0.732816i \(-0.261794\pi\)
−0.974851 + 0.222859i \(0.928461\pi\)
\(488\) 114327. + 66006.5i 0.480073 + 0.277170i
\(489\) 0 0
\(490\) −38225.2 + 9229.00i −0.159206 + 0.0384382i
\(491\) 284872. 1.18164 0.590821 0.806802i \(-0.298804\pi\)
0.590821 + 0.806802i \(0.298804\pi\)
\(492\) 0 0
\(493\) 320659. 185133.i 1.31932 0.761709i
\(494\) −116280. 201402.i −0.476485 0.825297i
\(495\) 0 0
\(496\) 46348.8i 0.188397i
\(497\) 23857.7 165291.i 0.0965862 0.669169i
\(498\) 0 0
\(499\) 156787. 271562.i 0.629663 1.09061i −0.357957 0.933738i \(-0.616526\pi\)
0.987619 0.156869i \(-0.0501402\pi\)
\(500\) 48802.0 28175.9i 0.195208 0.112703i
\(501\) 0 0
\(502\) 111243. + 64226.4i 0.441435 + 0.254862i
\(503\) 192865.i 0.762285i −0.924516 0.381143i \(-0.875531\pi\)
0.924516 0.381143i \(-0.124469\pi\)
\(504\) 0 0
\(505\) 52756.2 0.206867
\(506\) −13074.9 + 22646.4i −0.0510667 + 0.0884501i
\(507\) 0 0
\(508\) 8466.81 + 14664.9i 0.0328089 + 0.0568267i
\(509\) −150044. 86628.1i −0.579141 0.334367i 0.181651 0.983363i \(-0.441856\pi\)
−0.760792 + 0.648996i \(0.775189\pi\)
\(510\) 0 0
\(511\) −170874. 427502.i −0.654388 1.63718i
\(512\) 11585.2 0.0441942
\(513\) 0 0
\(514\) 126707. 73154.4i 0.479595 0.276894i
\(515\) 46647.8 + 80796.3i 0.175880 + 0.304633i
\(516\) 0 0
\(517\) 17558.8i 0.0656922i
\(518\) −69581.4 + 27812.0i −0.259318 + 0.103651i
\(519\) 0 0
\(520\) −12461.7 + 21584.3i −0.0460861 + 0.0798234i
\(521\) 145761. 84155.4i 0.536991 0.310032i −0.206868 0.978369i \(-0.566327\pi\)
0.743859 + 0.668337i \(0.232994\pi\)
\(522\) 0 0
\(523\) 392069. + 226361.i 1.43337 + 0.827558i 0.997376 0.0723902i \(-0.0230627\pi\)
0.435996 + 0.899948i \(0.356396\pi\)
\(524\) 48457.2i 0.176480i
\(525\) 0 0
\(526\) 254089. 0.918362
\(527\) −152723. + 264524.i −0.549900 + 0.952455i
\(528\) 0 0
\(529\) −284958. 493562.i −1.01828 1.76372i
\(530\) 11520.1 + 6651.13i 0.0410114 + 0.0236779i
\(531\) 0 0
\(532\) −167703. 24205.9i −0.592541 0.0855259i
\(533\) −170110. −0.598790
\(534\) 0 0
\(535\) −103059. + 59501.4i −0.360064 + 0.207883i
\(536\) 24933.0 + 43185.2i 0.0867851 + 0.150316i
\(537\) 0 0
\(538\) 67214.1i 0.232218i
\(539\) −5651.59 23408.1i −0.0194533 0.0805728i
\(540\) 0 0
\(541\) 7236.20 12533.5i 0.0247238 0.0428230i −0.853399 0.521259i \(-0.825463\pi\)
0.878123 + 0.478436i \(0.158796\pi\)
\(542\) 271449. 156721.i 0.924038 0.533493i
\(543\) 0 0
\(544\) 66119.9 + 38174.4i 0.223426 + 0.128995i
\(545\) 82559.4i 0.277954i
\(546\) 0 0
\(547\) −370524. −1.23835 −0.619173 0.785255i \(-0.712532\pi\)
−0.619173 + 0.785255i \(0.712532\pi\)
\(548\) 11441.0 19816.4i 0.0380981 0.0659878i
\(549\) 0 0
\(550\) 8389.27 + 14530.6i 0.0277331 + 0.0480352i
\(551\) 328624. + 189731.i 1.08242 + 0.624937i
\(552\) 0 0
\(553\) −90560.9 71298.2i −0.296135 0.233146i
\(554\) −20145.1 −0.0656373
\(555\) 0 0
\(556\) −117545. + 67864.9i −0.380239 + 0.219531i
\(557\) −218641. 378697.i −0.704727 1.22062i −0.966790 0.255572i \(-0.917736\pi\)
0.262064 0.965051i \(-0.415597\pi\)
\(558\) 0 0
\(559\) 237170.i 0.758990i
\(560\) 6739.78 + 16861.9i 0.0214917 + 0.0537689i
\(561\) 0 0
\(562\) 127575. 220967.i 0.403918 0.699607i
\(563\) 3518.41 2031.36i 0.0111002 0.00640869i −0.494440 0.869212i \(-0.664627\pi\)
0.505540 + 0.862803i \(0.331293\pi\)
\(564\) 0 0
\(565\) −51675.2 29834.7i −0.161877 0.0934597i
\(566\) 204918.i 0.639656i
\(567\) 0 0
\(568\) −77119.6 −0.239039
\(569\) 216682. 375304.i 0.669266 1.15920i −0.308844 0.951113i \(-0.599942\pi\)
0.978110 0.208089i \(-0.0667245\pi\)
\(570\) 0 0
\(571\) −23818.3 41254.5i −0.0730530 0.126532i 0.827185 0.561930i \(-0.189941\pi\)
−0.900238 + 0.435398i \(0.856608\pi\)
\(572\) −13217.6 7631.18i −0.0403981 0.0233238i
\(573\) 0 0
\(574\) −76668.5 + 97382.1i −0.232698 + 0.295567i
\(575\) −545230. −1.64909
\(576\) 0 0
\(577\) 20898.1 12065.5i 0.0627703 0.0362404i −0.468286 0.883577i \(-0.655128\pi\)
0.531057 + 0.847336i \(0.321795\pi\)
\(578\) 133459. + 231158.i 0.399478 + 0.691916i
\(579\) 0 0
\(580\) 40667.0i 0.120889i
\(581\) −181873. 26251.1i −0.538786 0.0777671i
\(582\) 0 0
\(583\) −4072.97 + 7054.59i −0.0119832 + 0.0207556i
\(584\) −184117. + 106300.i −0.539842 + 0.311678i
\(585\) 0 0
\(586\) −218416. 126102.i −0.636046 0.367221i
\(587\) 680260.i 1.97423i 0.160003 + 0.987117i \(0.448850\pi\)
−0.160003 + 0.987117i \(0.551150\pi\)
\(588\) 0 0
\(589\) −313034. −0.902320
\(590\) −23375.6 + 40487.6i −0.0671518 + 0.116310i
\(591\) 0 0
\(592\) 17301.6 + 29967.3i 0.0493677 + 0.0855074i
\(593\) −305380. 176311.i −0.868422 0.501383i −0.00159823 0.999999i \(-0.500509\pi\)
−0.866823 + 0.498615i \(0.833842\pi\)
\(594\) 0 0
\(595\) −17095.9 + 118444.i −0.0482900 + 0.334563i
\(596\) 119281. 0.335798
\(597\) 0 0
\(598\) 429515. 247981.i 1.20109 0.693450i
\(599\) −191298. 331338.i −0.533159 0.923458i −0.999250 0.0387216i \(-0.987671\pi\)
0.466091 0.884737i \(-0.345662\pi\)
\(600\) 0 0
\(601\) 8474.87i 0.0234630i −0.999931 0.0117315i \(-0.996266\pi\)
0.999931 0.0117315i \(-0.00373434\pi\)
\(602\) 135772. + 106893.i 0.374642 + 0.294954i
\(603\) 0 0
\(604\) 8645.79 14974.9i 0.0236990 0.0410479i
\(605\) −72916.1 + 42098.1i −0.199211 + 0.115014i
\(606\) 0 0
\(607\) −192303. 111026.i −0.521926 0.301334i 0.215796 0.976438i \(-0.430765\pi\)
−0.737722 + 0.675104i \(0.764099\pi\)
\(608\) 78245.2i 0.211666i
\(609\) 0 0
\(610\) 95552.6 0.256793
\(611\) −166511. + 288406.i −0.446027 + 0.772542i
\(612\) 0 0
\(613\) −6570.21 11379.9i −0.0174847 0.0302844i 0.857151 0.515066i \(-0.172233\pi\)
−0.874635 + 0.484781i \(0.838899\pi\)
\(614\) 277063. + 159962.i 0.734922 + 0.424307i
\(615\) 0 0
\(616\) −10325.8 + 4127.26i −0.0272121 + 0.0108768i
\(617\) 235797. 0.619394 0.309697 0.950835i \(-0.399772\pi\)
0.309697 + 0.950835i \(0.399772\pi\)
\(618\) 0 0
\(619\) 535169. 308980.i 1.39672 0.806397i 0.402673 0.915344i \(-0.368081\pi\)
0.994048 + 0.108947i \(0.0347478\pi\)
\(620\) 16773.9 + 29053.3i 0.0436366 + 0.0755808i
\(621\) 0 0
\(622\) 184821.i 0.477718i
\(623\) −192897. + 245012.i −0.496993 + 0.631265i
\(624\) 0 0
\(625\) −164440. + 284819.i −0.420967 + 0.729137i
\(626\) −4798.21 + 2770.25i −0.0122442 + 0.00706919i
\(627\) 0 0
\(628\) 287893. + 166215.i 0.729981 + 0.421455i
\(629\) 228041.i 0.576384i
\(630\) 0 0
\(631\) 453628. 1.13931 0.569653 0.821885i \(-0.307077\pi\)
0.569653 + 0.821885i \(0.307077\pi\)
\(632\) −26612.5 + 46094.1i −0.0666271 + 0.115402i
\(633\) 0 0
\(634\) −121836. 211026.i −0.303108 0.524999i
\(635\) 10614.7 + 6128.38i 0.0263244 + 0.0151984i
\(636\) 0 0
\(637\) −129152. + 438076.i −0.318290 + 1.07962i
\(638\) 24903.4 0.0611810
\(639\) 0 0
\(640\) 7262.09 4192.77i 0.0177297 0.0102363i
\(641\) −72469.1 125520.i −0.176375 0.305490i 0.764261 0.644907i \(-0.223104\pi\)
−0.940636 + 0.339416i \(0.889770\pi\)
\(642\) 0 0
\(643\) 238775.i 0.577520i −0.957401 0.288760i \(-0.906757\pi\)
0.957401 0.288760i \(-0.0932430\pi\)
\(644\) 51622.1 357648.i 0.124470 0.862351i
\(645\) 0 0
\(646\) −257825. + 446566.i −0.617817 + 1.07009i
\(647\) −28818.4 + 16638.3i −0.0688432 + 0.0397466i −0.534026 0.845468i \(-0.679322\pi\)
0.465183 + 0.885214i \(0.345988\pi\)
\(648\) 0 0
\(649\) −24793.5 14314.5i −0.0588639 0.0339851i
\(650\) 318224.i 0.753193i
\(651\) 0 0
\(652\) −94121.0 −0.221407
\(653\) 38782.2 67172.7i 0.0909507 0.157531i −0.816961 0.576693i \(-0.804343\pi\)
0.907911 + 0.419162i \(0.137676\pi\)
\(654\) 0 0
\(655\) −17536.9 30374.9i −0.0408763 0.0707998i
\(656\) 49566.0 + 28617.0i 0.115180 + 0.0664991i
\(657\) 0 0
\(658\) 90056.2 + 225307.i 0.207999 + 0.520383i
\(659\) 762599. 1.75600 0.878001 0.478658i \(-0.158877\pi\)
0.878001 + 0.478658i \(0.158877\pi\)
\(660\) 0 0
\(661\) −432725. + 249834.i −0.990396 + 0.571805i −0.905393 0.424575i \(-0.860423\pi\)
−0.0850035 + 0.996381i \(0.527090\pi\)
\(662\) 128159. + 221978.i 0.292438 + 0.506518i
\(663\) 0 0
\(664\) 84856.5i 0.192464i
\(665\) −113883. + 45519.6i −0.257524 + 0.102933i
\(666\) 0 0
\(667\) −404626. + 700832.i −0.909498 + 1.57530i
\(668\) −94225.9 + 54401.3i −0.211163 + 0.121915i
\(669\) 0 0
\(670\) 31258.0 + 18046.8i 0.0696324 + 0.0402023i
\(671\) 58513.8i 0.129961i
\(672\) 0 0
\(673\) 601790. 1.32866 0.664332 0.747438i \(-0.268716\pi\)
0.664332 + 0.747438i \(0.268716\pi\)
\(674\) 37048.9 64170.6i 0.0815559 0.141259i
\(675\) 0 0
\(676\) 30490.1 + 52810.4i 0.0667214 + 0.115565i
\(677\) 140213. + 80951.9i 0.305922 + 0.176624i 0.645100 0.764098i \(-0.276816\pi\)
−0.339178 + 0.940722i \(0.610149\pi\)
\(678\) 0 0
\(679\) 308952. + 44593.3i 0.670117 + 0.0967231i
\(680\) 55262.1 0.119512
\(681\) 0 0
\(682\) −17791.4 + 10271.9i −0.0382509 + 0.0220842i
\(683\) −6717.15 11634.4i −0.0143994 0.0249404i 0.858736 0.512418i \(-0.171250\pi\)
−0.873135 + 0.487478i \(0.837917\pi\)
\(684\) 0 0
\(685\) 16562.3i 0.0352971i
\(686\) 192575. + 271377.i 0.409215 + 0.576666i
\(687\) 0 0
\(688\) 39898.3 69105.8i 0.0842902 0.145995i
\(689\) 133798. 77248.5i 0.281846 0.162724i
\(690\) 0 0
\(691\) −213194. 123088.i −0.446497 0.257785i 0.259853 0.965648i \(-0.416326\pi\)
−0.706350 + 0.707863i \(0.749659\pi\)
\(692\) 361225.i 0.754337i
\(693\) 0 0
\(694\) 454417. 0.943487
\(695\) −49121.4 + 85080.8i −0.101695 + 0.176142i
\(696\) 0 0
\(697\) 188591. + 326649.i 0.388199 + 0.672381i
\(698\) −44385.3 25625.8i −0.0911020 0.0525978i
\(699\) 0 0
\(700\) −182173. 143424.i −0.371781 0.292702i
\(701\) −750473. −1.52721 −0.763605 0.645683i \(-0.776573\pi\)
−0.763605 + 0.645683i \(0.776573\pi\)
\(702\) 0 0
\(703\) −202395. + 116853.i −0.409533 + 0.236444i
\(704\) 2567.54 + 4447.10i 0.00518049 + 0.00897288i
\(705\) 0 0
\(706\) 37418.6i 0.0750720i
\(707\) −165694. 414543.i −0.331489 0.829336i
\(708\) 0 0
\(709\) 297668. 515576.i 0.592161 1.02565i −0.401780 0.915736i \(-0.631608\pi\)
0.993941 0.109916i \(-0.0350583\pi\)
\(710\) −48341.6 + 27910.1i −0.0958969 + 0.0553661i
\(711\) 0 0
\(712\) 124708. + 72000.0i 0.245999 + 0.142027i
\(713\) 667584.i 1.31319i
\(714\) 0 0
\(715\) −11047.1 −0.0216091
\(716\) 79409.5 137541.i 0.154898 0.268292i
\(717\) 0 0
\(718\) −152360. 263895.i −0.295544 0.511897i
\(719\) 23147.3 + 13364.1i 0.0447757 + 0.0258513i 0.522221 0.852810i \(-0.325104\pi\)
−0.477445 + 0.878662i \(0.658437\pi\)
\(720\) 0 0
\(721\) 488364. 620305.i 0.939449 1.19326i
\(722\) −159855. −0.306656
\(723\) 0 0
\(724\) 148253. 85594.0i 0.282831 0.163292i
\(725\) 259621. + 449676.i 0.493927 + 0.855507i
\(726\) 0 0
\(727\) 514869.i 0.974154i 0.873359 + 0.487077i \(0.161937\pi\)
−0.873359 + 0.487077i \(0.838063\pi\)
\(728\) 208742. + 30129.3i 0.393864 + 0.0568494i
\(729\) 0 0
\(730\) −76941.0 + 133266.i −0.144382 + 0.250077i
\(731\) 455419. 262936.i 0.852269 0.492058i
\(732\) 0 0
\(733\) 209395. + 120894.i 0.389725 + 0.225008i 0.682041 0.731314i \(-0.261092\pi\)
−0.292316 + 0.956322i \(0.594426\pi\)
\(734\) 199198.i 0.369737i
\(735\) 0 0
\(736\) −166868. −0.308047
\(737\) −11051.4 + 19141.5i −0.0203461 + 0.0352405i
\(738\) 0 0
\(739\) 335761. + 581555.i 0.614811 + 1.06488i 0.990418 + 0.138105i \(0.0441010\pi\)
−0.375607 + 0.926779i \(0.622566\pi\)
\(740\) 21690.7 + 12523.1i 0.0396104 + 0.0228691i
\(741\) 0 0
\(742\) 16080.8 111411.i 0.0292079 0.202358i
\(743\) 134542. 0.243714 0.121857 0.992548i \(-0.461115\pi\)
0.121857 + 0.992548i \(0.461115\pi\)
\(744\) 0 0
\(745\) 74770.0 43168.5i 0.134715 0.0777775i
\(746\) −270190. 467983.i −0.485503 0.840916i
\(747\) 0 0
\(748\) 33841.0i 0.0604840i
\(749\) 791228. + 622930.i 1.41039 + 1.11039i
\(750\) 0 0
\(751\) −223281. + 386733.i −0.395887 + 0.685696i −0.993214 0.116302i \(-0.962896\pi\)
0.597327 + 0.801998i \(0.296229\pi\)
\(752\) 97035.2 56023.3i 0.171591 0.0990679i
\(753\) 0 0
\(754\) −409041. 236160.i −0.719490 0.415398i
\(755\) 12515.9i 0.0219567i
\(756\) 0 0
\(757\) −939360. −1.63923 −0.819616 0.572913i \(-0.805813\pi\)
−0.819616 + 0.572913i \(0.805813\pi\)
\(758\) −106037. + 183662.i −0.184552 + 0.319654i
\(759\) 0 0
\(760\) 28317.4 + 49047.2i 0.0490260 + 0.0849156i
\(761\) −858619. 495724.i −1.48262 0.855994i −0.482819 0.875720i \(-0.660387\pi\)
−0.999805 + 0.0197266i \(0.993720\pi\)
\(762\) 0 0
\(763\) −648727. + 259299.i −1.11433 + 0.445401i
\(764\) −93007.0 −0.159341
\(765\) 0 0
\(766\) −315095. + 181920.i −0.537011 + 0.310044i
\(767\) 271492. + 470237.i 0.461494 + 0.799330i
\(768\) 0 0
\(769\) 180922.i 0.305942i −0.988231 0.152971i \(-0.951116\pi\)
0.988231 0.152971i \(-0.0488841\pi\)
\(770\) −4978.93 + 6324.09i −0.00839759 + 0.0106664i
\(771\) 0 0
\(772\) 210188. 364056.i 0.352673 0.610848i
\(773\) 16688.7 9635.20i 0.0279295 0.0161251i −0.485970 0.873975i \(-0.661534\pi\)
0.513900 + 0.857850i \(0.328200\pi\)
\(774\) 0 0
\(775\) −370955. 214171.i −0.617616 0.356581i
\(776\) 144147.i 0.239377i
\(777\) 0 0
\(778\) −74410.3 −0.122935
\(779\) −193275. + 334763.i −0.318494 + 0.551648i
\(780\) 0 0
\(781\) −17091.4 29603.1i −0.0280204 0.0485328i
\(782\) −952357. 549844.i −1.55735 0.899137i
\(783\) 0 0
\(784\) 111328. 105918.i 0.181122 0.172321i
\(785\) 240617. 0.390469
\(786\) 0 0
\(787\) 240896. 139081.i 0.388938 0.224553i −0.292762 0.956185i \(-0.594574\pi\)
0.681700 + 0.731632i \(0.261241\pi\)
\(788\) −219247. 379747.i −0.353086 0.611564i
\(789\) 0 0
\(790\) 38524.8i 0.0617286i
\(791\) −72132.9 + 499752.i −0.115287 + 0.798732i
\(792\) 0 0
\(793\) 554890. 961098.i 0.882390 1.52834i
\(794\) 215619. 124488.i 0.342016 0.197463i
\(795\) 0 0
\(796\) −41381.3 23891.5i −0.0653097 0.0377066i
\(797\) 60214.6i 0.0947950i 0.998876 + 0.0473975i \(0.0150927\pi\)
−0.998876 + 0.0473975i \(0.984907\pi\)
\(798\) 0 0
\(799\) 738406. 1.15665
\(800\) −53533.8 + 92723.2i −0.0836465 + 0.144880i
\(801\) 0 0
\(802\) 374200. + 648134.i 0.581775 + 1.00766i
\(803\) −81608.3 47116.6i −0.126562 0.0730706i
\(804\) 0 0
\(805\) −97076.3 242870.i −0.149803 0.374786i
\(806\) 389636. 0.599775
\(807\) 0 0
\(808\) −178535. + 103077.i −0.273464 + 0.157885i
\(809\) 35236.9 + 61032.2i 0.0538395 + 0.0932528i 0.891689 0.452648i \(-0.149521\pi\)
−0.837850 + 0.545901i \(0.816187\pi\)
\(810\) 0 0
\(811\) 1.08434e6i 1.64863i −0.566133 0.824314i \(-0.691561\pi\)
0.566133 0.824314i \(-0.308439\pi\)
\(812\) −319549. + 127725.i −0.484647 + 0.193715i
\(813\) 0 0
\(814\) −7668.81 + 13282.8i −0.0115739 + 0.0200466i
\(815\) −58998.8 + 34063.0i −0.0888235 + 0.0512823i
\(816\) 0 0
\(817\) 466732. + 269468.i 0.699235 + 0.403704i
\(818\) 396463.i 0.592511i
\(819\) 0 0
\(820\) 41426.6 0.0616101
\(821\) −323845. + 560916.i −0.480453 + 0.832169i −0.999749 0.0224257i \(-0.992861\pi\)
0.519295 + 0.854595i \(0.326194\pi\)
\(822\) 0 0
\(823\) −539512. 934463.i −0.796529 1.37963i −0.921863 0.387515i \(-0.873334\pi\)
0.125334 0.992115i \(-0.460000\pi\)
\(824\) −315726. 182285.i −0.465003 0.268470i
\(825\) 0 0
\(826\) 391557. + 56516.3i 0.573898 + 0.0828350i
\(827\) −9026.16 −0.0131975 −0.00659875 0.999978i \(-0.502100\pi\)
−0.00659875 + 0.999978i \(0.502100\pi\)
\(828\) 0 0
\(829\) −654736. + 378012.i −0.952702 + 0.550043i −0.893919 0.448228i \(-0.852055\pi\)
−0.0587830 + 0.998271i \(0.518722\pi\)
\(830\) 30710.1 + 53191.4i 0.0445784 + 0.0772121i
\(831\) 0 0
\(832\) 97392.5i 0.140695i
\(833\) 984388. 237668.i 1.41865 0.342516i
\(834\) 0 0
\(835\) −39376.4 + 68201.9i −0.0564758 + 0.0978190i
\(836\) −30035.2 + 17340.8i −0.0429752 + 0.0248117i
\(837\) 0 0
\(838\) −782390. 451713.i −1.11413 0.643242i
\(839\) 654438.i 0.929704i −0.885388 0.464852i \(-0.846107\pi\)
0.885388 0.464852i \(-0.153893\pi\)
\(840\) 0 0
\(841\) 63396.2 0.0896337
\(842\) −446504. + 773368.i −0.629798 + 1.09084i
\(843\) 0 0
\(844\) −12171.3 21081.3i −0.0170864 0.0295946i
\(845\) 38224.8 + 22069.1i 0.0535343 + 0.0309080i
\(846\) 0 0
\(847\) 559806. + 440733.i 0.780316 + 0.614340i
\(848\) −51981.0 −0.0722857
\(849\) 0 0
\(850\) −611062. + 352797.i −0.845761 + 0.488300i
\(851\) −249203. 431633.i −0.344108 0.596013i
\(852\) 0 0
\(853\) 123790.i 0.170133i −0.996375 0.0850664i \(-0.972890\pi\)
0.996375 0.0850664i \(-0.0271102\pi\)
\(854\) −300107. 750824.i −0.411491 1.02949i
\(855\) 0 0
\(856\) 232512. 402723.i 0.317321 0.549615i
\(857\) 150023. 86615.8i 0.204266 0.117933i −0.394378 0.918948i \(-0.629040\pi\)
0.598644 + 0.801015i \(0.295707\pi\)
\(858\) 0 0
\(859\) 231499. + 133656.i 0.313735 + 0.181135i 0.648597 0.761132i \(-0.275356\pi\)
−0.334862 + 0.942267i \(0.608690\pi\)
\(860\) 57757.7i 0.0780932i
\(861\) 0 0
\(862\) −476677. −0.641519
\(863\) 619521. 1.07304e6i 0.831830 1.44077i −0.0647550 0.997901i \(-0.520627\pi\)
0.896585 0.442871i \(-0.146040\pi\)
\(864\) 0 0
\(865\) 130730. + 226430.i 0.174720 + 0.302623i
\(866\) 41896.9 + 24189.2i 0.0558658 + 0.0322541i
\(867\) 0 0
\(868\) 175609. 223054.i 0.233081 0.296053i
\(869\) −23591.6 −0.0312404
\(870\) 0 0
\(871\) 363041. 209602.i 0.478541 0.276286i
\(872\) 161308. + 279393.i 0.212140 + 0.367437i
\(873\) 0 0
\(874\) 1.12700e6i 1.47537i
\(875\) −341614. 49307.8i −0.446190 0.0644020i
\(876\) 0 0
\(877\) −348961. + 604419.i −0.453710 + 0.785848i −0.998613 0.0526507i \(-0.983233\pi\)
0.544903 + 0.838499i \(0.316566\pi\)
\(878\) −543740. + 313929.i −0.705347 + 0.407232i
\(879\) 0 0
\(880\) 3218.87 + 1858.41i 0.00415660 + 0.00239981i
\(881\) 1.44660e6i 1.86378i −0.362735 0.931892i \(-0.618157\pi\)
0.362735 0.931892i \(-0.381843\pi\)
\(882\) 0 0
\(883\) −539049. −0.691364 −0.345682 0.938352i \(-0.612352\pi\)
−0.345682 + 0.938352i \(0.612352\pi\)
\(884\) 320917. 555844.i 0.410665 0.711293i
\(885\) 0 0
\(886\) 48409.5 + 83847.8i 0.0616685 + 0.106813i
\(887\) 851540. + 491637.i 1.08233 + 0.624881i 0.931523 0.363683i \(-0.118481\pi\)
0.150803 + 0.988564i \(0.451814\pi\)
\(888\) 0 0
\(889\) 14816.9 102655.i 0.0187480 0.129890i
\(890\) 104229. 0.131586
\(891\) 0 0
\(892\) −291710. + 168419.i −0.366624 + 0.211671i
\(893\) 378374. + 655363.i 0.474481 + 0.821825i
\(894\) 0 0
\(895\) 114955.i 0.143510i
\(896\) −55754.0 43894.9i −0.0694480 0.0546761i
\(897\) 0 0
\(898\) −264750. + 458560.i −0.328309 + 0.568648i
\(899\) −550586. + 317881.i −0.681249 + 0.393319i
\(900\) 0 0
\(901\) −296669. 171282.i −0.365445 0.210990i
\(902\) 25368.5i 0.0311804i
\(903\) 0 0
\(904\) 233169. 0.285321
\(905\) 61954.0 107307.i 0.0756436 0.131018i
\(906\) 0 0
\(907\) −146541. 253816.i −0.178133 0.308535i 0.763108 0.646271i \(-0.223672\pi\)
−0.941241 + 0.337736i \(0.890339\pi\)
\(908\) 638707. + 368758.i 0.774694 + 0.447270i
\(909\) 0 0
\(910\) 141752. 56658.7i 0.171177 0.0684201i
\(911\) −1.39546e6 −1.68143 −0.840716 0.541477i \(-0.817865\pi\)
−0.840716 + 0.541477i \(0.817865\pi\)
\(912\) 0 0
\(913\) −32573.0 + 18806.0i −0.0390765 + 0.0225608i
\(914\) −209084. 362145.i −0.250282 0.433501i
\(915\) 0 0
\(916\) 191705.i 0.228477i
\(917\) −183597. + 233200.i −0.218337 + 0.277326i
\(918\) 0 0
\(919\) 430159. 745057.i 0.509328 0.882182i −0.490613 0.871377i \(-0.663227\pi\)
0.999942 0.0108051i \(-0.00343942\pi\)
\(920\) −104599. + 60390.4i −0.123581 + 0.0713498i
\(921\) 0 0
\(922\) 181212. + 104623.i 0.213170 + 0.123074i
\(923\) 648314.i 0.760995i
\(924\) 0 0
\(925\) −319793. −0.373754
\(926\) 94734.3 164085.i 0.110480 0.191358i
\(927\) 0 0
\(928\) 79456.8 + 137623.i 0.0922646 + 0.159807i
\(929\) 935631. + 540187.i 1.08411 + 0.625911i 0.932002 0.362453i \(-0.118061\pi\)
0.152108 + 0.988364i \(0.451394\pi\)
\(930\) 0 0
\(931\) 715359. + 751895.i 0.825325 + 0.867477i
\(932\) 282785. 0.325555
\(933\) 0 0
\(934\) 568364. 328145.i 0.651528 0.376160i
\(935\) 12247.3 + 21212.9i 0.0140093 + 0.0242648i
\(936\) 0 0
\(937\) 659462.i 0.751122i −0.926798 0.375561i \(-0.877450\pi\)
0.926798 0.375561i \(-0.122550\pi\)
\(938\) 43632.8 302297.i 0.0495915 0.343580i
\(939\) 0 0
\(940\) 40550.3 70235.2i 0.0458922 0.0794876i
\(941\) −771364. + 445347.i −0.871124 + 0.502944i −0.867722 0.497051i \(-0.834416\pi\)
−0.00340238 + 0.999994i \(0.501083\pi\)
\(942\) 0 0
\(943\) −713923. 412184.i −0.802838 0.463519i
\(944\) 182688.i 0.205006i
\(945\) 0 0
\(946\) 35369.2 0.0395224
\(947\) 761268. 1.31855e6i 0.848863 1.47027i −0.0333612 0.999443i \(-0.510621\pi\)
0.882224 0.470830i \(-0.156046\pi\)
\(948\) 0 0
\(949\) 893619. + 1.54779e6i 0.992248 + 1.71862i
\(950\) −626241. 361560.i −0.693896 0.400621i
\(951\) 0 0
\(952\) −173565. 434233.i −0.191508 0.479126i
\(953\) 464150. 0.511061 0.255530 0.966801i \(-0.417750\pi\)
0.255530 + 0.966801i \(0.417750\pi\)
\(954\) 0 0
\(955\) −58300.5 + 33659.8i −0.0639242 + 0.0369067i
\(956\) 57574.1 + 99721.3i 0.0629958 + 0.109112i
\(957\) 0 0
\(958\) 622392.i 0.678161i
\(959\) −130141. + 52018.1i −0.141507 + 0.0565610i
\(960\) 0 0
\(961\) −199528. + 345592.i −0.216051 + 0.374212i
\(962\) 251923. 145448.i 0.272218 0.157165i
\(963\) 0 0
\(964\) −51961.1 29999.8i −0.0559145 0.0322822i
\(965\) 304273.i 0.326745i
\(966\) 0 0
\(967\) 61596.4 0.0658723 0.0329361 0.999457i \(-0.489514\pi\)
0.0329361 + 0.999457i \(0.489514\pi\)
\(968\) 164506. 284933.i 0.175562 0.304083i
\(969\) 0 0
\(970\) −52167.8 90357.3i −0.0554446 0.0960329i
\(971\) 668830. + 386149.i 0.709377 + 0.409559i 0.810830 0.585281i \(-0.199016\pi\)
−0.101453 + 0.994840i \(0.532349\pi\)
\(972\) 0 0
\(973\) 822818. + 118764.i 0.869117 + 0.125446i
\(974\) 395007. 0.416378
\(975\) 0 0
\(976\) −323364. + 186695.i −0.339463 + 0.195989i
\(977\) 501672. + 868921.i 0.525570 + 0.910314i 0.999556 + 0.0297817i \(0.00948120\pi\)
−0.473987 + 0.880532i \(0.657185\pi\)
\(978\) 0 0
\(979\) 63826.9i 0.0665945i
\(980\) 31452.3 106684.i 0.0327492 0.111083i
\(981\) 0 0
\(982\) −402869. + 697790.i −0.417774 + 0.723606i
\(983\) 453001. 261540.i 0.468805 0.270665i −0.246934 0.969032i \(-0.579423\pi\)
0.715739 + 0.698367i \(0.246090\pi\)
\(984\) 0 0
\(985\) −274865. 158694.i −0.283301 0.163564i
\(986\) 1.04727e6i 1.07722i
\(987\) 0 0
\(988\) 657776. 0.673852
\(989\) −574674. + 995364.i −0.587528 + 1.01763i
\(990\) 0 0
\(991\) 837744. + 1.45102e6i 0.853029 + 1.47749i 0.878461 + 0.477814i \(0.158571\pi\)
−0.0254316 + 0.999677i \(0.508096\pi\)
\(992\) −113531. 65547.1i −0.115369 0.0666085i
\(993\) 0 0
\(994\) 371138. + 292195.i 0.375632 + 0.295734i
\(995\) −34585.9 −0.0349344
\(996\) 0 0
\(997\) −568548. + 328251.i −0.571975 + 0.330230i −0.757938 0.652327i \(-0.773793\pi\)
0.185963 + 0.982557i \(0.440460\pi\)
\(998\) 443460. + 768094.i 0.445239 + 0.771176i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.5.n.a.19.1 4
3.2 odd 2 14.5.d.a.5.2 yes 4
7.2 even 3 882.5.c.b.685.4 4
7.3 odd 6 inner 126.5.n.a.73.1 4
7.5 odd 6 882.5.c.b.685.3 4
12.11 even 2 112.5.s.b.33.1 4
15.2 even 4 350.5.i.a.299.4 8
15.8 even 4 350.5.i.a.299.1 8
15.14 odd 2 350.5.k.a.201.1 4
21.2 odd 6 98.5.b.b.97.2 4
21.5 even 6 98.5.b.b.97.1 4
21.11 odd 6 98.5.d.a.31.2 4
21.17 even 6 14.5.d.a.3.2 4
21.20 even 2 98.5.d.a.19.2 4
84.23 even 6 784.5.c.b.97.2 4
84.47 odd 6 784.5.c.b.97.3 4
84.59 odd 6 112.5.s.b.17.1 4
105.17 odd 12 350.5.i.a.199.1 8
105.38 odd 12 350.5.i.a.199.4 8
105.59 even 6 350.5.k.a.101.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.5.d.a.3.2 4 21.17 even 6
14.5.d.a.5.2 yes 4 3.2 odd 2
98.5.b.b.97.1 4 21.5 even 6
98.5.b.b.97.2 4 21.2 odd 6
98.5.d.a.19.2 4 21.20 even 2
98.5.d.a.31.2 4 21.11 odd 6
112.5.s.b.17.1 4 84.59 odd 6
112.5.s.b.33.1 4 12.11 even 2
126.5.n.a.19.1 4 1.1 even 1 trivial
126.5.n.a.73.1 4 7.3 odd 6 inner
350.5.i.a.199.1 8 105.17 odd 12
350.5.i.a.199.4 8 105.38 odd 12
350.5.i.a.299.1 8 15.8 even 4
350.5.i.a.299.4 8 15.2 even 4
350.5.k.a.101.1 4 105.59 even 6
350.5.k.a.201.1 4 15.14 odd 2
784.5.c.b.97.2 4 84.23 even 6
784.5.c.b.97.3 4 84.47 odd 6
882.5.c.b.685.3 4 7.5 odd 6
882.5.c.b.685.4 4 7.2 even 3