Properties

Label 882.2.u.c.505.1
Level $882$
Weight $2$
Character 882.505
Analytic conductor $7.043$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(127,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.u (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,1,0,-1,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 505.1
Root \(0.222521 + 0.974928i\) of defining polynomial
Character \(\chi\) \(=\) 882.505
Dual form 882.2.u.c.379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.222521 - 0.974928i) q^{2} +(-0.900969 - 0.433884i) q^{4} +(-0.554958 + 0.695895i) q^{5} +(-2.57942 - 0.588735i) q^{7} +(-0.623490 + 0.781831i) q^{8} +(0.554958 + 0.695895i) q^{10} +(-0.198062 + 0.867767i) q^{11} +(-0.881355 + 3.86147i) q^{13} +(-1.14795 + 2.38374i) q^{14} +(0.623490 + 0.781831i) q^{16} +(4.04892 - 1.94986i) q^{17} +4.44504 q^{19} +(0.801938 - 0.386193i) q^{20} +(0.801938 + 0.386193i) q^{22} +(8.29590 + 3.99509i) q^{23} +(0.936313 + 4.10225i) q^{25} +(3.56853 + 1.71851i) q^{26} +(2.06853 + 1.64960i) q^{28} +(4.85086 - 2.33605i) q^{29} -4.47219 q^{31} +(0.900969 - 0.433884i) q^{32} +(-1.00000 - 4.38129i) q^{34} +(1.84117 - 1.46828i) q^{35} +(-9.47434 + 4.56260i) q^{37} +(0.989115 - 4.33360i) q^{38} +(-0.198062 - 0.867767i) q^{40} +(-4.74094 + 5.94495i) q^{41} +(2.83244 + 3.55176i) q^{43} +(0.554958 - 0.695895i) q^{44} +(5.74094 - 7.19891i) q^{46} +(1.09783 - 4.80993i) q^{47} +(6.30678 + 3.03719i) q^{49} +4.20775 q^{50} +(2.46950 - 3.09666i) q^{52} +(10.1860 + 4.90531i) q^{53} +(-0.493959 - 0.619405i) q^{55} +(2.06853 - 1.64960i) q^{56} +(-1.19806 - 5.24905i) q^{58} +(5.10992 + 6.40763i) q^{59} +(-11.0782 + 5.33499i) q^{61} +(-0.995156 + 4.36006i) q^{62} +(-0.222521 - 0.974928i) q^{64} +(-2.19806 - 2.75628i) q^{65} +6.13706 q^{67} -4.49396 q^{68} +(-1.02177 - 2.12173i) q^{70} +(-12.3448 - 5.94495i) q^{71} +(-1.29105 - 5.65647i) q^{73} +(2.33997 + 10.2521i) q^{74} +(-4.00484 - 1.92863i) q^{76} +(1.02177 - 2.12173i) q^{77} +3.67994 q^{79} -0.890084 q^{80} +(4.74094 + 5.94495i) q^{82} +(-0.493959 - 2.16418i) q^{83} +(-0.890084 + 3.89971i) q^{85} +(4.09299 - 1.97108i) q^{86} +(-0.554958 - 0.695895i) q^{88} +(2.86831 + 12.5669i) q^{89} +(4.54676 - 9.44145i) q^{91} +(-5.74094 - 7.19891i) q^{92} +(-4.44504 - 2.14062i) q^{94} +(-2.46681 + 3.09328i) q^{95} -15.7506 q^{97} +(4.36443 - 5.47282i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - q^{4} - 4 q^{5} - 7 q^{7} + q^{8} + 4 q^{10} - 10 q^{11} + 12 q^{13} + 7 q^{14} - q^{16} + 6 q^{17} + 26 q^{19} - 4 q^{20} - 4 q^{22} + 22 q^{23} - 11 q^{25} + 16 q^{26} + 7 q^{28} + 2 q^{29}+ \cdots - 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{5}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.222521 0.974928i 0.157346 0.689378i
\(3\) 0 0
\(4\) −0.900969 0.433884i −0.450484 0.216942i
\(5\) −0.554958 + 0.695895i −0.248185 + 0.311214i −0.890282 0.455409i \(-0.849493\pi\)
0.642097 + 0.766623i \(0.278064\pi\)
\(6\) 0 0
\(7\) −2.57942 0.588735i −0.974928 0.222521i
\(8\) −0.623490 + 0.781831i −0.220437 + 0.276419i
\(9\) 0 0
\(10\) 0.554958 + 0.695895i 0.175493 + 0.220061i
\(11\) −0.198062 + 0.867767i −0.0597180 + 0.261642i −0.995970 0.0896876i \(-0.971413\pi\)
0.936252 + 0.351329i \(0.114270\pi\)
\(12\) 0 0
\(13\) −0.881355 + 3.86147i −0.244444 + 1.07098i 0.692478 + 0.721439i \(0.256519\pi\)
−0.936922 + 0.349539i \(0.886338\pi\)
\(14\) −1.14795 + 2.38374i −0.306802 + 0.637081i
\(15\) 0 0
\(16\) 0.623490 + 0.781831i 0.155872 + 0.195458i
\(17\) 4.04892 1.94986i 0.982007 0.472910i 0.127212 0.991876i \(-0.459397\pi\)
0.854795 + 0.518966i \(0.173683\pi\)
\(18\) 0 0
\(19\) 4.44504 1.01976 0.509881 0.860245i \(-0.329689\pi\)
0.509881 + 0.860245i \(0.329689\pi\)
\(20\) 0.801938 0.386193i 0.179319 0.0863553i
\(21\) 0 0
\(22\) 0.801938 + 0.386193i 0.170974 + 0.0823366i
\(23\) 8.29590 + 3.99509i 1.72981 + 0.833035i 0.986433 + 0.164167i \(0.0524936\pi\)
0.743382 + 0.668868i \(0.233221\pi\)
\(24\) 0 0
\(25\) 0.936313 + 4.10225i 0.187263 + 0.820451i
\(26\) 3.56853 + 1.71851i 0.699847 + 0.337028i
\(27\) 0 0
\(28\) 2.06853 + 1.64960i 0.390916 + 0.311745i
\(29\) 4.85086 2.33605i 0.900781 0.433793i 0.0746102 0.997213i \(-0.476229\pi\)
0.826171 + 0.563419i \(0.190514\pi\)
\(30\) 0 0
\(31\) −4.47219 −0.803229 −0.401614 0.915809i \(-0.631551\pi\)
−0.401614 + 0.915809i \(0.631551\pi\)
\(32\) 0.900969 0.433884i 0.159270 0.0767005i
\(33\) 0 0
\(34\) −1.00000 4.38129i −0.171499 0.751384i
\(35\) 1.84117 1.46828i 0.311214 0.248185i
\(36\) 0 0
\(37\) −9.47434 + 4.56260i −1.55757 + 0.750087i −0.996954 0.0779869i \(-0.975151\pi\)
−0.560618 + 0.828074i \(0.689436\pi\)
\(38\) 0.989115 4.33360i 0.160456 0.703002i
\(39\) 0 0
\(40\) −0.198062 0.867767i −0.0313164 0.137206i
\(41\) −4.74094 + 5.94495i −0.740410 + 0.928445i −0.999298 0.0374623i \(-0.988073\pi\)
0.258888 + 0.965907i \(0.416644\pi\)
\(42\) 0 0
\(43\) 2.83244 + 3.55176i 0.431943 + 0.541639i 0.949400 0.314070i \(-0.101693\pi\)
−0.517457 + 0.855709i \(0.673121\pi\)
\(44\) 0.554958 0.695895i 0.0836631 0.104910i
\(45\) 0 0
\(46\) 5.74094 7.19891i 0.846455 1.06142i
\(47\) 1.09783 4.80993i 0.160136 0.701600i −0.829561 0.558417i \(-0.811409\pi\)
0.989696 0.143183i \(-0.0457339\pi\)
\(48\) 0 0
\(49\) 6.30678 + 3.03719i 0.900969 + 0.433884i
\(50\) 4.20775 0.595066
\(51\) 0 0
\(52\) 2.46950 3.09666i 0.342458 0.429429i
\(53\) 10.1860 + 4.90531i 1.39915 + 0.673796i 0.972989 0.230850i \(-0.0741508\pi\)
0.426163 + 0.904646i \(0.359865\pi\)
\(54\) 0 0
\(55\) −0.493959 0.619405i −0.0666054 0.0835206i
\(56\) 2.06853 1.64960i 0.276419 0.220437i
\(57\) 0 0
\(58\) −1.19806 5.24905i −0.157313 0.689235i
\(59\) 5.10992 + 6.40763i 0.665254 + 0.834203i 0.993904 0.110249i \(-0.0351649\pi\)
−0.328650 + 0.944452i \(0.606593\pi\)
\(60\) 0 0
\(61\) −11.0782 + 5.33499i −1.41842 + 0.683075i −0.976805 0.214129i \(-0.931309\pi\)
−0.441615 + 0.897204i \(0.645594\pi\)
\(62\) −0.995156 + 4.36006i −0.126385 + 0.553728i
\(63\) 0 0
\(64\) −0.222521 0.974928i −0.0278151 0.121866i
\(65\) −2.19806 2.75628i −0.272636 0.341875i
\(66\) 0 0
\(67\) 6.13706 0.749762 0.374881 0.927073i \(-0.377684\pi\)
0.374881 + 0.927073i \(0.377684\pi\)
\(68\) −4.49396 −0.544973
\(69\) 0 0
\(70\) −1.02177 2.12173i −0.122125 0.253595i
\(71\) −12.3448 5.94495i −1.46506 0.705536i −0.479924 0.877310i \(-0.659336\pi\)
−0.985136 + 0.171775i \(0.945050\pi\)
\(72\) 0 0
\(73\) −1.29105 5.65647i −0.151106 0.662040i −0.992565 0.121718i \(-0.961160\pi\)
0.841458 0.540322i \(-0.181698\pi\)
\(74\) 2.33997 + 10.2521i 0.272016 + 1.19178i
\(75\) 0 0
\(76\) −4.00484 1.92863i −0.459387 0.221229i
\(77\) 1.02177 2.12173i 0.116442 0.241793i
\(78\) 0 0
\(79\) 3.67994 0.414026 0.207013 0.978338i \(-0.433626\pi\)
0.207013 + 0.978338i \(0.433626\pi\)
\(80\) −0.890084 −0.0995144
\(81\) 0 0
\(82\) 4.74094 + 5.94495i 0.523549 + 0.656510i
\(83\) −0.493959 2.16418i −0.0542191 0.237549i 0.940556 0.339638i \(-0.110305\pi\)
−0.994775 + 0.102089i \(0.967447\pi\)
\(84\) 0 0
\(85\) −0.890084 + 3.89971i −0.0965431 + 0.422983i
\(86\) 4.09299 1.97108i 0.441358 0.212547i
\(87\) 0 0
\(88\) −0.554958 0.695895i −0.0591587 0.0741827i
\(89\) 2.86831 + 12.5669i 0.304041 + 1.33209i 0.863968 + 0.503547i \(0.167972\pi\)
−0.559927 + 0.828542i \(0.689171\pi\)
\(90\) 0 0
\(91\) 4.54676 9.44145i 0.476630 0.989733i
\(92\) −5.74094 7.19891i −0.598534 0.750538i
\(93\) 0 0
\(94\) −4.44504 2.14062i −0.458471 0.220788i
\(95\) −2.46681 + 3.09328i −0.253090 + 0.317364i
\(96\) 0 0
\(97\) −15.7506 −1.59923 −0.799617 0.600510i \(-0.794964\pi\)
−0.799617 + 0.600510i \(0.794964\pi\)
\(98\) 4.36443 5.47282i 0.440874 0.552838i
\(99\) 0 0
\(100\) 0.936313 4.10225i 0.0936313 0.410225i
\(101\) 4.46681 5.60121i 0.444464 0.557341i −0.508249 0.861210i \(-0.669707\pi\)
0.952714 + 0.303869i \(0.0982786\pi\)
\(102\) 0 0
\(103\) 5.77144 7.23715i 0.568677 0.713098i −0.411458 0.911428i \(-0.634980\pi\)
0.980135 + 0.198330i \(0.0635519\pi\)
\(104\) −2.46950 3.09666i −0.242154 0.303652i
\(105\) 0 0
\(106\) 7.04892 8.83906i 0.684651 0.858526i
\(107\) −2.24698 9.84466i −0.217224 0.951719i −0.959518 0.281646i \(-0.909120\pi\)
0.742295 0.670074i \(-0.233737\pi\)
\(108\) 0 0
\(109\) 0.820356 3.59421i 0.0785758 0.344263i −0.920324 0.391157i \(-0.872075\pi\)
0.998900 + 0.0468936i \(0.0149322\pi\)
\(110\) −0.713792 + 0.343744i −0.0680574 + 0.0327747i
\(111\) 0 0
\(112\) −1.14795 2.38374i −0.108471 0.225242i
\(113\) −1.29052 5.65414i −0.121402 0.531897i −0.998654 0.0518666i \(-0.983483\pi\)
0.877252 0.480030i \(-0.159374\pi\)
\(114\) 0 0
\(115\) −7.38404 + 3.55597i −0.688566 + 0.331596i
\(116\) −5.38404 −0.499896
\(117\) 0 0
\(118\) 7.38404 3.55597i 0.679756 0.327353i
\(119\) −11.5918 + 2.64575i −1.06262 + 0.242536i
\(120\) 0 0
\(121\) 9.19687 + 4.42898i 0.836079 + 0.402634i
\(122\) 2.73609 + 11.9876i 0.247714 + 1.08531i
\(123\) 0 0
\(124\) 4.02930 + 1.94041i 0.361842 + 0.174254i
\(125\) −7.38404 3.55597i −0.660449 0.318055i
\(126\) 0 0
\(127\) −1.36174 + 0.655780i −0.120835 + 0.0581910i −0.493325 0.869845i \(-0.664218\pi\)
0.372490 + 0.928036i \(0.378504\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −3.17629 + 1.52962i −0.278579 + 0.134157i
\(131\) 10.4819 + 13.1439i 0.915806 + 1.14838i 0.988529 + 0.151032i \(0.0482597\pi\)
−0.0727230 + 0.997352i \(0.523169\pi\)
\(132\) 0 0
\(133\) −11.4656 2.61695i −0.994195 0.226919i
\(134\) 1.36563 5.98319i 0.117972 0.516869i
\(135\) 0 0
\(136\) −1.00000 + 4.38129i −0.0857493 + 0.375692i
\(137\) 4.80194 + 6.02144i 0.410257 + 0.514446i 0.943435 0.331557i \(-0.107574\pi\)
−0.533178 + 0.846003i \(0.679002\pi\)
\(138\) 0 0
\(139\) −0.496648 + 0.622776i −0.0421251 + 0.0528232i −0.802448 0.596722i \(-0.796469\pi\)
0.760323 + 0.649546i \(0.225041\pi\)
\(140\) −2.29590 + 0.524023i −0.194039 + 0.0442881i
\(141\) 0 0
\(142\) −8.54288 + 10.7124i −0.716902 + 0.898967i
\(143\) −3.17629 1.52962i −0.265615 0.127913i
\(144\) 0 0
\(145\) −1.06638 + 4.67210i −0.0885577 + 0.387997i
\(146\) −5.80194 −0.480172
\(147\) 0 0
\(148\) 10.5157 0.864388
\(149\) −0.850855 + 3.72784i −0.0697048 + 0.305397i −0.997748 0.0670763i \(-0.978633\pi\)
0.928043 + 0.372473i \(0.121490\pi\)
\(150\) 0 0
\(151\) 10.2518 + 4.93702i 0.834282 + 0.401769i 0.801719 0.597701i \(-0.203919\pi\)
0.0325624 + 0.999470i \(0.489633\pi\)
\(152\) −2.77144 + 3.47527i −0.224793 + 0.281882i
\(153\) 0 0
\(154\) −1.84117 1.46828i −0.148365 0.118317i
\(155\) 2.48188 3.11218i 0.199349 0.249976i
\(156\) 0 0
\(157\) −5.30529 6.65262i −0.423408 0.530937i 0.523678 0.851916i \(-0.324559\pi\)
−0.947086 + 0.320979i \(0.895988\pi\)
\(158\) 0.818864 3.58768i 0.0651453 0.285420i
\(159\) 0 0
\(160\) −0.198062 + 0.867767i −0.0156582 + 0.0686030i
\(161\) −19.0465 15.1891i −1.50108 1.19707i
\(162\) 0 0
\(163\) 3.38135 + 4.24008i 0.264848 + 0.332109i 0.896418 0.443210i \(-0.146160\pi\)
−0.631570 + 0.775319i \(0.717589\pi\)
\(164\) 6.85086 3.29920i 0.534962 0.257624i
\(165\) 0 0
\(166\) −2.21983 −0.172292
\(167\) −18.1250 + 8.72853i −1.40255 + 0.675434i −0.973678 0.227930i \(-0.926804\pi\)
−0.428876 + 0.903364i \(0.641090\pi\)
\(168\) 0 0
\(169\) −2.42154 1.16615i −0.186273 0.0897041i
\(170\) 3.60388 + 1.73553i 0.276405 + 0.133109i
\(171\) 0 0
\(172\) −1.01089 4.42898i −0.0770793 0.337706i
\(173\) −16.8780 8.12802i −1.28321 0.617962i −0.336998 0.941506i \(-0.609411\pi\)
−0.946213 + 0.323544i \(0.895126\pi\)
\(174\) 0 0
\(175\) 11.1327i 0.841550i
\(176\) −0.801938 + 0.386193i −0.0604483 + 0.0291104i
\(177\) 0 0
\(178\) 12.8901 0.966153
\(179\) −4.02715 + 1.93937i −0.301003 + 0.144955i −0.578289 0.815832i \(-0.696279\pi\)
0.277286 + 0.960787i \(0.410565\pi\)
\(180\) 0 0
\(181\) 4.86390 + 21.3101i 0.361531 + 1.58397i 0.749312 + 0.662217i \(0.230384\pi\)
−0.387781 + 0.921751i \(0.626758\pi\)
\(182\) −8.19298 6.53368i −0.607304 0.484309i
\(183\) 0 0
\(184\) −8.29590 + 3.99509i −0.611582 + 0.294522i
\(185\) 2.08277 9.12521i 0.153128 0.670899i
\(186\) 0 0
\(187\) 0.890084 + 3.89971i 0.0650894 + 0.285175i
\(188\) −3.07606 + 3.85726i −0.224345 + 0.281320i
\(189\) 0 0
\(190\) 2.46681 + 3.09328i 0.178961 + 0.224410i
\(191\) 13.7778 17.2768i 0.996925 1.25010i 0.0288132 0.999585i \(-0.490827\pi\)
0.968112 0.250519i \(-0.0806014\pi\)
\(192\) 0 0
\(193\) −0.386731 + 0.484946i −0.0278375 + 0.0349072i −0.795555 0.605881i \(-0.792821\pi\)
0.767718 + 0.640788i \(0.221392\pi\)
\(194\) −3.50484 + 15.3557i −0.251633 + 1.10248i
\(195\) 0 0
\(196\) −4.36443 5.47282i −0.311745 0.390916i
\(197\) −10.2983 −0.733723 −0.366861 0.930276i \(-0.619568\pi\)
−0.366861 + 0.930276i \(0.619568\pi\)
\(198\) 0 0
\(199\) 2.94235 3.68959i 0.208578 0.261548i −0.666528 0.745480i \(-0.732220\pi\)
0.875106 + 0.483932i \(0.160792\pi\)
\(200\) −3.79105 1.82567i −0.268068 0.129095i
\(201\) 0 0
\(202\) −4.46681 5.60121i −0.314284 0.394099i
\(203\) −13.8877 + 3.16977i −0.974725 + 0.222475i
\(204\) 0 0
\(205\) −1.50604 6.59840i −0.105186 0.460852i
\(206\) −5.77144 7.23715i −0.402115 0.504236i
\(207\) 0 0
\(208\) −3.56853 + 1.71851i −0.247433 + 0.119158i
\(209\) −0.880395 + 3.85726i −0.0608982 + 0.266812i
\(210\) 0 0
\(211\) 3.25182 + 14.2472i 0.223865 + 0.980816i 0.954538 + 0.298089i \(0.0963491\pi\)
−0.730673 + 0.682727i \(0.760794\pi\)
\(212\) −7.04892 8.83906i −0.484122 0.607069i
\(213\) 0 0
\(214\) −10.0978 −0.690274
\(215\) −4.04354 −0.275767
\(216\) 0 0
\(217\) 11.5356 + 2.63293i 0.783090 + 0.178735i
\(218\) −3.32155 1.59958i −0.224964 0.108337i
\(219\) 0 0
\(220\) 0.176292 + 0.772386i 0.0118856 + 0.0520742i
\(221\) 3.96077 + 17.3533i 0.266430 + 1.16731i
\(222\) 0 0
\(223\) −13.2371 6.37463i −0.886419 0.426877i −0.0654539 0.997856i \(-0.520850\pi\)
−0.820965 + 0.570979i \(0.806564\pi\)
\(224\) −2.57942 + 0.588735i −0.172345 + 0.0393365i
\(225\) 0 0
\(226\) −5.79954 −0.385780
\(227\) 20.0000 1.32745 0.663723 0.747978i \(-0.268975\pi\)
0.663723 + 0.747978i \(0.268975\pi\)
\(228\) 0 0
\(229\) 5.83244 + 7.31364i 0.385418 + 0.483299i 0.936259 0.351311i \(-0.114264\pi\)
−0.550840 + 0.834611i \(0.685693\pi\)
\(230\) 1.82371 + 7.99019i 0.120252 + 0.526857i
\(231\) 0 0
\(232\) −1.19806 + 5.24905i −0.0786566 + 0.344617i
\(233\) 19.1347 9.21477i 1.25355 0.603680i 0.315092 0.949061i \(-0.397965\pi\)
0.938462 + 0.345382i \(0.112250\pi\)
\(234\) 0 0
\(235\) 2.73795 + 3.43329i 0.178604 + 0.223963i
\(236\) −1.82371 7.99019i −0.118713 0.520117i
\(237\) 0 0
\(238\) 11.8899i 0.770708i
\(239\) −4.70709 5.90250i −0.304476 0.381801i 0.605929 0.795519i \(-0.292802\pi\)
−0.910405 + 0.413718i \(0.864230\pi\)
\(240\) 0 0
\(241\) −5.19418 2.50138i −0.334586 0.161128i 0.259045 0.965865i \(-0.416592\pi\)
−0.593632 + 0.804737i \(0.702306\pi\)
\(242\) 6.36443 7.98074i 0.409121 0.513021i
\(243\) 0 0
\(244\) 12.2959 0.787164
\(245\) −5.61356 + 2.70335i −0.358637 + 0.172711i
\(246\) 0 0
\(247\) −3.91766 + 17.1644i −0.249275 + 1.09214i
\(248\) 2.78836 3.49650i 0.177061 0.222028i
\(249\) 0 0
\(250\) −5.10992 + 6.40763i −0.323179 + 0.405254i
\(251\) −7.86592 9.86355i −0.496493 0.622582i 0.468942 0.883229i \(-0.344635\pi\)
−0.965434 + 0.260647i \(0.916064\pi\)
\(252\) 0 0
\(253\) −5.10992 + 6.40763i −0.321258 + 0.402844i
\(254\) 0.336322 + 1.47352i 0.0211027 + 0.0924571i
\(255\) 0 0
\(256\) −0.222521 + 0.974928i −0.0139076 + 0.0609330i
\(257\) −10.4155 + 5.01584i −0.649701 + 0.312880i −0.729550 0.683927i \(-0.760270\pi\)
0.0798489 + 0.996807i \(0.474556\pi\)
\(258\) 0 0
\(259\) 27.1244 6.19098i 1.68543 0.384689i
\(260\) 0.784479 + 3.43703i 0.0486513 + 0.213155i
\(261\) 0 0
\(262\) 15.1468 7.29429i 0.935769 0.450643i
\(263\) 3.40342 0.209864 0.104932 0.994479i \(-0.466538\pi\)
0.104932 + 0.994479i \(0.466538\pi\)
\(264\) 0 0
\(265\) −9.06638 + 4.36614i −0.556943 + 0.268210i
\(266\) −5.10268 + 10.5958i −0.312865 + 0.649672i
\(267\) 0 0
\(268\) −5.52930 2.66277i −0.337756 0.162655i
\(269\) 5.92931 + 25.9780i 0.361517 + 1.58391i 0.749347 + 0.662177i \(0.230367\pi\)
−0.387831 + 0.921731i \(0.626776\pi\)
\(270\) 0 0
\(271\) −15.5782 7.50208i −0.946309 0.455719i −0.103919 0.994586i \(-0.533138\pi\)
−0.842391 + 0.538867i \(0.818852\pi\)
\(272\) 4.04892 + 1.94986i 0.245502 + 0.118227i
\(273\) 0 0
\(274\) 6.93900 3.34165i 0.419200 0.201876i
\(275\) −3.74525 −0.225847
\(276\) 0 0
\(277\) 4.13318 1.99043i 0.248339 0.119594i −0.305574 0.952168i \(-0.598848\pi\)
0.553913 + 0.832575i \(0.313134\pi\)
\(278\) 0.496648 + 0.622776i 0.0297869 + 0.0373516i
\(279\) 0 0
\(280\) 2.35494i 0.140735i
\(281\) 4.15644 18.2106i 0.247952 1.08635i −0.685619 0.727960i \(-0.740469\pi\)
0.933572 0.358390i \(-0.116674\pi\)
\(282\) 0 0
\(283\) 1.60441 7.02937i 0.0953722 0.417853i −0.904592 0.426278i \(-0.859825\pi\)
0.999965 + 0.00842499i \(0.00268179\pi\)
\(284\) 8.54288 + 10.7124i 0.506926 + 0.635666i
\(285\) 0 0
\(286\) −2.19806 + 2.75628i −0.129974 + 0.162982i
\(287\) 15.7289 12.5433i 0.928445 0.740410i
\(288\) 0 0
\(289\) 1.99247 2.49847i 0.117204 0.146969i
\(290\) 4.31767 + 2.07928i 0.253542 + 0.122099i
\(291\) 0 0
\(292\) −1.29105 + 5.65647i −0.0755531 + 0.331020i
\(293\) −19.0858 −1.11500 −0.557501 0.830176i \(-0.688240\pi\)
−0.557501 + 0.830176i \(0.688240\pi\)
\(294\) 0 0
\(295\) −7.29483 −0.424722
\(296\) 2.33997 10.2521i 0.136008 0.595890i
\(297\) 0 0
\(298\) 3.44504 + 1.65904i 0.199566 + 0.0961059i
\(299\) −22.7385 + 28.5132i −1.31500 + 1.64896i
\(300\) 0 0
\(301\) −5.21499 10.8290i −0.300587 0.624175i
\(302\) 7.09448 8.89620i 0.408242 0.511919i
\(303\) 0 0
\(304\) 2.77144 + 3.47527i 0.158953 + 0.199321i
\(305\) 2.43535 10.6700i 0.139448 0.610961i
\(306\) 0 0
\(307\) 6.29709 27.5894i 0.359394 1.57461i −0.395313 0.918547i \(-0.629364\pi\)
0.754707 0.656062i \(-0.227779\pi\)
\(308\) −1.84117 + 1.46828i −0.104910 + 0.0836631i
\(309\) 0 0
\(310\) −2.48188 3.11218i −0.140961 0.176760i
\(311\) 10.9487 5.27261i 0.620843 0.298982i −0.0968958 0.995295i \(-0.530891\pi\)
0.717739 + 0.696312i \(0.245177\pi\)
\(312\) 0 0
\(313\) 3.18598 0.180082 0.0900411 0.995938i \(-0.471300\pi\)
0.0900411 + 0.995938i \(0.471300\pi\)
\(314\) −7.66637 + 3.69193i −0.432638 + 0.208348i
\(315\) 0 0
\(316\) −3.31551 1.59667i −0.186512 0.0898195i
\(317\) −15.5133 7.47083i −0.871316 0.419604i −0.0558707 0.998438i \(-0.517793\pi\)
−0.815445 + 0.578834i \(0.803508\pi\)
\(318\) 0 0
\(319\) 1.06638 + 4.67210i 0.0597056 + 0.261587i
\(320\) 0.801938 + 0.386193i 0.0448297 + 0.0215888i
\(321\) 0 0
\(322\) −19.0465 + 15.1891i −1.06142 + 0.846455i
\(323\) 17.9976 8.66719i 1.00141 0.482255i
\(324\) 0 0
\(325\) −16.6659 −0.924460
\(326\) 4.88620 2.35307i 0.270622 0.130324i
\(327\) 0 0
\(328\) −1.69202 7.41323i −0.0934263 0.409327i
\(329\) −5.66355 + 11.7605i −0.312241 + 0.648376i
\(330\) 0 0
\(331\) 21.9807 10.5853i 1.20817 0.581823i 0.282174 0.959363i \(-0.408944\pi\)
0.925993 + 0.377540i \(0.123230\pi\)
\(332\) −0.493959 + 2.16418i −0.0271095 + 0.118775i
\(333\) 0 0
\(334\) 4.47650 + 19.6128i 0.244943 + 1.07317i
\(335\) −3.40581 + 4.27075i −0.186079 + 0.233336i
\(336\) 0 0
\(337\) −9.88740 12.3984i −0.538601 0.675384i 0.435841 0.900024i \(-0.356451\pi\)
−0.974442 + 0.224640i \(0.927880\pi\)
\(338\) −1.67576 + 2.10134i −0.0911493 + 0.114298i
\(339\) 0 0
\(340\) 2.49396 3.12733i 0.135254 0.169603i
\(341\) 0.885772 3.88082i 0.0479672 0.210158i
\(342\) 0 0
\(343\) −14.4797 11.5472i −0.781831 0.623490i
\(344\) −4.54288 −0.244935
\(345\) 0 0
\(346\) −11.6799 + 14.6462i −0.627917 + 0.787384i
\(347\) 8.50365 + 4.09514i 0.456500 + 0.219839i 0.647979 0.761658i \(-0.275614\pi\)
−0.191480 + 0.981497i \(0.561329\pi\)
\(348\) 0 0
\(349\) 10.4852 + 13.1481i 0.561261 + 0.703800i 0.978790 0.204864i \(-0.0656752\pi\)
−0.417529 + 0.908664i \(0.637104\pi\)
\(350\) −10.8535 2.47725i −0.580146 0.132415i
\(351\) 0 0
\(352\) 0.198062 + 0.867767i 0.0105568 + 0.0462522i
\(353\) 0.905149 + 1.13502i 0.0481762 + 0.0604111i 0.805336 0.592819i \(-0.201985\pi\)
−0.757160 + 0.653230i \(0.773414\pi\)
\(354\) 0 0
\(355\) 10.9879 5.29150i 0.583178 0.280844i
\(356\) 2.86831 12.5669i 0.152020 0.666044i
\(357\) 0 0
\(358\) 0.994623 + 4.35773i 0.0525675 + 0.230313i
\(359\) 8.83877 + 11.0835i 0.466493 + 0.584963i 0.958308 0.285736i \(-0.0922381\pi\)
−0.491816 + 0.870699i \(0.663667\pi\)
\(360\) 0 0
\(361\) 0.758397 0.0399156
\(362\) 21.8582 1.14884
\(363\) 0 0
\(364\) −8.19298 + 6.53368i −0.429429 + 0.342458i
\(365\) 4.65279 + 2.24067i 0.243538 + 0.117282i
\(366\) 0 0
\(367\) −1.95204 8.55246i −0.101896 0.446435i −0.999978 0.00660730i \(-0.997897\pi\)
0.898082 0.439827i \(-0.144960\pi\)
\(368\) 2.04892 + 8.97689i 0.106807 + 0.467953i
\(369\) 0 0
\(370\) −8.43296 4.06110i −0.438409 0.211127i
\(371\) −23.3860 18.6497i −1.21414 0.968243i
\(372\) 0 0
\(373\) 22.0006 1.13915 0.569574 0.821940i \(-0.307108\pi\)
0.569574 + 0.821940i \(0.307108\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) 3.07606 + 3.85726i 0.158636 + 0.198923i
\(377\) 4.74525 + 20.7903i 0.244393 + 1.07076i
\(378\) 0 0
\(379\) 7.44816 32.6325i 0.382586 1.67622i −0.306760 0.951787i \(-0.599245\pi\)
0.689346 0.724432i \(-0.257898\pi\)
\(380\) 3.56465 1.71664i 0.182863 0.0880619i
\(381\) 0 0
\(382\) −13.7778 17.2768i −0.704932 0.883957i
\(383\) 5.00000 + 21.9064i 0.255488 + 1.11937i 0.926017 + 0.377483i \(0.123210\pi\)
−0.670529 + 0.741884i \(0.733933\pi\)
\(384\) 0 0
\(385\) 0.909461 + 1.88852i 0.0463504 + 0.0962477i
\(386\) 0.386731 + 0.484946i 0.0196841 + 0.0246831i
\(387\) 0 0
\(388\) 14.1908 + 6.83394i 0.720430 + 0.346941i
\(389\) 8.09783 10.1544i 0.410577 0.514847i −0.532949 0.846148i \(-0.678916\pi\)
0.943525 + 0.331301i \(0.107488\pi\)
\(390\) 0 0
\(391\) 41.3793 2.09264
\(392\) −6.30678 + 3.03719i −0.318541 + 0.153401i
\(393\) 0 0
\(394\) −2.29159 + 10.0401i −0.115448 + 0.505812i
\(395\) −2.04221 + 2.56085i −0.102755 + 0.128851i
\(396\) 0 0
\(397\) 1.91036 2.39552i 0.0958783 0.120228i −0.731578 0.681758i \(-0.761216\pi\)
0.827456 + 0.561530i \(0.189787\pi\)
\(398\) −2.94235 3.68959i −0.147487 0.184943i
\(399\) 0 0
\(400\) −2.62349 + 3.28975i −0.131174 + 0.164488i
\(401\) −2.07606 9.09583i −0.103674 0.454224i −0.999943 0.0107131i \(-0.996590\pi\)
0.896269 0.443511i \(-0.146267\pi\)
\(402\) 0 0
\(403\) 3.94158 17.2692i 0.196344 0.860241i
\(404\) −6.45473 + 3.10843i −0.321135 + 0.154650i
\(405\) 0 0
\(406\) 14.2448i 0.706959i
\(407\) −2.08277 9.12521i −0.103239 0.452320i
\(408\) 0 0
\(409\) −4.73341 + 2.27949i −0.234052 + 0.112713i −0.547234 0.836980i \(-0.684319\pi\)
0.313182 + 0.949693i \(0.398605\pi\)
\(410\) −6.76809 −0.334252
\(411\) 0 0
\(412\) −8.33997 + 4.01632i −0.410881 + 0.197870i
\(413\) −9.40821 19.5363i −0.462948 0.961321i
\(414\) 0 0
\(415\) 1.78017 + 0.857283i 0.0873850 + 0.0420824i
\(416\) 0.881355 + 3.86147i 0.0432120 + 0.189324i
\(417\) 0 0
\(418\) 3.56465 + 1.71664i 0.174353 + 0.0839638i
\(419\) 17.6310 + 8.49065i 0.861332 + 0.414796i 0.811771 0.583976i \(-0.198504\pi\)
0.0495606 + 0.998771i \(0.484218\pi\)
\(420\) 0 0
\(421\) −32.5758 + 15.6877i −1.58765 + 0.764571i −0.999038 0.0438456i \(-0.986039\pi\)
−0.588610 + 0.808417i \(0.700325\pi\)
\(422\) 14.6136 0.711377
\(423\) 0 0
\(424\) −10.1860 + 4.90531i −0.494675 + 0.238223i
\(425\) 11.7899 + 14.7840i 0.571892 + 0.717130i
\(426\) 0 0
\(427\) 31.7162 7.23903i 1.53486 0.350321i
\(428\) −2.24698 + 9.84466i −0.108612 + 0.475860i
\(429\) 0 0
\(430\) −0.899772 + 3.94216i −0.0433909 + 0.190108i
\(431\) 25.5743 + 32.0692i 1.23187 + 1.54472i 0.737267 + 0.675601i \(0.236116\pi\)
0.494605 + 0.869118i \(0.335313\pi\)
\(432\) 0 0
\(433\) −19.4852 + 24.4337i −0.936400 + 1.17421i 0.0481028 + 0.998842i \(0.484682\pi\)
−0.984503 + 0.175367i \(0.943889\pi\)
\(434\) 5.13384 10.6605i 0.246432 0.511722i
\(435\) 0 0
\(436\) −2.29859 + 2.88233i −0.110082 + 0.138039i
\(437\) 36.8756 + 17.7584i 1.76400 + 0.849497i
\(438\) 0 0
\(439\) 8.81604 38.6256i 0.420767 1.84350i −0.107204 0.994237i \(-0.534190\pi\)
0.527970 0.849263i \(-0.322953\pi\)
\(440\) 0.792249 0.0377690
\(441\) 0 0
\(442\) 17.7995 0.846638
\(443\) 4.68963 20.5466i 0.222811 0.976199i −0.732540 0.680724i \(-0.761665\pi\)
0.955351 0.295474i \(-0.0954777\pi\)
\(444\) 0 0
\(445\) −10.3370 4.97806i −0.490023 0.235983i
\(446\) −9.16033 + 11.4867i −0.433754 + 0.543910i
\(447\) 0 0
\(448\) 2.64575i 0.125000i
\(449\) 5.63102 7.06108i 0.265744 0.333233i −0.630999 0.775784i \(-0.717355\pi\)
0.896744 + 0.442551i \(0.145926\pi\)
\(450\) 0 0
\(451\) −4.21983 5.29150i −0.198704 0.249167i
\(452\) −1.29052 + 5.65414i −0.0607010 + 0.265948i
\(453\) 0 0
\(454\) 4.45042 19.4986i 0.208868 0.915113i
\(455\) 4.04700 + 8.40368i 0.189726 + 0.393971i
\(456\) 0 0
\(457\) −13.1942 16.5450i −0.617198 0.773941i 0.370750 0.928733i \(-0.379101\pi\)
−0.987947 + 0.154792i \(0.950529\pi\)
\(458\) 8.42812 4.05877i 0.393820 0.189654i
\(459\) 0 0
\(460\) 8.19567 0.382125
\(461\) 32.8853 15.8367i 1.53162 0.737590i 0.537238 0.843431i \(-0.319468\pi\)
0.994383 + 0.105841i \(0.0337534\pi\)
\(462\) 0 0
\(463\) 9.35839 + 4.50676i 0.434921 + 0.209447i 0.638517 0.769608i \(-0.279548\pi\)
−0.203595 + 0.979055i \(0.565263\pi\)
\(464\) 4.85086 + 2.33605i 0.225195 + 0.108448i
\(465\) 0 0
\(466\) −4.72587 20.7054i −0.218922 0.959159i
\(467\) −0.660563 0.318110i −0.0305672 0.0147204i 0.418538 0.908199i \(-0.362543\pi\)
−0.449105 + 0.893479i \(0.648257\pi\)
\(468\) 0 0
\(469\) −15.8300 3.61310i −0.730964 0.166838i
\(470\) 3.95646 1.90533i 0.182498 0.0878863i
\(471\) 0 0
\(472\) −8.19567 −0.377236
\(473\) −3.64310 + 1.75443i −0.167510 + 0.0806686i
\(474\) 0 0
\(475\) 4.16195 + 18.2347i 0.190963 + 0.836665i
\(476\) 11.5918 + 2.64575i 0.531309 + 0.121268i
\(477\) 0 0
\(478\) −6.80194 + 3.27564i −0.311113 + 0.149824i
\(479\) 5.62565 24.6476i 0.257042 1.12618i −0.667353 0.744741i \(-0.732573\pi\)
0.924396 0.381435i \(-0.124570\pi\)
\(480\) 0 0
\(481\) −9.26809 40.6061i −0.422588 1.85148i
\(482\) −3.59448 + 4.50734i −0.163724 + 0.205304i
\(483\) 0 0
\(484\) −6.36443 7.98074i −0.289292 0.362761i
\(485\) 8.74094 10.9608i 0.396906 0.497704i
\(486\) 0 0
\(487\) −14.8319 + 18.5986i −0.672098 + 0.842784i −0.994600 0.103785i \(-0.966905\pi\)
0.322502 + 0.946569i \(0.395476\pi\)
\(488\) 2.73609 11.9876i 0.123857 0.542654i
\(489\) 0 0
\(490\) 1.38644 + 6.07437i 0.0626328 + 0.274412i
\(491\) 4.69441 0.211856 0.105928 0.994374i \(-0.466219\pi\)
0.105928 + 0.994374i \(0.466219\pi\)
\(492\) 0 0
\(493\) 15.0858 18.9169i 0.679428 0.851976i
\(494\) 15.8623 + 7.63887i 0.713677 + 0.343689i
\(495\) 0 0
\(496\) −2.78836 3.49650i −0.125201 0.156997i
\(497\) 28.3424 + 22.6023i 1.27133 + 1.01385i
\(498\) 0 0
\(499\) −1.64795 7.22013i −0.0737723 0.323218i 0.924554 0.381051i \(-0.124438\pi\)
−0.998326 + 0.0578336i \(0.981581\pi\)
\(500\) 5.10992 + 6.40763i 0.228522 + 0.286558i
\(501\) 0 0
\(502\) −11.3666 + 5.47386i −0.507315 + 0.244310i
\(503\) −0.496352 + 2.17466i −0.0221312 + 0.0969633i −0.984787 0.173764i \(-0.944407\pi\)
0.962656 + 0.270727i \(0.0872642\pi\)
\(504\) 0 0
\(505\) 1.41896 + 6.21687i 0.0631429 + 0.276647i
\(506\) 5.10992 + 6.40763i 0.227163 + 0.284854i
\(507\) 0 0
\(508\) 1.51142 0.0670583
\(509\) 27.2620 1.20837 0.604184 0.796844i \(-0.293499\pi\)
0.604184 + 0.796844i \(0.293499\pi\)
\(510\) 0 0
\(511\) 15.3505i 0.679065i
\(512\) 0.900969 + 0.433884i 0.0398176 + 0.0191751i
\(513\) 0 0
\(514\) 2.57242 + 11.2705i 0.113464 + 0.497120i
\(515\) 1.83340 + 8.03264i 0.0807891 + 0.353960i
\(516\) 0 0
\(517\) 3.95646 + 1.90533i 0.174005 + 0.0837963i
\(518\) 27.8220i 1.22243i
\(519\) 0 0
\(520\) 3.52542 0.154600
\(521\) −12.7138 −0.557001 −0.278501 0.960436i \(-0.589837\pi\)
−0.278501 + 0.960436i \(0.589837\pi\)
\(522\) 0 0
\(523\) −8.79672 11.0307i −0.384654 0.482341i 0.551378 0.834255i \(-0.314102\pi\)
−0.936032 + 0.351915i \(0.885531\pi\)
\(524\) −3.74094 16.3901i −0.163424 0.716006i
\(525\) 0 0
\(526\) 0.757332 3.31809i 0.0330213 0.144676i
\(527\) −18.1075 + 8.72012i −0.788776 + 0.379855i
\(528\) 0 0
\(529\) 38.5209 + 48.3036i 1.67482 + 2.10016i
\(530\) 2.23921 + 9.81062i 0.0972651 + 0.426146i
\(531\) 0 0
\(532\) 9.19471 + 7.33254i 0.398641 + 0.317906i
\(533\) −18.7778 23.5466i −0.813356 1.01992i
\(534\) 0 0
\(535\) 8.09783 + 3.89971i 0.350100 + 0.168599i
\(536\) −3.82640 + 4.79815i −0.165275 + 0.207248i
\(537\) 0 0
\(538\) 26.6461 1.14879
\(539\) −3.88471 + 4.87127i −0.167326 + 0.209820i
\(540\) 0 0
\(541\) 5.96197 26.1211i 0.256325 1.12303i −0.668821 0.743423i \(-0.733201\pi\)
0.925147 0.379610i \(-0.123942\pi\)
\(542\) −10.7805 + 13.5183i −0.463061 + 0.580660i
\(543\) 0 0
\(544\) 2.80194 3.51352i 0.120132 0.150641i
\(545\) 2.04593 + 2.56552i 0.0876382 + 0.109895i
\(546\) 0 0
\(547\) −6.59030 + 8.26398i −0.281781 + 0.353342i −0.902499 0.430692i \(-0.858270\pi\)
0.620718 + 0.784034i \(0.286841\pi\)
\(548\) −1.71379 7.50861i −0.0732096 0.320752i
\(549\) 0 0
\(550\) −0.833397 + 3.65135i −0.0355362 + 0.155694i
\(551\) 21.5623 10.3838i 0.918583 0.442366i
\(552\) 0 0
\(553\) −9.49210 2.16651i −0.403645 0.0921294i
\(554\) −1.02081 4.47246i −0.0433701 0.190017i
\(555\) 0 0
\(556\) 0.717677 0.345615i 0.0304363 0.0146573i
\(557\) −10.2500 −0.434305 −0.217152 0.976138i \(-0.569677\pi\)
−0.217152 + 0.976138i \(0.569677\pi\)
\(558\) 0 0
\(559\) −16.2114 + 7.80700i −0.685669 + 0.330201i
\(560\) 2.29590 + 0.524023i 0.0970194 + 0.0221440i
\(561\) 0 0
\(562\) −16.8291 8.10446i −0.709892 0.341866i
\(563\) 0.442649 + 1.93937i 0.0186554 + 0.0817348i 0.983399 0.181458i \(-0.0580816\pi\)
−0.964743 + 0.263193i \(0.915224\pi\)
\(564\) 0 0
\(565\) 4.65087 + 2.23974i 0.195664 + 0.0942267i
\(566\) −6.49612 3.12836i −0.273052 0.131495i
\(567\) 0 0
\(568\) 12.3448 5.94495i 0.517977 0.249445i
\(569\) 27.5797 1.15620 0.578101 0.815965i \(-0.303794\pi\)
0.578101 + 0.815965i \(0.303794\pi\)
\(570\) 0 0
\(571\) 1.78232 0.858322i 0.0745879 0.0359196i −0.396218 0.918157i \(-0.629678\pi\)
0.470806 + 0.882237i \(0.343963\pi\)
\(572\) 2.19806 + 2.75628i 0.0919056 + 0.115246i
\(573\) 0 0
\(574\) −8.72886 18.1257i −0.364335 0.756550i
\(575\) −8.62133 + 37.7725i −0.359534 + 1.57522i
\(576\) 0 0
\(577\) −2.97189 + 13.0207i −0.123722 + 0.542059i 0.874637 + 0.484779i \(0.161100\pi\)
−0.998358 + 0.0572803i \(0.981757\pi\)
\(578\) −1.99247 2.49847i −0.0828757 0.103923i
\(579\) 0 0
\(580\) 2.98792 3.74673i 0.124067 0.155575i
\(581\) 5.87312i 0.243658i
\(582\) 0 0
\(583\) −6.27413 + 7.86751i −0.259848 + 0.325839i
\(584\) 5.22737 + 2.51737i 0.216310 + 0.104169i
\(585\) 0 0
\(586\) −4.24698 + 18.6072i −0.175441 + 0.768658i
\(587\) −11.7259 −0.483979 −0.241989 0.970279i \(-0.577800\pi\)
−0.241989 + 0.970279i \(0.577800\pi\)
\(588\) 0 0
\(589\) −19.8791 −0.819103
\(590\) −1.62325 + 7.11194i −0.0668283 + 0.292794i
\(591\) 0 0
\(592\) −9.47434 4.56260i −0.389393 0.187522i
\(593\) −11.5278 + 14.4554i −0.473390 + 0.593613i −0.959998 0.280008i \(-0.909663\pi\)
0.486607 + 0.873621i \(0.338234\pi\)
\(594\) 0 0
\(595\) 4.59179 9.53496i 0.188245 0.390895i
\(596\) 2.38404 2.98950i 0.0976542 0.122454i
\(597\) 0 0
\(598\) 22.7385 + 28.5132i 0.929848 + 1.16599i
\(599\) −0.594187 + 2.60330i −0.0242778 + 0.106368i −0.985615 0.169006i \(-0.945944\pi\)
0.961337 + 0.275374i \(0.0888016\pi\)
\(600\) 0 0
\(601\) 4.07308 17.8453i 0.166144 0.727926i −0.821370 0.570396i \(-0.806790\pi\)
0.987514 0.157530i \(-0.0503531\pi\)
\(602\) −11.7180 + 2.67455i −0.477589 + 0.109007i
\(603\) 0 0
\(604\) −7.09448 8.89620i −0.288670 0.361981i
\(605\) −8.18598 + 3.94216i −0.332807 + 0.160272i
\(606\) 0 0
\(607\) −33.2707 −1.35041 −0.675207 0.737628i \(-0.735946\pi\)
−0.675207 + 0.737628i \(0.735946\pi\)
\(608\) 4.00484 1.92863i 0.162418 0.0782163i
\(609\) 0 0
\(610\) −9.86054 4.74859i −0.399242 0.192265i
\(611\) 17.6058 + 8.47850i 0.712254 + 0.343004i
\(612\) 0 0
\(613\) 2.78070 + 12.1830i 0.112311 + 0.492068i 0.999528 + 0.0307156i \(0.00977862\pi\)
−0.887217 + 0.461353i \(0.847364\pi\)
\(614\) −25.4964 12.2784i −1.02895 0.495517i
\(615\) 0 0
\(616\) 1.02177 + 2.12173i 0.0411683 + 0.0854868i
\(617\) 2.92154 1.40694i 0.117617 0.0566413i −0.374150 0.927368i \(-0.622065\pi\)
0.491767 + 0.870727i \(0.336351\pi\)
\(618\) 0 0
\(619\) 22.6595 0.910762 0.455381 0.890297i \(-0.349503\pi\)
0.455381 + 0.890297i \(0.349503\pi\)
\(620\) −3.58642 + 1.72713i −0.144034 + 0.0693631i
\(621\) 0 0
\(622\) −2.70410 11.8474i −0.108425 0.475039i
\(623\) 34.1040i 1.36635i
\(624\) 0 0
\(625\) −12.3828 + 5.96326i −0.495314 + 0.238531i
\(626\) 0.708947 3.10610i 0.0283352 0.124145i
\(627\) 0 0
\(628\) 1.89344 + 8.29569i 0.0755563 + 0.331034i
\(629\) −29.4644 + 36.9472i −1.17482 + 1.47318i
\(630\) 0 0
\(631\) 7.55645 + 9.47549i 0.300818 + 0.377213i 0.909150 0.416469i \(-0.136733\pi\)
−0.608332 + 0.793682i \(0.708161\pi\)
\(632\) −2.29440 + 2.87709i −0.0912665 + 0.114445i
\(633\) 0 0
\(634\) −10.7356 + 13.4620i −0.426364 + 0.534643i
\(635\) 0.299355 1.31156i 0.0118795 0.0520476i
\(636\) 0 0
\(637\) −17.2865 + 21.6766i −0.684916 + 0.858858i
\(638\) 4.79225 0.189727
\(639\) 0 0
\(640\) 0.554958 0.695895i 0.0219366 0.0275077i
\(641\) −37.1269 17.8794i −1.46642 0.706193i −0.481065 0.876685i \(-0.659750\pi\)
−0.985359 + 0.170492i \(0.945464\pi\)
\(642\) 0 0
\(643\) 6.93631 + 8.69786i 0.273541 + 0.343010i 0.899559 0.436799i \(-0.143888\pi\)
−0.626018 + 0.779809i \(0.715316\pi\)
\(644\) 10.5700 + 21.9489i 0.416517 + 0.864907i
\(645\) 0 0
\(646\) −4.44504 19.4750i −0.174888 0.766234i
\(647\) −26.9584 33.8047i −1.05984 1.32900i −0.941867 0.335985i \(-0.890931\pi\)
−0.117976 0.993016i \(-0.537641\pi\)
\(648\) 0 0
\(649\) −6.57242 + 3.16511i −0.257990 + 0.124241i
\(650\) −3.70852 + 16.2481i −0.145460 + 0.637303i
\(651\) 0 0
\(652\) −1.20679 5.28730i −0.0472616 0.207067i
\(653\) −4.28919 5.37848i −0.167849 0.210476i 0.690792 0.723054i \(-0.257262\pi\)
−0.858641 + 0.512578i \(0.828691\pi\)
\(654\) 0 0
\(655\) −14.9638 −0.584682
\(656\) −7.60388 −0.296881
\(657\) 0 0
\(658\) 10.2054 + 8.13850i 0.397846 + 0.317272i
\(659\) −5.97046 2.87522i −0.232576 0.112003i 0.313966 0.949434i \(-0.398342\pi\)
−0.546543 + 0.837431i \(0.684056\pi\)
\(660\) 0 0
\(661\) 2.13600 + 9.35842i 0.0830807 + 0.364000i 0.999330 0.0366090i \(-0.0116556\pi\)
−0.916249 + 0.400609i \(0.868798\pi\)
\(662\) −5.42878 23.7850i −0.210996 0.924432i
\(663\) 0 0
\(664\) 2.00000 + 0.963149i 0.0776151 + 0.0373774i
\(665\) 8.18406 6.52657i 0.317364 0.253090i
\(666\) 0 0
\(667\) 49.5749 1.91955
\(668\) 20.1172 0.778358
\(669\) 0 0
\(670\) 3.40581 + 4.27075i 0.131578 + 0.164994i
\(671\) −2.43535 10.6700i −0.0940158 0.411910i
\(672\) 0 0
\(673\) −1.14819 + 5.03053i −0.0442593 + 0.193913i −0.992224 0.124461i \(-0.960280\pi\)
0.947965 + 0.318374i \(0.103137\pi\)
\(674\) −14.2877 + 6.88059i −0.550342 + 0.265031i
\(675\) 0 0
\(676\) 1.67576 + 2.10134i 0.0644523 + 0.0808206i
\(677\) −3.32736 14.5781i −0.127881 0.560282i −0.997753 0.0670043i \(-0.978656\pi\)
0.869872 0.493277i \(-0.164201\pi\)
\(678\) 0 0
\(679\) 40.6274 + 9.27295i 1.55914 + 0.355863i
\(680\) −2.49396 3.12733i −0.0956390 0.119927i
\(681\) 0 0
\(682\) −3.58642 1.72713i −0.137331 0.0661351i
\(683\) 32.2543 40.4456i 1.23418 1.54761i 0.505336 0.862923i \(-0.331369\pi\)
0.728840 0.684685i \(-0.240060\pi\)
\(684\) 0 0
\(685\) −6.85517 −0.261922
\(686\) −14.4797 + 11.5472i −0.552838 + 0.440874i
\(687\) 0 0
\(688\) −1.01089 + 4.42898i −0.0385396 + 0.168853i
\(689\) −27.9191 + 35.0095i −1.06363 + 1.33376i
\(690\) 0 0
\(691\) 24.2634 30.4253i 0.923022 1.15743i −0.0641766 0.997939i \(-0.520442\pi\)
0.987199 0.159495i \(-0.0509865\pi\)
\(692\) 11.6799 + 14.6462i 0.444005 + 0.556764i
\(693\) 0 0
\(694\) 5.88471 7.37919i 0.223380 0.280110i
\(695\) −0.157769 0.691230i −0.00598451 0.0262198i
\(696\) 0 0
\(697\) −7.60388 + 33.3148i −0.288017 + 1.26189i
\(698\) 15.1516 7.29662i 0.573496 0.276181i
\(699\) 0 0
\(700\) −4.83028 + 10.0302i −0.182567 + 0.379105i
\(701\) 3.38165 + 14.8160i 0.127723 + 0.559592i 0.997777 + 0.0666357i \(0.0212265\pi\)
−0.870054 + 0.492956i \(0.835916\pi\)
\(702\) 0 0
\(703\) −42.1139 + 20.2810i −1.58835 + 0.764911i
\(704\) 0.890084 0.0335463
\(705\) 0 0
\(706\) 1.30798 0.629889i 0.0492264 0.0237062i
\(707\) −14.8194 + 11.8181i −0.557341 + 0.444464i
\(708\) 0 0
\(709\) 42.5550 + 20.4934i 1.59819 + 0.769646i 0.999509 0.0313430i \(-0.00997843\pi\)
0.598679 + 0.800989i \(0.295693\pi\)
\(710\) −2.71379 11.8899i −0.101847 0.446220i
\(711\) 0 0
\(712\) −11.6136 5.59280i −0.435237 0.209599i
\(713\) −37.1008 17.8668i −1.38944 0.669117i
\(714\) 0 0
\(715\) 2.82717 1.36149i 0.105730 0.0509169i
\(716\) 4.46980 0.167044
\(717\) 0 0
\(718\) 12.7724 6.15086i 0.476662 0.229548i
\(719\) −16.9571 21.2635i −0.632391 0.792994i 0.357637 0.933861i \(-0.383582\pi\)
−0.990029 + 0.140867i \(0.955011\pi\)
\(720\) 0 0
\(721\) −19.1477 + 15.2698i −0.713098 + 0.568677i
\(722\) 0.168759 0.739383i 0.00628057 0.0275170i
\(723\) 0 0
\(724\) 4.86390 21.3101i 0.180765 0.791984i
\(725\) 14.1250 + 17.7122i 0.524589 + 0.657813i
\(726\) 0 0
\(727\) −17.3056 + 21.7005i −0.641829 + 0.804828i −0.991230 0.132145i \(-0.957813\pi\)
0.349402 + 0.936973i \(0.386385\pi\)
\(728\) 4.54676 + 9.44145i 0.168514 + 0.349923i
\(729\) 0 0
\(730\) 3.21983 4.03754i 0.119171 0.149436i
\(731\) 18.3937 + 8.85795i 0.680317 + 0.327623i
\(732\) 0 0
\(733\) −3.12379 + 13.6862i −0.115380 + 0.505511i 0.883904 + 0.467668i \(0.154906\pi\)
−0.999284 + 0.0378430i \(0.987951\pi\)
\(734\) −8.77240 −0.323795
\(735\) 0 0
\(736\) 9.20775 0.339402
\(737\) −1.21552 + 5.32554i −0.0447743 + 0.196169i
\(738\) 0 0
\(739\) −17.8034 8.57368i −0.654910 0.315388i 0.0767576 0.997050i \(-0.475543\pi\)
−0.731667 + 0.681662i \(0.761258\pi\)
\(740\) −5.83579 + 7.31785i −0.214528 + 0.269009i
\(741\) 0 0
\(742\) −23.3860 + 18.6497i −0.858526 + 0.684651i
\(743\) 15.3177 19.2077i 0.561951 0.704664i −0.416966 0.908922i \(-0.636907\pi\)
0.978917 + 0.204258i \(0.0654782\pi\)
\(744\) 0 0
\(745\) −2.12200 2.66090i −0.0777440 0.0974879i
\(746\) 4.89559 21.4490i 0.179240 0.785303i
\(747\) 0 0
\(748\) 0.890084 3.89971i 0.0325447 0.142588i
\(749\) 26.7164i 0.976195i
\(750\) 0 0
\(751\) 19.9972 + 25.0757i 0.729710 + 0.915027i 0.998844 0.0480758i \(-0.0153089\pi\)
−0.269134 + 0.963103i \(0.586737\pi\)
\(752\) 4.44504 2.14062i 0.162094 0.0780604i
\(753\) 0 0
\(754\) 21.3250 0.776609
\(755\) −9.12498 + 4.39436i −0.332092 + 0.159927i
\(756\) 0 0
\(757\) −18.7327 9.02121i −0.680853 0.327882i 0.0612929 0.998120i \(-0.480478\pi\)
−0.742146 + 0.670238i \(0.766192\pi\)
\(758\) −30.1570 14.5228i −1.09535 0.527493i
\(759\) 0 0
\(760\) −0.880395 3.85726i −0.0319353 0.139918i
\(761\) −32.3599 15.5837i −1.17304 0.564909i −0.257167 0.966367i \(-0.582789\pi\)
−0.915877 + 0.401458i \(0.868503\pi\)
\(762\) 0 0
\(763\) −4.23208 + 8.78800i −0.153212 + 0.318147i
\(764\) −19.9095 + 9.58789i −0.720299 + 0.346878i
\(765\) 0 0
\(766\) 22.4698 0.811867
\(767\) −29.2465 + 14.0844i −1.05603 + 0.508557i
\(768\) 0 0
\(769\) 1.35450 + 5.93447i 0.0488446 + 0.214002i 0.993461 0.114176i \(-0.0364226\pi\)
−0.944616 + 0.328178i \(0.893565\pi\)
\(770\) 2.04354 0.466425i 0.0736441 0.0168088i
\(771\) 0 0
\(772\) 0.558843 0.269125i 0.0201132 0.00968601i
\(773\) 11.1612 48.9005i 0.401441 1.75883i −0.220128 0.975471i \(-0.570648\pi\)
0.621570 0.783359i \(-0.286495\pi\)
\(774\) 0 0
\(775\) −4.18737 18.3461i −0.150415 0.659010i
\(776\) 9.82036 12.3143i 0.352530 0.442059i
\(777\) 0 0
\(778\) −8.09783 10.1544i −0.290321 0.364052i
\(779\) −21.0737 + 26.4255i −0.755043 + 0.946794i
\(780\) 0 0
\(781\) 7.60388 9.53496i 0.272088 0.341188i
\(782\) 9.20775 40.3418i 0.329269 1.44262i
\(783\) 0 0
\(784\) 1.55765 + 6.82450i 0.0556302 + 0.243732i
\(785\) 7.57374 0.270319
\(786\) 0 0
\(787\) −25.3614 + 31.8022i −0.904035 + 1.13362i 0.0864844 + 0.996253i \(0.472437\pi\)
−0.990520 + 0.137371i \(0.956135\pi\)
\(788\) 9.27844 + 4.46826i 0.330531 + 0.159175i
\(789\) 0 0
\(790\) 2.04221 + 2.56085i 0.0726587 + 0.0911111i
\(791\) 15.3442i 0.545575i
\(792\) 0 0
\(793\) −10.8370 47.4802i −0.384835 1.68607i
\(794\) −1.91036 2.39552i −0.0677962 0.0850138i
\(795\) 0 0
\(796\) −4.25182 + 2.04757i −0.150702 + 0.0725742i
\(797\) 5.59179 24.4992i 0.198072 0.867808i −0.774012 0.633171i \(-0.781753\pi\)
0.972083 0.234637i \(-0.0753900\pi\)
\(798\) 0 0
\(799\) −4.93362 21.6156i −0.174539 0.764706i
\(800\) 2.62349 + 3.28975i 0.0927544 + 0.116310i
\(801\) 0 0
\(802\) −9.32975 −0.329445
\(803\) 5.16421 0.182241
\(804\) 0 0
\(805\) 21.1400 4.82508i 0.745089 0.170062i
\(806\) −15.9591 7.68552i −0.562137 0.270711i
\(807\) 0 0
\(808\) 1.59419 + 6.98459i 0.0560833 + 0.245717i
\(809\) 8.01208 + 35.1032i 0.281690 + 1.23416i 0.895626 + 0.444808i \(0.146728\pi\)
−0.613936 + 0.789356i \(0.710415\pi\)
\(810\) 0 0
\(811\) 4.25086 + 2.04711i 0.149268 + 0.0718837i 0.507027 0.861930i \(-0.330745\pi\)
−0.357758 + 0.933814i \(0.616459\pi\)
\(812\) 13.8877 + 3.16977i 0.487362 + 0.111237i
\(813\) 0 0
\(814\) −9.35988 −0.328064
\(815\) −4.82717 −0.169088
\(816\) 0 0
\(817\) 12.5903 + 15.7877i 0.440479 + 0.552343i
\(818\) 1.16905 + 5.12196i 0.0408750 + 0.179085i
\(819\) 0 0
\(820\) −1.50604 + 6.59840i −0.0525932 + 0.230426i
\(821\) 1.68664 0.812245i 0.0588643 0.0283476i −0.404220 0.914662i \(-0.632457\pi\)
0.463084 + 0.886314i \(0.346743\pi\)
\(822\) 0 0
\(823\) −30.6132 38.3877i −1.06711 1.33811i −0.938060 0.346474i \(-0.887379\pi\)
−0.129049 0.991638i \(-0.541193\pi\)
\(824\) 2.05980 + 9.02458i 0.0717566 + 0.314386i
\(825\) 0 0
\(826\) −21.1400 + 4.82508i −0.735556 + 0.167886i
\(827\) 8.28083 + 10.3838i 0.287953 + 0.361081i 0.904677 0.426098i \(-0.140112\pi\)
−0.616724 + 0.787179i \(0.711541\pi\)
\(828\) 0 0
\(829\) −13.4351 6.47001i −0.466621 0.224713i 0.185773 0.982593i \(-0.440521\pi\)
−0.652394 + 0.757880i \(0.726235\pi\)
\(830\) 1.23191 1.54477i 0.0427604 0.0536198i
\(831\) 0 0
\(832\) 3.96077 0.137315
\(833\) 31.4577 1.08995
\(834\) 0 0
\(835\) 3.98446 17.4571i 0.137888 0.604127i
\(836\) 2.46681 3.09328i 0.0853165 0.106983i
\(837\) 0 0
\(838\) 12.2010 15.2996i 0.421478 0.528517i
\(839\) 2.07979 + 2.60797i 0.0718022 + 0.0900371i 0.816435 0.577437i \(-0.195947\pi\)
−0.744633 + 0.667474i \(0.767376\pi\)
\(840\) 0 0
\(841\) −0.00753275 + 0.00944576i −0.000259750 + 0.000325716i
\(842\) 8.04556 + 35.2499i 0.277268 + 1.21479i
\(843\) 0 0
\(844\) 3.25182 14.2472i 0.111932 0.490408i
\(845\) 2.15538 1.03797i 0.0741472 0.0357074i
\(846\) 0 0
\(847\) −21.1151 16.8387i −0.725522 0.578584i
\(848\) 2.51573 + 11.0221i 0.0863905 + 0.378502i
\(849\) 0 0
\(850\) 17.0368 8.20451i 0.584359 0.281412i
\(851\) −96.8262 −3.31916
\(852\) 0 0
\(853\) 20.7458 9.99064i 0.710322 0.342073i −0.0435890 0.999050i \(-0.513879\pi\)
0.753911 + 0.656976i \(0.228165\pi\)
\(854\) 32.5319i 1.11322i
\(855\) 0 0
\(856\) 9.09783 + 4.38129i 0.310958 + 0.149749i
\(857\) −0.473517 2.07461i −0.0161750 0.0708674i 0.966196 0.257808i \(-0.0830001\pi\)
−0.982371 + 0.186940i \(0.940143\pi\)
\(858\) 0 0
\(859\) −20.6848 9.96127i −0.705756 0.339874i 0.0463420 0.998926i \(-0.485244\pi\)
−0.752098 + 0.659052i \(0.770958\pi\)
\(860\) 3.64310 + 1.75443i 0.124229 + 0.0598254i
\(861\) 0 0
\(862\) 36.9560 17.7971i 1.25873 0.606170i
\(863\) −24.1172 −0.820959 −0.410480 0.911870i \(-0.634639\pi\)
−0.410480 + 0.911870i \(0.634639\pi\)
\(864\) 0 0
\(865\) 15.0228 7.23462i 0.510792 0.245984i
\(866\) 19.4852 + 24.4337i 0.662135 + 0.830291i
\(867\) 0 0
\(868\) −9.25086 7.37732i −0.313995 0.250402i
\(869\) −0.728857 + 3.19333i −0.0247248 + 0.108326i
\(870\) 0 0
\(871\) −5.40893 + 23.6981i −0.183275 + 0.802978i
\(872\) 2.29859 + 2.88233i 0.0778399 + 0.0976082i
\(873\) 0 0
\(874\) 25.5187 31.9995i 0.863183 1.08240i
\(875\) 16.9530 + 13.5196i 0.573116 + 0.457045i
\(876\) 0 0
\(877\) −12.0281 + 15.0828i −0.406160 + 0.509309i −0.942277 0.334835i \(-0.891319\pi\)
0.536116 + 0.844144i \(0.319891\pi\)
\(878\) −35.6954 17.1900i −1.20466 0.580135i
\(879\) 0 0
\(880\) 0.176292 0.772386i 0.00594280 0.0260371i
\(881\) 21.7232 0.731874 0.365937 0.930640i \(-0.380749\pi\)
0.365937 + 0.930640i \(0.380749\pi\)
\(882\) 0 0
\(883\) −29.6276 −0.997047 −0.498523 0.866876i \(-0.666124\pi\)
−0.498523 + 0.866876i \(0.666124\pi\)
\(884\) 3.96077 17.3533i 0.133215 0.583654i
\(885\) 0 0
\(886\) −18.9879 9.14410i −0.637912 0.307202i
\(887\) −5.74094 + 7.19891i −0.192762 + 0.241716i −0.868815 0.495137i \(-0.835118\pi\)
0.676053 + 0.736853i \(0.263689\pi\)
\(888\) 0 0
\(889\) 3.89858 0.889825i 0.130754 0.0298438i
\(890\) −7.15346 + 8.97015i −0.239784 + 0.300680i
\(891\) 0 0
\(892\) 9.16033 + 11.4867i 0.306710 + 0.384603i
\(893\) 4.87992 21.3803i 0.163300 0.715466i
\(894\) 0 0
\(895\) 0.885298 3.87874i 0.0295922 0.129652i
\(896\) 2.57942 + 0.588735i 0.0861723 + 0.0196683i
\(897\) 0 0
\(898\) −5.63102 7.06108i −0.187910 0.235631i
\(899\) −21.6939 + 10.4473i −0.723533 + 0.348435i
\(900\) 0 0
\(901\) 50.8068 1.69262
\(902\) −6.09783 + 2.93656i −0.203036 + 0.0977768i
\(903\) 0 0
\(904\) 5.22521 + 2.51633i 0.173788 + 0.0836918i
\(905\) −17.5289 8.44146i −0.582680 0.280604i
\(906\) 0 0
\(907\) 4.43200 + 19.4179i 0.147162 + 0.644760i 0.993666 + 0.112376i \(0.0358463\pi\)
−0.846504 + 0.532383i \(0.821297\pi\)
\(908\) −18.0194 8.67767i −0.597994 0.287979i
\(909\) 0 0
\(910\) 9.09352 2.07554i 0.301447 0.0688034i
\(911\) −22.6625 + 10.9137i −0.750842 + 0.361586i −0.769843 0.638233i \(-0.779666\pi\)
0.0190015 + 0.999819i \(0.493951\pi\)
\(912\) 0 0
\(913\) 1.97584 0.0653907
\(914\) −19.0661 + 9.18177i −0.630652 + 0.303706i
\(915\) 0 0
\(916\) −2.08157 9.11997i −0.0687771 0.301332i
\(917\) −19.2989 40.0745i −0.637305 1.32338i
\(918\) 0 0
\(919\) −25.7032 + 12.3780i −0.847870 + 0.408313i −0.806787 0.590843i \(-0.798795\pi\)
−0.0410837 + 0.999156i \(0.513081\pi\)
\(920\) 1.82371 7.99019i 0.0601259 0.263429i
\(921\) 0 0
\(922\) −8.12200 35.5848i −0.267484 1.17192i
\(923\) 33.8364 42.4295i 1.11374 1.39658i
\(924\) 0 0
\(925\) −27.5879 34.5941i −0.907085 1.13745i
\(926\) 6.47621 8.12090i 0.212821 0.266869i
\(927\) 0 0
\(928\) 3.35690 4.20941i 0.110196 0.138181i
\(929\) 8.59312 37.6489i 0.281931 1.23522i −0.613383 0.789786i \(-0.710192\pi\)
0.895314 0.445436i \(-0.146951\pi\)
\(930\) 0 0
\(931\) 28.0339 + 13.5004i 0.918774 + 0.442458i
\(932\) −21.2379 −0.695670
\(933\) 0 0
\(934\) −0.457123 + 0.573215i −0.0149575 + 0.0187562i
\(935\) −3.20775 1.54477i −0.104905 0.0505194i
\(936\) 0 0
\(937\) 11.7661 + 14.7542i 0.384380 + 0.481998i 0.935951 0.352130i \(-0.114543\pi\)
−0.551570 + 0.834128i \(0.685971\pi\)
\(938\) −7.04503 + 14.6292i −0.230028 + 0.477659i
\(939\) 0 0
\(940\) −0.977165 4.28124i −0.0318716 0.139639i
\(941\) −17.2091 21.5795i −0.561000 0.703472i 0.417742 0.908566i \(-0.362821\pi\)
−0.978742 + 0.205094i \(0.934250\pi\)
\(942\) 0 0
\(943\) −63.0810 + 30.3782i −2.05420 + 0.989250i
\(944\) −1.82371 + 7.99019i −0.0593566 + 0.260058i
\(945\) 0 0
\(946\) 0.899772 + 3.94216i 0.0292541 + 0.128171i
\(947\) 4.19269 + 5.25746i 0.136244 + 0.170845i 0.845273 0.534335i \(-0.179438\pi\)
−0.709029 + 0.705179i \(0.750866\pi\)
\(948\) 0 0
\(949\) 22.9801 0.745967
\(950\) 18.7036 0.606826
\(951\) 0 0
\(952\) 5.15883 10.7124i 0.167199 0.347192i
\(953\) −26.4403 12.7330i −0.856484 0.412461i −0.0465037 0.998918i \(-0.514808\pi\)
−0.809980 + 0.586457i \(0.800522\pi\)
\(954\) 0 0
\(955\) 4.37675 + 19.1758i 0.141628 + 0.620514i
\(956\) 1.67994 + 7.36030i 0.0543331 + 0.238049i
\(957\) 0 0
\(958\) −22.7778 10.9692i −0.735916 0.354399i
\(959\) −8.84117 18.3589i −0.285496 0.592839i
\(960\) 0 0
\(961\) −10.9995 −0.354823
\(962\) −41.6504 −1.34286
\(963\) 0 0
\(964\) 3.59448 + 4.50734i 0.115770 + 0.145172i
\(965\) −0.122852 0.538249i −0.00395474 0.0173269i
\(966\) 0 0
\(967\) −7.68545 + 33.6721i −0.247147 + 1.08282i 0.687202 + 0.726466i \(0.258839\pi\)
−0.934350 + 0.356357i \(0.884019\pi\)
\(968\) −9.19687 + 4.42898i −0.295598 + 0.142353i
\(969\) 0 0
\(970\) −8.74094 10.9608i −0.280655 0.351930i
\(971\) −11.6998 51.2601i −0.375464 1.64502i −0.711149 0.703042i \(-0.751825\pi\)
0.335685 0.941974i \(-0.391032\pi\)
\(972\) 0 0
\(973\) 1.64771 1.31401i 0.0528232 0.0421251i
\(974\) 14.8319 + 18.5986i 0.475245 + 0.595938i
\(975\) 0 0
\(976\) −11.0782 5.33499i −0.354605 0.170769i
\(977\) 29.9788 37.5923i 0.959107 1.20268i −0.0200952 0.999798i \(-0.506397\pi\)
0.979203 0.202885i \(-0.0650316\pi\)
\(978\) 0 0
\(979\) −11.4733 −0.366687
\(980\) 6.23059 0.199029
\(981\) 0 0
\(982\) 1.04461 4.57672i 0.0333347 0.146049i
\(983\) −35.1444 + 44.0696i −1.12093 + 1.40560i −0.217930 + 0.975964i \(0.569930\pi\)
−0.903001 + 0.429639i \(0.858641\pi\)
\(984\) 0 0
\(985\) 5.71512 7.16653i 0.182099 0.228345i
\(986\) −15.0858 18.9169i −0.480428 0.602438i
\(987\) 0 0
\(988\) 10.9770 13.7648i 0.349226 0.437915i
\(989\) 9.30798 + 40.7809i 0.295976 + 1.29676i
\(990\) 0 0
\(991\) −8.39062 + 36.7617i −0.266537 + 1.16777i 0.647475 + 0.762086i \(0.275825\pi\)
−0.914012 + 0.405687i \(0.867032\pi\)
\(992\) −4.02930 + 1.94041i −0.127930 + 0.0616081i
\(993\) 0 0
\(994\) 28.3424 22.6023i 0.898967 0.716902i
\(995\) 0.934689 + 4.09514i 0.0296316 + 0.129825i
\(996\) 0 0
\(997\) 54.9614 26.4680i 1.74064 0.838250i 0.758119 0.652116i \(-0.226118\pi\)
0.982524 0.186134i \(-0.0595959\pi\)
\(998\) −7.40581 −0.234427
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.u.c.505.1 yes 6
3.2 odd 2 882.2.u.a.505.1 yes 6
49.36 even 7 inner 882.2.u.c.379.1 yes 6
147.134 odd 14 882.2.u.a.379.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.u.a.379.1 6 147.134 odd 14
882.2.u.a.505.1 yes 6 3.2 odd 2
882.2.u.c.379.1 yes 6 49.36 even 7 inner
882.2.u.c.505.1 yes 6 1.1 even 1 trivial