Properties

Label 882.2.u.c
Level $882$
Weight $2$
Character orbit 882.u
Analytic conductor $7.043$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(127,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.u (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,1,0,-1,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{14}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{14}^{5} + \zeta_{14}^{4} + \cdots + 1) q^{2} - \zeta_{14}^{5} q^{4} + ( - 2 \zeta_{14}^{5} - 2 \zeta_{14}^{3}) q^{5} + ( - \zeta_{14}^{5} + \zeta_{14}^{4} + \cdots - 1) q^{7} - \zeta_{14}^{4} q^{8} + \cdots + 7 \zeta_{14}^{4} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - q^{4} - 4 q^{5} - 7 q^{7} + q^{8} + 4 q^{10} - 10 q^{11} + 12 q^{13} + 7 q^{14} - q^{16} + 6 q^{17} + 26 q^{19} - 4 q^{20} - 4 q^{22} + 22 q^{23} - 11 q^{25} + 16 q^{26} + 7 q^{28} + 2 q^{29}+ \cdots - 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(-\zeta_{14}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
0.900969 0.433884i
−0.623490 + 0.781831i
0.222521 0.974928i
0.222521 + 0.974928i
−0.623490 0.781831i
0.900969 + 0.433884i
0.900969 + 0.433884i 0 0.623490 + 0.781831i 0.801938 + 3.51352i 0 1.14795 2.38374i 0.222521 + 0.974928i 0 −0.801938 + 3.51352i
253.1 −0.623490 0.781831i 0 −0.222521 + 0.974928i −2.24698 + 1.08209i 0 −2.06853 + 1.64960i 0.900969 0.433884i 0 2.24698 + 1.08209i
379.1 0.222521 + 0.974928i 0 −0.900969 + 0.433884i −0.554958 0.695895i 0 −2.57942 + 0.588735i −0.623490 0.781831i 0 0.554958 0.695895i
505.1 0.222521 0.974928i 0 −0.900969 0.433884i −0.554958 + 0.695895i 0 −2.57942 0.588735i −0.623490 + 0.781831i 0 0.554958 + 0.695895i
631.1 −0.623490 + 0.781831i 0 −0.222521 0.974928i −2.24698 1.08209i 0 −2.06853 1.64960i 0.900969 + 0.433884i 0 2.24698 1.08209i
757.1 0.900969 0.433884i 0 0.623490 0.781831i 0.801938 3.51352i 0 1.14795 + 2.38374i 0.222521 0.974928i 0 −0.801938 3.51352i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 127.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
49.e even 7 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.2.u.c yes 6
3.b odd 2 1 882.2.u.a 6
49.e even 7 1 inner 882.2.u.c yes 6
147.l odd 14 1 882.2.u.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
882.2.u.a 6 3.b odd 2 1
882.2.u.a 6 147.l odd 14 1
882.2.u.c yes 6 1.a even 1 1 trivial
882.2.u.c yes 6 49.e even 7 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 4T_{5}^{5} + 16T_{5}^{4} + 64T_{5}^{3} + 144T_{5}^{2} + 128T_{5} + 64 \) acting on \(S_{2}^{\mathrm{new}}(882, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - T^{5} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 4 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$7$ \( T^{6} + 7 T^{5} + \cdots + 343 \) Copy content Toggle raw display
$11$ \( T^{6} + 10 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( T^{6} - 12 T^{5} + \cdots + 1681 \) Copy content Toggle raw display
$17$ \( T^{6} - 6 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$19$ \( (T^{3} - 13 T^{2} + \cdots - 71)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} - 22 T^{5} + \cdots + 10816 \) Copy content Toggle raw display
$29$ \( T^{6} - 2 T^{5} + \cdots + 10816 \) Copy content Toggle raw display
$31$ \( (T^{3} + 7 T^{2} + \cdots - 301)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + 25 T^{5} + \cdots + 19321 \) Copy content Toggle raw display
$41$ \( T^{6} - 280 T^{3} + \cdots + 3136 \) Copy content Toggle raw display
$43$ \( T^{6} - 18 T^{5} + \cdots + 9409 \) Copy content Toggle raw display
$47$ \( T^{6} + 30 T^{5} + \cdots + 322624 \) Copy content Toggle raw display
$53$ \( T^{6} - 32 T^{5} + \cdots + 118336 \) Copy content Toggle raw display
$59$ \( T^{6} - 32 T^{5} + \cdots + 692224 \) Copy content Toggle raw display
$61$ \( T^{6} + 17 T^{5} + \cdots + 121801 \) Copy content Toggle raw display
$67$ \( (T^{3} - 13 T^{2} + \cdots + 13)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + 28 T^{5} + \cdots + 3136 \) Copy content Toggle raw display
$73$ \( T^{6} + 2 T^{5} + \cdots + 5041 \) Copy content Toggle raw display
$79$ \( (T^{3} + 13 T^{2} + \cdots - 167)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} - 16 T^{5} + \cdots + 4096 \) Copy content Toggle raw display
$89$ \( T^{6} - 22 T^{5} + \cdots + 3655744 \) Copy content Toggle raw display
$97$ \( (T^{3} + 11 T^{2} + \cdots + 13)^{2} \) Copy content Toggle raw display
show more
show less