Properties

Label 882.2.f.q.589.3
Level $882$
Weight $2$
Character 882.589
Analytic conductor $7.043$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,2,Mod(295,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.295"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,0,-4,0,0,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 589.3
Root \(-0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 882.589
Dual form 882.2.f.q.295.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.448288 - 1.67303i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.93185 - 3.34607i) q^{5} +(-1.67303 + 0.448288i) q^{6} +1.00000 q^{8} +(-2.59808 - 1.50000i) q^{9} -3.86370 q^{10} +(1.86603 + 3.23205i) q^{11} +(1.22474 + 1.22474i) q^{12} +(3.34607 - 5.79555i) q^{13} +(-4.73205 - 4.73205i) q^{15} +(-0.500000 - 0.866025i) q^{16} -5.41662 q^{17} +3.00000i q^{18} +2.96713 q^{19} +(1.93185 + 3.34607i) q^{20} +(1.86603 - 3.23205i) q^{22} +(0.732051 - 1.26795i) q^{23} +(0.448288 - 1.67303i) q^{24} +(-4.96410 - 8.59808i) q^{25} -6.69213 q^{26} +(-3.67423 + 3.67423i) q^{27} +(2.00000 + 3.46410i) q^{29} +(-1.73205 + 6.46410i) q^{30} +(0.896575 - 1.55291i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(6.24384 - 1.67303i) q^{33} +(2.70831 + 4.69093i) q^{34} +(2.59808 - 1.50000i) q^{36} +0.535898 q^{37} +(-1.48356 - 2.56961i) q^{38} +(-8.19615 - 8.19615i) q^{39} +(1.93185 - 3.34607i) q^{40} +(-0.637756 + 1.10463i) q^{41} +(-1.86603 - 3.23205i) q^{43} -3.73205 q^{44} +(-10.0382 + 5.79555i) q^{45} -1.46410 q^{46} +(5.27792 + 9.14162i) q^{47} +(-1.67303 + 0.448288i) q^{48} +(-4.96410 + 8.59808i) q^{50} +(-2.42820 + 9.06218i) q^{51} +(3.34607 + 5.79555i) q^{52} -2.92820 q^{53} +(5.01910 + 1.34486i) q^{54} +14.4195 q^{55} +(1.33013 - 4.96410i) q^{57} +(2.00000 - 3.46410i) q^{58} +(-4.31199 + 7.46859i) q^{59} +(6.46410 - 1.73205i) q^{60} +(3.48477 + 6.03579i) q^{61} -1.79315 q^{62} +1.00000 q^{64} +(-12.9282 - 22.3923i) q^{65} +(-4.57081 - 4.57081i) q^{66} +(-2.76795 + 4.79423i) q^{67} +(2.70831 - 4.69093i) q^{68} +(-1.79315 - 1.79315i) q^{69} +2.53590 q^{71} +(-2.59808 - 1.50000i) q^{72} +6.83083 q^{73} +(-0.267949 - 0.464102i) q^{74} +(-16.6102 + 4.45069i) q^{75} +(-1.48356 + 2.56961i) q^{76} +(-3.00000 + 11.1962i) q^{78} +(2.46410 + 4.26795i) q^{79} -3.86370 q^{80} +(4.50000 + 7.79423i) q^{81} +1.27551 q^{82} +(-8.95215 - 15.5056i) q^{83} +(-10.4641 + 18.1244i) q^{85} +(-1.86603 + 3.23205i) q^{86} +(6.69213 - 1.79315i) q^{87} +(1.86603 + 3.23205i) q^{88} -7.07107 q^{89} +(10.0382 + 5.79555i) q^{90} +(0.732051 + 1.26795i) q^{92} +(-2.19615 - 2.19615i) q^{93} +(5.27792 - 9.14162i) q^{94} +(5.73205 - 9.92820i) q^{95} +(1.22474 + 1.22474i) q^{96} +(-2.94855 - 5.10703i) q^{97} -11.1962i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{4} + 8 q^{8} + 8 q^{11} - 24 q^{15} - 4 q^{16} + 8 q^{22} - 8 q^{23} - 12 q^{25} + 16 q^{29} - 4 q^{32} + 32 q^{37} - 24 q^{39} - 8 q^{43} - 16 q^{44} + 16 q^{46} - 12 q^{50} + 36 q^{51}+ \cdots + 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0.448288 1.67303i 0.258819 0.965926i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.93185 3.34607i 0.863950 1.49641i −0.00413535 0.999991i \(-0.501316\pi\)
0.868086 0.496414i \(-0.165350\pi\)
\(6\) −1.67303 + 0.448288i −0.683013 + 0.183013i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −2.59808 1.50000i −0.866025 0.500000i
\(10\) −3.86370 −1.22181
\(11\) 1.86603 + 3.23205i 0.562628 + 0.974500i 0.997266 + 0.0738948i \(0.0235429\pi\)
−0.434638 + 0.900605i \(0.643124\pi\)
\(12\) 1.22474 + 1.22474i 0.353553 + 0.353553i
\(13\) 3.34607 5.79555i 0.928032 1.60740i 0.141420 0.989950i \(-0.454833\pi\)
0.786612 0.617448i \(-0.211833\pi\)
\(14\) 0 0
\(15\) −4.73205 4.73205i −1.22181 1.22181i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −5.41662 −1.31372 −0.656861 0.754011i \(-0.728116\pi\)
−0.656861 + 0.754011i \(0.728116\pi\)
\(18\) 3.00000i 0.707107i
\(19\) 2.96713 0.680706 0.340353 0.940298i \(-0.389453\pi\)
0.340353 + 0.940298i \(0.389453\pi\)
\(20\) 1.93185 + 3.34607i 0.431975 + 0.748203i
\(21\) 0 0
\(22\) 1.86603 3.23205i 0.397838 0.689076i
\(23\) 0.732051 1.26795i 0.152643 0.264386i −0.779555 0.626334i \(-0.784555\pi\)
0.932198 + 0.361948i \(0.117888\pi\)
\(24\) 0.448288 1.67303i 0.0915064 0.341506i
\(25\) −4.96410 8.59808i −0.992820 1.71962i
\(26\) −6.69213 −1.31243
\(27\) −3.67423 + 3.67423i −0.707107 + 0.707107i
\(28\) 0 0
\(29\) 2.00000 + 3.46410i 0.371391 + 0.643268i 0.989780 0.142605i \(-0.0455477\pi\)
−0.618389 + 0.785872i \(0.712214\pi\)
\(30\) −1.73205 + 6.46410i −0.316228 + 1.18018i
\(31\) 0.896575 1.55291i 0.161030 0.278912i −0.774209 0.632931i \(-0.781852\pi\)
0.935238 + 0.354019i \(0.115185\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 6.24384 1.67303i 1.08691 0.291238i
\(34\) 2.70831 + 4.69093i 0.464471 + 0.804488i
\(35\) 0 0
\(36\) 2.59808 1.50000i 0.433013 0.250000i
\(37\) 0.535898 0.0881012 0.0440506 0.999029i \(-0.485974\pi\)
0.0440506 + 0.999029i \(0.485974\pi\)
\(38\) −1.48356 2.56961i −0.240666 0.416845i
\(39\) −8.19615 8.19615i −1.31243 1.31243i
\(40\) 1.93185 3.34607i 0.305453 0.529059i
\(41\) −0.637756 + 1.10463i −0.0996008 + 0.172514i −0.911519 0.411257i \(-0.865090\pi\)
0.811919 + 0.583771i \(0.198423\pi\)
\(42\) 0 0
\(43\) −1.86603 3.23205i −0.284566 0.492883i 0.687938 0.725770i \(-0.258516\pi\)
−0.972504 + 0.232887i \(0.925183\pi\)
\(44\) −3.73205 −0.562628
\(45\) −10.0382 + 5.79555i −1.49641 + 0.863950i
\(46\) −1.46410 −0.215870
\(47\) 5.27792 + 9.14162i 0.769863 + 1.33344i 0.937637 + 0.347617i \(0.113009\pi\)
−0.167773 + 0.985826i \(0.553658\pi\)
\(48\) −1.67303 + 0.448288i −0.241481 + 0.0647048i
\(49\) 0 0
\(50\) −4.96410 + 8.59808i −0.702030 + 1.21595i
\(51\) −2.42820 + 9.06218i −0.340016 + 1.26896i
\(52\) 3.34607 + 5.79555i 0.464016 + 0.803699i
\(53\) −2.92820 −0.402220 −0.201110 0.979569i \(-0.564455\pi\)
−0.201110 + 0.979569i \(0.564455\pi\)
\(54\) 5.01910 + 1.34486i 0.683013 + 0.183013i
\(55\) 14.4195 1.94433
\(56\) 0 0
\(57\) 1.33013 4.96410i 0.176180 0.657511i
\(58\) 2.00000 3.46410i 0.262613 0.454859i
\(59\) −4.31199 + 7.46859i −0.561373 + 0.972327i 0.436004 + 0.899945i \(0.356394\pi\)
−0.997377 + 0.0723823i \(0.976940\pi\)
\(60\) 6.46410 1.73205i 0.834512 0.223607i
\(61\) 3.48477 + 6.03579i 0.446179 + 0.772804i 0.998133 0.0610700i \(-0.0194513\pi\)
−0.551955 + 0.833874i \(0.686118\pi\)
\(62\) −1.79315 −0.227730
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −12.9282 22.3923i −1.60355 2.77742i
\(66\) −4.57081 4.57081i −0.562628 0.562628i
\(67\) −2.76795 + 4.79423i −0.338159 + 0.585708i −0.984086 0.177690i \(-0.943137\pi\)
0.645928 + 0.763399i \(0.276471\pi\)
\(68\) 2.70831 4.69093i 0.328431 0.568859i
\(69\) −1.79315 1.79315i −0.215870 0.215870i
\(70\) 0 0
\(71\) 2.53590 0.300956 0.150478 0.988613i \(-0.451919\pi\)
0.150478 + 0.988613i \(0.451919\pi\)
\(72\) −2.59808 1.50000i −0.306186 0.176777i
\(73\) 6.83083 0.799488 0.399744 0.916627i \(-0.369099\pi\)
0.399744 + 0.916627i \(0.369099\pi\)
\(74\) −0.267949 0.464102i −0.0311485 0.0539507i
\(75\) −16.6102 + 4.45069i −1.91798 + 0.513922i
\(76\) −1.48356 + 2.56961i −0.170176 + 0.294754i
\(77\) 0 0
\(78\) −3.00000 + 11.1962i −0.339683 + 1.26771i
\(79\) 2.46410 + 4.26795i 0.277233 + 0.480182i 0.970696 0.240310i \(-0.0772492\pi\)
−0.693463 + 0.720492i \(0.743916\pi\)
\(80\) −3.86370 −0.431975
\(81\) 4.50000 + 7.79423i 0.500000 + 0.866025i
\(82\) 1.27551 0.140857
\(83\) −8.95215 15.5056i −0.982626 1.70196i −0.652043 0.758182i \(-0.726088\pi\)
−0.330583 0.943777i \(-0.607245\pi\)
\(84\) 0 0
\(85\) −10.4641 + 18.1244i −1.13499 + 1.96586i
\(86\) −1.86603 + 3.23205i −0.201219 + 0.348521i
\(87\) 6.69213 1.79315i 0.717472 0.192246i
\(88\) 1.86603 + 3.23205i 0.198919 + 0.344538i
\(89\) −7.07107 −0.749532 −0.374766 0.927119i \(-0.622277\pi\)
−0.374766 + 0.927119i \(0.622277\pi\)
\(90\) 10.0382 + 5.79555i 1.05812 + 0.610905i
\(91\) 0 0
\(92\) 0.732051 + 1.26795i 0.0763216 + 0.132193i
\(93\) −2.19615 2.19615i −0.227730 0.227730i
\(94\) 5.27792 9.14162i 0.544376 0.942886i
\(95\) 5.73205 9.92820i 0.588096 1.01861i
\(96\) 1.22474 + 1.22474i 0.125000 + 0.125000i
\(97\) −2.94855 5.10703i −0.299379 0.518540i 0.676615 0.736337i \(-0.263446\pi\)
−0.975994 + 0.217797i \(0.930113\pi\)
\(98\) 0 0
\(99\) 11.1962i 1.12526i
\(100\) 9.92820 0.992820
\(101\) 2.44949 + 4.24264i 0.243733 + 0.422159i 0.961775 0.273842i \(-0.0882945\pi\)
−0.718041 + 0.696000i \(0.754961\pi\)
\(102\) 9.06218 2.42820i 0.897289 0.240428i
\(103\) 3.72500 6.45189i 0.367035 0.635724i −0.622065 0.782965i \(-0.713706\pi\)
0.989101 + 0.147241i \(0.0470394\pi\)
\(104\) 3.34607 5.79555i 0.328109 0.568301i
\(105\) 0 0
\(106\) 1.46410 + 2.53590i 0.142206 + 0.246308i
\(107\) 3.39230 0.327946 0.163973 0.986465i \(-0.447569\pi\)
0.163973 + 0.986465i \(0.447569\pi\)
\(108\) −1.34486 5.01910i −0.129410 0.482963i
\(109\) −8.92820 −0.855167 −0.427583 0.903976i \(-0.640635\pi\)
−0.427583 + 0.903976i \(0.640635\pi\)
\(110\) −7.20977 12.4877i −0.687424 1.19065i
\(111\) 0.240237 0.896575i 0.0228023 0.0850992i
\(112\) 0 0
\(113\) −3.46410 + 6.00000i −0.325875 + 0.564433i −0.981689 0.190490i \(-0.938992\pi\)
0.655814 + 0.754923i \(0.272326\pi\)
\(114\) −4.96410 + 1.33013i −0.464931 + 0.124578i
\(115\) −2.82843 4.89898i −0.263752 0.456832i
\(116\) −4.00000 −0.371391
\(117\) −17.3867 + 10.0382i −1.60740 + 0.928032i
\(118\) 8.62398 0.793902
\(119\) 0 0
\(120\) −4.73205 4.73205i −0.431975 0.431975i
\(121\) −1.46410 + 2.53590i −0.133100 + 0.230536i
\(122\) 3.48477 6.03579i 0.315496 0.546455i
\(123\) 1.56218 + 1.56218i 0.140857 + 0.140857i
\(124\) 0.896575 + 1.55291i 0.0805149 + 0.139456i
\(125\) −19.0411 −1.70309
\(126\) 0 0
\(127\) 6.53590 0.579967 0.289984 0.957032i \(-0.406350\pi\)
0.289984 + 0.957032i \(0.406350\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −6.24384 + 1.67303i −0.549740 + 0.147302i
\(130\) −12.9282 + 22.3923i −1.13388 + 1.96394i
\(131\) 3.01790 5.22715i 0.263675 0.456698i −0.703541 0.710655i \(-0.748399\pi\)
0.967216 + 0.253957i \(0.0817321\pi\)
\(132\) −1.67303 + 6.24384i −0.145619 + 0.543457i
\(133\) 0 0
\(134\) 5.53590 0.478229
\(135\) 5.19615 + 19.3923i 0.447214 + 1.66902i
\(136\) −5.41662 −0.464471
\(137\) 4.33013 + 7.50000i 0.369948 + 0.640768i 0.989557 0.144142i \(-0.0460423\pi\)
−0.619609 + 0.784910i \(0.712709\pi\)
\(138\) −0.656339 + 2.44949i −0.0558713 + 0.208514i
\(139\) −8.17569 + 14.1607i −0.693453 + 1.20110i 0.277246 + 0.960799i \(0.410578\pi\)
−0.970699 + 0.240297i \(0.922755\pi\)
\(140\) 0 0
\(141\) 17.6603 4.73205i 1.48726 0.398511i
\(142\) −1.26795 2.19615i −0.106404 0.184297i
\(143\) 24.9754 2.08855
\(144\) 3.00000i 0.250000i
\(145\) 15.4548 1.28345
\(146\) −3.41542 5.91567i −0.282662 0.489585i
\(147\) 0 0
\(148\) −0.267949 + 0.464102i −0.0220253 + 0.0381489i
\(149\) −4.53590 + 7.85641i −0.371595 + 0.643622i −0.989811 0.142386i \(-0.954522\pi\)
0.618216 + 0.786008i \(0.287856\pi\)
\(150\) 12.1595 + 12.1595i 0.992820 + 0.992820i
\(151\) 1.19615 + 2.07180i 0.0973415 + 0.168600i 0.910583 0.413325i \(-0.135633\pi\)
−0.813242 + 0.581926i \(0.802299\pi\)
\(152\) 2.96713 0.240666
\(153\) 14.0728 + 8.12493i 1.13772 + 0.656861i
\(154\) 0 0
\(155\) −3.46410 6.00000i −0.278243 0.481932i
\(156\) 11.1962 3.00000i 0.896410 0.240192i
\(157\) 2.31079 4.00240i 0.184421 0.319427i −0.758960 0.651137i \(-0.774292\pi\)
0.943381 + 0.331710i \(0.107626\pi\)
\(158\) 2.46410 4.26795i 0.196033 0.339540i
\(159\) −1.31268 + 4.89898i −0.104102 + 0.388514i
\(160\) 1.93185 + 3.34607i 0.152726 + 0.264530i
\(161\) 0 0
\(162\) 4.50000 7.79423i 0.353553 0.612372i
\(163\) 21.3205 1.66995 0.834976 0.550287i \(-0.185482\pi\)
0.834976 + 0.550287i \(0.185482\pi\)
\(164\) −0.637756 1.10463i −0.0498004 0.0862568i
\(165\) 6.46410 24.1244i 0.503230 1.87808i
\(166\) −8.95215 + 15.5056i −0.694822 + 1.20347i
\(167\) 10.5558 18.2832i 0.816835 1.41480i −0.0911679 0.995836i \(-0.529060\pi\)
0.908003 0.418964i \(-0.137607\pi\)
\(168\) 0 0
\(169\) −15.8923 27.5263i −1.22248 2.11741i
\(170\) 20.9282 1.60512
\(171\) −7.70882 4.45069i −0.589509 0.340353i
\(172\) 3.73205 0.284566
\(173\) 0.896575 + 1.55291i 0.0681654 + 0.118066i 0.898094 0.439804i \(-0.144952\pi\)
−0.829928 + 0.557870i \(0.811619\pi\)
\(174\) −4.89898 4.89898i −0.371391 0.371391i
\(175\) 0 0
\(176\) 1.86603 3.23205i 0.140657 0.243625i
\(177\) 10.5622 + 10.5622i 0.793902 + 0.793902i
\(178\) 3.53553 + 6.12372i 0.264999 + 0.458993i
\(179\) 18.9282 1.41476 0.707380 0.706833i \(-0.249877\pi\)
0.707380 + 0.706833i \(0.249877\pi\)
\(180\) 11.5911i 0.863950i
\(181\) 16.9706 1.26141 0.630706 0.776022i \(-0.282765\pi\)
0.630706 + 0.776022i \(0.282765\pi\)
\(182\) 0 0
\(183\) 11.6603 3.12436i 0.861951 0.230959i
\(184\) 0.732051 1.26795i 0.0539675 0.0934745i
\(185\) 1.03528 1.79315i 0.0761150 0.131835i
\(186\) −0.803848 + 3.00000i −0.0589410 + 0.219971i
\(187\) −10.1075 17.5068i −0.739137 1.28022i
\(188\) −10.5558 −0.769863
\(189\) 0 0
\(190\) −11.4641 −0.831693
\(191\) −0.535898 0.928203i −0.0387762 0.0671624i 0.845986 0.533205i \(-0.179013\pi\)
−0.884762 + 0.466043i \(0.845679\pi\)
\(192\) 0.448288 1.67303i 0.0323524 0.120741i
\(193\) 11.5263 19.9641i 0.829680 1.43705i −0.0686098 0.997644i \(-0.521856\pi\)
0.898290 0.439404i \(-0.144810\pi\)
\(194\) −2.94855 + 5.10703i −0.211693 + 0.366663i
\(195\) −43.2586 + 11.5911i −3.09781 + 0.830057i
\(196\) 0 0
\(197\) −3.07180 −0.218856 −0.109428 0.993995i \(-0.534902\pi\)
−0.109428 + 0.993995i \(0.534902\pi\)
\(198\) −9.69615 + 5.59808i −0.689076 + 0.397838i
\(199\) 17.8028 1.26200 0.631002 0.775781i \(-0.282644\pi\)
0.631002 + 0.775781i \(0.282644\pi\)
\(200\) −4.96410 8.59808i −0.351015 0.607976i
\(201\) 6.78006 + 6.78006i 0.478229 + 0.478229i
\(202\) 2.44949 4.24264i 0.172345 0.298511i
\(203\) 0 0
\(204\) −6.63397 6.63397i −0.464471 0.464471i
\(205\) 2.46410 + 4.26795i 0.172100 + 0.298087i
\(206\) −7.45001 −0.519066
\(207\) −3.80385 + 2.19615i −0.264386 + 0.152643i
\(208\) −6.69213 −0.464016
\(209\) 5.53674 + 9.58991i 0.382984 + 0.663348i
\(210\) 0 0
\(211\) −2.53590 + 4.39230i −0.174578 + 0.302379i −0.940015 0.341132i \(-0.889190\pi\)
0.765437 + 0.643511i \(0.222523\pi\)
\(212\) 1.46410 2.53590i 0.100555 0.174166i
\(213\) 1.13681 4.24264i 0.0778931 0.290701i
\(214\) −1.69615 2.93782i −0.115947 0.200825i
\(215\) −14.4195 −0.983404
\(216\) −3.67423 + 3.67423i −0.250000 + 0.250000i
\(217\) 0 0
\(218\) 4.46410 + 7.73205i 0.302347 + 0.523681i
\(219\) 3.06218 11.4282i 0.206923 0.772246i
\(220\) −7.20977 + 12.4877i −0.486082 + 0.841920i
\(221\) −18.1244 + 31.3923i −1.21918 + 2.11167i
\(222\) −0.896575 + 0.240237i −0.0601742 + 0.0161236i
\(223\) −13.3843 23.1822i −0.896276 1.55240i −0.832217 0.554450i \(-0.812929\pi\)
−0.0640595 0.997946i \(-0.520405\pi\)
\(224\) 0 0
\(225\) 29.7846i 1.98564i
\(226\) 6.92820 0.460857
\(227\) −5.25933 9.10943i −0.349074 0.604614i 0.637011 0.770855i \(-0.280171\pi\)
−0.986085 + 0.166240i \(0.946837\pi\)
\(228\) 3.63397 + 3.63397i 0.240666 + 0.240666i
\(229\) 12.4877 21.6293i 0.825209 1.42930i −0.0765496 0.997066i \(-0.524390\pi\)
0.901759 0.432239i \(-0.142276\pi\)
\(230\) −2.82843 + 4.89898i −0.186501 + 0.323029i
\(231\) 0 0
\(232\) 2.00000 + 3.46410i 0.131306 + 0.227429i
\(233\) −24.1244 −1.58044 −0.790220 0.612824i \(-0.790034\pi\)
−0.790220 + 0.612824i \(0.790034\pi\)
\(234\) 17.3867 + 10.0382i 1.13660 + 0.656217i
\(235\) 40.7846 2.66049
\(236\) −4.31199 7.46859i −0.280687 0.486164i
\(237\) 8.24504 2.20925i 0.535573 0.143506i
\(238\) 0 0
\(239\) 6.46410 11.1962i 0.418128 0.724219i −0.577623 0.816304i \(-0.696020\pi\)
0.995751 + 0.0920846i \(0.0293530\pi\)
\(240\) −1.73205 + 6.46410i −0.111803 + 0.417256i
\(241\) 11.7112 + 20.2844i 0.754387 + 1.30664i 0.945679 + 0.325103i \(0.105399\pi\)
−0.191292 + 0.981533i \(0.561268\pi\)
\(242\) 2.92820 0.188232
\(243\) 15.0573 4.03459i 0.965926 0.258819i
\(244\) −6.96953 −0.446179
\(245\) 0 0
\(246\) 0.571797 2.13397i 0.0364564 0.136057i
\(247\) 9.92820 17.1962i 0.631716 1.09416i
\(248\) 0.896575 1.55291i 0.0569326 0.0986102i
\(249\) −29.9545 + 8.02628i −1.89829 + 0.508645i
\(250\) 9.52056 + 16.4901i 0.602133 + 1.04292i
\(251\) 16.3514 1.03209 0.516045 0.856561i \(-0.327404\pi\)
0.516045 + 0.856561i \(0.327404\pi\)
\(252\) 0 0
\(253\) 5.46410 0.343525
\(254\) −3.26795 5.66025i −0.205049 0.355156i
\(255\) 25.6317 + 25.6317i 1.60512 + 1.60512i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 1.34486 2.32937i 0.0838903 0.145302i −0.821028 0.570889i \(-0.806599\pi\)
0.904918 + 0.425586i \(0.139932\pi\)
\(258\) 4.57081 + 4.57081i 0.284566 + 0.284566i
\(259\) 0 0
\(260\) 25.8564 1.60355
\(261\) 12.0000i 0.742781i
\(262\) −6.03579 −0.372892
\(263\) 7.73205 + 13.3923i 0.476779 + 0.825805i 0.999646 0.0266092i \(-0.00847098\pi\)
−0.522867 + 0.852414i \(0.675138\pi\)
\(264\) 6.24384 1.67303i 0.384282 0.102968i
\(265\) −5.65685 + 9.79796i −0.347498 + 0.601884i
\(266\) 0 0
\(267\) −3.16987 + 11.8301i −0.193993 + 0.723992i
\(268\) −2.76795 4.79423i −0.169079 0.292854i
\(269\) 5.65685 0.344904 0.172452 0.985018i \(-0.444831\pi\)
0.172452 + 0.985018i \(0.444831\pi\)
\(270\) 14.1962 14.1962i 0.863950 0.863950i
\(271\) −18.0058 −1.09378 −0.546888 0.837206i \(-0.684188\pi\)
−0.546888 + 0.837206i \(0.684188\pi\)
\(272\) 2.70831 + 4.69093i 0.164215 + 0.284429i
\(273\) 0 0
\(274\) 4.33013 7.50000i 0.261593 0.453092i
\(275\) 18.5263 32.0885i 1.11718 1.93501i
\(276\) 2.44949 0.656339i 0.147442 0.0395070i
\(277\) −12.2679 21.2487i −0.737110 1.27671i −0.953792 0.300469i \(-0.902857\pi\)
0.216682 0.976242i \(-0.430477\pi\)
\(278\) 16.3514 0.980691
\(279\) −4.65874 + 2.68973i −0.278912 + 0.161030i
\(280\) 0 0
\(281\) 4.92820 + 8.53590i 0.293992 + 0.509209i 0.974750 0.223299i \(-0.0716828\pi\)
−0.680758 + 0.732508i \(0.738349\pi\)
\(282\) −12.9282 12.9282i −0.769863 0.769863i
\(283\) 4.70951 8.15711i 0.279951 0.484890i −0.691421 0.722452i \(-0.743015\pi\)
0.971372 + 0.237562i \(0.0763483\pi\)
\(284\) −1.26795 + 2.19615i −0.0752389 + 0.130318i
\(285\) −14.0406 14.0406i −0.831693 0.831693i
\(286\) −12.4877 21.6293i −0.738412 1.27897i
\(287\) 0 0
\(288\) 2.59808 1.50000i 0.153093 0.0883883i
\(289\) 12.3397 0.725867
\(290\) −7.72741 13.3843i −0.453769 0.785951i
\(291\) −9.86603 + 2.64359i −0.578357 + 0.154970i
\(292\) −3.41542 + 5.91567i −0.199872 + 0.346189i
\(293\) −9.52056 + 16.4901i −0.556197 + 0.963361i 0.441612 + 0.897206i \(0.354407\pi\)
−0.997809 + 0.0661554i \(0.978927\pi\)
\(294\) 0 0
\(295\) 16.6603 + 28.8564i 0.969997 + 1.68008i
\(296\) 0.535898 0.0311485
\(297\) −18.7315 5.01910i −1.08691 0.291238i
\(298\) 9.07180 0.525515
\(299\) −4.89898 8.48528i −0.283315 0.490716i
\(300\) 4.45069 16.6102i 0.256961 0.958991i
\(301\) 0 0
\(302\) 1.19615 2.07180i 0.0688308 0.119219i
\(303\) 8.19615 2.19615i 0.470857 0.126166i
\(304\) −1.48356 2.56961i −0.0850882 0.147377i
\(305\) 26.9282 1.54190
\(306\) 16.2499i 0.928942i
\(307\) 11.0735 0.631996 0.315998 0.948760i \(-0.397661\pi\)
0.315998 + 0.948760i \(0.397661\pi\)
\(308\) 0 0
\(309\) −9.12436 9.12436i −0.519066 0.519066i
\(310\) −3.46410 + 6.00000i −0.196748 + 0.340777i
\(311\) −6.17449 + 10.6945i −0.350123 + 0.606431i −0.986271 0.165136i \(-0.947194\pi\)
0.636147 + 0.771568i \(0.280527\pi\)
\(312\) −8.19615 8.19615i −0.464016 0.464016i
\(313\) 11.7112 + 20.2844i 0.661958 + 1.14654i 0.980101 + 0.198502i \(0.0636075\pi\)
−0.318143 + 0.948043i \(0.603059\pi\)
\(314\) −4.62158 −0.260811
\(315\) 0 0
\(316\) −4.92820 −0.277233
\(317\) 13.0000 + 22.5167i 0.730153 + 1.26466i 0.956818 + 0.290689i \(0.0938844\pi\)
−0.226665 + 0.973973i \(0.572782\pi\)
\(318\) 4.89898 1.31268i 0.274721 0.0736113i
\(319\) −7.46410 + 12.9282i −0.417909 + 0.723840i
\(320\) 1.93185 3.34607i 0.107994 0.187051i
\(321\) 1.52073 5.67544i 0.0848788 0.316772i
\(322\) 0 0
\(323\) −16.0718 −0.894259
\(324\) −9.00000 −0.500000
\(325\) −66.4408 −3.68547
\(326\) −10.6603 18.4641i −0.590417 1.02263i
\(327\) −4.00240 + 14.9372i −0.221333 + 0.826028i
\(328\) −0.637756 + 1.10463i −0.0352142 + 0.0609928i
\(329\) 0 0
\(330\) −24.1244 + 6.46410i −1.32800 + 0.355837i
\(331\) 2.26795 + 3.92820i 0.124658 + 0.215914i 0.921599 0.388143i \(-0.126883\pi\)
−0.796941 + 0.604057i \(0.793550\pi\)
\(332\) 17.9043 0.982626
\(333\) −1.39230 0.803848i −0.0762978 0.0440506i
\(334\) −21.1117 −1.15518
\(335\) 10.6945 + 18.5235i 0.584305 + 1.01205i
\(336\) 0 0
\(337\) 3.50000 6.06218i 0.190657 0.330228i −0.754811 0.655942i \(-0.772271\pi\)
0.945468 + 0.325714i \(0.105605\pi\)
\(338\) −15.8923 + 27.5263i −0.864427 + 1.49723i
\(339\) 8.48528 + 8.48528i 0.460857 + 0.460857i
\(340\) −10.4641 18.1244i −0.567496 0.982931i
\(341\) 6.69213 0.362399
\(342\) 8.90138i 0.481332i
\(343\) 0 0
\(344\) −1.86603 3.23205i −0.100609 0.174261i
\(345\) −9.46410 + 2.53590i −0.509530 + 0.136528i
\(346\) 0.896575 1.55291i 0.0482002 0.0834852i
\(347\) −10.7942 + 18.6962i −0.579465 + 1.00366i 0.416076 + 0.909330i \(0.363405\pi\)
−0.995541 + 0.0943323i \(0.969928\pi\)
\(348\) −1.79315 + 6.69213i −0.0961230 + 0.358736i
\(349\) 8.24504 + 14.2808i 0.441347 + 0.764436i 0.997790 0.0664504i \(-0.0211674\pi\)
−0.556443 + 0.830886i \(0.687834\pi\)
\(350\) 0 0
\(351\) 9.00000 + 33.5885i 0.480384 + 1.79282i
\(352\) −3.73205 −0.198919
\(353\) −13.2134 22.8862i −0.703277 1.21811i −0.967310 0.253598i \(-0.918386\pi\)
0.264033 0.964514i \(-0.414947\pi\)
\(354\) 3.86603 14.4282i 0.205477 0.766850i
\(355\) 4.89898 8.48528i 0.260011 0.450352i
\(356\) 3.53553 6.12372i 0.187383 0.324557i
\(357\) 0 0
\(358\) −9.46410 16.3923i −0.500193 0.866360i
\(359\) 0.535898 0.0282836 0.0141418 0.999900i \(-0.495498\pi\)
0.0141418 + 0.999900i \(0.495498\pi\)
\(360\) −10.0382 + 5.79555i −0.529059 + 0.305453i
\(361\) −10.1962 −0.536640
\(362\) −8.48528 14.6969i −0.445976 0.772454i
\(363\) 3.58630 + 3.58630i 0.188232 + 0.188232i
\(364\) 0 0
\(365\) 13.1962 22.8564i 0.690718 1.19636i
\(366\) −8.53590 8.53590i −0.446179 0.446179i
\(367\) −7.86611 13.6245i −0.410607 0.711193i 0.584349 0.811503i \(-0.301350\pi\)
−0.994956 + 0.100310i \(0.968017\pi\)
\(368\) −1.46410 −0.0763216
\(369\) 3.31388 1.91327i 0.172514 0.0996008i
\(370\) −2.07055 −0.107643
\(371\) 0 0
\(372\) 3.00000 0.803848i 0.155543 0.0416776i
\(373\) −15.3923 + 26.6603i −0.796983 + 1.38042i 0.124589 + 0.992208i \(0.460239\pi\)
−0.921572 + 0.388207i \(0.873095\pi\)
\(374\) −10.1075 + 17.5068i −0.522649 + 0.905254i
\(375\) −8.53590 + 31.8564i −0.440792 + 1.64506i
\(376\) 5.27792 + 9.14162i 0.272188 + 0.471443i
\(377\) 26.7685 1.37865
\(378\) 0 0
\(379\) −17.5885 −0.903458 −0.451729 0.892155i \(-0.649193\pi\)
−0.451729 + 0.892155i \(0.649193\pi\)
\(380\) 5.73205 + 9.92820i 0.294048 + 0.509306i
\(381\) 2.92996 10.9348i 0.150107 0.560205i
\(382\) −0.535898 + 0.928203i −0.0274189 + 0.0474910i
\(383\) −10.8332 + 18.7637i −0.553552 + 0.958781i 0.444462 + 0.895798i \(0.353395\pi\)
−0.998015 + 0.0629833i \(0.979939\pi\)
\(384\) −1.67303 + 0.448288i −0.0853766 + 0.0228766i
\(385\) 0 0
\(386\) −23.0526 −1.17334
\(387\) 11.1962i 0.569132i
\(388\) 5.89709 0.299379
\(389\) −4.00000 6.92820i −0.202808 0.351274i 0.746624 0.665246i \(-0.231673\pi\)
−0.949432 + 0.313972i \(0.898340\pi\)
\(390\) 31.6675 + 31.6675i 1.60355 + 1.60355i
\(391\) −3.96524 + 6.86800i −0.200531 + 0.347329i
\(392\) 0 0
\(393\) −7.39230 7.39230i −0.372892 0.372892i
\(394\) 1.53590 + 2.66025i 0.0773774 + 0.134022i
\(395\) 19.0411 0.958062
\(396\) 9.69615 + 5.59808i 0.487250 + 0.281314i
\(397\) −18.0058 −0.903687 −0.451844 0.892097i \(-0.649233\pi\)
−0.451844 + 0.892097i \(0.649233\pi\)
\(398\) −8.90138 15.4176i −0.446186 0.772817i
\(399\) 0 0
\(400\) −4.96410 + 8.59808i −0.248205 + 0.429904i
\(401\) −8.89230 + 15.4019i −0.444061 + 0.769135i −0.997986 0.0634307i \(-0.979796\pi\)
0.553926 + 0.832566i \(0.313129\pi\)
\(402\) 2.48168 9.26174i 0.123775 0.461934i
\(403\) −6.00000 10.3923i −0.298881 0.517678i
\(404\) −4.89898 −0.243733
\(405\) 34.7733 1.72790
\(406\) 0 0
\(407\) 1.00000 + 1.73205i 0.0495682 + 0.0858546i
\(408\) −2.42820 + 9.06218i −0.120214 + 0.448645i
\(409\) 8.36516 14.4889i 0.413631 0.716429i −0.581653 0.813437i \(-0.697594\pi\)
0.995284 + 0.0970077i \(0.0309271\pi\)
\(410\) 2.46410 4.26795i 0.121693 0.210779i
\(411\) 14.4889 3.88229i 0.714684 0.191499i
\(412\) 3.72500 + 6.45189i 0.183518 + 0.317862i
\(413\) 0 0
\(414\) 3.80385 + 2.19615i 0.186949 + 0.107935i
\(415\) −69.1769 −3.39576
\(416\) 3.34607 + 5.79555i 0.164054 + 0.284150i
\(417\) 20.0263 + 20.0263i 0.980691 + 0.980691i
\(418\) 5.53674 9.58991i 0.270811 0.469058i
\(419\) −3.95164 + 6.84443i −0.193050 + 0.334373i −0.946260 0.323408i \(-0.895171\pi\)
0.753209 + 0.657781i \(0.228505\pi\)
\(420\) 0 0
\(421\) −14.1962 24.5885i −0.691878 1.19837i −0.971222 0.238177i \(-0.923450\pi\)
0.279344 0.960191i \(-0.409883\pi\)
\(422\) 5.07180 0.246891
\(423\) 31.6675i 1.53973i
\(424\) −2.92820 −0.142206
\(425\) 26.8886 + 46.5725i 1.30429 + 2.25910i
\(426\) −4.24264 + 1.13681i −0.205557 + 0.0550787i
\(427\) 0 0
\(428\) −1.69615 + 2.93782i −0.0819866 + 0.142005i
\(429\) 11.1962 41.7846i 0.540555 2.01738i
\(430\) 7.20977 + 12.4877i 0.347686 + 0.602210i
\(431\) −37.8564 −1.82348 −0.911739 0.410769i \(-0.865260\pi\)
−0.911739 + 0.410769i \(0.865260\pi\)
\(432\) 5.01910 + 1.34486i 0.241481 + 0.0647048i
\(433\) −7.10823 −0.341600 −0.170800 0.985306i \(-0.554635\pi\)
−0.170800 + 0.985306i \(0.554635\pi\)
\(434\) 0 0
\(435\) 6.92820 25.8564i 0.332182 1.23972i
\(436\) 4.46410 7.73205i 0.213792 0.370298i
\(437\) 2.17209 3.76217i 0.103905 0.179969i
\(438\) −11.4282 + 3.06218i −0.546061 + 0.146317i
\(439\) −9.79796 16.9706i −0.467631 0.809961i 0.531685 0.846942i \(-0.321559\pi\)
−0.999316 + 0.0369815i \(0.988226\pi\)
\(440\) 14.4195 0.687424
\(441\) 0 0
\(442\) 36.2487 1.72418
\(443\) 9.16025 + 15.8660i 0.435217 + 0.753818i 0.997313 0.0732540i \(-0.0233384\pi\)
−0.562097 + 0.827072i \(0.690005\pi\)
\(444\) 0.656339 + 0.656339i 0.0311485 + 0.0311485i
\(445\) −13.6603 + 23.6603i −0.647558 + 1.12160i
\(446\) −13.3843 + 23.1822i −0.633763 + 1.09771i
\(447\) 11.1106 + 11.1106i 0.525515 + 0.525515i
\(448\) 0 0
\(449\) −17.7846 −0.839308 −0.419654 0.907684i \(-0.637849\pi\)
−0.419654 + 0.907684i \(0.637849\pi\)
\(450\) 25.7942 14.8923i 1.21595 0.702030i
\(451\) −4.76028 −0.224153
\(452\) −3.46410 6.00000i −0.162938 0.282216i
\(453\) 4.00240 1.07244i 0.188049 0.0503877i
\(454\) −5.25933 + 9.10943i −0.246833 + 0.427527i
\(455\) 0 0
\(456\) 1.33013 4.96410i 0.0622889 0.232465i
\(457\) −3.52628 6.10770i −0.164952 0.285706i 0.771686 0.636004i \(-0.219414\pi\)
−0.936638 + 0.350298i \(0.886080\pi\)
\(458\) −24.9754 −1.16702
\(459\) 19.9019 19.9019i 0.928942 0.928942i
\(460\) 5.65685 0.263752
\(461\) −12.8666 22.2856i −0.599258 1.03795i −0.992931 0.118695i \(-0.962129\pi\)
0.393672 0.919251i \(-0.371204\pi\)
\(462\) 0 0
\(463\) −19.3205 + 33.4641i −0.897900 + 1.55521i −0.0677264 + 0.997704i \(0.521575\pi\)
−0.830174 + 0.557505i \(0.811759\pi\)
\(464\) 2.00000 3.46410i 0.0928477 0.160817i
\(465\) −11.5911 + 3.10583i −0.537525 + 0.144029i
\(466\) 12.0622 + 20.8923i 0.558770 + 0.967817i
\(467\) 27.5636 1.27549 0.637745 0.770248i \(-0.279867\pi\)
0.637745 + 0.770248i \(0.279867\pi\)
\(468\) 20.0764i 0.928032i
\(469\) 0 0
\(470\) −20.3923 35.3205i −0.940627 1.62921i
\(471\) −5.66025 5.66025i −0.260811 0.260811i
\(472\) −4.31199 + 7.46859i −0.198475 + 0.343770i
\(473\) 6.96410 12.0622i 0.320210 0.554620i
\(474\) −6.03579 6.03579i −0.277233 0.277233i
\(475\) −14.7291 25.5116i −0.675819 1.17055i
\(476\) 0 0
\(477\) 7.60770 + 4.39230i 0.348332 + 0.201110i
\(478\) −12.9282 −0.591322
\(479\) 7.72741 + 13.3843i 0.353074 + 0.611542i 0.986786 0.162026i \(-0.0518030\pi\)
−0.633712 + 0.773569i \(0.718470\pi\)
\(480\) 6.46410 1.73205i 0.295045 0.0790569i
\(481\) 1.79315 3.10583i 0.0817606 0.141614i
\(482\) 11.7112 20.2844i 0.533432 0.923931i
\(483\) 0 0
\(484\) −1.46410 2.53590i −0.0665501 0.115268i
\(485\) −22.7846 −1.03460
\(486\) −11.0227 11.0227i −0.500000 0.500000i
\(487\) 38.7846 1.75750 0.878749 0.477284i \(-0.158379\pi\)
0.878749 + 0.477284i \(0.158379\pi\)
\(488\) 3.48477 + 6.03579i 0.157748 + 0.273227i
\(489\) 9.55772 35.6699i 0.432215 1.61305i
\(490\) 0 0
\(491\) 0.696152 1.20577i 0.0314169 0.0544157i −0.849889 0.526961i \(-0.823331\pi\)
0.881306 + 0.472545i \(0.156665\pi\)
\(492\) −2.13397 + 0.571797i −0.0962070 + 0.0257786i
\(493\) −10.8332 18.7637i −0.487904 0.845075i
\(494\) −19.8564 −0.893382
\(495\) −37.4631 21.6293i −1.68384 0.972165i
\(496\) −1.79315 −0.0805149
\(497\) 0 0
\(498\) 21.9282 + 21.9282i 0.982626 + 0.982626i
\(499\) −6.30385 + 10.9186i −0.282199 + 0.488783i −0.971926 0.235286i \(-0.924397\pi\)
0.689727 + 0.724069i \(0.257731\pi\)
\(500\) 9.52056 16.4901i 0.425772 0.737459i
\(501\) −25.8564 25.8564i −1.15518 1.15518i
\(502\) −8.17569 14.1607i −0.364899 0.632024i
\(503\) 7.45001 0.332179 0.166090 0.986111i \(-0.446886\pi\)
0.166090 + 0.986111i \(0.446886\pi\)
\(504\) 0 0
\(505\) 18.9282 0.842294
\(506\) −2.73205 4.73205i −0.121454 0.210365i
\(507\) −53.1767 + 14.2487i −2.36166 + 0.632805i
\(508\) −3.26795 + 5.66025i −0.144992 + 0.251133i
\(509\) 13.2456 22.9420i 0.587099 1.01689i −0.407511 0.913200i \(-0.633603\pi\)
0.994610 0.103685i \(-0.0330635\pi\)
\(510\) 9.38186 35.0136i 0.415436 1.55043i
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −10.9019 + 10.9019i −0.481332 + 0.481332i
\(514\) −2.68973 −0.118639
\(515\) −14.3923 24.9282i −0.634201 1.09847i
\(516\) 1.67303 6.24384i 0.0736512 0.274870i
\(517\) −19.6975 + 34.1170i −0.866293 + 1.50046i
\(518\) 0 0
\(519\) 3.00000 0.803848i 0.131685 0.0352850i
\(520\) −12.9282 22.3923i −0.566939 0.981968i
\(521\) −32.3610 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(522\) −10.3923 + 6.00000i −0.454859 + 0.262613i
\(523\) 3.76217 0.164508 0.0822540 0.996611i \(-0.473788\pi\)
0.0822540 + 0.996611i \(0.473788\pi\)
\(524\) 3.01790 + 5.22715i 0.131837 + 0.228349i
\(525\) 0 0
\(526\) 7.73205 13.3923i 0.337133 0.583932i
\(527\) −4.85641 + 8.41154i −0.211548 + 0.366413i
\(528\) −4.57081 4.57081i −0.198919 0.198919i
\(529\) 10.4282 + 18.0622i 0.453400 + 0.785312i
\(530\) 11.3137 0.491436
\(531\) 22.4058 12.9360i 0.972327 0.561373i
\(532\) 0 0
\(533\) 4.26795 + 7.39230i 0.184865 + 0.320196i
\(534\) 11.8301 3.16987i 0.511940 0.137174i
\(535\) 6.55343 11.3509i 0.283329 0.490741i
\(536\) −2.76795 + 4.79423i −0.119557 + 0.207079i
\(537\) 8.48528 31.6675i 0.366167 1.36655i
\(538\) −2.82843 4.89898i −0.121942 0.211210i
\(539\) 0 0
\(540\) −19.3923 5.19615i −0.834512 0.223607i
\(541\) −19.3205 −0.830654 −0.415327 0.909672i \(-0.636333\pi\)
−0.415327 + 0.909672i \(0.636333\pi\)
\(542\) 9.00292 + 15.5935i 0.386709 + 0.669799i
\(543\) 7.60770 28.3923i 0.326477 1.21843i
\(544\) 2.70831 4.69093i 0.116118 0.201122i
\(545\) −17.2480 + 29.8744i −0.738822 + 1.27968i
\(546\) 0 0
\(547\) 19.1865 + 33.2321i 0.820357 + 1.42090i 0.905417 + 0.424524i \(0.139559\pi\)
−0.0850597 + 0.996376i \(0.527108\pi\)
\(548\) −8.66025 −0.369948
\(549\) 20.9086i 0.892357i
\(550\) −37.0526 −1.57993
\(551\) 5.93426 + 10.2784i 0.252808 + 0.437876i
\(552\) −1.79315 1.79315i −0.0763216 0.0763216i
\(553\) 0 0
\(554\) −12.2679 + 21.2487i −0.521215 + 0.902771i
\(555\) −2.53590 2.53590i −0.107643 0.107643i
\(556\) −8.17569 14.1607i −0.346727 0.600548i
\(557\) 6.92820 0.293557 0.146779 0.989169i \(-0.453109\pi\)
0.146779 + 0.989169i \(0.453109\pi\)
\(558\) 4.65874 + 2.68973i 0.197220 + 0.113865i
\(559\) −24.9754 −1.05635
\(560\) 0 0
\(561\) −33.8205 + 9.06218i −1.42790 + 0.382605i
\(562\) 4.92820 8.53590i 0.207884 0.360065i
\(563\) −12.7973 + 22.1655i −0.539341 + 0.934166i 0.459599 + 0.888127i \(0.347993\pi\)
−0.998940 + 0.0460390i \(0.985340\pi\)
\(564\) −4.73205 + 17.6603i −0.199255 + 0.743631i
\(565\) 13.3843 + 23.1822i 0.563080 + 0.975283i
\(566\) −9.41902 −0.395911
\(567\) 0 0
\(568\) 2.53590 0.106404
\(569\) −7.89230 13.6699i −0.330863 0.573071i 0.651819 0.758375i \(-0.274006\pi\)
−0.982681 + 0.185304i \(0.940673\pi\)
\(570\) −5.13922 + 19.1798i −0.215258 + 0.803354i
\(571\) −2.52628 + 4.37564i −0.105722 + 0.183115i −0.914033 0.405640i \(-0.867049\pi\)
0.808311 + 0.588755i \(0.200382\pi\)
\(572\) −12.4877 + 21.6293i −0.522136 + 0.904367i
\(573\) −1.79315 + 0.480473i −0.0749100 + 0.0200721i
\(574\) 0 0
\(575\) −14.5359 −0.606189
\(576\) −2.59808 1.50000i −0.108253 0.0625000i
\(577\) 44.6357 1.85821 0.929103 0.369820i \(-0.120581\pi\)
0.929103 + 0.369820i \(0.120581\pi\)
\(578\) −6.16987 10.6865i −0.256633 0.444501i
\(579\) −28.2335 28.2335i −1.17334 1.17334i
\(580\) −7.72741 + 13.3843i −0.320863 + 0.555751i
\(581\) 0 0
\(582\) 7.22243 + 7.22243i 0.299379 + 0.299379i
\(583\) −5.46410 9.46410i −0.226300 0.391963i
\(584\) 6.83083 0.282662
\(585\) 77.5692i 3.20709i
\(586\) 19.0411 0.786581
\(587\) 14.5768 + 25.2478i 0.601650 + 1.04209i 0.992571 + 0.121664i \(0.0388230\pi\)
−0.390922 + 0.920424i \(0.627844\pi\)
\(588\) 0 0
\(589\) 2.66025 4.60770i 0.109614 0.189857i
\(590\) 16.6603 28.8564i 0.685892 1.18800i
\(591\) −1.37705 + 5.13922i −0.0566442 + 0.211399i
\(592\) −0.267949 0.464102i −0.0110126 0.0190745i
\(593\) 2.72689 0.111980 0.0559900 0.998431i \(-0.482169\pi\)
0.0559900 + 0.998431i \(0.482169\pi\)
\(594\) 5.01910 + 18.7315i 0.205936 + 0.768564i
\(595\) 0 0
\(596\) −4.53590 7.85641i −0.185798 0.321811i
\(597\) 7.98076 29.7846i 0.326631 1.21900i
\(598\) −4.89898 + 8.48528i −0.200334 + 0.346989i
\(599\) 18.3923 31.8564i 0.751489 1.30162i −0.195612 0.980681i \(-0.562669\pi\)
0.947101 0.320936i \(-0.103997\pi\)
\(600\) −16.6102 + 4.45069i −0.678109 + 0.181699i
\(601\) −0.448288 0.776457i −0.0182860 0.0316723i 0.856738 0.515753i \(-0.172488\pi\)
−0.875024 + 0.484080i \(0.839154\pi\)
\(602\) 0 0
\(603\) 14.3827 8.30385i 0.585708 0.338159i
\(604\) −2.39230 −0.0973415
\(605\) 5.65685 + 9.79796i 0.229984 + 0.398344i
\(606\) −6.00000 6.00000i −0.243733 0.243733i
\(607\) −15.8338 + 27.4249i −0.642672 + 1.11314i 0.342162 + 0.939641i \(0.388841\pi\)
−0.984834 + 0.173500i \(0.944492\pi\)
\(608\) −1.48356 + 2.56961i −0.0601665 + 0.104211i
\(609\) 0 0
\(610\) −13.4641 23.3205i −0.545146 0.944220i
\(611\) 70.6410 2.85783
\(612\) −14.0728 + 8.12493i −0.568859 + 0.328431i
\(613\) 11.0718 0.447186 0.223593 0.974683i \(-0.428221\pi\)
0.223593 + 0.974683i \(0.428221\pi\)
\(614\) −5.53674 9.58991i −0.223444 0.387017i
\(615\) 8.24504 2.20925i 0.332472 0.0890857i
\(616\) 0 0
\(617\) 15.4282 26.7224i 0.621116 1.07580i −0.368162 0.929762i \(-0.620013\pi\)
0.989278 0.146043i \(-0.0466538\pi\)
\(618\) −3.33975 + 12.4641i −0.134344 + 0.501380i
\(619\) 12.3168 + 21.3333i 0.495054 + 0.857459i 0.999984 0.00570182i \(-0.00181496\pi\)
−0.504930 + 0.863160i \(0.668482\pi\)
\(620\) 6.92820 0.278243
\(621\) 1.96902 + 7.34847i 0.0790139 + 0.294884i
\(622\) 12.3490 0.495149
\(623\) 0 0
\(624\) −3.00000 + 11.1962i −0.120096 + 0.448205i
\(625\) −11.9641 + 20.7224i −0.478564 + 0.828897i
\(626\) 11.7112 20.2844i 0.468075 0.810729i
\(627\) 18.5263 4.96410i 0.739868 0.198247i
\(628\) 2.31079 + 4.00240i 0.0922105 + 0.159713i
\(629\) −2.90276 −0.115740
\(630\) 0 0
\(631\) 35.7128 1.42170 0.710852 0.703341i \(-0.248309\pi\)
0.710852 + 0.703341i \(0.248309\pi\)
\(632\) 2.46410 + 4.26795i 0.0980167 + 0.169770i
\(633\) 6.21166 + 6.21166i 0.246891 + 0.246891i
\(634\) 13.0000 22.5167i 0.516296 0.894251i
\(635\) 12.6264 21.8695i 0.501063 0.867866i
\(636\) −3.58630 3.58630i −0.142206 0.142206i
\(637\) 0 0
\(638\) 14.9282 0.591013
\(639\) −6.58846 3.80385i −0.260635 0.150478i
\(640\) −3.86370 −0.152726
\(641\) −8.96410 15.5263i −0.354061 0.613251i 0.632896 0.774237i \(-0.281866\pi\)
−0.986957 + 0.160986i \(0.948533\pi\)
\(642\) −5.67544 + 1.52073i −0.223992 + 0.0600184i
\(643\) −6.53485 + 11.3187i −0.257709 + 0.446365i −0.965628 0.259929i \(-0.916301\pi\)
0.707919 + 0.706294i \(0.249634\pi\)
\(644\) 0 0
\(645\) −6.46410 + 24.1244i −0.254524 + 0.949896i
\(646\) 8.03590 + 13.9186i 0.316168 + 0.547619i
\(647\) −12.0716 −0.474583 −0.237291 0.971439i \(-0.576260\pi\)
−0.237291 + 0.971439i \(0.576260\pi\)
\(648\) 4.50000 + 7.79423i 0.176777 + 0.306186i
\(649\) −32.1851 −1.26338
\(650\) 33.2204 + 57.5394i 1.30301 + 2.25688i
\(651\) 0 0
\(652\) −10.6603 + 18.4641i −0.417488 + 0.723110i
\(653\) −3.00000 + 5.19615i −0.117399 + 0.203341i −0.918736 0.394872i \(-0.870789\pi\)
0.801337 + 0.598213i \(0.204122\pi\)
\(654\) 14.9372 4.00240i 0.584090 0.156506i
\(655\) −11.6603 20.1962i −0.455604 0.789129i
\(656\) 1.27551 0.0498004
\(657\) −17.7470 10.2462i −0.692377 0.399744i
\(658\) 0 0
\(659\) −0.124356 0.215390i −0.00484421 0.00839042i 0.863593 0.504189i \(-0.168209\pi\)
−0.868437 + 0.495799i \(0.834875\pi\)
\(660\) 17.6603 + 17.6603i 0.687424 + 0.687424i
\(661\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) 2.26795 3.92820i 0.0881463 0.152674i
\(663\) 44.3954 + 44.3954i 1.72418 + 1.72418i
\(664\) −8.95215 15.5056i −0.347411 0.601733i
\(665\) 0 0
\(666\) 1.60770i 0.0622969i
\(667\) 5.85641 0.226761
\(668\) 10.5558 + 18.2832i 0.408417 + 0.707400i
\(669\) −44.7846 + 12.0000i −1.73147 + 0.463947i
\(670\) 10.6945 18.5235i 0.413166 0.715624i
\(671\) −13.0053 + 22.5259i −0.502065 + 0.869602i
\(672\) 0 0
\(673\) 20.7846 + 36.0000i 0.801188 + 1.38770i 0.918835 + 0.394643i \(0.129132\pi\)
−0.117647 + 0.993055i \(0.537535\pi\)
\(674\) −7.00000 −0.269630
\(675\) 49.8306 + 13.3521i 1.91798 + 0.513922i
\(676\) 31.7846 1.22248
\(677\) −10.0382 17.3867i −0.385799 0.668224i 0.606081 0.795403i \(-0.292741\pi\)
−0.991880 + 0.127179i \(0.959408\pi\)
\(678\) 3.10583 11.5911i 0.119279 0.445154i
\(679\) 0 0
\(680\) −10.4641 + 18.1244i −0.401280 + 0.695037i
\(681\) −17.5981 + 4.71539i −0.674360 + 0.180694i
\(682\) −3.34607 5.79555i −0.128127 0.221923i
\(683\) −3.67949 −0.140792 −0.0703959 0.997519i \(-0.522426\pi\)
−0.0703959 + 0.997519i \(0.522426\pi\)
\(684\) 7.70882 4.45069i 0.294754 0.170176i
\(685\) 33.4607 1.27847
\(686\) 0 0
\(687\) −30.5885 30.5885i −1.16702 1.16702i
\(688\) −1.86603 + 3.23205i −0.0711416 + 0.123221i
\(689\) −9.79796 + 16.9706i −0.373273 + 0.646527i
\(690\) 6.92820 + 6.92820i 0.263752 + 0.263752i
\(691\) 4.81105 + 8.33298i 0.183021 + 0.317001i 0.942908 0.333054i \(-0.108079\pi\)
−0.759887 + 0.650055i \(0.774746\pi\)
\(692\) −1.79315 −0.0681654
\(693\) 0 0
\(694\) 21.5885 0.819487
\(695\) 31.5885 + 54.7128i 1.19822 + 2.07538i
\(696\) 6.69213 1.79315i 0.253665 0.0679692i
\(697\) 3.45448 5.98334i 0.130848 0.226635i
\(698\) 8.24504 14.2808i 0.312080 0.540538i
\(699\) −10.8147 + 40.3608i −0.409048 + 1.52659i
\(700\) 0 0
\(701\) 20.7846 0.785024 0.392512 0.919747i \(-0.371606\pi\)
0.392512 + 0.919747i \(0.371606\pi\)
\(702\) 24.5885 24.5885i 0.928032 0.928032i
\(703\) 1.59008 0.0599710
\(704\) 1.86603 + 3.23205i 0.0703285 + 0.121812i
\(705\) 18.2832 68.2340i 0.688587 2.56984i
\(706\) −13.2134 + 22.8862i −0.497292 + 0.861335i
\(707\) 0 0
\(708\) −14.4282 + 3.86603i −0.542245 + 0.145294i
\(709\) −4.19615 7.26795i −0.157590 0.272954i 0.776409 0.630229i \(-0.217039\pi\)
−0.933999 + 0.357276i \(0.883706\pi\)
\(710\) −9.79796 −0.367711
\(711\) 14.7846i 0.554466i
\(712\) −7.07107 −0.264999
\(713\) −1.31268 2.27362i −0.0491602 0.0851479i
\(714\) 0 0
\(715\) 48.2487 83.5692i 1.80440 3.12531i
\(716\) −9.46410 + 16.3923i −0.353690 + 0.612609i
\(717\) −15.8338 15.8338i −0.591322 0.591322i
\(718\) −0.267949 0.464102i −0.00999978 0.0173201i
\(719\) 15.3805 0.573595 0.286798 0.957991i \(-0.407409\pi\)
0.286798 + 0.957991i \(0.407409\pi\)
\(720\) 10.0382 + 5.79555i 0.374101 + 0.215988i
\(721\) 0 0
\(722\) 5.09808 + 8.83013i 0.189731 + 0.328623i
\(723\) 39.1865 10.5000i 1.45736 0.390499i
\(724\) −8.48528 + 14.6969i −0.315353 + 0.546207i
\(725\) 19.8564 34.3923i 0.737448 1.27730i
\(726\) 1.31268 4.89898i 0.0487180 0.181818i
\(727\) −0.795040 1.37705i −0.0294864 0.0510719i 0.850906 0.525319i \(-0.176054\pi\)
−0.880392 + 0.474247i \(0.842721\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) −26.3923 −0.976823
\(731\) 10.1075 + 17.5068i 0.373841 + 0.647512i
\(732\) −3.12436 + 11.6603i −0.115480 + 0.430975i
\(733\) −8.24504 + 14.2808i −0.304538 + 0.527475i −0.977158 0.212513i \(-0.931835\pi\)
0.672621 + 0.739988i \(0.265169\pi\)
\(734\) −7.86611 + 13.6245i −0.290343 + 0.502889i
\(735\) 0 0
\(736\) 0.732051 + 1.26795i 0.0269838 + 0.0467372i
\(737\) −20.6603 −0.761030
\(738\) −3.31388 1.91327i −0.121986 0.0704284i
\(739\) −18.1244 −0.666715 −0.333358 0.942800i \(-0.608182\pi\)
−0.333358 + 0.942800i \(0.608182\pi\)
\(740\) 1.03528 + 1.79315i 0.0380575 + 0.0659175i
\(741\) −24.3190 24.3190i −0.893382 0.893382i
\(742\) 0 0
\(743\) −25.7846 + 44.6603i −0.945946 + 1.63843i −0.192099 + 0.981376i \(0.561529\pi\)
−0.753847 + 0.657050i \(0.771804\pi\)
\(744\) −2.19615 2.19615i −0.0805149 0.0805149i
\(745\) 17.5254 + 30.3548i 0.642080 + 1.11211i
\(746\) 30.7846 1.12710
\(747\) 53.7129i 1.96525i
\(748\) 20.2151 0.739137
\(749\) 0 0
\(750\) 31.8564 8.53590i 1.16323 0.311687i
\(751\) 3.39230 5.87564i 0.123787 0.214405i −0.797471 0.603357i \(-0.793829\pi\)
0.921258 + 0.388952i \(0.127163\pi\)
\(752\) 5.27792 9.14162i 0.192466 0.333361i
\(753\) 7.33013 27.3564i 0.267125 0.996923i
\(754\) −13.3843 23.1822i −0.487426 0.844247i
\(755\) 9.24316 0.336393
\(756\) 0 0
\(757\) −15.3205 −0.556833 −0.278417 0.960460i \(-0.589810\pi\)
−0.278417 + 0.960460i \(0.589810\pi\)
\(758\) 8.79423 + 15.2321i 0.319421 + 0.553253i
\(759\) 2.44949 9.14162i 0.0889108 0.331820i
\(760\) 5.73205 9.92820i 0.207923 0.360134i
\(761\) −15.2282 + 26.3760i −0.552021 + 0.956129i 0.446108 + 0.894979i \(0.352810\pi\)
−0.998129 + 0.0611492i \(0.980523\pi\)
\(762\) −10.9348 + 2.92996i −0.396125 + 0.106141i
\(763\) 0 0
\(764\) 1.07180 0.0387762
\(765\) 54.3731 31.3923i 1.96586 1.13499i
\(766\) 21.6665 0.782841
\(767\) 28.8564 + 49.9808i 1.04194 + 1.80470i
\(768\) 1.22474 + 1.22474i 0.0441942 + 0.0441942i
\(769\) 19.0919 33.0681i 0.688471 1.19247i −0.283862 0.958865i \(-0.591616\pi\)
0.972332 0.233601i \(-0.0750511\pi\)
\(770\) 0 0
\(771\) −3.29423 3.29423i −0.118639 0.118639i
\(772\) 11.5263 + 19.9641i 0.414840 + 0.718524i
\(773\) −0.203072 −0.00730399 −0.00365199 0.999993i \(-0.501162\pi\)
−0.00365199 + 0.999993i \(0.501162\pi\)
\(774\) 9.69615 5.59808i 0.348521 0.201219i
\(775\) −17.8028 −0.639494
\(776\) −2.94855 5.10703i −0.105847 0.183332i
\(777\) 0 0
\(778\) −4.00000 + 6.92820i −0.143407 + 0.248388i
\(779\) −1.89230 + 3.27757i −0.0677989 + 0.117431i
\(780\) 11.5911 43.2586i 0.415028 1.54891i
\(781\) 4.73205 + 8.19615i 0.169326 + 0.293281i
\(782\) 7.93048 0.283593
\(783\) −20.0764 5.37945i −0.717472 0.192246i
\(784\) 0 0
\(785\) −8.92820 15.4641i −0.318661 0.551937i
\(786\) −2.70577 + 10.0981i −0.0965117 + 0.360186i
\(787\) −23.3717 + 40.4810i −0.833111 + 1.44299i 0.0624487 + 0.998048i \(0.480109\pi\)
−0.895559 + 0.444942i \(0.853224\pi\)
\(788\) 1.53590 2.66025i 0.0547141 0.0947676i
\(789\) 25.8719 6.93237i 0.921066 0.246799i
\(790\) −9.52056 16.4901i −0.338726 0.586691i
\(791\) 0 0
\(792\) 11.1962i 0.397838i
\(793\) 46.6410 1.65627
\(794\) 9.00292 + 15.5935i 0.319502 + 0.553393i
\(795\) 13.8564 + 13.8564i 0.491436 + 0.491436i
\(796\) −8.90138 + 15.4176i −0.315501 + 0.546464i
\(797\) 10.4543 18.1074i 0.370310 0.641396i −0.619303 0.785152i \(-0.712585\pi\)
0.989613 + 0.143756i \(0.0459181\pi\)
\(798\) 0 0
\(799\) −28.5885 49.5167i −1.01139 1.75177i
\(800\) 9.92820 0.351015
\(801\) 18.3712 + 10.6066i 0.649113 + 0.374766i
\(802\) 17.7846 0.627996
\(803\) 12.7465 + 22.0776i 0.449814 + 0.779101i
\(804\) −9.26174 + 2.48168i −0.326636 + 0.0875219i
\(805\) 0 0
\(806\) −6.00000 + 10.3923i −0.211341 + 0.366053i
\(807\) 2.53590 9.46410i 0.0892679 0.333152i
\(808\) 2.44949 + 4.24264i 0.0861727 + 0.149256i
\(809\) −26.2679 −0.923532 −0.461766 0.887002i \(-0.652784\pi\)
−0.461766 + 0.887002i \(0.652784\pi\)
\(810\) −17.3867 30.1146i −0.610905 1.05812i
\(811\) −46.1242 −1.61964 −0.809820 0.586679i \(-0.800435\pi\)
−0.809820 + 0.586679i \(0.800435\pi\)
\(812\) 0 0
\(813\) −8.07180 + 30.1244i −0.283090 + 1.05651i
\(814\) 1.00000 1.73205i 0.0350500 0.0607083i
\(815\) 41.1881 71.3398i 1.44275 2.49892i
\(816\) 9.06218 2.42820i 0.317240 0.0850041i
\(817\) −5.53674 9.58991i −0.193706 0.335508i
\(818\) −16.7303 −0.584962
\(819\) 0 0
\(820\) −4.92820 −0.172100
\(821\) 5.19615 + 9.00000i 0.181347 + 0.314102i 0.942339 0.334659i \(-0.108621\pi\)
−0.760993 + 0.648761i \(0.775288\pi\)
\(822\) −10.6066 10.6066i −0.369948 0.369948i
\(823\) −15.3923 + 26.6603i −0.536542 + 0.929318i 0.462545 + 0.886596i \(0.346936\pi\)
−0.999087 + 0.0427222i \(0.986397\pi\)
\(824\) 3.72500 6.45189i 0.129767 0.224762i
\(825\) −45.3799 45.3799i −1.57993 1.57993i
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 4.39230i 0.152643i
\(829\) −37.3244 −1.29633 −0.648164 0.761501i \(-0.724463\pi\)
−0.648164 + 0.761501i \(0.724463\pi\)
\(830\) 34.5885 + 59.9090i 1.20058 + 2.07947i
\(831\) −41.0494 + 10.9991i −1.42399 + 0.381556i
\(832\) 3.34607 5.79555i 0.116004 0.200925i
\(833\) 0 0
\(834\) 7.33013 27.3564i 0.253822 0.947275i
\(835\) −40.7846 70.6410i −1.41141 2.44463i
\(836\) −11.0735 −0.382984
\(837\) 2.41154 + 9.00000i 0.0833551 + 0.311086i
\(838\) 7.90327 0.273014
\(839\) 11.3137 + 19.5959i 0.390593 + 0.676526i 0.992528 0.122019i \(-0.0389368\pi\)
−0.601935 + 0.798545i \(0.705603\pi\)
\(840\) 0 0
\(841\) 6.50000 11.2583i 0.224138 0.388218i
\(842\) −14.1962 + 24.5885i −0.489232 + 0.847374i
\(843\) 16.4901 4.41851i 0.567949 0.152181i
\(844\) −2.53590 4.39230i −0.0872892 0.151189i
\(845\) −122.806 −4.22467
\(846\) −27.4249 + 15.8338i −0.942886 + 0.544376i
\(847\) 0 0
\(848\) 1.46410 + 2.53590i 0.0502775 + 0.0870831i
\(849\) −11.5359 11.5359i −0.395911 0.395911i
\(850\) 26.8886 46.5725i 0.922273 1.59742i
\(851\) 0.392305 0.679492i 0.0134480 0.0232927i
\(852\) 3.10583 + 3.10583i 0.106404 + 0.106404i
\(853\) −8.00481 13.8647i −0.274079 0.474719i 0.695823 0.718213i \(-0.255040\pi\)
−0.969902 + 0.243494i \(0.921706\pi\)
\(854\) 0 0
\(855\) −29.7846 + 17.1962i −1.01861 + 0.588096i
\(856\) 3.39230 0.115947
\(857\) 4.19187 + 7.26054i 0.143192 + 0.248015i 0.928697 0.370840i \(-0.120930\pi\)
−0.785505 + 0.618855i \(0.787597\pi\)
\(858\) −41.7846 + 11.1962i −1.42650 + 0.382230i
\(859\) 7.36705 12.7601i 0.251361 0.435369i −0.712540 0.701631i \(-0.752455\pi\)
0.963901 + 0.266262i \(0.0857887\pi\)
\(860\) 7.20977 12.4877i 0.245851 0.425827i
\(861\) 0 0
\(862\) 18.9282 + 32.7846i 0.644697 + 1.11665i
\(863\) 22.1051 0.752467 0.376233 0.926525i \(-0.377219\pi\)
0.376233 + 0.926525i \(0.377219\pi\)
\(864\) −1.34486 5.01910i −0.0457532 0.170753i
\(865\) 6.92820 0.235566
\(866\) 3.55412 + 6.15591i 0.120774 + 0.209186i
\(867\) 5.53176 20.6448i 0.187868 0.701134i
\(868\) 0 0
\(869\) −9.19615 + 15.9282i −0.311958 + 0.540327i
\(870\) −25.8564 + 6.92820i −0.876614 + 0.234888i
\(871\) 18.5235 + 32.0836i 0.627644 + 1.08711i
\(872\) −8.92820 −0.302347
\(873\) 17.6913i 0.598759i
\(874\) −4.34418 −0.146944
\(875\) 0 0
\(876\) 8.36603 + 8.36603i 0.282662 + 0.282662i
\(877\) −16.5885 + 28.7321i −0.560152 + 0.970212i 0.437330 + 0.899301i \(0.355924\pi\)
−0.997483 + 0.0709114i \(0.977409\pi\)
\(878\) −9.79796 + 16.9706i −0.330665 + 0.572729i
\(879\) 23.3205 + 23.3205i 0.786581 + 0.786581i
\(880\) −7.20977 12.4877i −0.243041 0.420960i
\(881\) 12.7279 0.428815 0.214407 0.976744i \(-0.431218\pi\)
0.214407 + 0.976744i \(0.431218\pi\)
\(882\) 0 0
\(883\) 7.53590 0.253603 0.126802 0.991928i \(-0.459529\pi\)
0.126802 + 0.991928i \(0.459529\pi\)
\(884\) −18.1244 31.3923i −0.609588 1.05584i
\(885\) 55.7463 14.9372i 1.87389 0.502108i
\(886\) 9.16025 15.8660i 0.307745 0.533030i
\(887\) 14.3824 24.9110i 0.482913 0.836430i −0.516895 0.856049i \(-0.672912\pi\)
0.999808 + 0.0196195i \(0.00624547\pi\)
\(888\) 0.240237 0.896575i 0.00806181 0.0300871i
\(889\) 0 0
\(890\) 27.3205 0.915786
\(891\) −16.7942 + 29.0885i −0.562628 + 0.974500i
\(892\) 26.7685 0.896276
\(893\) 15.6603 + 27.1244i 0.524050 + 0.907682i
\(894\) 4.06678 15.1774i 0.136013 0.507609i
\(895\) 36.5665 63.3350i 1.22228 2.11706i
\(896\) 0 0
\(897\) −16.3923 + 4.39230i −0.547323 + 0.146655i
\(898\) 8.89230 + 15.4019i 0.296740 + 0.513969i
\(899\) 7.17260 0.239220
\(900\) −25.7942 14.8923i −0.859808 0.496410i
\(901\) 15.8610 0.528405
\(902\) 2.38014 + 4.12252i 0.0792500 + 0.137265i
\(903\) 0 0
\(904\) −3.46410 + 6.00000i −0.115214 + 0.199557i
\(905\) 32.7846 56.7846i 1.08980 1.88758i
\(906\) −2.92996 2.92996i −0.0973415 0.0973415i
\(907\) −21.6244 37.4545i −0.718025 1.24366i −0.961781 0.273819i \(-0.911713\pi\)
0.243756 0.969837i \(-0.421620\pi\)
\(908\) 10.5187 0.349074
\(909\) 14.6969i 0.487467i
\(910\) 0 0
\(911\) 23.4641 + 40.6410i 0.777400 + 1.34650i 0.933435 + 0.358745i \(0.116795\pi\)
−0.156035 + 0.987752i \(0.549871\pi\)
\(912\) −4.96410 + 1.33013i −0.164378 + 0.0440449i
\(913\) 33.4099 57.8676i 1.10571 1.91514i
\(914\) −3.52628 + 6.10770i −0.116639 + 0.202025i
\(915\) 12.0716 45.0518i 0.399074 1.48937i
\(916\) 12.4877 + 21.6293i 0.412605 + 0.714652i
\(917\) 0 0
\(918\) −27.1865 7.28461i −0.897289 0.240428i
\(919\) 22.9282 0.756332 0.378166 0.925738i \(-0.376555\pi\)
0.378166 + 0.925738i \(0.376555\pi\)
\(920\) −2.82843 4.89898i −0.0932505 0.161515i
\(921\) 4.96410 18.5263i 0.163573 0.610462i
\(922\) −12.8666 + 22.2856i −0.423740 + 0.733939i
\(923\) 8.48528 14.6969i 0.279296 0.483756i
\(924\) 0 0
\(925\) −2.66025 4.60770i −0.0874686 0.151500i
\(926\) 38.6410 1.26982
\(927\) −19.3557 + 11.1750i −0.635724 + 0.367035i
\(928\) −4.00000 −0.131306
\(929\) −13.9898 24.2311i −0.458991 0.794997i 0.539916 0.841719i \(-0.318456\pi\)
−0.998908 + 0.0467220i \(0.985122\pi\)
\(930\) 8.48528 + 8.48528i 0.278243 + 0.278243i
\(931\) 0 0
\(932\) 12.0622 20.8923i 0.395110 0.684350i
\(933\) 15.1244 + 15.1244i 0.495149 + 0.495149i
\(934\) −13.7818 23.8707i −0.450954 0.781075i
\(935\) −78.1051 −2.55431
\(936\) −17.3867 + 10.0382i −0.568301 + 0.328109i
\(937\) 9.89949 0.323402 0.161701 0.986840i \(-0.448302\pi\)
0.161701 + 0.986840i \(0.448302\pi\)
\(938\) 0 0
\(939\) 39.1865 10.5000i 1.27880 0.342655i
\(940\) −20.3923 + 35.3205i −0.665124 + 1.15203i
\(941\) −4.34418 + 7.52433i −0.141616 + 0.245286i −0.928105 0.372318i \(-0.878563\pi\)
0.786489 + 0.617604i \(0.211897\pi\)
\(942\) −2.07180 + 7.73205i −0.0675028 + 0.251924i
\(943\) 0.933740 + 1.61729i 0.0304068 + 0.0526661i
\(944\) 8.62398 0.280687
\(945\) 0 0
\(946\) −13.9282 −0.452845
\(947\) −3.06218 5.30385i −0.0995074 0.172352i 0.811973 0.583694i \(-0.198393\pi\)
−0.911481 + 0.411342i \(0.865060\pi\)
\(948\) −2.20925 + 8.24504i −0.0717532 + 0.267787i
\(949\) 22.8564 39.5885i 0.741950 1.28510i
\(950\) −14.7291 + 25.5116i −0.477876 + 0.827705i
\(951\) 43.4988 11.6555i 1.41055 0.377955i
\(952\) 0 0
\(953\) 19.0000 0.615470 0.307735 0.951472i \(-0.400429\pi\)
0.307735 + 0.951472i \(0.400429\pi\)
\(954\) 8.78461i 0.284412i
\(955\) −4.14110 −0.134003
\(956\) 6.46410 + 11.1962i 0.209064 + 0.362109i
\(957\) 18.2832 + 18.2832i 0.591013 + 0.591013i
\(958\) 7.72741 13.3843i 0.249661 0.432426i
\(959\) 0 0
\(960\) −4.73205 4.73205i −0.152726 0.152726i
\(961\) 13.8923 + 24.0622i 0.448139 + 0.776199i
\(962\) −3.58630 −0.115627
\(963\) −8.81347 5.08846i −0.284010 0.163973i
\(964\) −23.4225 −0.754387
\(965\) −44.5341 77.1354i −1.43360 2.48308i
\(966\) 0 0
\(967\) −17.7846 + 30.8038i −0.571914 + 0.990585i 0.424455 + 0.905449i \(0.360466\pi\)
−0.996369 + 0.0851359i \(0.972868\pi\)
\(968\) −1.46410 + 2.53590i −0.0470580 + 0.0815069i
\(969\) −7.20479 + 26.8886i −0.231451 + 0.863788i
\(970\) 11.3923 + 19.7321i 0.365785 + 0.633558i
\(971\) 3.00429 0.0964123 0.0482062 0.998837i \(-0.484650\pi\)
0.0482062 + 0.998837i \(0.484650\pi\)
\(972\) −4.03459 + 15.0573i −0.129410 + 0.482963i
\(973\) 0 0
\(974\) −19.3923 33.5885i −0.621370 1.07624i
\(975\) −29.7846 + 111.158i −0.953871 + 3.55989i
\(976\) 3.48477 6.03579i 0.111545 0.193201i
\(977\) 24.9904 43.2846i 0.799513 1.38480i −0.120420 0.992723i \(-0.538424\pi\)
0.919934 0.392074i \(-0.128242\pi\)
\(978\) −35.6699 + 9.55772i −1.14060 + 0.305622i
\(979\) −13.1948 22.8541i −0.421707 0.730419i
\(980\) 0 0
\(981\) 23.1962 + 13.3923i 0.740596 + 0.427583i
\(982\) −1.39230 −0.0444302
\(983\) −3.48477 6.03579i −0.111147 0.192512i 0.805086 0.593158i \(-0.202119\pi\)
−0.916233 + 0.400646i \(0.868786\pi\)
\(984\) 1.56218 + 1.56218i 0.0498004 + 0.0498004i
\(985\) −5.93426 + 10.2784i −0.189081 + 0.327498i
\(986\) −10.8332 + 18.7637i −0.345000 + 0.597558i
\(987\) 0 0
\(988\) 9.92820 + 17.1962i 0.315858 + 0.547082i
\(989\) −5.46410 −0.173748
\(990\) 43.2586i 1.37485i
\(991\) 1.75129 0.0556315 0.0278158 0.999613i \(-0.491145\pi\)
0.0278158 + 0.999613i \(0.491145\pi\)
\(992\) 0.896575 + 1.55291i 0.0284663 + 0.0493051i
\(993\) 7.58871 2.03339i 0.240820 0.0645276i
\(994\) 0 0
\(995\) 34.3923 59.5692i 1.09031 1.88847i
\(996\) 8.02628 29.9545i 0.254322 0.949144i
\(997\) 3.24453 + 5.61969i 0.102755 + 0.177977i 0.912819 0.408365i \(-0.133901\pi\)
−0.810064 + 0.586342i \(0.800567\pi\)
\(998\) 12.6077 0.399090
\(999\) −1.96902 + 1.96902i −0.0622969 + 0.0622969i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.f.q.589.3 yes 8
3.2 odd 2 2646.2.f.r.1765.1 8
7.2 even 3 882.2.h.q.67.4 8
7.3 odd 6 882.2.e.s.373.4 8
7.4 even 3 882.2.e.s.373.1 8
7.5 odd 6 882.2.h.q.67.1 8
7.6 odd 2 inner 882.2.f.q.589.2 yes 8
9.2 odd 6 2646.2.f.r.883.1 8
9.4 even 3 7938.2.a.cp.1.1 4
9.5 odd 6 7938.2.a.ci.1.4 4
9.7 even 3 inner 882.2.f.q.295.3 yes 8
21.2 odd 6 2646.2.h.t.361.4 8
21.5 even 6 2646.2.h.t.361.1 8
21.11 odd 6 2646.2.e.q.1549.1 8
21.17 even 6 2646.2.e.q.1549.4 8
21.20 even 2 2646.2.f.r.1765.4 8
63.2 odd 6 2646.2.e.q.2125.1 8
63.11 odd 6 2646.2.h.t.667.4 8
63.13 odd 6 7938.2.a.cp.1.4 4
63.16 even 3 882.2.e.s.655.1 8
63.20 even 6 2646.2.f.r.883.4 8
63.25 even 3 882.2.h.q.79.3 8
63.34 odd 6 inner 882.2.f.q.295.2 8
63.38 even 6 2646.2.h.t.667.1 8
63.41 even 6 7938.2.a.ci.1.1 4
63.47 even 6 2646.2.e.q.2125.4 8
63.52 odd 6 882.2.h.q.79.2 8
63.61 odd 6 882.2.e.s.655.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.s.373.1 8 7.4 even 3
882.2.e.s.373.4 8 7.3 odd 6
882.2.e.s.655.1 8 63.16 even 3
882.2.e.s.655.4 8 63.61 odd 6
882.2.f.q.295.2 8 63.34 odd 6 inner
882.2.f.q.295.3 yes 8 9.7 even 3 inner
882.2.f.q.589.2 yes 8 7.6 odd 2 inner
882.2.f.q.589.3 yes 8 1.1 even 1 trivial
882.2.h.q.67.1 8 7.5 odd 6
882.2.h.q.67.4 8 7.2 even 3
882.2.h.q.79.2 8 63.52 odd 6
882.2.h.q.79.3 8 63.25 even 3
2646.2.e.q.1549.1 8 21.11 odd 6
2646.2.e.q.1549.4 8 21.17 even 6
2646.2.e.q.2125.1 8 63.2 odd 6
2646.2.e.q.2125.4 8 63.47 even 6
2646.2.f.r.883.1 8 9.2 odd 6
2646.2.f.r.883.4 8 63.20 even 6
2646.2.f.r.1765.1 8 3.2 odd 2
2646.2.f.r.1765.4 8 21.20 even 2
2646.2.h.t.361.1 8 21.5 even 6
2646.2.h.t.361.4 8 21.2 odd 6
2646.2.h.t.667.1 8 63.38 even 6
2646.2.h.t.667.4 8 63.11 odd 6
7938.2.a.ci.1.1 4 63.41 even 6
7938.2.a.ci.1.4 4 9.5 odd 6
7938.2.a.cp.1.1 4 9.4 even 3
7938.2.a.cp.1.4 4 63.13 odd 6