Properties

Label 2646.2.e.q.1549.1
Level $2646$
Weight $2$
Character 2646.1549
Analytic conductor $21.128$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(1549,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.1549"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,0,8,0,0,0,-8,0,0,-8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 882)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1549.1
Root \(0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 2646.1549
Dual form 2646.2.e.q.2125.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(-1.93185 - 3.34607i) q^{5} -1.00000 q^{8} +(1.93185 + 3.34607i) q^{10} +(-1.86603 + 3.23205i) q^{11} +(3.34607 - 5.79555i) q^{13} +1.00000 q^{16} +(-2.70831 - 4.69093i) q^{17} +(-1.48356 + 2.56961i) q^{19} +(-1.93185 - 3.34607i) q^{20} +(1.86603 - 3.23205i) q^{22} +(-0.732051 - 1.26795i) q^{23} +(-4.96410 + 8.59808i) q^{25} +(-3.34607 + 5.79555i) q^{26} +(-2.00000 - 3.46410i) q^{29} -1.79315 q^{31} -1.00000 q^{32} +(2.70831 + 4.69093i) q^{34} +(-0.267949 + 0.464102i) q^{37} +(1.48356 - 2.56961i) q^{38} +(1.93185 + 3.34607i) q^{40} +(0.637756 - 1.10463i) q^{41} +(-1.86603 - 3.23205i) q^{43} +(-1.86603 + 3.23205i) q^{44} +(0.732051 + 1.26795i) q^{46} +10.5558 q^{47} +(4.96410 - 8.59808i) q^{50} +(3.34607 - 5.79555i) q^{52} +(-1.46410 - 2.53590i) q^{53} +14.4195 q^{55} +(2.00000 + 3.46410i) q^{58} -8.62398 q^{59} -6.96953 q^{61} +1.79315 q^{62} +1.00000 q^{64} -25.8564 q^{65} +5.53590 q^{67} +(-2.70831 - 4.69093i) q^{68} -2.53590 q^{71} +(-3.41542 - 5.91567i) q^{73} +(0.267949 - 0.464102i) q^{74} +(-1.48356 + 2.56961i) q^{76} -4.92820 q^{79} +(-1.93185 - 3.34607i) q^{80} +(-0.637756 + 1.10463i) q^{82} +(8.95215 + 15.5056i) q^{83} +(-10.4641 + 18.1244i) q^{85} +(1.86603 + 3.23205i) q^{86} +(1.86603 - 3.23205i) q^{88} +(-3.53553 + 6.12372i) q^{89} +(-0.732051 - 1.26795i) q^{92} -10.5558 q^{94} +11.4641 q^{95} +(-2.94855 - 5.10703i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{4} - 8 q^{8} - 8 q^{11} + 8 q^{16} + 8 q^{22} + 8 q^{23} - 12 q^{25} - 16 q^{29} - 8 q^{32} - 16 q^{37} - 8 q^{43} - 8 q^{44} - 8 q^{46} + 12 q^{50} + 16 q^{53} + 16 q^{58} + 8 q^{64}+ \cdots + 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.93185 3.34607i −0.863950 1.49641i −0.868086 0.496414i \(-0.834650\pi\)
0.00413535 0.999991i \(-0.498684\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.93185 + 3.34607i 0.610905 + 1.05812i
\(11\) −1.86603 + 3.23205i −0.562628 + 0.974500i 0.434638 + 0.900605i \(0.356876\pi\)
−0.997266 + 0.0738948i \(0.976457\pi\)
\(12\) 0 0
\(13\) 3.34607 5.79555i 0.928032 1.60740i 0.141420 0.989950i \(-0.454833\pi\)
0.786612 0.617448i \(-0.211833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.70831 4.69093i −0.656861 1.13772i −0.981424 0.191853i \(-0.938550\pi\)
0.324562 0.945864i \(-0.394783\pi\)
\(18\) 0 0
\(19\) −1.48356 + 2.56961i −0.340353 + 0.589509i −0.984498 0.175395i \(-0.943880\pi\)
0.644145 + 0.764903i \(0.277213\pi\)
\(20\) −1.93185 3.34607i −0.431975 0.748203i
\(21\) 0 0
\(22\) 1.86603 3.23205i 0.397838 0.689076i
\(23\) −0.732051 1.26795i −0.152643 0.264386i 0.779555 0.626334i \(-0.215445\pi\)
−0.932198 + 0.361948i \(0.882112\pi\)
\(24\) 0 0
\(25\) −4.96410 + 8.59808i −0.992820 + 1.71962i
\(26\) −3.34607 + 5.79555i −0.656217 + 1.13660i
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 3.46410i −0.371391 0.643268i 0.618389 0.785872i \(-0.287786\pi\)
−0.989780 + 0.142605i \(0.954452\pi\)
\(30\) 0 0
\(31\) −1.79315 −0.322059 −0.161030 0.986950i \(-0.551481\pi\)
−0.161030 + 0.986950i \(0.551481\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 2.70831 + 4.69093i 0.464471 + 0.804488i
\(35\) 0 0
\(36\) 0 0
\(37\) −0.267949 + 0.464102i −0.0440506 + 0.0762978i −0.887210 0.461366i \(-0.847360\pi\)
0.843159 + 0.537664i \(0.180693\pi\)
\(38\) 1.48356 2.56961i 0.240666 0.416845i
\(39\) 0 0
\(40\) 1.93185 + 3.34607i 0.305453 + 0.529059i
\(41\) 0.637756 1.10463i 0.0996008 0.172514i −0.811919 0.583771i \(-0.801577\pi\)
0.911519 + 0.411257i \(0.134910\pi\)
\(42\) 0 0
\(43\) −1.86603 3.23205i −0.284566 0.492883i 0.687938 0.725770i \(-0.258516\pi\)
−0.972504 + 0.232887i \(0.925183\pi\)
\(44\) −1.86603 + 3.23205i −0.281314 + 0.487250i
\(45\) 0 0
\(46\) 0.732051 + 1.26795i 0.107935 + 0.186949i
\(47\) 10.5558 1.53973 0.769863 0.638209i \(-0.220324\pi\)
0.769863 + 0.638209i \(0.220324\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 4.96410 8.59808i 0.702030 1.21595i
\(51\) 0 0
\(52\) 3.34607 5.79555i 0.464016 0.803699i
\(53\) −1.46410 2.53590i −0.201110 0.348332i 0.747776 0.663951i \(-0.231121\pi\)
−0.948886 + 0.315618i \(0.897788\pi\)
\(54\) 0 0
\(55\) 14.4195 1.94433
\(56\) 0 0
\(57\) 0 0
\(58\) 2.00000 + 3.46410i 0.262613 + 0.454859i
\(59\) −8.62398 −1.12275 −0.561373 0.827563i \(-0.689727\pi\)
−0.561373 + 0.827563i \(0.689727\pi\)
\(60\) 0 0
\(61\) −6.96953 −0.892357 −0.446179 0.894944i \(-0.647215\pi\)
−0.446179 + 0.894944i \(0.647215\pi\)
\(62\) 1.79315 0.227730
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −25.8564 −3.20709
\(66\) 0 0
\(67\) 5.53590 0.676318 0.338159 0.941089i \(-0.390196\pi\)
0.338159 + 0.941089i \(0.390196\pi\)
\(68\) −2.70831 4.69093i −0.328431 0.568859i
\(69\) 0 0
\(70\) 0 0
\(71\) −2.53590 −0.300956 −0.150478 0.988613i \(-0.548081\pi\)
−0.150478 + 0.988613i \(0.548081\pi\)
\(72\) 0 0
\(73\) −3.41542 5.91567i −0.399744 0.692377i 0.593950 0.804502i \(-0.297568\pi\)
−0.993694 + 0.112125i \(0.964234\pi\)
\(74\) 0.267949 0.464102i 0.0311485 0.0539507i
\(75\) 0 0
\(76\) −1.48356 + 2.56961i −0.170176 + 0.294754i
\(77\) 0 0
\(78\) 0 0
\(79\) −4.92820 −0.554466 −0.277233 0.960803i \(-0.589417\pi\)
−0.277233 + 0.960803i \(0.589417\pi\)
\(80\) −1.93185 3.34607i −0.215988 0.374101i
\(81\) 0 0
\(82\) −0.637756 + 1.10463i −0.0704284 + 0.121986i
\(83\) 8.95215 + 15.5056i 0.982626 + 1.70196i 0.652043 + 0.758182i \(0.273912\pi\)
0.330583 + 0.943777i \(0.392755\pi\)
\(84\) 0 0
\(85\) −10.4641 + 18.1244i −1.13499 + 1.96586i
\(86\) 1.86603 + 3.23205i 0.201219 + 0.348521i
\(87\) 0 0
\(88\) 1.86603 3.23205i 0.198919 0.344538i
\(89\) −3.53553 + 6.12372i −0.374766 + 0.649113i −0.990292 0.139003i \(-0.955610\pi\)
0.615526 + 0.788116i \(0.288944\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.732051 1.26795i −0.0763216 0.132193i
\(93\) 0 0
\(94\) −10.5558 −1.08875
\(95\) 11.4641 1.17619
\(96\) 0 0
\(97\) −2.94855 5.10703i −0.299379 0.518540i 0.676615 0.736337i \(-0.263446\pi\)
−0.975994 + 0.217797i \(0.930113\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −4.96410 + 8.59808i −0.496410 + 0.859808i
\(101\) −2.44949 + 4.24264i −0.243733 + 0.422159i −0.961775 0.273842i \(-0.911706\pi\)
0.718041 + 0.696000i \(0.245039\pi\)
\(102\) 0 0
\(103\) 3.72500 + 6.45189i 0.367035 + 0.635724i 0.989101 0.147241i \(-0.0470394\pi\)
−0.622065 + 0.782965i \(0.713706\pi\)
\(104\) −3.34607 + 5.79555i −0.328109 + 0.568301i
\(105\) 0 0
\(106\) 1.46410 + 2.53590i 0.142206 + 0.246308i
\(107\) 1.69615 2.93782i 0.163973 0.284010i −0.772317 0.635237i \(-0.780902\pi\)
0.936290 + 0.351227i \(0.114236\pi\)
\(108\) 0 0
\(109\) 4.46410 + 7.73205i 0.427583 + 0.740596i 0.996658 0.0816899i \(-0.0260317\pi\)
−0.569074 + 0.822286i \(0.692698\pi\)
\(110\) −14.4195 −1.37485
\(111\) 0 0
\(112\) 0 0
\(113\) 3.46410 6.00000i 0.325875 0.564433i −0.655814 0.754923i \(-0.727674\pi\)
0.981689 + 0.190490i \(0.0610077\pi\)
\(114\) 0 0
\(115\) −2.82843 + 4.89898i −0.263752 + 0.456832i
\(116\) −2.00000 3.46410i −0.185695 0.321634i
\(117\) 0 0
\(118\) 8.62398 0.793902
\(119\) 0 0
\(120\) 0 0
\(121\) −1.46410 2.53590i −0.133100 0.230536i
\(122\) 6.96953 0.630992
\(123\) 0 0
\(124\) −1.79315 −0.161030
\(125\) 19.0411 1.70309
\(126\) 0 0
\(127\) 6.53590 0.579967 0.289984 0.957032i \(-0.406350\pi\)
0.289984 + 0.957032i \(0.406350\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 25.8564 2.26776
\(131\) −3.01790 5.22715i −0.263675 0.456698i 0.703541 0.710655i \(-0.251601\pi\)
−0.967216 + 0.253957i \(0.918268\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −5.53590 −0.478229
\(135\) 0 0
\(136\) 2.70831 + 4.69093i 0.232236 + 0.402244i
\(137\) −4.33013 + 7.50000i −0.369948 + 0.640768i −0.989557 0.144142i \(-0.953958\pi\)
0.619609 + 0.784910i \(0.287291\pi\)
\(138\) 0 0
\(139\) −8.17569 + 14.1607i −0.693453 + 1.20110i 0.277246 + 0.960799i \(0.410578\pi\)
−0.970699 + 0.240297i \(0.922755\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.53590 0.212808
\(143\) 12.4877 + 21.6293i 1.04427 + 1.80873i
\(144\) 0 0
\(145\) −7.72741 + 13.3843i −0.641726 + 1.11150i
\(146\) 3.41542 + 5.91567i 0.282662 + 0.489585i
\(147\) 0 0
\(148\) −0.267949 + 0.464102i −0.0220253 + 0.0381489i
\(149\) 4.53590 + 7.85641i 0.371595 + 0.643622i 0.989811 0.142386i \(-0.0454776\pi\)
−0.618216 + 0.786008i \(0.712144\pi\)
\(150\) 0 0
\(151\) 1.19615 2.07180i 0.0973415 0.168600i −0.813242 0.581926i \(-0.802299\pi\)
0.910583 + 0.413325i \(0.135633\pi\)
\(152\) 1.48356 2.56961i 0.120333 0.208423i
\(153\) 0 0
\(154\) 0 0
\(155\) 3.46410 + 6.00000i 0.278243 + 0.481932i
\(156\) 0 0
\(157\) −4.62158 −0.368842 −0.184421 0.982847i \(-0.559041\pi\)
−0.184421 + 0.982847i \(0.559041\pi\)
\(158\) 4.92820 0.392067
\(159\) 0 0
\(160\) 1.93185 + 3.34607i 0.152726 + 0.264530i
\(161\) 0 0
\(162\) 0 0
\(163\) −10.6603 + 18.4641i −0.834976 + 1.44622i 0.0590748 + 0.998254i \(0.481185\pi\)
−0.894050 + 0.447966i \(0.852148\pi\)
\(164\) 0.637756 1.10463i 0.0498004 0.0862568i
\(165\) 0 0
\(166\) −8.95215 15.5056i −0.694822 1.20347i
\(167\) −10.5558 + 18.2832i −0.816835 + 1.41480i 0.0911679 + 0.995836i \(0.470940\pi\)
−0.908003 + 0.418964i \(0.862393\pi\)
\(168\) 0 0
\(169\) −15.8923 27.5263i −1.22248 2.11741i
\(170\) 10.4641 18.1244i 0.802560 1.39007i
\(171\) 0 0
\(172\) −1.86603 3.23205i −0.142283 0.246442i
\(173\) 1.79315 0.136331 0.0681654 0.997674i \(-0.478285\pi\)
0.0681654 + 0.997674i \(0.478285\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.86603 + 3.23205i −0.140657 + 0.243625i
\(177\) 0 0
\(178\) 3.53553 6.12372i 0.264999 0.458993i
\(179\) 9.46410 + 16.3923i 0.707380 + 1.22522i 0.965826 + 0.259193i \(0.0834564\pi\)
−0.258446 + 0.966026i \(0.583210\pi\)
\(180\) 0 0
\(181\) 16.9706 1.26141 0.630706 0.776022i \(-0.282765\pi\)
0.630706 + 0.776022i \(0.282765\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.732051 + 1.26795i 0.0539675 + 0.0934745i
\(185\) 2.07055 0.152230
\(186\) 0 0
\(187\) 20.2151 1.47827
\(188\) 10.5558 0.769863
\(189\) 0 0
\(190\) −11.4641 −0.831693
\(191\) −1.07180 −0.0775525 −0.0387762 0.999248i \(-0.512346\pi\)
−0.0387762 + 0.999248i \(0.512346\pi\)
\(192\) 0 0
\(193\) −23.0526 −1.65936 −0.829680 0.558240i \(-0.811477\pi\)
−0.829680 + 0.558240i \(0.811477\pi\)
\(194\) 2.94855 + 5.10703i 0.211693 + 0.366663i
\(195\) 0 0
\(196\) 0 0
\(197\) 3.07180 0.218856 0.109428 0.993995i \(-0.465098\pi\)
0.109428 + 0.993995i \(0.465098\pi\)
\(198\) 0 0
\(199\) −8.90138 15.4176i −0.631002 1.09293i −0.987347 0.158574i \(-0.949310\pi\)
0.356345 0.934355i \(-0.384023\pi\)
\(200\) 4.96410 8.59808i 0.351015 0.607976i
\(201\) 0 0
\(202\) 2.44949 4.24264i 0.172345 0.298511i
\(203\) 0 0
\(204\) 0 0
\(205\) −4.92820 −0.344201
\(206\) −3.72500 6.45189i −0.259533 0.449525i
\(207\) 0 0
\(208\) 3.34607 5.79555i 0.232008 0.401849i
\(209\) −5.53674 9.58991i −0.382984 0.663348i
\(210\) 0 0
\(211\) −2.53590 + 4.39230i −0.174578 + 0.302379i −0.940015 0.341132i \(-0.889190\pi\)
0.765437 + 0.643511i \(0.222523\pi\)
\(212\) −1.46410 2.53590i −0.100555 0.174166i
\(213\) 0 0
\(214\) −1.69615 + 2.93782i −0.115947 + 0.200825i
\(215\) −7.20977 + 12.4877i −0.491702 + 0.851653i
\(216\) 0 0
\(217\) 0 0
\(218\) −4.46410 7.73205i −0.302347 0.523681i
\(219\) 0 0
\(220\) 14.4195 0.972165
\(221\) −36.2487 −2.43835
\(222\) 0 0
\(223\) −13.3843 23.1822i −0.896276 1.55240i −0.832217 0.554450i \(-0.812929\pi\)
−0.0640595 0.997946i \(-0.520405\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −3.46410 + 6.00000i −0.230429 + 0.399114i
\(227\) 5.25933 9.10943i 0.349074 0.604614i −0.637011 0.770855i \(-0.719829\pi\)
0.986085 + 0.166240i \(0.0531627\pi\)
\(228\) 0 0
\(229\) 12.4877 + 21.6293i 0.825209 + 1.42930i 0.901759 + 0.432239i \(0.142276\pi\)
−0.0765496 + 0.997066i \(0.524390\pi\)
\(230\) 2.82843 4.89898i 0.186501 0.323029i
\(231\) 0 0
\(232\) 2.00000 + 3.46410i 0.131306 + 0.227429i
\(233\) −12.0622 + 20.8923i −0.790220 + 1.36870i 0.135611 + 0.990762i \(0.456700\pi\)
−0.925831 + 0.377938i \(0.876633\pi\)
\(234\) 0 0
\(235\) −20.3923 35.3205i −1.33025 2.30406i
\(236\) −8.62398 −0.561373
\(237\) 0 0
\(238\) 0 0
\(239\) −6.46410 + 11.1962i −0.418128 + 0.724219i −0.995751 0.0920846i \(-0.970647\pi\)
0.577623 + 0.816304i \(0.303980\pi\)
\(240\) 0 0
\(241\) 11.7112 20.2844i 0.754387 1.30664i −0.191292 0.981533i \(-0.561268\pi\)
0.945679 0.325103i \(-0.105399\pi\)
\(242\) 1.46410 + 2.53590i 0.0941160 + 0.163014i
\(243\) 0 0
\(244\) −6.96953 −0.446179
\(245\) 0 0
\(246\) 0 0
\(247\) 9.92820 + 17.1962i 0.631716 + 1.09416i
\(248\) 1.79315 0.113865
\(249\) 0 0
\(250\) −19.0411 −1.20427
\(251\) −16.3514 −1.03209 −0.516045 0.856561i \(-0.672596\pi\)
−0.516045 + 0.856561i \(0.672596\pi\)
\(252\) 0 0
\(253\) 5.46410 0.343525
\(254\) −6.53590 −0.410099
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −1.34486 2.32937i −0.0838903 0.145302i 0.821028 0.570889i \(-0.193401\pi\)
−0.904918 + 0.425586i \(0.860068\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −25.8564 −1.60355
\(261\) 0 0
\(262\) 3.01790 + 5.22715i 0.186446 + 0.322934i
\(263\) −7.73205 + 13.3923i −0.476779 + 0.825805i −0.999646 0.0266092i \(-0.991529\pi\)
0.522867 + 0.852414i \(0.324862\pi\)
\(264\) 0 0
\(265\) −5.65685 + 9.79796i −0.347498 + 0.601884i
\(266\) 0 0
\(267\) 0 0
\(268\) 5.53590 0.338159
\(269\) 2.82843 + 4.89898i 0.172452 + 0.298696i 0.939277 0.343161i \(-0.111498\pi\)
−0.766824 + 0.641857i \(0.778164\pi\)
\(270\) 0 0
\(271\) 9.00292 15.5935i 0.546888 0.947239i −0.451597 0.892222i \(-0.649146\pi\)
0.998485 0.0550165i \(-0.0175211\pi\)
\(272\) −2.70831 4.69093i −0.164215 0.284429i
\(273\) 0 0
\(274\) 4.33013 7.50000i 0.261593 0.453092i
\(275\) −18.5263 32.0885i −1.11718 1.93501i
\(276\) 0 0
\(277\) −12.2679 + 21.2487i −0.737110 + 1.27671i 0.216682 + 0.976242i \(0.430477\pi\)
−0.953792 + 0.300469i \(0.902857\pi\)
\(278\) 8.17569 14.1607i 0.490346 0.849303i
\(279\) 0 0
\(280\) 0 0
\(281\) −4.92820 8.53590i −0.293992 0.509209i 0.680758 0.732508i \(-0.261651\pi\)
−0.974750 + 0.223299i \(0.928317\pi\)
\(282\) 0 0
\(283\) −9.41902 −0.559903 −0.279951 0.960014i \(-0.590318\pi\)
−0.279951 + 0.960014i \(0.590318\pi\)
\(284\) −2.53590 −0.150478
\(285\) 0 0
\(286\) −12.4877 21.6293i −0.738412 1.27897i
\(287\) 0 0
\(288\) 0 0
\(289\) −6.16987 + 10.6865i −0.362934 + 0.628620i
\(290\) 7.72741 13.3843i 0.453769 0.785951i
\(291\) 0 0
\(292\) −3.41542 5.91567i −0.199872 0.346189i
\(293\) 9.52056 16.4901i 0.556197 0.963361i −0.441612 0.897206i \(-0.645593\pi\)
0.997809 0.0661554i \(-0.0210733\pi\)
\(294\) 0 0
\(295\) 16.6603 + 28.8564i 0.969997 + 1.68008i
\(296\) 0.267949 0.464102i 0.0155742 0.0269754i
\(297\) 0 0
\(298\) −4.53590 7.85641i −0.262758 0.455109i
\(299\) −9.79796 −0.566631
\(300\) 0 0
\(301\) 0 0
\(302\) −1.19615 + 2.07180i −0.0688308 + 0.119219i
\(303\) 0 0
\(304\) −1.48356 + 2.56961i −0.0850882 + 0.147377i
\(305\) 13.4641 + 23.3205i 0.770952 + 1.33533i
\(306\) 0 0
\(307\) 11.0735 0.631996 0.315998 0.948760i \(-0.397661\pi\)
0.315998 + 0.948760i \(0.397661\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −3.46410 6.00000i −0.196748 0.340777i
\(311\) −12.3490 −0.700247 −0.350123 0.936704i \(-0.613860\pi\)
−0.350123 + 0.936704i \(0.613860\pi\)
\(312\) 0 0
\(313\) −23.4225 −1.32392 −0.661958 0.749541i \(-0.730274\pi\)
−0.661958 + 0.749541i \(0.730274\pi\)
\(314\) 4.62158 0.260811
\(315\) 0 0
\(316\) −4.92820 −0.277233
\(317\) 26.0000 1.46031 0.730153 0.683284i \(-0.239449\pi\)
0.730153 + 0.683284i \(0.239449\pi\)
\(318\) 0 0
\(319\) 14.9282 0.835819
\(320\) −1.93185 3.34607i −0.107994 0.187051i
\(321\) 0 0
\(322\) 0 0
\(323\) 16.0718 0.894259
\(324\) 0 0
\(325\) 33.2204 + 57.5394i 1.84274 + 3.19171i
\(326\) 10.6603 18.4641i 0.590417 1.02263i
\(327\) 0 0
\(328\) −0.637756 + 1.10463i −0.0352142 + 0.0609928i
\(329\) 0 0
\(330\) 0 0
\(331\) −4.53590 −0.249316 −0.124658 0.992200i \(-0.539783\pi\)
−0.124658 + 0.992200i \(0.539783\pi\)
\(332\) 8.95215 + 15.5056i 0.491313 + 0.850979i
\(333\) 0 0
\(334\) 10.5558 18.2832i 0.577590 1.00041i
\(335\) −10.6945 18.5235i −0.584305 1.01205i
\(336\) 0 0
\(337\) 3.50000 6.06218i 0.190657 0.330228i −0.754811 0.655942i \(-0.772271\pi\)
0.945468 + 0.325714i \(0.105605\pi\)
\(338\) 15.8923 + 27.5263i 0.864427 + 1.49723i
\(339\) 0 0
\(340\) −10.4641 + 18.1244i −0.567496 + 0.982931i
\(341\) 3.34607 5.79555i 0.181200 0.313847i
\(342\) 0 0
\(343\) 0 0
\(344\) 1.86603 + 3.23205i 0.100609 + 0.174261i
\(345\) 0 0
\(346\) −1.79315 −0.0964004
\(347\) −21.5885 −1.15893 −0.579465 0.814997i \(-0.696738\pi\)
−0.579465 + 0.814997i \(0.696738\pi\)
\(348\) 0 0
\(349\) 8.24504 + 14.2808i 0.441347 + 0.764436i 0.997790 0.0664504i \(-0.0211674\pi\)
−0.556443 + 0.830886i \(0.687834\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.86603 3.23205i 0.0994595 0.172269i
\(353\) 13.2134 22.8862i 0.703277 1.21811i −0.264033 0.964514i \(-0.585053\pi\)
0.967310 0.253598i \(-0.0816139\pi\)
\(354\) 0 0
\(355\) 4.89898 + 8.48528i 0.260011 + 0.450352i
\(356\) −3.53553 + 6.12372i −0.187383 + 0.324557i
\(357\) 0 0
\(358\) −9.46410 16.3923i −0.500193 0.866360i
\(359\) 0.267949 0.464102i 0.0141418 0.0244943i −0.858868 0.512197i \(-0.828832\pi\)
0.873010 + 0.487703i \(0.162165\pi\)
\(360\) 0 0
\(361\) 5.09808 + 8.83013i 0.268320 + 0.464744i
\(362\) −16.9706 −0.891953
\(363\) 0 0
\(364\) 0 0
\(365\) −13.1962 + 22.8564i −0.690718 + 1.19636i
\(366\) 0 0
\(367\) −7.86611 + 13.6245i −0.410607 + 0.711193i −0.994956 0.100310i \(-0.968017\pi\)
0.584349 + 0.811503i \(0.301350\pi\)
\(368\) −0.732051 1.26795i −0.0381608 0.0660964i
\(369\) 0 0
\(370\) −2.07055 −0.107643
\(371\) 0 0
\(372\) 0 0
\(373\) −15.3923 26.6603i −0.796983 1.38042i −0.921572 0.388207i \(-0.873095\pi\)
0.124589 0.992208i \(-0.460239\pi\)
\(374\) −20.2151 −1.04530
\(375\) 0 0
\(376\) −10.5558 −0.544376
\(377\) −26.7685 −1.37865
\(378\) 0 0
\(379\) −17.5885 −0.903458 −0.451729 0.892155i \(-0.649193\pi\)
−0.451729 + 0.892155i \(0.649193\pi\)
\(380\) 11.4641 0.588096
\(381\) 0 0
\(382\) 1.07180 0.0548379
\(383\) 10.8332 + 18.7637i 0.553552 + 0.958781i 0.998015 + 0.0629833i \(0.0200615\pi\)
−0.444462 + 0.895798i \(0.646605\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 23.0526 1.17334
\(387\) 0 0
\(388\) −2.94855 5.10703i −0.149690 0.259270i
\(389\) 4.00000 6.92820i 0.202808 0.351274i −0.746624 0.665246i \(-0.768327\pi\)
0.949432 + 0.313972i \(0.101660\pi\)
\(390\) 0 0
\(391\) −3.96524 + 6.86800i −0.200531 + 0.347329i
\(392\) 0 0
\(393\) 0 0
\(394\) −3.07180 −0.154755
\(395\) 9.52056 + 16.4901i 0.479031 + 0.829706i
\(396\) 0 0
\(397\) 9.00292 15.5935i 0.451844 0.782616i −0.546657 0.837357i \(-0.684100\pi\)
0.998501 + 0.0547406i \(0.0174332\pi\)
\(398\) 8.90138 + 15.4176i 0.446186 + 0.772817i
\(399\) 0 0
\(400\) −4.96410 + 8.59808i −0.248205 + 0.429904i
\(401\) 8.89230 + 15.4019i 0.444061 + 0.769135i 0.997986 0.0634307i \(-0.0202042\pi\)
−0.553926 + 0.832566i \(0.686871\pi\)
\(402\) 0 0
\(403\) −6.00000 + 10.3923i −0.298881 + 0.517678i
\(404\) −2.44949 + 4.24264i −0.121867 + 0.211079i
\(405\) 0 0
\(406\) 0 0
\(407\) −1.00000 1.73205i −0.0495682 0.0858546i
\(408\) 0 0
\(409\) −16.7303 −0.827261 −0.413631 0.910445i \(-0.635740\pi\)
−0.413631 + 0.910445i \(0.635740\pi\)
\(410\) 4.92820 0.243387
\(411\) 0 0
\(412\) 3.72500 + 6.45189i 0.183518 + 0.317862i
\(413\) 0 0
\(414\) 0 0
\(415\) 34.5885 59.9090i 1.69788 2.94082i
\(416\) −3.34607 + 5.79555i −0.164054 + 0.284150i
\(417\) 0 0
\(418\) 5.53674 + 9.58991i 0.270811 + 0.469058i
\(419\) 3.95164 6.84443i 0.193050 0.334373i −0.753209 0.657781i \(-0.771495\pi\)
0.946260 + 0.323408i \(0.104829\pi\)
\(420\) 0 0
\(421\) −14.1962 24.5885i −0.691878 1.19837i −0.971222 0.238177i \(-0.923450\pi\)
0.279344 0.960191i \(-0.409883\pi\)
\(422\) 2.53590 4.39230i 0.123446 0.213814i
\(423\) 0 0
\(424\) 1.46410 + 2.53590i 0.0711031 + 0.123154i
\(425\) 53.7773 2.60858
\(426\) 0 0
\(427\) 0 0
\(428\) 1.69615 2.93782i 0.0819866 0.142005i
\(429\) 0 0
\(430\) 7.20977 12.4877i 0.347686 0.602210i
\(431\) −18.9282 32.7846i −0.911739 1.57918i −0.811606 0.584205i \(-0.801406\pi\)
−0.100133 0.994974i \(-0.531927\pi\)
\(432\) 0 0
\(433\) −7.10823 −0.341600 −0.170800 0.985306i \(-0.554635\pi\)
−0.170800 + 0.985306i \(0.554635\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 4.46410 + 7.73205i 0.213792 + 0.370298i
\(437\) 4.34418 0.207810
\(438\) 0 0
\(439\) 19.5959 0.935262 0.467631 0.883924i \(-0.345108\pi\)
0.467631 + 0.883924i \(0.345108\pi\)
\(440\) −14.4195 −0.687424
\(441\) 0 0
\(442\) 36.2487 1.72418
\(443\) 18.3205 0.870434 0.435217 0.900326i \(-0.356672\pi\)
0.435217 + 0.900326i \(0.356672\pi\)
\(444\) 0 0
\(445\) 27.3205 1.29512
\(446\) 13.3843 + 23.1822i 0.633763 + 1.09771i
\(447\) 0 0
\(448\) 0 0
\(449\) 17.7846 0.839308 0.419654 0.907684i \(-0.362151\pi\)
0.419654 + 0.907684i \(0.362151\pi\)
\(450\) 0 0
\(451\) 2.38014 + 4.12252i 0.112076 + 0.194122i
\(452\) 3.46410 6.00000i 0.162938 0.282216i
\(453\) 0 0
\(454\) −5.25933 + 9.10943i −0.246833 + 0.427527i
\(455\) 0 0
\(456\) 0 0
\(457\) 7.05256 0.329905 0.164952 0.986302i \(-0.447253\pi\)
0.164952 + 0.986302i \(0.447253\pi\)
\(458\) −12.4877 21.6293i −0.583511 1.01067i
\(459\) 0 0
\(460\) −2.82843 + 4.89898i −0.131876 + 0.228416i
\(461\) 12.8666 + 22.2856i 0.599258 + 1.03795i 0.992931 + 0.118695i \(0.0378711\pi\)
−0.393672 + 0.919251i \(0.628796\pi\)
\(462\) 0 0
\(463\) −19.3205 + 33.4641i −0.897900 + 1.55521i −0.0677264 + 0.997704i \(0.521575\pi\)
−0.830174 + 0.557505i \(0.811759\pi\)
\(464\) −2.00000 3.46410i −0.0928477 0.160817i
\(465\) 0 0
\(466\) 12.0622 20.8923i 0.558770 0.967817i
\(467\) 13.7818 23.8707i 0.637745 1.10461i −0.348182 0.937427i \(-0.613201\pi\)
0.985927 0.167179i \(-0.0534659\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 20.3923 + 35.3205i 0.940627 + 1.62921i
\(471\) 0 0
\(472\) 8.62398 0.396951
\(473\) 13.9282 0.640419
\(474\) 0 0
\(475\) −14.7291 25.5116i −0.675819 1.17055i
\(476\) 0 0
\(477\) 0 0
\(478\) 6.46410 11.1962i 0.295661 0.512100i
\(479\) −7.72741 + 13.3843i −0.353074 + 0.611542i −0.986786 0.162026i \(-0.948197\pi\)
0.633712 + 0.773569i \(0.281530\pi\)
\(480\) 0 0
\(481\) 1.79315 + 3.10583i 0.0817606 + 0.141614i
\(482\) −11.7112 + 20.2844i −0.533432 + 0.923931i
\(483\) 0 0
\(484\) −1.46410 2.53590i −0.0665501 0.115268i
\(485\) −11.3923 + 19.7321i −0.517298 + 0.895986i
\(486\) 0 0
\(487\) −19.3923 33.5885i −0.878749 1.52204i −0.852714 0.522377i \(-0.825045\pi\)
−0.0260347 0.999661i \(-0.508288\pi\)
\(488\) 6.96953 0.315496
\(489\) 0 0
\(490\) 0 0
\(491\) −0.696152 + 1.20577i −0.0314169 + 0.0544157i −0.881306 0.472545i \(-0.843335\pi\)
0.849889 + 0.526961i \(0.176669\pi\)
\(492\) 0 0
\(493\) −10.8332 + 18.7637i −0.487904 + 0.845075i
\(494\) −9.92820 17.1962i −0.446691 0.773691i
\(495\) 0 0
\(496\) −1.79315 −0.0805149
\(497\) 0 0
\(498\) 0 0
\(499\) −6.30385 10.9186i −0.282199 0.488783i 0.689727 0.724069i \(-0.257731\pi\)
−0.971926 + 0.235286i \(0.924397\pi\)
\(500\) 19.0411 0.851545
\(501\) 0 0
\(502\) 16.3514 0.729798
\(503\) −7.45001 −0.332179 −0.166090 0.986111i \(-0.553114\pi\)
−0.166090 + 0.986111i \(0.553114\pi\)
\(504\) 0 0
\(505\) 18.9282 0.842294
\(506\) −5.46410 −0.242909
\(507\) 0 0
\(508\) 6.53590 0.289984
\(509\) −13.2456 22.9420i −0.587099 1.01689i −0.994610 0.103685i \(-0.966937\pi\)
0.407511 0.913200i \(-0.366397\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 1.34486 + 2.32937i 0.0593194 + 0.102744i
\(515\) 14.3923 24.9282i 0.634201 1.09847i
\(516\) 0 0
\(517\) −19.6975 + 34.1170i −0.866293 + 1.50046i
\(518\) 0 0
\(519\) 0 0
\(520\) 25.8564 1.13388
\(521\) −16.1805 28.0255i −0.708881 1.22782i −0.965273 0.261244i \(-0.915867\pi\)
0.256392 0.966573i \(-0.417466\pi\)
\(522\) 0 0
\(523\) −1.88108 + 3.25813i −0.0822540 + 0.142468i −0.904218 0.427072i \(-0.859545\pi\)
0.821964 + 0.569540i \(0.192879\pi\)
\(524\) −3.01790 5.22715i −0.131837 0.228349i
\(525\) 0 0
\(526\) 7.73205 13.3923i 0.337133 0.583932i
\(527\) 4.85641 + 8.41154i 0.211548 + 0.366413i
\(528\) 0 0
\(529\) 10.4282 18.0622i 0.453400 0.785312i
\(530\) 5.65685 9.79796i 0.245718 0.425596i
\(531\) 0 0
\(532\) 0 0
\(533\) −4.26795 7.39230i −0.184865 0.320196i
\(534\) 0 0
\(535\) −13.1069 −0.566659
\(536\) −5.53590 −0.239114
\(537\) 0 0
\(538\) −2.82843 4.89898i −0.121942 0.211210i
\(539\) 0 0
\(540\) 0 0
\(541\) 9.66025 16.7321i 0.415327 0.719367i −0.580136 0.814520i \(-0.697001\pi\)
0.995463 + 0.0951526i \(0.0303339\pi\)
\(542\) −9.00292 + 15.5935i −0.386709 + 0.669799i
\(543\) 0 0
\(544\) 2.70831 + 4.69093i 0.116118 + 0.201122i
\(545\) 17.2480 29.8744i 0.738822 1.27968i
\(546\) 0 0
\(547\) 19.1865 + 33.2321i 0.820357 + 1.42090i 0.905417 + 0.424524i \(0.139559\pi\)
−0.0850597 + 0.996376i \(0.527108\pi\)
\(548\) −4.33013 + 7.50000i −0.184974 + 0.320384i
\(549\) 0 0
\(550\) 18.5263 + 32.0885i 0.789963 + 1.36826i
\(551\) 11.8685 0.505616
\(552\) 0 0
\(553\) 0 0
\(554\) 12.2679 21.2487i 0.521215 0.902771i
\(555\) 0 0
\(556\) −8.17569 + 14.1607i −0.346727 + 0.600548i
\(557\) 3.46410 + 6.00000i 0.146779 + 0.254228i 0.930035 0.367471i \(-0.119776\pi\)
−0.783256 + 0.621699i \(0.786443\pi\)
\(558\) 0 0
\(559\) −24.9754 −1.05635
\(560\) 0 0
\(561\) 0 0
\(562\) 4.92820 + 8.53590i 0.207884 + 0.360065i
\(563\) −25.5945 −1.07868 −0.539341 0.842088i \(-0.681327\pi\)
−0.539341 + 0.842088i \(0.681327\pi\)
\(564\) 0 0
\(565\) −26.7685 −1.12616
\(566\) 9.41902 0.395911
\(567\) 0 0
\(568\) 2.53590 0.106404
\(569\) −15.7846 −0.661725 −0.330863 0.943679i \(-0.607340\pi\)
−0.330863 + 0.943679i \(0.607340\pi\)
\(570\) 0 0
\(571\) 5.05256 0.211443 0.105722 0.994396i \(-0.466285\pi\)
0.105722 + 0.994396i \(0.466285\pi\)
\(572\) 12.4877 + 21.6293i 0.522136 + 0.904367i
\(573\) 0 0
\(574\) 0 0
\(575\) 14.5359 0.606189
\(576\) 0 0
\(577\) −22.3178 38.6556i −0.929103 1.60925i −0.784825 0.619717i \(-0.787247\pi\)
−0.144278 0.989537i \(-0.546086\pi\)
\(578\) 6.16987 10.6865i 0.256633 0.444501i
\(579\) 0 0
\(580\) −7.72741 + 13.3843i −0.320863 + 0.555751i
\(581\) 0 0
\(582\) 0 0
\(583\) 10.9282 0.452600
\(584\) 3.41542 + 5.91567i 0.141331 + 0.244792i
\(585\) 0 0
\(586\) −9.52056 + 16.4901i −0.393291 + 0.681199i
\(587\) −14.5768 25.2478i −0.601650 1.04209i −0.992571 0.121664i \(-0.961177\pi\)
0.390922 0.920424i \(-0.372156\pi\)
\(588\) 0 0
\(589\) 2.66025 4.60770i 0.109614 0.189857i
\(590\) −16.6603 28.8564i −0.685892 1.18800i
\(591\) 0 0
\(592\) −0.267949 + 0.464102i −0.0110126 + 0.0190745i
\(593\) 1.36345 2.36156i 0.0559900 0.0969775i −0.836672 0.547704i \(-0.815502\pi\)
0.892662 + 0.450727i \(0.148835\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.53590 + 7.85641i 0.185798 + 0.321811i
\(597\) 0 0
\(598\) 9.79796 0.400668
\(599\) 36.7846 1.50298 0.751489 0.659745i \(-0.229336\pi\)
0.751489 + 0.659745i \(0.229336\pi\)
\(600\) 0 0
\(601\) −0.448288 0.776457i −0.0182860 0.0316723i 0.856738 0.515753i \(-0.172488\pi\)
−0.875024 + 0.484080i \(0.839154\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.19615 2.07180i 0.0486708 0.0843002i
\(605\) −5.65685 + 9.79796i −0.229984 + 0.398344i
\(606\) 0 0
\(607\) −15.8338 27.4249i −0.642672 1.11314i −0.984834 0.173500i \(-0.944492\pi\)
0.342162 0.939641i \(-0.388841\pi\)
\(608\) 1.48356 2.56961i 0.0601665 0.104211i
\(609\) 0 0
\(610\) −13.4641 23.3205i −0.545146 0.944220i
\(611\) 35.3205 61.1769i 1.42891 2.47495i
\(612\) 0 0
\(613\) −5.53590 9.58846i −0.223593 0.387274i 0.732304 0.680978i \(-0.238445\pi\)
−0.955896 + 0.293704i \(0.905112\pi\)
\(614\) −11.0735 −0.446889
\(615\) 0 0
\(616\) 0 0
\(617\) −15.4282 + 26.7224i −0.621116 + 1.07580i 0.368162 + 0.929762i \(0.379987\pi\)
−0.989278 + 0.146043i \(0.953346\pi\)
\(618\) 0 0
\(619\) 12.3168 21.3333i 0.495054 0.857459i −0.504930 0.863160i \(-0.668482\pi\)
0.999984 + 0.00570182i \(0.00181496\pi\)
\(620\) 3.46410 + 6.00000i 0.139122 + 0.240966i
\(621\) 0 0
\(622\) 12.3490 0.495149
\(623\) 0 0
\(624\) 0 0
\(625\) −11.9641 20.7224i −0.478564 0.828897i
\(626\) 23.4225 0.936150
\(627\) 0 0
\(628\) −4.62158 −0.184421
\(629\) 2.90276 0.115740
\(630\) 0 0
\(631\) 35.7128 1.42170 0.710852 0.703341i \(-0.248309\pi\)
0.710852 + 0.703341i \(0.248309\pi\)
\(632\) 4.92820 0.196033
\(633\) 0 0
\(634\) −26.0000 −1.03259
\(635\) −12.6264 21.8695i −0.501063 0.867866i
\(636\) 0 0
\(637\) 0 0
\(638\) −14.9282 −0.591013
\(639\) 0 0
\(640\) 1.93185 + 3.34607i 0.0763631 + 0.132265i
\(641\) 8.96410 15.5263i 0.354061 0.613251i −0.632896 0.774237i \(-0.718134\pi\)
0.986957 + 0.160986i \(0.0514673\pi\)
\(642\) 0 0
\(643\) −6.53485 + 11.3187i −0.257709 + 0.446365i −0.965628 0.259929i \(-0.916301\pi\)
0.707919 + 0.706294i \(0.249634\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −16.0718 −0.632336
\(647\) −6.03579 10.4543i −0.237291 0.411001i 0.722645 0.691220i \(-0.242926\pi\)
−0.959936 + 0.280219i \(0.909593\pi\)
\(648\) 0 0
\(649\) 16.0926 27.8731i 0.631689 1.09412i
\(650\) −33.2204 57.5394i −1.30301 2.25688i
\(651\) 0 0
\(652\) −10.6603 + 18.4641i −0.417488 + 0.723110i
\(653\) 3.00000 + 5.19615i 0.117399 + 0.203341i 0.918736 0.394872i \(-0.129211\pi\)
−0.801337 + 0.598213i \(0.795878\pi\)
\(654\) 0 0
\(655\) −11.6603 + 20.1962i −0.455604 + 0.789129i
\(656\) 0.637756 1.10463i 0.0249002 0.0431284i
\(657\) 0 0
\(658\) 0 0
\(659\) 0.124356 + 0.215390i 0.00484421 + 0.00839042i 0.868437 0.495799i \(-0.165125\pi\)
−0.863593 + 0.504189i \(0.831791\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 4.53590 0.176293
\(663\) 0 0
\(664\) −8.95215 15.5056i −0.347411 0.601733i
\(665\) 0 0
\(666\) 0 0
\(667\) −2.92820 + 5.07180i −0.113380 + 0.196381i
\(668\) −10.5558 + 18.2832i −0.408417 + 0.707400i
\(669\) 0 0
\(670\) 10.6945 + 18.5235i 0.413166 + 0.715624i
\(671\) 13.0053 22.5259i 0.502065 0.869602i
\(672\) 0 0
\(673\) 20.7846 + 36.0000i 0.801188 + 1.38770i 0.918835 + 0.394643i \(0.129132\pi\)
−0.117647 + 0.993055i \(0.537535\pi\)
\(674\) −3.50000 + 6.06218i −0.134815 + 0.233506i
\(675\) 0 0
\(676\) −15.8923 27.5263i −0.611242 1.05870i
\(677\) −20.0764 −0.771598 −0.385799 0.922583i \(-0.626074\pi\)
−0.385799 + 0.922583i \(0.626074\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 10.4641 18.1244i 0.401280 0.695037i
\(681\) 0 0
\(682\) −3.34607 + 5.79555i −0.128127 + 0.221923i
\(683\) −1.83975 3.18653i −0.0703959 0.121929i 0.828679 0.559724i \(-0.189093\pi\)
−0.899075 + 0.437795i \(0.855760\pi\)
\(684\) 0 0
\(685\) 33.4607 1.27847
\(686\) 0 0
\(687\) 0 0
\(688\) −1.86603 3.23205i −0.0711416 0.123221i
\(689\) −19.5959 −0.746545
\(690\) 0 0
\(691\) −9.62209 −0.366042 −0.183021 0.983109i \(-0.558588\pi\)
−0.183021 + 0.983109i \(0.558588\pi\)
\(692\) 1.79315 0.0681654
\(693\) 0 0
\(694\) 21.5885 0.819487
\(695\) 63.1769 2.39644
\(696\) 0 0
\(697\) −6.90897 −0.261696
\(698\) −8.24504 14.2808i −0.312080 0.540538i
\(699\) 0 0
\(700\) 0 0
\(701\) −20.7846 −0.785024 −0.392512 0.919747i \(-0.628394\pi\)
−0.392512 + 0.919747i \(0.628394\pi\)
\(702\) 0 0
\(703\) −0.795040 1.37705i −0.0299855 0.0519364i
\(704\) −1.86603 + 3.23205i −0.0703285 + 0.121812i
\(705\) 0 0
\(706\) −13.2134 + 22.8862i −0.497292 + 0.861335i
\(707\) 0 0
\(708\) 0 0
\(709\) 8.39230 0.315180 0.157590 0.987505i \(-0.449628\pi\)
0.157590 + 0.987505i \(0.449628\pi\)
\(710\) −4.89898 8.48528i −0.183855 0.318447i
\(711\) 0 0
\(712\) 3.53553 6.12372i 0.132500 0.229496i
\(713\) 1.31268 + 2.27362i 0.0491602 + 0.0851479i
\(714\) 0 0
\(715\) 48.2487 83.5692i 1.80440 3.12531i
\(716\) 9.46410 + 16.3923i 0.353690 + 0.612609i
\(717\) 0 0
\(718\) −0.267949 + 0.464102i −0.00999978 + 0.0173201i
\(719\) 7.69024 13.3199i 0.286798 0.496748i −0.686246 0.727370i \(-0.740743\pi\)
0.973044 + 0.230622i \(0.0740759\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −5.09808 8.83013i −0.189731 0.328623i
\(723\) 0 0
\(724\) 16.9706 0.630706
\(725\) 39.7128 1.47490
\(726\) 0 0
\(727\) −0.795040 1.37705i −0.0294864 0.0510719i 0.850906 0.525319i \(-0.176054\pi\)
−0.880392 + 0.474247i \(0.842721\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 13.1962 22.8564i 0.488412 0.845954i
\(731\) −10.1075 + 17.5068i −0.373841 + 0.647512i
\(732\) 0 0
\(733\) −8.24504 14.2808i −0.304538 0.527475i 0.672621 0.739988i \(-0.265169\pi\)
−0.977158 + 0.212513i \(0.931835\pi\)
\(734\) 7.86611 13.6245i 0.290343 0.502889i
\(735\) 0 0
\(736\) 0.732051 + 1.26795i 0.0269838 + 0.0467372i
\(737\) −10.3301 + 17.8923i −0.380515 + 0.659072i
\(738\) 0 0
\(739\) 9.06218 + 15.6962i 0.333358 + 0.577392i 0.983168 0.182704i \(-0.0584850\pi\)
−0.649810 + 0.760096i \(0.725152\pi\)
\(740\) 2.07055 0.0761150
\(741\) 0 0
\(742\) 0 0
\(743\) 25.7846 44.6603i 0.945946 1.63843i 0.192099 0.981376i \(-0.438471\pi\)
0.753847 0.657050i \(-0.228196\pi\)
\(744\) 0 0
\(745\) 17.5254 30.3548i 0.642080 1.11211i
\(746\) 15.3923 + 26.6603i 0.563552 + 0.976101i
\(747\) 0 0
\(748\) 20.2151 0.739137
\(749\) 0 0
\(750\) 0 0
\(751\) 3.39230 + 5.87564i 0.123787 + 0.214405i 0.921258 0.388952i \(-0.127163\pi\)
−0.797471 + 0.603357i \(0.793829\pi\)
\(752\) 10.5558 0.384932
\(753\) 0 0
\(754\) 26.7685 0.974852
\(755\) −9.24316 −0.336393
\(756\) 0 0
\(757\) −15.3205 −0.556833 −0.278417 0.960460i \(-0.589810\pi\)
−0.278417 + 0.960460i \(0.589810\pi\)
\(758\) 17.5885 0.638842
\(759\) 0 0
\(760\) −11.4641 −0.415847
\(761\) 15.2282 + 26.3760i 0.552021 + 0.956129i 0.998129 + 0.0611492i \(0.0194765\pi\)
−0.446108 + 0.894979i \(0.647190\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.07180 −0.0387762
\(765\) 0 0
\(766\) −10.8332 18.7637i −0.391421 0.677961i
\(767\) −28.8564 + 49.9808i −1.04194 + 1.80470i
\(768\) 0 0
\(769\) 19.0919 33.0681i 0.688471 1.19247i −0.283862 0.958865i \(-0.591616\pi\)
0.972332 0.233601i \(-0.0750511\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −23.0526 −0.829680
\(773\) −0.101536 0.175865i −0.00365199 0.00632544i 0.864194 0.503159i \(-0.167829\pi\)
−0.867846 + 0.496834i \(0.834496\pi\)
\(774\) 0 0
\(775\) 8.90138 15.4176i 0.319747 0.553818i
\(776\) 2.94855 + 5.10703i 0.105847 + 0.183332i
\(777\) 0 0
\(778\) −4.00000 + 6.92820i −0.143407 + 0.248388i
\(779\) 1.89230 + 3.27757i 0.0677989 + 0.117431i
\(780\) 0 0
\(781\) 4.73205 8.19615i 0.169326 0.293281i
\(782\) 3.96524 6.86800i 0.141797 0.245599i
\(783\) 0 0
\(784\) 0 0
\(785\) 8.92820 + 15.4641i 0.318661 + 0.551937i
\(786\) 0 0
\(787\) 46.7434 1.66622 0.833111 0.553106i \(-0.186558\pi\)
0.833111 + 0.553106i \(0.186558\pi\)
\(788\) 3.07180 0.109428
\(789\) 0 0
\(790\) −9.52056 16.4901i −0.338726 0.586691i
\(791\) 0 0
\(792\) 0 0
\(793\) −23.3205 + 40.3923i −0.828136 + 1.43437i
\(794\) −9.00292 + 15.5935i −0.319502 + 0.553393i
\(795\) 0 0
\(796\) −8.90138 15.4176i −0.315501 0.546464i
\(797\) −10.4543 + 18.1074i −0.370310 + 0.641396i −0.989613 0.143756i \(-0.954082\pi\)
0.619303 + 0.785152i \(0.287415\pi\)
\(798\) 0 0
\(799\) −28.5885 49.5167i −1.01139 1.75177i
\(800\) 4.96410 8.59808i 0.175507 0.303988i
\(801\) 0 0
\(802\) −8.89230 15.4019i −0.313998 0.543861i
\(803\) 25.4930 0.899629
\(804\) 0 0
\(805\) 0 0
\(806\) 6.00000 10.3923i 0.211341 0.366053i
\(807\) 0 0
\(808\) 2.44949 4.24264i 0.0861727 0.149256i
\(809\) −13.1340 22.7487i −0.461766 0.799802i 0.537283 0.843402i \(-0.319451\pi\)
−0.999049 + 0.0435999i \(0.986117\pi\)
\(810\) 0 0
\(811\) −46.1242 −1.61964 −0.809820 0.586679i \(-0.800435\pi\)
−0.809820 + 0.586679i \(0.800435\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.00000 + 1.73205i 0.0350500 + 0.0607083i
\(815\) 82.3761 2.88551
\(816\) 0 0
\(817\) 11.0735 0.387412
\(818\) 16.7303 0.584962
\(819\) 0 0
\(820\) −4.92820 −0.172100
\(821\) 10.3923 0.362694 0.181347 0.983419i \(-0.441954\pi\)
0.181347 + 0.983419i \(0.441954\pi\)
\(822\) 0 0
\(823\) 30.7846 1.07308 0.536542 0.843874i \(-0.319730\pi\)
0.536542 + 0.843874i \(0.319730\pi\)
\(824\) −3.72500 6.45189i −0.129767 0.224762i
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 18.6622 + 32.3238i 0.648164 + 1.12265i 0.983561 + 0.180576i \(0.0577963\pi\)
−0.335397 + 0.942077i \(0.608870\pi\)
\(830\) −34.5885 + 59.9090i −1.20058 + 2.07947i
\(831\) 0 0
\(832\) 3.34607 5.79555i 0.116004 0.200925i
\(833\) 0 0
\(834\) 0 0
\(835\) 81.5692 2.82282
\(836\) −5.53674 9.58991i −0.191492 0.331674i
\(837\) 0 0
\(838\) −3.95164 + 6.84443i −0.136507 + 0.236437i
\(839\) −11.3137 19.5959i −0.390593 0.676526i 0.601935 0.798545i \(-0.294397\pi\)
−0.992528 + 0.122019i \(0.961063\pi\)
\(840\) 0 0
\(841\) 6.50000 11.2583i 0.224138 0.388218i
\(842\) 14.1962 + 24.5885i 0.489232 + 0.847374i
\(843\) 0 0
\(844\) −2.53590 + 4.39230i −0.0872892 + 0.151189i
\(845\) −61.4032 + 106.353i −2.11233 + 3.65867i
\(846\) 0 0
\(847\) 0 0
\(848\) −1.46410 2.53590i −0.0502775 0.0870831i
\(849\) 0 0
\(850\) −53.7773 −1.84455
\(851\) 0.784610 0.0268961
\(852\) 0 0
\(853\) −8.00481 13.8647i −0.274079 0.474719i 0.695823 0.718213i \(-0.255040\pi\)
−0.969902 + 0.243494i \(0.921706\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.69615 + 2.93782i −0.0579733 + 0.100413i
\(857\) −4.19187 + 7.26054i −0.143192 + 0.248015i −0.928697 0.370840i \(-0.879070\pi\)
0.785505 + 0.618855i \(0.212403\pi\)
\(858\) 0 0
\(859\) 7.36705 + 12.7601i 0.251361 + 0.435369i 0.963901 0.266262i \(-0.0857887\pi\)
−0.712540 + 0.701631i \(0.752455\pi\)
\(860\) −7.20977 + 12.4877i −0.245851 + 0.425827i
\(861\) 0 0
\(862\) 18.9282 + 32.7846i 0.644697 + 1.11665i
\(863\) 11.0526 19.1436i 0.376233 0.651656i −0.614277 0.789090i \(-0.710552\pi\)
0.990511 + 0.137435i \(0.0438857\pi\)
\(864\) 0 0
\(865\) −3.46410 6.00000i −0.117783 0.204006i
\(866\) 7.10823 0.241548
\(867\) 0 0
\(868\) 0 0
\(869\) 9.19615 15.9282i 0.311958 0.540327i
\(870\) 0 0
\(871\) 18.5235 32.0836i 0.627644 1.08711i
\(872\) −4.46410 7.73205i −0.151174 0.261840i
\(873\) 0 0
\(874\) −4.34418 −0.146944
\(875\) 0 0
\(876\) 0 0
\(877\) −16.5885 28.7321i −0.560152 0.970212i −0.997483 0.0709114i \(-0.977409\pi\)
0.437330 0.899301i \(-0.355924\pi\)
\(878\) −19.5959 −0.661330
\(879\) 0 0
\(880\) 14.4195 0.486082
\(881\) −12.7279 −0.428815 −0.214407 0.976744i \(-0.568782\pi\)
−0.214407 + 0.976744i \(0.568782\pi\)
\(882\) 0 0
\(883\) 7.53590 0.253603 0.126802 0.991928i \(-0.459529\pi\)
0.126802 + 0.991928i \(0.459529\pi\)
\(884\) −36.2487 −1.21918
\(885\) 0 0
\(886\) −18.3205 −0.615490
\(887\) −14.3824 24.9110i −0.482913 0.836430i 0.516895 0.856049i \(-0.327088\pi\)
−0.999808 + 0.0196195i \(0.993755\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −27.3205 −0.915786
\(891\) 0 0
\(892\) −13.3843 23.1822i −0.448138 0.776198i
\(893\) −15.6603 + 27.1244i −0.524050 + 0.907682i
\(894\) 0 0
\(895\) 36.5665 63.3350i 1.22228 2.11706i
\(896\) 0 0
\(897\) 0 0
\(898\) −17.7846 −0.593480
\(899\) 3.58630 + 6.21166i 0.119610 + 0.207170i
\(900\) 0 0
\(901\) −7.93048 + 13.7360i −0.264203 + 0.457612i
\(902\) −2.38014 4.12252i −0.0792500 0.137265i
\(903\) 0 0
\(904\) −3.46410 + 6.00000i −0.115214 + 0.199557i
\(905\) −32.7846 56.7846i −1.08980 1.88758i
\(906\) 0 0
\(907\) −21.6244 + 37.4545i −0.718025 + 1.24366i 0.243756 + 0.969837i \(0.421620\pi\)
−0.961781 + 0.273819i \(0.911713\pi\)
\(908\) 5.25933 9.10943i 0.174537 0.302307i
\(909\) 0 0
\(910\) 0 0
\(911\) −23.4641 40.6410i −0.777400 1.34650i −0.933435 0.358745i \(-0.883205\pi\)
0.156035 0.987752i \(-0.450129\pi\)
\(912\) 0 0
\(913\) −66.8198 −2.21141
\(914\) −7.05256 −0.233278
\(915\) 0 0
\(916\) 12.4877 + 21.6293i 0.412605 + 0.714652i
\(917\) 0 0
\(918\) 0 0
\(919\) −11.4641 + 19.8564i −0.378166 + 0.655002i −0.990795 0.135368i \(-0.956778\pi\)
0.612630 + 0.790370i \(0.290112\pi\)
\(920\) 2.82843 4.89898i 0.0932505 0.161515i
\(921\) 0 0
\(922\) −12.8666 22.2856i −0.423740 0.733939i
\(923\) −8.48528 + 14.6969i −0.279296 + 0.483756i
\(924\) 0 0
\(925\) −2.66025 4.60770i −0.0874686 0.151500i
\(926\) 19.3205 33.4641i 0.634911 1.09970i
\(927\) 0 0
\(928\) 2.00000 + 3.46410i 0.0656532 + 0.113715i
\(929\) −27.9797 −0.917983 −0.458991 0.888441i \(-0.651789\pi\)
−0.458991 + 0.888441i \(0.651789\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −12.0622 + 20.8923i −0.395110 + 0.684350i
\(933\) 0 0
\(934\) −13.7818 + 23.8707i −0.450954 + 0.781075i
\(935\) −39.0526 67.6410i −1.27716 2.21210i
\(936\) 0 0
\(937\) 9.89949 0.323402 0.161701 0.986840i \(-0.448302\pi\)
0.161701 + 0.986840i \(0.448302\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −20.3923 35.3205i −0.665124 1.15203i
\(941\) −8.68835 −0.283232 −0.141616 0.989922i \(-0.545230\pi\)
−0.141616 + 0.989922i \(0.545230\pi\)
\(942\) 0 0
\(943\) −1.86748 −0.0608135
\(944\) −8.62398 −0.280687
\(945\) 0 0
\(946\) −13.9282 −0.452845
\(947\) −6.12436 −0.199015 −0.0995074 0.995037i \(-0.531727\pi\)
−0.0995074 + 0.995037i \(0.531727\pi\)
\(948\) 0 0
\(949\) −45.7128 −1.48390
\(950\) 14.7291 + 25.5116i 0.477876 + 0.827705i
\(951\) 0 0
\(952\) 0 0
\(953\) −19.0000 −0.615470 −0.307735 0.951472i \(-0.599571\pi\)
−0.307735 + 0.951472i \(0.599571\pi\)
\(954\) 0 0
\(955\) 2.07055 + 3.58630i 0.0670015 + 0.116050i
\(956\) −6.46410 + 11.1962i −0.209064 + 0.362109i
\(957\) 0 0
\(958\) 7.72741 13.3843i 0.249661 0.432426i
\(959\) 0 0
\(960\) 0 0
\(961\) −27.7846 −0.896278
\(962\) −1.79315 3.10583i −0.0578135 0.100136i
\(963\) 0 0
\(964\) 11.7112 20.2844i 0.377193 0.653318i
\(965\) 44.5341 + 77.1354i 1.43360 + 2.48308i
\(966\) 0 0
\(967\) −17.7846 + 30.8038i −0.571914 + 0.990585i 0.424455 + 0.905449i \(0.360466\pi\)
−0.996369 + 0.0851359i \(0.972868\pi\)
\(968\) 1.46410 + 2.53590i 0.0470580 + 0.0815069i
\(969\) 0 0
\(970\) 11.3923 19.7321i 0.365785 0.633558i
\(971\) 1.50215 2.60179i 0.0482062 0.0834955i −0.840915 0.541166i \(-0.817983\pi\)
0.889122 + 0.457671i \(0.151316\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 19.3923 + 33.5885i 0.621370 + 1.07624i
\(975\) 0 0
\(976\) −6.96953 −0.223089
\(977\) 49.9808 1.59903 0.799513 0.600649i \(-0.205091\pi\)
0.799513 + 0.600649i \(0.205091\pi\)
\(978\) 0 0
\(979\) −13.1948 22.8541i −0.421707 0.730419i
\(980\) 0 0
\(981\) 0 0
\(982\) 0.696152 1.20577i 0.0222151 0.0384777i
\(983\) 3.48477 6.03579i 0.111147 0.192512i −0.805086 0.593158i \(-0.797881\pi\)
0.916233 + 0.400646i \(0.131214\pi\)
\(984\) 0 0
\(985\) −5.93426 10.2784i −0.189081 0.327498i
\(986\) 10.8332 18.7637i 0.345000 0.597558i
\(987\) 0 0
\(988\) 9.92820 + 17.1962i 0.315858 + 0.547082i
\(989\) −2.73205 + 4.73205i −0.0868742 + 0.150470i
\(990\) 0 0
\(991\) −0.875644 1.51666i −0.0278158 0.0481783i 0.851782 0.523896i \(-0.175522\pi\)
−0.879598 + 0.475717i \(0.842189\pi\)
\(992\) 1.79315 0.0569326
\(993\) 0 0
\(994\) 0 0
\(995\) −34.3923 + 59.5692i −1.09031 + 1.88847i
\(996\) 0 0
\(997\) 3.24453 5.61969i 0.102755 0.177977i −0.810064 0.586342i \(-0.800567\pi\)
0.912819 + 0.408365i \(0.133901\pi\)
\(998\) 6.30385 + 10.9186i 0.199545 + 0.345622i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.e.q.1549.1 8
3.2 odd 2 882.2.e.s.373.1 8
7.2 even 3 2646.2.f.r.1765.1 8
7.3 odd 6 2646.2.h.t.361.1 8
7.4 even 3 2646.2.h.t.361.4 8
7.5 odd 6 2646.2.f.r.1765.4 8
7.6 odd 2 inner 2646.2.e.q.1549.4 8
9.2 odd 6 882.2.h.q.79.3 8
9.7 even 3 2646.2.h.t.667.4 8
21.2 odd 6 882.2.f.q.589.3 yes 8
21.5 even 6 882.2.f.q.589.2 yes 8
21.11 odd 6 882.2.h.q.67.4 8
21.17 even 6 882.2.h.q.67.1 8
21.20 even 2 882.2.e.s.373.4 8
63.2 odd 6 882.2.f.q.295.3 yes 8
63.5 even 6 7938.2.a.cp.1.4 4
63.11 odd 6 882.2.e.s.655.1 8
63.16 even 3 2646.2.f.r.883.1 8
63.20 even 6 882.2.h.q.79.2 8
63.23 odd 6 7938.2.a.cp.1.1 4
63.25 even 3 inner 2646.2.e.q.2125.1 8
63.34 odd 6 2646.2.h.t.667.1 8
63.38 even 6 882.2.e.s.655.4 8
63.40 odd 6 7938.2.a.ci.1.1 4
63.47 even 6 882.2.f.q.295.2 8
63.52 odd 6 inner 2646.2.e.q.2125.4 8
63.58 even 3 7938.2.a.ci.1.4 4
63.61 odd 6 2646.2.f.r.883.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.s.373.1 8 3.2 odd 2
882.2.e.s.373.4 8 21.20 even 2
882.2.e.s.655.1 8 63.11 odd 6
882.2.e.s.655.4 8 63.38 even 6
882.2.f.q.295.2 8 63.47 even 6
882.2.f.q.295.3 yes 8 63.2 odd 6
882.2.f.q.589.2 yes 8 21.5 even 6
882.2.f.q.589.3 yes 8 21.2 odd 6
882.2.h.q.67.1 8 21.17 even 6
882.2.h.q.67.4 8 21.11 odd 6
882.2.h.q.79.2 8 63.20 even 6
882.2.h.q.79.3 8 9.2 odd 6
2646.2.e.q.1549.1 8 1.1 even 1 trivial
2646.2.e.q.1549.4 8 7.6 odd 2 inner
2646.2.e.q.2125.1 8 63.25 even 3 inner
2646.2.e.q.2125.4 8 63.52 odd 6 inner
2646.2.f.r.883.1 8 63.16 even 3
2646.2.f.r.883.4 8 63.61 odd 6
2646.2.f.r.1765.1 8 7.2 even 3
2646.2.f.r.1765.4 8 7.5 odd 6
2646.2.h.t.361.1 8 7.3 odd 6
2646.2.h.t.361.4 8 7.4 even 3
2646.2.h.t.667.1 8 63.34 odd 6
2646.2.h.t.667.4 8 9.7 even 3
7938.2.a.ci.1.1 4 63.40 odd 6
7938.2.a.ci.1.4 4 63.58 even 3
7938.2.a.cp.1.1 4 63.23 odd 6
7938.2.a.cp.1.4 4 63.5 even 6