Properties

Label 880.2.f.d.351.8
Level $880$
Weight $2$
Character 880.351
Analytic conductor $7.027$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(351,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-8,0,0,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.170772624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} - 6x^{5} + 6x^{4} - 12x^{3} + 20x^{2} - 24x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 351.8
Root \(0.335728 - 1.37379i\) of defining polynomial
Character \(\chi\) \(=\) 880.351
Dual form 880.2.f.d.351.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.52434i q^{3} -1.00000 q^{5} +2.20979 q^{7} -3.37228 q^{9} +(3.22060 - 0.792287i) q^{11} +6.85407i q^{13} -2.52434i q^{15} +1.27582i q^{17} -3.22060 q^{19} +5.57825i q^{21} -1.58457i q^{23} +1.00000 q^{25} -0.939764i q^{27} +3.02661i q^{29} -0.644810i q^{31} +(2.00000 + 8.12989i) q^{33} -2.20979 q^{35} -0.372281 q^{37} -17.3020 q^{39} -5.10328i q^{41} +5.43039 q^{43} +3.37228 q^{45} +8.51278i q^{47} -2.11684 q^{49} -3.22060 q^{51} -13.1168 q^{53} +(-3.22060 + 0.792287i) q^{55} -8.12989i q^{57} -8.51278i q^{59} +10.6815i q^{61} -7.45202 q^{63} -6.85407i q^{65} -3.46410i q^{67} +4.00000 q^{69} -9.45254i q^{71} +1.75079i q^{73} +2.52434i q^{75} +(7.11684 - 1.75079i) q^{77} -12.8824 q^{79} -7.74456 q^{81} +11.8716 q^{83} -1.27582i q^{85} -7.64018 q^{87} +13.1168 q^{89} +15.1460i q^{91} +1.62772 q^{93} +3.22060 q^{95} -14.0000 q^{97} +(-10.8608 + 2.67181i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 4 q^{9} + 8 q^{25} + 16 q^{33} + 20 q^{37} + 4 q^{45} + 52 q^{49} - 36 q^{53} + 32 q^{69} - 12 q^{77} - 16 q^{81} + 36 q^{89} + 36 q^{93} - 112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.52434i 1.45743i 0.684819 + 0.728714i \(0.259881\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 2.20979 0.835221 0.417610 0.908626i \(-0.362868\pi\)
0.417610 + 0.908626i \(0.362868\pi\)
\(8\) 0 0
\(9\) −3.37228 −1.12409
\(10\) 0 0
\(11\) 3.22060 0.792287i 0.971048 0.238884i
\(12\) 0 0
\(13\) 6.85407i 1.90098i 0.310761 + 0.950488i \(0.399416\pi\)
−0.310761 + 0.950488i \(0.600584\pi\)
\(14\) 0 0
\(15\) 2.52434i 0.651781i
\(16\) 0 0
\(17\) 1.27582i 0.309432i 0.987959 + 0.154716i \(0.0494463\pi\)
−0.987959 + 0.154716i \(0.950554\pi\)
\(18\) 0 0
\(19\) −3.22060 −0.738857 −0.369428 0.929259i \(-0.620447\pi\)
−0.369428 + 0.929259i \(0.620447\pi\)
\(20\) 0 0
\(21\) 5.57825i 1.21727i
\(22\) 0 0
\(23\) 1.58457i 0.330407i −0.986260 0.165203i \(-0.947172\pi\)
0.986260 0.165203i \(-0.0528280\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0.939764i 0.180858i
\(28\) 0 0
\(29\) 3.02661i 0.562027i 0.959704 + 0.281013i \(0.0906705\pi\)
−0.959704 + 0.281013i \(0.909329\pi\)
\(30\) 0 0
\(31\) 0.644810i 0.115811i −0.998322 0.0579057i \(-0.981558\pi\)
0.998322 0.0579057i \(-0.0184423\pi\)
\(32\) 0 0
\(33\) 2.00000 + 8.12989i 0.348155 + 1.41523i
\(34\) 0 0
\(35\) −2.20979 −0.373522
\(36\) 0 0
\(37\) −0.372281 −0.0612027 −0.0306013 0.999532i \(-0.509742\pi\)
−0.0306013 + 0.999532i \(0.509742\pi\)
\(38\) 0 0
\(39\) −17.3020 −2.77053
\(40\) 0 0
\(41\) 5.10328i 0.796999i −0.917169 0.398499i \(-0.869531\pi\)
0.917169 0.398499i \(-0.130469\pi\)
\(42\) 0 0
\(43\) 5.43039 0.828127 0.414063 0.910248i \(-0.364109\pi\)
0.414063 + 0.910248i \(0.364109\pi\)
\(44\) 0 0
\(45\) 3.37228 0.502710
\(46\) 0 0
\(47\) 8.51278i 1.24172i 0.783923 + 0.620858i \(0.213216\pi\)
−0.783923 + 0.620858i \(0.786784\pi\)
\(48\) 0 0
\(49\) −2.11684 −0.302406
\(50\) 0 0
\(51\) −3.22060 −0.450975
\(52\) 0 0
\(53\) −13.1168 −1.80174 −0.900869 0.434092i \(-0.857069\pi\)
−0.900869 + 0.434092i \(0.857069\pi\)
\(54\) 0 0
\(55\) −3.22060 + 0.792287i −0.434266 + 0.106832i
\(56\) 0 0
\(57\) 8.12989i 1.07683i
\(58\) 0 0
\(59\) 8.51278i 1.10827i −0.832427 0.554135i \(-0.813049\pi\)
0.832427 0.554135i \(-0.186951\pi\)
\(60\) 0 0
\(61\) 10.6815i 1.36763i 0.729656 + 0.683815i \(0.239680\pi\)
−0.729656 + 0.683815i \(0.760320\pi\)
\(62\) 0 0
\(63\) −7.45202 −0.938866
\(64\) 0 0
\(65\) 6.85407i 0.850143i
\(66\) 0 0
\(67\) 3.46410i 0.423207i −0.977356 0.211604i \(-0.932131\pi\)
0.977356 0.211604i \(-0.0678686\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) 9.45254i 1.12181i −0.827880 0.560905i \(-0.810453\pi\)
0.827880 0.560905i \(-0.189547\pi\)
\(72\) 0 0
\(73\) 1.75079i 0.204914i 0.994737 + 0.102457i \(0.0326704\pi\)
−0.994737 + 0.102457i \(0.967330\pi\)
\(74\) 0 0
\(75\) 2.52434i 0.291485i
\(76\) 0 0
\(77\) 7.11684 1.75079i 0.811040 0.199520i
\(78\) 0 0
\(79\) −12.8824 −1.44938 −0.724692 0.689073i \(-0.758018\pi\)
−0.724692 + 0.689073i \(0.758018\pi\)
\(80\) 0 0
\(81\) −7.74456 −0.860507
\(82\) 0 0
\(83\) 11.8716 1.30308 0.651538 0.758616i \(-0.274124\pi\)
0.651538 + 0.758616i \(0.274124\pi\)
\(84\) 0 0
\(85\) 1.27582i 0.138382i
\(86\) 0 0
\(87\) −7.64018 −0.819113
\(88\) 0 0
\(89\) 13.1168 1.39038 0.695191 0.718825i \(-0.255320\pi\)
0.695191 + 0.718825i \(0.255320\pi\)
\(90\) 0 0
\(91\) 15.1460i 1.58774i
\(92\) 0 0
\(93\) 1.62772 0.168787
\(94\) 0 0
\(95\) 3.22060 0.330427
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) −10.8608 + 2.67181i −1.09155 + 0.268527i
\(100\) 0 0
\(101\) 7.65492i 0.761693i 0.924638 + 0.380847i \(0.124367\pi\)
−0.924638 + 0.380847i \(0.875633\pi\)
\(102\) 0 0
\(103\) 11.6819i 1.15105i −0.817783 0.575527i \(-0.804797\pi\)
0.817783 0.575527i \(-0.195203\pi\)
\(104\) 0 0
\(105\) 5.57825i 0.544381i
\(106\) 0 0
\(107\) 13.8932 1.34311 0.671554 0.740955i \(-0.265627\pi\)
0.671554 + 0.740955i \(0.265627\pi\)
\(108\) 0 0
\(109\) 11.1565i 1.06860i 0.845295 + 0.534299i \(0.179424\pi\)
−0.845295 + 0.534299i \(0.820576\pi\)
\(110\) 0 0
\(111\) 0.939764i 0.0891984i
\(112\) 0 0
\(113\) 11.4891 1.08081 0.540403 0.841406i \(-0.318272\pi\)
0.540403 + 0.841406i \(0.318272\pi\)
\(114\) 0 0
\(115\) 1.58457i 0.147762i
\(116\) 0 0
\(117\) 23.1138i 2.13688i
\(118\) 0 0
\(119\) 2.81929i 0.258444i
\(120\) 0 0
\(121\) 9.74456 5.10328i 0.885869 0.463935i
\(122\) 0 0
\(123\) 12.8824 1.16157
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 13.8932 1.23282 0.616412 0.787424i \(-0.288586\pi\)
0.616412 + 0.787424i \(0.288586\pi\)
\(128\) 0 0
\(129\) 13.7081i 1.20693i
\(130\) 0 0
\(131\) 1.19897 0.104755 0.0523773 0.998627i \(-0.483320\pi\)
0.0523773 + 0.998627i \(0.483320\pi\)
\(132\) 0 0
\(133\) −7.11684 −0.617109
\(134\) 0 0
\(135\) 0.939764i 0.0808820i
\(136\) 0 0
\(137\) 11.4891 0.981582 0.490791 0.871277i \(-0.336708\pi\)
0.490791 + 0.871277i \(0.336708\pi\)
\(138\) 0 0
\(139\) 17.3020 1.46754 0.733768 0.679401i \(-0.237760\pi\)
0.733768 + 0.679401i \(0.237760\pi\)
\(140\) 0 0
\(141\) −21.4891 −1.80971
\(142\) 0 0
\(143\) 5.43039 + 22.0742i 0.454112 + 1.84594i
\(144\) 0 0
\(145\) 3.02661i 0.251346i
\(146\) 0 0
\(147\) 5.34363i 0.440735i
\(148\) 0 0
\(149\) 8.12989i 0.666026i −0.942922 0.333013i \(-0.891935\pi\)
0.942922 0.333013i \(-0.108065\pi\)
\(150\) 0 0
\(151\) 4.41957 0.359660 0.179830 0.983698i \(-0.442445\pi\)
0.179830 + 0.983698i \(0.442445\pi\)
\(152\) 0 0
\(153\) 4.30243i 0.347831i
\(154\) 0 0
\(155\) 0.644810i 0.0517924i
\(156\) 0 0
\(157\) 5.86141 0.467791 0.233896 0.972262i \(-0.424853\pi\)
0.233896 + 0.972262i \(0.424853\pi\)
\(158\) 0 0
\(159\) 33.1113i 2.62590i
\(160\) 0 0
\(161\) 3.50157i 0.275962i
\(162\) 0 0
\(163\) 6.28339i 0.492153i 0.969250 + 0.246077i \(0.0791415\pi\)
−0.969250 + 0.246077i \(0.920858\pi\)
\(164\) 0 0
\(165\) −2.00000 8.12989i −0.155700 0.632911i
\(166\) 0 0
\(167\) 23.9313 1.85186 0.925931 0.377692i \(-0.123282\pi\)
0.925931 + 0.377692i \(0.123282\pi\)
\(168\) 0 0
\(169\) −33.9783 −2.61371
\(170\) 0 0
\(171\) 10.8608 0.830544
\(172\) 0 0
\(173\) 4.30243i 0.327107i −0.986534 0.163554i \(-0.947704\pi\)
0.986534 0.163554i \(-0.0522957\pi\)
\(174\) 0 0
\(175\) 2.20979 0.167044
\(176\) 0 0
\(177\) 21.4891 1.61522
\(178\) 0 0
\(179\) 8.51278i 0.636275i 0.948045 + 0.318137i \(0.103057\pi\)
−0.948045 + 0.318137i \(0.896943\pi\)
\(180\) 0 0
\(181\) 19.4891 1.44862 0.724308 0.689477i \(-0.242160\pi\)
0.724308 + 0.689477i \(0.242160\pi\)
\(182\) 0 0
\(183\) −26.9638 −1.99322
\(184\) 0 0
\(185\) 0.372281 0.0273707
\(186\) 0 0
\(187\) 1.01082 + 4.10891i 0.0739182 + 0.300473i
\(188\) 0 0
\(189\) 2.07668i 0.151056i
\(190\) 0 0
\(191\) 9.80240i 0.709277i 0.935004 + 0.354638i \(0.115396\pi\)
−0.935004 + 0.354638i \(0.884604\pi\)
\(192\) 0 0
\(193\) 26.1405i 1.88163i 0.338919 + 0.940815i \(0.389939\pi\)
−0.338919 + 0.940815i \(0.610061\pi\)
\(194\) 0 0
\(195\) 17.3020 1.23902
\(196\) 0 0
\(197\) 24.0638i 1.71447i −0.514923 0.857236i \(-0.672179\pi\)
0.514923 0.857236i \(-0.327821\pi\)
\(198\) 0 0
\(199\) 22.7190i 1.61051i 0.592929 + 0.805255i \(0.297972\pi\)
−0.592929 + 0.805255i \(0.702028\pi\)
\(200\) 0 0
\(201\) 8.74456 0.616794
\(202\) 0 0
\(203\) 6.68815i 0.469416i
\(204\) 0 0
\(205\) 5.10328i 0.356429i
\(206\) 0 0
\(207\) 5.34363i 0.371408i
\(208\) 0 0
\(209\) −10.3723 + 2.55164i −0.717466 + 0.176501i
\(210\) 0 0
\(211\) −16.4793 −1.13448 −0.567242 0.823551i \(-0.691989\pi\)
−0.567242 + 0.823551i \(0.691989\pi\)
\(212\) 0 0
\(213\) 23.8614 1.63496
\(214\) 0 0
\(215\) −5.43039 −0.370349
\(216\) 0 0
\(217\) 1.42489i 0.0967280i
\(218\) 0 0
\(219\) −4.41957 −0.298647
\(220\) 0 0
\(221\) −8.74456 −0.588223
\(222\) 0 0
\(223\) 19.8997i 1.33259i −0.745690 0.666293i \(-0.767880\pi\)
0.745690 0.666293i \(-0.232120\pi\)
\(224\) 0 0
\(225\) −3.37228 −0.224819
\(226\) 0 0
\(227\) 1.01082 0.0670902 0.0335451 0.999437i \(-0.489320\pi\)
0.0335451 + 0.999437i \(0.489320\pi\)
\(228\) 0 0
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) 0 0
\(231\) 4.41957 + 17.9653i 0.290787 + 1.18203i
\(232\) 0 0
\(233\) 17.5356i 1.14880i −0.818576 0.574398i \(-0.805236\pi\)
0.818576 0.574398i \(-0.194764\pi\)
\(234\) 0 0
\(235\) 8.51278i 0.555312i
\(236\) 0 0
\(237\) 32.5196i 2.11237i
\(238\) 0 0
\(239\) 12.8824 0.833294 0.416647 0.909068i \(-0.363205\pi\)
0.416647 + 0.909068i \(0.363205\pi\)
\(240\) 0 0
\(241\) 21.3631i 1.37612i −0.725656 0.688058i \(-0.758464\pi\)
0.725656 0.688058i \(-0.241536\pi\)
\(242\) 0 0
\(243\) 22.3692i 1.43498i
\(244\) 0 0
\(245\) 2.11684 0.135240
\(246\) 0 0
\(247\) 22.0742i 1.40455i
\(248\) 0 0
\(249\) 29.9679i 1.89914i
\(250\) 0 0
\(251\) 6.63325i 0.418687i −0.977842 0.209344i \(-0.932867\pi\)
0.977842 0.209344i \(-0.0671327\pi\)
\(252\) 0 0
\(253\) −1.25544 5.10328i −0.0789287 0.320841i
\(254\) 0 0
\(255\) 3.22060 0.201682
\(256\) 0 0
\(257\) −9.25544 −0.577338 −0.288669 0.957429i \(-0.593213\pi\)
−0.288669 + 0.957429i \(0.593213\pi\)
\(258\) 0 0
\(259\) −0.822662 −0.0511177
\(260\) 0 0
\(261\) 10.2066i 0.631771i
\(262\) 0 0
\(263\) −23.9313 −1.47567 −0.737835 0.674981i \(-0.764152\pi\)
−0.737835 + 0.674981i \(0.764152\pi\)
\(264\) 0 0
\(265\) 13.1168 0.805761
\(266\) 0 0
\(267\) 33.1113i 2.02638i
\(268\) 0 0
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) −13.2587 −0.805410 −0.402705 0.915330i \(-0.631930\pi\)
−0.402705 + 0.915330i \(0.631930\pi\)
\(272\) 0 0
\(273\) −38.2337 −2.31401
\(274\) 0 0
\(275\) 3.22060 0.792287i 0.194210 0.0477767i
\(276\) 0 0
\(277\) 17.0606i 1.02507i −0.858665 0.512537i \(-0.828706\pi\)
0.858665 0.512537i \(-0.171294\pi\)
\(278\) 0 0
\(279\) 2.17448i 0.130183i
\(280\) 0 0
\(281\) 32.5196i 1.93995i −0.243197 0.969977i \(-0.578196\pi\)
0.243197 0.969977i \(-0.421804\pi\)
\(282\) 0 0
\(283\) −18.6891 −1.11095 −0.555476 0.831533i \(-0.687464\pi\)
−0.555476 + 0.831533i \(0.687464\pi\)
\(284\) 0 0
\(285\) 8.12989i 0.481573i
\(286\) 0 0
\(287\) 11.2772i 0.665670i
\(288\) 0 0
\(289\) 15.3723 0.904252
\(290\) 0 0
\(291\) 35.3407i 2.07171i
\(292\) 0 0
\(293\) 10.3556i 0.604983i −0.953152 0.302491i \(-0.902182\pi\)
0.953152 0.302491i \(-0.0978184\pi\)
\(294\) 0 0
\(295\) 8.51278i 0.495633i
\(296\) 0 0
\(297\) −0.744563 3.02661i −0.0432039 0.175621i
\(298\) 0 0
\(299\) 10.8608 0.628095
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 0 0
\(303\) −19.3236 −1.11011
\(304\) 0 0
\(305\) 10.6815i 0.611623i
\(306\) 0 0
\(307\) 22.7324 1.29741 0.648703 0.761042i \(-0.275312\pi\)
0.648703 + 0.761042i \(0.275312\pi\)
\(308\) 0 0
\(309\) 29.4891 1.67758
\(310\) 0 0
\(311\) 5.69349i 0.322848i −0.986885 0.161424i \(-0.948391\pi\)
0.986885 0.161424i \(-0.0516087\pi\)
\(312\) 0 0
\(313\) 13.2554 0.749242 0.374621 0.927178i \(-0.377773\pi\)
0.374621 + 0.927178i \(0.377773\pi\)
\(314\) 0 0
\(315\) 7.45202 0.419874
\(316\) 0 0
\(317\) 4.37228 0.245572 0.122786 0.992433i \(-0.460817\pi\)
0.122786 + 0.992433i \(0.460817\pi\)
\(318\) 0 0
\(319\) 2.39794 + 9.74749i 0.134259 + 0.545755i
\(320\) 0 0
\(321\) 35.0712i 1.95748i
\(322\) 0 0
\(323\) 4.10891i 0.228626i
\(324\) 0 0
\(325\) 6.85407i 0.380195i
\(326\) 0 0
\(327\) −28.1628 −1.55740
\(328\) 0 0
\(329\) 18.8114i 1.03711i
\(330\) 0 0
\(331\) 25.5383i 1.40371i −0.712318 0.701857i \(-0.752355\pi\)
0.712318 0.701857i \(-0.247645\pi\)
\(332\) 0 0
\(333\) 1.25544 0.0687975
\(334\) 0 0
\(335\) 3.46410i 0.189264i
\(336\) 0 0
\(337\) 3.82746i 0.208495i −0.994551 0.104248i \(-0.966757\pi\)
0.994551 0.104248i \(-0.0332434\pi\)
\(338\) 0 0
\(339\) 29.0024i 1.57520i
\(340\) 0 0
\(341\) −0.510875 2.07668i −0.0276654 0.112458i
\(342\) 0 0
\(343\) −20.1463 −1.08780
\(344\) 0 0
\(345\) −4.00000 −0.215353
\(346\) 0 0
\(347\) −3.03245 −0.162790 −0.0813952 0.996682i \(-0.525938\pi\)
−0.0813952 + 0.996682i \(0.525938\pi\)
\(348\) 0 0
\(349\) 26.4663i 1.41671i 0.705856 + 0.708355i \(0.250563\pi\)
−0.705856 + 0.708355i \(0.749437\pi\)
\(350\) 0 0
\(351\) 6.44121 0.343806
\(352\) 0 0
\(353\) −20.2337 −1.07693 −0.538465 0.842648i \(-0.680996\pi\)
−0.538465 + 0.842648i \(0.680996\pi\)
\(354\) 0 0
\(355\) 9.45254i 0.501689i
\(356\) 0 0
\(357\) −7.11684 −0.376663
\(358\) 0 0
\(359\) 15.2804 0.806466 0.403233 0.915097i \(-0.367886\pi\)
0.403233 + 0.915097i \(0.367886\pi\)
\(360\) 0 0
\(361\) −8.62772 −0.454090
\(362\) 0 0
\(363\) 12.8824 + 24.5986i 0.676151 + 1.29109i
\(364\) 0 0
\(365\) 1.75079i 0.0916403i
\(366\) 0 0
\(367\) 12.9715i 0.677109i 0.940947 + 0.338555i \(0.109938\pi\)
−0.940947 + 0.338555i \(0.890062\pi\)
\(368\) 0 0
\(369\) 17.2097i 0.895902i
\(370\) 0 0
\(371\) −28.9854 −1.50485
\(372\) 0 0
\(373\) 24.0638i 1.24598i 0.782232 + 0.622988i \(0.214081\pi\)
−0.782232 + 0.622988i \(0.785919\pi\)
\(374\) 0 0
\(375\) 2.52434i 0.130356i
\(376\) 0 0
\(377\) −20.7446 −1.06840
\(378\) 0 0
\(379\) 16.0309i 0.823451i −0.911308 0.411726i \(-0.864926\pi\)
0.911308 0.411726i \(-0.135074\pi\)
\(380\) 0 0
\(381\) 35.0712i 1.79675i
\(382\) 0 0
\(383\) 1.58457i 0.0809679i −0.999180 0.0404840i \(-0.987110\pi\)
0.999180 0.0404840i \(-0.0128900\pi\)
\(384\) 0 0
\(385\) −7.11684 + 1.75079i −0.362708 + 0.0892283i
\(386\) 0 0
\(387\) −18.3128 −0.930892
\(388\) 0 0
\(389\) −25.7228 −1.30420 −0.652099 0.758134i \(-0.726111\pi\)
−0.652099 + 0.758134i \(0.726111\pi\)
\(390\) 0 0
\(391\) 2.02163 0.102238
\(392\) 0 0
\(393\) 3.02661i 0.152672i
\(394\) 0 0
\(395\) 12.8824 0.648184
\(396\) 0 0
\(397\) −7.48913 −0.375868 −0.187934 0.982182i \(-0.560179\pi\)
−0.187934 + 0.982182i \(0.560179\pi\)
\(398\) 0 0
\(399\) 17.9653i 0.899391i
\(400\) 0 0
\(401\) 19.6277 0.980161 0.490081 0.871677i \(-0.336967\pi\)
0.490081 + 0.871677i \(0.336967\pi\)
\(402\) 0 0
\(403\) 4.41957 0.220155
\(404\) 0 0
\(405\) 7.74456 0.384830
\(406\) 0 0
\(407\) −1.19897 + 0.294954i −0.0594307 + 0.0146203i
\(408\) 0 0
\(409\) 8.60485i 0.425483i 0.977109 + 0.212741i \(0.0682392\pi\)
−0.977109 + 0.212741i \(0.931761\pi\)
\(410\) 0 0
\(411\) 29.0024i 1.43058i
\(412\) 0 0
\(413\) 18.8114i 0.925649i
\(414\) 0 0
\(415\) −11.8716 −0.582754
\(416\) 0 0
\(417\) 43.6761i 2.13883i
\(418\) 0 0
\(419\) 0.294954i 0.0144094i 0.999974 + 0.00720471i \(0.00229335\pi\)
−0.999974 + 0.00720471i \(0.997707\pi\)
\(420\) 0 0
\(421\) −36.2337 −1.76592 −0.882961 0.469446i \(-0.844454\pi\)
−0.882961 + 0.469446i \(0.844454\pi\)
\(422\) 0 0
\(423\) 28.7075i 1.39581i
\(424\) 0 0
\(425\) 1.27582i 0.0618864i
\(426\) 0 0
\(427\) 23.6039i 1.14227i
\(428\) 0 0
\(429\) −55.7228 + 13.7081i −2.69032 + 0.661835i
\(430\) 0 0
\(431\) 8.46284 0.407641 0.203820 0.979008i \(-0.434664\pi\)
0.203820 + 0.979008i \(0.434664\pi\)
\(432\) 0 0
\(433\) 24.2337 1.16460 0.582298 0.812975i \(-0.302154\pi\)
0.582298 + 0.812975i \(0.302154\pi\)
\(434\) 0 0
\(435\) 7.64018 0.366318
\(436\) 0 0
\(437\) 5.10328i 0.244123i
\(438\) 0 0
\(439\) 8.83915 0.421869 0.210935 0.977500i \(-0.432349\pi\)
0.210935 + 0.977500i \(0.432349\pi\)
\(440\) 0 0
\(441\) 7.13859 0.339933
\(442\) 0 0
\(443\) 6.63325i 0.315155i 0.987507 + 0.157578i \(0.0503684\pi\)
−0.987507 + 0.157578i \(0.949632\pi\)
\(444\) 0 0
\(445\) −13.1168 −0.621798
\(446\) 0 0
\(447\) 20.5226 0.970685
\(448\) 0 0
\(449\) 34.4674 1.62662 0.813308 0.581833i \(-0.197664\pi\)
0.813308 + 0.581833i \(0.197664\pi\)
\(450\) 0 0
\(451\) −4.04326 16.4356i −0.190390 0.773924i
\(452\) 0 0
\(453\) 11.1565i 0.524178i
\(454\) 0 0
\(455\) 15.1460i 0.710057i
\(456\) 0 0
\(457\) 17.5356i 0.820281i 0.912022 + 0.410140i \(0.134520\pi\)
−0.912022 + 0.410140i \(0.865480\pi\)
\(458\) 0 0
\(459\) 1.19897 0.0559631
\(460\) 0 0
\(461\) 5.57825i 0.259805i 0.991527 + 0.129902i \(0.0414664\pi\)
−0.991527 + 0.129902i \(0.958534\pi\)
\(462\) 0 0
\(463\) 19.8997i 0.924820i −0.886666 0.462410i \(-0.846985\pi\)
0.886666 0.462410i \(-0.153015\pi\)
\(464\) 0 0
\(465\) −1.62772 −0.0754836
\(466\) 0 0
\(467\) 24.5986i 1.13829i 0.822239 + 0.569143i \(0.192725\pi\)
−0.822239 + 0.569143i \(0.807275\pi\)
\(468\) 0 0
\(469\) 7.65492i 0.353472i
\(470\) 0 0
\(471\) 14.7962i 0.681772i
\(472\) 0 0
\(473\) 17.4891 4.30243i 0.804151 0.197826i
\(474\) 0 0
\(475\) −3.22060 −0.147771
\(476\) 0 0
\(477\) 44.2337 2.02532
\(478\) 0 0
\(479\) 10.4845 0.479048 0.239524 0.970890i \(-0.423009\pi\)
0.239524 + 0.970890i \(0.423009\pi\)
\(480\) 0 0
\(481\) 2.55164i 0.116345i
\(482\) 0 0
\(483\) 8.83915 0.402195
\(484\) 0 0
\(485\) 14.0000 0.635707
\(486\) 0 0
\(487\) 16.0309i 0.726429i 0.931706 + 0.363214i \(0.118321\pi\)
−0.931706 + 0.363214i \(0.881679\pi\)
\(488\) 0 0
\(489\) −15.8614 −0.717278
\(490\) 0 0
\(491\) −14.0814 −0.635484 −0.317742 0.948177i \(-0.602925\pi\)
−0.317742 + 0.948177i \(0.602925\pi\)
\(492\) 0 0
\(493\) −3.86141 −0.173909
\(494\) 0 0
\(495\) 10.8608 2.67181i 0.488156 0.120089i
\(496\) 0 0
\(497\) 20.8881i 0.936959i
\(498\) 0 0
\(499\) 35.0458i 1.56886i −0.620215 0.784432i \(-0.712954\pi\)
0.620215 0.784432i \(-0.287046\pi\)
\(500\) 0 0
\(501\) 60.4108i 2.69896i
\(502\) 0 0
\(503\) 20.7107 0.923446 0.461723 0.887024i \(-0.347231\pi\)
0.461723 + 0.887024i \(0.347231\pi\)
\(504\) 0 0
\(505\) 7.65492i 0.340640i
\(506\) 0 0
\(507\) 85.7726i 3.80929i
\(508\) 0 0
\(509\) −14.7446 −0.653541 −0.326771 0.945104i \(-0.605960\pi\)
−0.326771 + 0.945104i \(0.605960\pi\)
\(510\) 0 0
\(511\) 3.86886i 0.171148i
\(512\) 0 0
\(513\) 3.02661i 0.133628i
\(514\) 0 0
\(515\) 11.6819i 0.514767i
\(516\) 0 0
\(517\) 6.74456 + 27.4163i 0.296626 + 1.20577i
\(518\) 0 0
\(519\) 10.8608 0.476735
\(520\) 0 0
\(521\) −0.510875 −0.0223818 −0.0111909 0.999937i \(-0.503562\pi\)
−0.0111909 + 0.999937i \(0.503562\pi\)
\(522\) 0 0
\(523\) 9.47365 0.414254 0.207127 0.978314i \(-0.433589\pi\)
0.207127 + 0.978314i \(0.433589\pi\)
\(524\) 0 0
\(525\) 5.57825i 0.243455i
\(526\) 0 0
\(527\) 0.822662 0.0358357
\(528\) 0 0
\(529\) 20.4891 0.890832
\(530\) 0 0
\(531\) 28.7075i 1.24580i
\(532\) 0 0
\(533\) 34.9783 1.51508
\(534\) 0 0
\(535\) −13.8932 −0.600657
\(536\) 0 0
\(537\) −21.4891 −0.927324
\(538\) 0 0
\(539\) −6.81751 + 1.67715i −0.293651 + 0.0722399i
\(540\) 0 0
\(541\) 33.9444i 1.45939i −0.683775 0.729693i \(-0.739663\pi\)
0.683775 0.729693i \(-0.260337\pi\)
\(542\) 0 0
\(543\) 49.1971i 2.11125i
\(544\) 0 0
\(545\) 11.1565i 0.477892i
\(546\) 0 0
\(547\) −24.7540 −1.05840 −0.529202 0.848496i \(-0.677509\pi\)
−0.529202 + 0.848496i \(0.677509\pi\)
\(548\) 0 0
\(549\) 36.0211i 1.53734i
\(550\) 0 0
\(551\) 9.74749i 0.415257i
\(552\) 0 0
\(553\) −28.4674 −1.21056
\(554\) 0 0
\(555\) 0.939764i 0.0398908i
\(556\) 0 0
\(557\) 26.6154i 1.12773i 0.825867 + 0.563866i \(0.190686\pi\)
−0.825867 + 0.563866i \(0.809314\pi\)
\(558\) 0 0
\(559\) 37.2203i 1.57425i
\(560\) 0 0
\(561\) −10.3723 + 2.55164i −0.437918 + 0.107730i
\(562\) 0 0
\(563\) −3.40876 −0.143662 −0.0718310 0.997417i \(-0.522884\pi\)
−0.0718310 + 0.997417i \(0.522884\pi\)
\(564\) 0 0
\(565\) −11.4891 −0.483351
\(566\) 0 0
\(567\) −17.1138 −0.718713
\(568\) 0 0
\(569\) 12.7582i 0.534852i −0.963578 0.267426i \(-0.913827\pi\)
0.963578 0.267426i \(-0.0861731\pi\)
\(570\) 0 0
\(571\) −18.1246 −0.758493 −0.379246 0.925296i \(-0.623817\pi\)
−0.379246 + 0.925296i \(0.623817\pi\)
\(572\) 0 0
\(573\) −24.7446 −1.03372
\(574\) 0 0
\(575\) 1.58457i 0.0660813i
\(576\) 0 0
\(577\) 19.4891 0.811343 0.405671 0.914019i \(-0.367038\pi\)
0.405671 + 0.914019i \(0.367038\pi\)
\(578\) 0 0
\(579\) −65.9873 −2.74234
\(580\) 0 0
\(581\) 26.2337 1.08836
\(582\) 0 0
\(583\) −42.2441 + 10.3923i −1.74957 + 0.430405i
\(584\) 0 0
\(585\) 23.1138i 0.955640i
\(586\) 0 0
\(587\) 27.7677i 1.14610i −0.819522 0.573048i \(-0.805761\pi\)
0.819522 0.573048i \(-0.194239\pi\)
\(588\) 0 0
\(589\) 2.07668i 0.0855680i
\(590\) 0 0
\(591\) 60.7451 2.49872
\(592\) 0 0
\(593\) 10.3556i 0.425255i −0.977133 0.212628i \(-0.931798\pi\)
0.977133 0.212628i \(-0.0682021\pi\)
\(594\) 0 0
\(595\) 2.81929i 0.115580i
\(596\) 0 0
\(597\) −57.3505 −2.34720
\(598\) 0 0
\(599\) 32.1167i 1.31225i −0.754651 0.656126i \(-0.772194\pi\)
0.754651 0.656126i \(-0.227806\pi\)
\(600\) 0 0
\(601\) 21.3631i 0.871417i −0.900088 0.435709i \(-0.856498\pi\)
0.900088 0.435709i \(-0.143502\pi\)
\(602\) 0 0
\(603\) 11.6819i 0.475725i
\(604\) 0 0
\(605\) −9.74456 + 5.10328i −0.396173 + 0.207478i
\(606\) 0 0
\(607\) 12.6943 0.515244 0.257622 0.966246i \(-0.417061\pi\)
0.257622 + 0.966246i \(0.417061\pi\)
\(608\) 0 0
\(609\) −16.8832 −0.684140
\(610\) 0 0
\(611\) −58.3472 −2.36047
\(612\) 0 0
\(613\) 29.1671i 1.17805i 0.808116 + 0.589023i \(0.200487\pi\)
−0.808116 + 0.589023i \(0.799513\pi\)
\(614\) 0 0
\(615\) −12.8824 −0.519469
\(616\) 0 0
\(617\) 21.2554 0.855712 0.427856 0.903847i \(-0.359269\pi\)
0.427856 + 0.903847i \(0.359269\pi\)
\(618\) 0 0
\(619\) 9.10268i 0.365868i −0.983125 0.182934i \(-0.941441\pi\)
0.983125 0.182934i \(-0.0585594\pi\)
\(620\) 0 0
\(621\) −1.48913 −0.0597565
\(622\) 0 0
\(623\) 28.9854 1.16128
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −6.44121 26.1831i −0.257237 1.04565i
\(628\) 0 0
\(629\) 0.474964i 0.0189381i
\(630\) 0 0
\(631\) 13.2116i 0.525945i −0.964803 0.262973i \(-0.915297\pi\)
0.964803 0.262973i \(-0.0847029\pi\)
\(632\) 0 0
\(633\) 41.5994i 1.65343i
\(634\) 0 0
\(635\) −13.8932 −0.551336
\(636\) 0 0
\(637\) 14.5090i 0.574867i
\(638\) 0 0
\(639\) 31.8766i 1.26102i
\(640\) 0 0
\(641\) −15.3505 −0.606310 −0.303155 0.952941i \(-0.598040\pi\)
−0.303155 + 0.952941i \(0.598040\pi\)
\(642\) 0 0
\(643\) 8.86263i 0.349508i 0.984612 + 0.174754i \(0.0559130\pi\)
−0.984612 + 0.174754i \(0.944087\pi\)
\(644\) 0 0
\(645\) 13.7081i 0.539757i
\(646\) 0 0
\(647\) 6.63325i 0.260780i 0.991463 + 0.130390i \(0.0416229\pi\)
−0.991463 + 0.130390i \(0.958377\pi\)
\(648\) 0 0
\(649\) −6.74456 27.4163i −0.264747 1.07618i
\(650\) 0 0
\(651\) 3.59691 0.140974
\(652\) 0 0
\(653\) 36.0951 1.41251 0.706255 0.707957i \(-0.250383\pi\)
0.706255 + 0.707957i \(0.250383\pi\)
\(654\) 0 0
\(655\) −1.19897 −0.0468476
\(656\) 0 0
\(657\) 5.90414i 0.230342i
\(658\) 0 0
\(659\) −37.8246 −1.47344 −0.736718 0.676200i \(-0.763625\pi\)
−0.736718 + 0.676200i \(0.763625\pi\)
\(660\) 0 0
\(661\) −30.7446 −1.19582 −0.597912 0.801561i \(-0.704003\pi\)
−0.597912 + 0.801561i \(0.704003\pi\)
\(662\) 0 0
\(663\) 22.0742i 0.857292i
\(664\) 0 0
\(665\) 7.11684 0.275979
\(666\) 0 0
\(667\) 4.79588 0.185697
\(668\) 0 0
\(669\) 50.2337 1.94215
\(670\) 0 0
\(671\) 8.46284 + 34.4010i 0.326704 + 1.32803i
\(672\) 0 0
\(673\) 36.3470i 1.40107i 0.713616 + 0.700537i \(0.247056\pi\)
−0.713616 + 0.700537i \(0.752944\pi\)
\(674\) 0 0
\(675\) 0.939764i 0.0361715i
\(676\) 0 0
\(677\) 25.6655i 0.986405i 0.869915 + 0.493202i \(0.164174\pi\)
−0.869915 + 0.493202i \(0.835826\pi\)
\(678\) 0 0
\(679\) −30.9370 −1.18725
\(680\) 0 0
\(681\) 2.55164i 0.0977791i
\(682\) 0 0
\(683\) 39.7446i 1.52078i −0.649464 0.760392i \(-0.725007\pi\)
0.649464 0.760392i \(-0.274993\pi\)
\(684\) 0 0
\(685\) −11.4891 −0.438977
\(686\) 0 0
\(687\) 5.04868i 0.192619i
\(688\) 0 0
\(689\) 89.9037i 3.42506i
\(690\) 0 0
\(691\) 31.1769i 1.18603i 0.805193 + 0.593013i \(0.202062\pi\)
−0.805193 + 0.593013i \(0.797938\pi\)
\(692\) 0 0
\(693\) −24.0000 + 5.90414i −0.911685 + 0.224280i
\(694\) 0 0
\(695\) −17.3020 −0.656302
\(696\) 0 0
\(697\) 6.51087 0.246617
\(698\) 0 0
\(699\) 44.2658 1.67429
\(700\) 0 0
\(701\) 26.9413i 1.01756i −0.860897 0.508780i \(-0.830097\pi\)
0.860897 0.508780i \(-0.169903\pi\)
\(702\) 0 0
\(703\) 1.19897 0.0452200
\(704\) 0 0
\(705\) 21.4891 0.809327
\(706\) 0 0
\(707\) 16.9157i 0.636182i
\(708\) 0 0
\(709\) 30.7446 1.15464 0.577318 0.816519i \(-0.304099\pi\)
0.577318 + 0.816519i \(0.304099\pi\)
\(710\) 0 0
\(711\) 43.4431 1.62924
\(712\) 0 0
\(713\) −1.02175 −0.0382648
\(714\) 0 0
\(715\) −5.43039 22.0742i −0.203085 0.825529i
\(716\) 0 0
\(717\) 32.5196i 1.21447i
\(718\) 0 0
\(719\) 13.9113i 0.518804i 0.965769 + 0.259402i \(0.0835255\pi\)
−0.965769 + 0.259402i \(0.916474\pi\)
\(720\) 0 0
\(721\) 25.8146i 0.961384i
\(722\) 0 0
\(723\) 53.9276 2.00559
\(724\) 0 0
\(725\) 3.02661i 0.112405i
\(726\) 0 0
\(727\) 4.75372i 0.176306i 0.996107 + 0.0881529i \(0.0280964\pi\)
−0.996107 + 0.0881529i \(0.971904\pi\)
\(728\) 0 0
\(729\) 33.2337 1.23088
\(730\) 0 0
\(731\) 6.92820i 0.256249i
\(732\) 0 0
\(733\) 2.70071i 0.0997531i 0.998755 + 0.0498766i \(0.0158828\pi\)
−0.998755 + 0.0498766i \(0.984117\pi\)
\(734\) 0 0
\(735\) 5.34363i 0.197103i
\(736\) 0 0
\(737\) −2.74456 11.1565i −0.101097 0.410955i
\(738\) 0 0
\(739\) −4.41957 −0.162577 −0.0812883 0.996691i \(-0.525903\pi\)
−0.0812883 + 0.996691i \(0.525903\pi\)
\(740\) 0 0
\(741\) 55.7228 2.04703
\(742\) 0 0
\(743\) 28.3509 1.04009 0.520047 0.854138i \(-0.325914\pi\)
0.520047 + 0.854138i \(0.325914\pi\)
\(744\) 0 0
\(745\) 8.12989i 0.297856i
\(746\) 0 0
\(747\) −40.0344 −1.46478
\(748\) 0 0
\(749\) 30.7011 1.12179
\(750\) 0 0
\(751\) 51.7215i 1.88734i −0.330883 0.943672i \(-0.607347\pi\)
0.330883 0.943672i \(-0.392653\pi\)
\(752\) 0 0
\(753\) 16.7446 0.610206
\(754\) 0 0
\(755\) −4.41957 −0.160845
\(756\) 0 0
\(757\) 30.4674 1.10736 0.553678 0.832731i \(-0.313224\pi\)
0.553678 + 0.832731i \(0.313224\pi\)
\(758\) 0 0
\(759\) 12.8824 3.16915i 0.467602 0.115033i
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 24.6535i 0.892516i
\(764\) 0 0
\(765\) 4.30243i 0.155555i
\(766\) 0 0
\(767\) 58.3472 2.10679
\(768\) 0 0
\(769\) 18.8114i 0.678357i −0.940722 0.339179i \(-0.889851\pi\)
0.940722 0.339179i \(-0.110149\pi\)
\(770\) 0 0
\(771\) 23.3639i 0.841429i
\(772\) 0 0
\(773\) −43.6277 −1.56918 −0.784590 0.620015i \(-0.787127\pi\)
−0.784590 + 0.620015i \(0.787127\pi\)
\(774\) 0 0
\(775\) 0.644810i 0.0231623i
\(776\) 0 0
\(777\) 2.07668i 0.0745004i
\(778\) 0 0
\(779\) 16.4356i 0.588868i
\(780\) 0 0
\(781\) −7.48913 30.4429i −0.267982 1.08933i
\(782\) 0 0
\(783\) 2.84429 0.101647
\(784\) 0 0
\(785\) −5.86141 −0.209203
\(786\) 0 0
\(787\) −27.1519 −0.967862 −0.483931 0.875106i \(-0.660791\pi\)
−0.483931 + 0.875106i \(0.660791\pi\)
\(788\) 0 0
\(789\) 60.4108i 2.15068i
\(790\) 0 0
\(791\) 25.3885 0.902712
\(792\) 0 0
\(793\) −73.2119 −2.59983
\(794\) 0 0
\(795\) 33.1113i 1.17434i
\(796\) 0 0
\(797\) −23.4891 −0.832028 −0.416014 0.909358i \(-0.636573\pi\)
−0.416014 + 0.909358i \(0.636573\pi\)
\(798\) 0 0
\(799\) −10.8608 −0.384227
\(800\) 0 0
\(801\) −44.2337 −1.56292
\(802\) 0 0
\(803\) 1.38712 + 5.63858i 0.0489506 + 0.198981i
\(804\) 0 0
\(805\) 3.50157i 0.123414i
\(806\) 0 0
\(807\) 15.1460i 0.533165i
\(808\) 0 0
\(809\) 22.9648i 0.807398i 0.914892 + 0.403699i \(0.132276\pi\)
−0.914892 + 0.403699i \(0.867724\pi\)
\(810\) 0 0
\(811\) 37.4483 1.31499 0.657493 0.753461i \(-0.271617\pi\)
0.657493 + 0.753461i \(0.271617\pi\)
\(812\) 0 0
\(813\) 33.4695i 1.17383i
\(814\) 0 0
\(815\) 6.28339i 0.220098i
\(816\) 0 0
\(817\) −17.4891 −0.611867
\(818\) 0 0
\(819\) 51.0767i 1.78476i
\(820\) 0 0
\(821\) 24.8646i 0.867782i 0.900965 + 0.433891i \(0.142860\pi\)
−0.900965 + 0.433891i \(0.857140\pi\)
\(822\) 0 0
\(823\) 7.81306i 0.272346i 0.990685 + 0.136173i \(0.0434803\pi\)
−0.990685 + 0.136173i \(0.956520\pi\)
\(824\) 0 0
\(825\) 2.00000 + 8.12989i 0.0696311 + 0.283046i
\(826\) 0 0
\(827\) −9.47365 −0.329431 −0.164716 0.986341i \(-0.552671\pi\)
−0.164716 + 0.986341i \(0.552671\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 0 0
\(831\) 43.0668 1.49397
\(832\) 0 0
\(833\) 2.70071i 0.0935742i
\(834\) 0 0
\(835\) −23.9313 −0.828178
\(836\) 0 0
\(837\) −0.605969 −0.0209454
\(838\) 0 0
\(839\) 34.9360i 1.20612i −0.797694 0.603062i \(-0.793947\pi\)
0.797694 0.603062i \(-0.206053\pi\)
\(840\) 0 0
\(841\) 19.8397 0.684126
\(842\) 0 0
\(843\) 82.0903 2.82734
\(844\) 0 0
\(845\) 33.9783 1.16889
\(846\) 0 0
\(847\) 21.5334 11.2772i 0.739896 0.387488i
\(848\) 0 0
\(849\) 47.1776i 1.61913i
\(850\) 0 0
\(851\) 0.589907i 0.0202218i
\(852\) 0 0
\(853\) 11.0074i 0.376887i 0.982084 + 0.188443i \(0.0603442\pi\)
−0.982084 + 0.188443i \(0.939656\pi\)
\(854\) 0 0
\(855\) −10.8608 −0.371431
\(856\) 0 0
\(857\) 7.32903i 0.250355i 0.992134 + 0.125177i \(0.0399500\pi\)
−0.992134 + 0.125177i \(0.960050\pi\)
\(858\) 0 0
\(859\) 46.3229i 1.58052i 0.612773 + 0.790259i \(0.290054\pi\)
−0.612773 + 0.790259i \(0.709946\pi\)
\(860\) 0 0
\(861\) 28.4674 0.970166
\(862\) 0 0
\(863\) 21.0796i 0.717557i −0.933423 0.358778i \(-0.883193\pi\)
0.933423 0.358778i \(-0.116807\pi\)
\(864\) 0 0
\(865\) 4.30243i 0.146287i
\(866\) 0 0
\(867\) 38.8048i 1.31788i
\(868\) 0 0
\(869\) −41.4891 + 10.2066i −1.40742 + 0.346234i
\(870\) 0 0
\(871\) 23.7432 0.804507
\(872\) 0 0
\(873\) 47.2119 1.59788
\(874\) 0 0
\(875\) −2.20979 −0.0747044
\(876\) 0 0
\(877\) 26.6154i 0.898739i 0.893346 + 0.449369i \(0.148351\pi\)
−0.893346 + 0.449369i \(0.851649\pi\)
\(878\) 0 0
\(879\) 26.1411 0.881718
\(880\) 0 0
\(881\) −23.4891 −0.791369 −0.395684 0.918387i \(-0.629493\pi\)
−0.395684 + 0.918387i \(0.629493\pi\)
\(882\) 0 0
\(883\) 4.99377i 0.168054i −0.996463 0.0840269i \(-0.973222\pi\)
0.996463 0.0840269i \(-0.0267782\pi\)
\(884\) 0 0
\(885\) −21.4891 −0.722349
\(886\) 0 0
\(887\) −46.4756 −1.56050 −0.780248 0.625470i \(-0.784907\pi\)
−0.780248 + 0.625470i \(0.784907\pi\)
\(888\) 0 0
\(889\) 30.7011 1.02968
\(890\) 0 0
\(891\) −24.9422 + 6.13592i −0.835594 + 0.205561i
\(892\) 0 0
\(893\) 27.4163i 0.917451i
\(894\) 0 0
\(895\) 8.51278i 0.284551i
\(896\) 0 0
\(897\) 27.4163i 0.915403i
\(898\) 0 0
\(899\) 1.95159 0.0650890
\(900\) 0 0
\(901\) 16.7347i 0.557515i
\(902\) 0 0
\(903\) 30.2921i 1.00806i
\(904\) 0 0
\(905\) −19.4891 −0.647840
\(906\) 0 0
\(907\) 50.4319i 1.67456i 0.546773 + 0.837281i \(0.315856\pi\)
−0.546773 + 0.837281i \(0.684144\pi\)
\(908\) 0 0
\(909\) 25.8146i 0.856215i
\(910\) 0 0
\(911\) 8.27273i 0.274088i 0.990565 + 0.137044i \(0.0437601\pi\)
−0.990565 + 0.137044i \(0.956240\pi\)
\(912\) 0 0
\(913\) 38.2337 9.40571i 1.26535 0.311284i
\(914\) 0 0
\(915\) 26.9638 0.891395
\(916\) 0 0
\(917\) 2.64947 0.0874931
\(918\) 0 0
\(919\) 12.8824 0.424952 0.212476 0.977166i \(-0.431847\pi\)
0.212476 + 0.977166i \(0.431847\pi\)
\(920\) 0 0
\(921\) 57.3842i 1.89087i
\(922\) 0 0
\(923\) 64.7884 2.13253
\(924\) 0 0
\(925\) −0.372281 −0.0122405
\(926\) 0 0
\(927\) 39.3947i 1.29389i
\(928\) 0 0
\(929\) −6.60597 −0.216735 −0.108367 0.994111i \(-0.534562\pi\)
−0.108367 + 0.994111i \(0.534562\pi\)
\(930\) 0 0
\(931\) 6.81751 0.223435
\(932\) 0 0
\(933\) 14.3723 0.470527
\(934\) 0 0
\(935\) −1.01082 4.10891i −0.0330572 0.134376i
\(936\) 0 0
\(937\) 8.45578i 0.276238i 0.990416 + 0.138119i \(0.0441057\pi\)
−0.990416 + 0.138119i \(0.955894\pi\)
\(938\) 0 0
\(939\) 33.4612i 1.09197i
\(940\) 0 0
\(941\) 32.0446i 1.04462i −0.852755 0.522312i \(-0.825070\pi\)
0.852755 0.522312i \(-0.174930\pi\)
\(942\) 0 0
\(943\) −8.08653 −0.263334
\(944\) 0 0
\(945\) 2.07668i 0.0675543i
\(946\) 0 0
\(947\) 23.3089i 0.757439i −0.925511 0.378720i \(-0.876365\pi\)
0.925511 0.378720i \(-0.123635\pi\)
\(948\) 0 0
\(949\) −12.0000 −0.389536
\(950\) 0 0
\(951\) 11.0371i 0.357903i
\(952\) 0 0
\(953\) 7.98082i 0.258524i 0.991610 + 0.129262i \(0.0412608\pi\)
−0.991610 + 0.129262i \(0.958739\pi\)
\(954\) 0 0
\(955\) 9.80240i 0.317198i
\(956\) 0 0
\(957\) −24.6060 + 6.05321i −0.795398 + 0.195673i
\(958\) 0 0
\(959\) 25.3885 0.819838
\(960\) 0 0
\(961\) 30.5842 0.986588
\(962\) 0 0
\(963\) −46.8519 −1.50978
\(964\) 0 0
\(965\) 26.1405i 0.841491i
\(966\) 0 0
\(967\) 41.6096 1.33808 0.669038 0.743228i \(-0.266706\pi\)
0.669038 + 0.743228i \(0.266706\pi\)
\(968\) 0 0
\(969\) 10.3723 0.333206
\(970\) 0 0
\(971\) 18.0202i 0.578296i −0.957284 0.289148i \(-0.906628\pi\)
0.957284 0.289148i \(-0.0933720\pi\)
\(972\) 0 0
\(973\) 38.2337 1.22572
\(974\) 0 0
\(975\) −17.3020 −0.554107
\(976\) 0 0
\(977\) −34.4674 −1.10271 −0.551355 0.834271i \(-0.685889\pi\)
−0.551355 + 0.834271i \(0.685889\pi\)
\(978\) 0 0
\(979\) 42.2441 10.3923i 1.35013 0.332140i
\(980\) 0 0
\(981\) 37.6228i 1.20120i
\(982\) 0 0
\(983\) 36.9253i 1.17773i 0.808230 + 0.588867i \(0.200426\pi\)
−0.808230 + 0.588867i \(0.799574\pi\)
\(984\) 0 0
\(985\) 24.0638i 0.766736i
\(986\) 0 0
\(987\) −47.4864 −1.51151
\(988\) 0 0
\(989\) 8.60485i 0.273618i
\(990\) 0 0
\(991\) 17.3205i 0.550204i 0.961415 + 0.275102i \(0.0887116\pi\)
−0.961415 + 0.275102i \(0.911288\pi\)
\(992\) 0 0
\(993\) 64.4674 2.04581
\(994\) 0 0
\(995\) 22.7190i 0.720242i
\(996\) 0 0
\(997\) 19.6123i 0.621127i 0.950553 + 0.310564i \(0.100518\pi\)
−0.950553 + 0.310564i \(0.899482\pi\)
\(998\) 0 0
\(999\) 0.349857i 0.0110690i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.f.d.351.8 yes 8
4.3 odd 2 inner 880.2.f.d.351.1 8
8.3 odd 2 3520.2.f.j.2111.7 8
8.5 even 2 3520.2.f.j.2111.2 8
11.10 odd 2 inner 880.2.f.d.351.7 yes 8
44.43 even 2 inner 880.2.f.d.351.2 yes 8
88.21 odd 2 3520.2.f.j.2111.1 8
88.43 even 2 3520.2.f.j.2111.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
880.2.f.d.351.1 8 4.3 odd 2 inner
880.2.f.d.351.2 yes 8 44.43 even 2 inner
880.2.f.d.351.7 yes 8 11.10 odd 2 inner
880.2.f.d.351.8 yes 8 1.1 even 1 trivial
3520.2.f.j.2111.1 8 88.21 odd 2
3520.2.f.j.2111.2 8 8.5 even 2
3520.2.f.j.2111.7 8 8.3 odd 2
3520.2.f.j.2111.8 8 88.43 even 2