Properties

Label 880.2.f.d
Level $880$
Weight $2$
Character orbit 880.f
Analytic conductor $7.027$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(351,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-8,0,0,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.170772624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} - 6x^{5} + 6x^{4} - 12x^{3} + 20x^{2} - 24x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} - q^{5} + \beta_1 q^{7} + ( - \beta_{4} - 1) q^{9} + (\beta_{6} - \beta_{3} + \beta_{2}) q^{11} + ( - \beta_{7} - \beta_{5}) q^{13} - \beta_{3} q^{15} - \beta_{5} q^{17} - \beta_{2} q^{19}+ \cdots + (3 \beta_{6} - \beta_{3} + \cdots - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 4 q^{9} + 8 q^{25} + 16 q^{33} + 20 q^{37} + 4 q^{45} + 52 q^{49} - 36 q^{53} + 32 q^{69} - 12 q^{77} - 16 q^{81} + 36 q^{89} + 36 q^{93} - 112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 3x^{7} + 5x^{6} - 6x^{5} + 6x^{4} - 12x^{3} + 20x^{2} - 24x + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{7} + 3\nu^{4} + 6\nu^{2} + 4\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} - 2\nu^{6} + 2\nu^{5} - \nu^{4} - 10\nu^{2} + 12\nu - 8 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} + 2\nu^{6} - 4\nu^{5} + 3\nu^{4} - 2\nu^{3} + 6\nu^{2} - 12\nu + 16 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{7} - 4\nu^{6} + 6\nu^{5} - 5\nu^{4} + 6\nu^{3} - 14\nu^{2} + 20\nu - 24 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{7} + 4\nu^{6} - 8\nu^{5} + 5\nu^{4} - 8\nu^{3} + 22\nu^{2} - 20\nu + 32 ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3\nu^{7} - 5\nu^{6} + 7\nu^{5} - 6\nu^{4} + 10\nu^{3} - 24\nu^{2} + 28\nu - 28 ) / 4 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 3\nu^{7} - 4\nu^{6} + 12\nu^{5} - 9\nu^{4} + 12\nu^{3} - 30\nu^{2} + 36\nu - 56 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + 2\beta_{6} + 3\beta_{5} - 2\beta_{4} - 2\beta_{3} + \beta_{2} + \beta _1 + 2 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{7} + 2\beta_{6} + \beta_{5} - 2\beta_{4} - 6\beta_{3} - 3\beta_{2} + \beta _1 - 2 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{6} + 2\beta_{3} - 3\beta_{2} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -\beta_{7} - 2\beta_{6} - 7\beta_{5} - 2\beta_{4} + 6\beta_{3} + 3\beta_{2} + 7\beta _1 - 2 ) / 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( \beta_{7} - 10\beta_{6} - 9\beta_{5} + 2\beta_{4} - 2\beta_{3} - \beta_{2} + 3\beta _1 + 34 ) / 8 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 5\beta_{7} + 3\beta_{5} - 6\beta_{4} + 10 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -5\beta_{7} + 14\beta_{6} - 3\beta_{5} - 26\beta_{4} - 26\beta_{3} - 5\beta_{2} - \beta _1 - 10 ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
351.1
−1.02187 0.977642i
0.335728 + 1.37379i
0.774115 + 1.18353i
1.41203 + 0.0786378i
0.774115 1.18353i
1.41203 0.0786378i
−1.02187 + 0.977642i
0.335728 1.37379i
0 2.52434i 0 −1.00000 0 −2.20979 0 −3.37228 0
351.2 0 2.52434i 0 −1.00000 0 2.20979 0 −3.37228 0
351.3 0 0.792287i 0 −1.00000 0 −4.70285 0 2.37228 0
351.4 0 0.792287i 0 −1.00000 0 4.70285 0 2.37228 0
351.5 0 0.792287i 0 −1.00000 0 −4.70285 0 2.37228 0
351.6 0 0.792287i 0 −1.00000 0 4.70285 0 2.37228 0
351.7 0 2.52434i 0 −1.00000 0 −2.20979 0 −3.37228 0
351.8 0 2.52434i 0 −1.00000 0 2.20979 0 −3.37228 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 351.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 880.2.f.d 8
4.b odd 2 1 inner 880.2.f.d 8
8.b even 2 1 3520.2.f.j 8
8.d odd 2 1 3520.2.f.j 8
11.b odd 2 1 inner 880.2.f.d 8
44.c even 2 1 inner 880.2.f.d 8
88.b odd 2 1 3520.2.f.j 8
88.g even 2 1 3520.2.f.j 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
880.2.f.d 8 1.a even 1 1 trivial
880.2.f.d 8 4.b odd 2 1 inner
880.2.f.d 8 11.b odd 2 1 inner
880.2.f.d 8 44.c even 2 1 inner
3520.2.f.j 8 8.b even 2 1
3520.2.f.j 8 8.d odd 2 1
3520.2.f.j 8 88.b odd 2 1
3520.2.f.j 8 88.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(880, [\chi])\):

\( T_{3}^{4} + 7T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} - 27T_{7}^{2} + 108 \) Copy content Toggle raw display
\( T_{19}^{4} - 15T_{19}^{2} + 48 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 7 T^{2} + 4)^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} - 27 T^{2} + 108)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} - 16 T^{6} + \cdots + 14641 \) Copy content Toggle raw display
$13$ \( (T^{4} + 48 T^{2} + 48)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 9 T^{2} + 12)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} - 15 T^{2} + 48)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 28 T^{2} + 64)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 93 T^{2} + 768)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 87 T^{2} + 36)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 5 T - 2)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 144 T^{2} + 3072)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} - 36 T^{2} + 192)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 76 T^{2} + 256)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 9 T - 54)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} + 76 T^{2} + 256)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 165 T^{2} + 5808)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 12)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 127 T^{2} + 3364)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 144 T^{2} + 432)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 240 T^{2} + 12288)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 144 T^{2} + 432)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 9 T - 54)^{4} \) Copy content Toggle raw display
$97$ \( (T + 14)^{8} \) Copy content Toggle raw display
show more
show less