Properties

Label 880.2.f.d.351.6
Level $880$
Weight $2$
Character 880.351
Analytic conductor $7.027$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(351,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-8,0,0,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.170772624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} - 6x^{5} + 6x^{4} - 12x^{3} + 20x^{2} - 24x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 351.6
Root \(1.41203 - 0.0786378i\) of defining polynomial
Character \(\chi\) \(=\) 880.351
Dual form 880.2.f.d.351.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.792287i q^{3} -1.00000 q^{5} +4.70285 q^{7} +2.37228 q^{9} +(-2.15121 - 2.52434i) q^{11} +1.01082i q^{13} -0.792287i q^{15} -2.71519i q^{17} +2.15121 q^{19} +3.72601i q^{21} -5.04868i q^{23} +1.00000 q^{25} +4.25639i q^{27} +9.15640i q^{29} -9.30506i q^{31} +(2.00000 - 1.70438i) q^{33} -4.70285 q^{35} +5.37228 q^{37} -0.800857 q^{39} +10.8608i q^{41} +2.55164 q^{43} -2.37228 q^{45} -1.87953i q^{47} +15.1168 q^{49} +2.15121 q^{51} +4.11684 q^{53} +(2.15121 + 2.52434i) q^{55} +1.70438i q^{57} +1.87953i q^{59} -7.13477i q^{61} +11.1565 q^{63} -1.01082i q^{65} +3.46410i q^{67} +4.00000 q^{69} +6.13592i q^{71} +11.8716i q^{73} +0.792287i q^{75} +(-10.1168 - 11.8716i) q^{77} +8.60485 q^{79} +3.74456 q^{81} -1.75079 q^{83} +2.71519i q^{85} -7.25450 q^{87} -4.11684 q^{89} +4.75372i q^{91} +7.37228 q^{93} -2.15121 q^{95} -14.0000 q^{97} +(-5.10328 - 5.98844i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 4 q^{9} + 8 q^{25} + 16 q^{33} + 20 q^{37} + 4 q^{45} + 52 q^{49} - 36 q^{53} + 32 q^{69} - 12 q^{77} - 16 q^{81} + 36 q^{89} + 36 q^{93} - 112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.792287i 0.457427i 0.973494 + 0.228714i \(0.0734519\pi\)
−0.973494 + 0.228714i \(0.926548\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 4.70285 1.77751 0.888756 0.458381i \(-0.151570\pi\)
0.888756 + 0.458381i \(0.151570\pi\)
\(8\) 0 0
\(9\) 2.37228 0.790760
\(10\) 0 0
\(11\) −2.15121 2.52434i −0.648615 0.761116i
\(12\) 0 0
\(13\) 1.01082i 0.280350i 0.990127 + 0.140175i \(0.0447665\pi\)
−0.990127 + 0.140175i \(0.955233\pi\)
\(14\) 0 0
\(15\) 0.792287i 0.204568i
\(16\) 0 0
\(17\) 2.71519i 0.658531i −0.944237 0.329266i \(-0.893199\pi\)
0.944237 0.329266i \(-0.106801\pi\)
\(18\) 0 0
\(19\) 2.15121 0.493522 0.246761 0.969076i \(-0.420634\pi\)
0.246761 + 0.969076i \(0.420634\pi\)
\(20\) 0 0
\(21\) 3.72601i 0.813082i
\(22\) 0 0
\(23\) 5.04868i 1.05272i −0.850261 0.526361i \(-0.823556\pi\)
0.850261 0.526361i \(-0.176444\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 4.25639i 0.819142i
\(28\) 0 0
\(29\) 9.15640i 1.70030i 0.526540 + 0.850150i \(0.323489\pi\)
−0.526540 + 0.850150i \(0.676511\pi\)
\(30\) 0 0
\(31\) 9.30506i 1.67124i −0.549309 0.835619i \(-0.685109\pi\)
0.549309 0.835619i \(-0.314891\pi\)
\(32\) 0 0
\(33\) 2.00000 1.70438i 0.348155 0.296694i
\(34\) 0 0
\(35\) −4.70285 −0.794928
\(36\) 0 0
\(37\) 5.37228 0.883198 0.441599 0.897213i \(-0.354411\pi\)
0.441599 + 0.897213i \(0.354411\pi\)
\(38\) 0 0
\(39\) −0.800857 −0.128240
\(40\) 0 0
\(41\) 10.8608i 1.69617i 0.529861 + 0.848084i \(0.322244\pi\)
−0.529861 + 0.848084i \(0.677756\pi\)
\(42\) 0 0
\(43\) 2.55164 0.389122 0.194561 0.980890i \(-0.437672\pi\)
0.194561 + 0.980890i \(0.437672\pi\)
\(44\) 0 0
\(45\) −2.37228 −0.353639
\(46\) 0 0
\(47\) 1.87953i 0.274157i −0.990560 0.137079i \(-0.956229\pi\)
0.990560 0.137079i \(-0.0437713\pi\)
\(48\) 0 0
\(49\) 15.1168 2.15955
\(50\) 0 0
\(51\) 2.15121 0.301230
\(52\) 0 0
\(53\) 4.11684 0.565492 0.282746 0.959195i \(-0.408755\pi\)
0.282746 + 0.959195i \(0.408755\pi\)
\(54\) 0 0
\(55\) 2.15121 + 2.52434i 0.290070 + 0.340382i
\(56\) 0 0
\(57\) 1.70438i 0.225750i
\(58\) 0 0
\(59\) 1.87953i 0.244694i 0.992487 + 0.122347i \(0.0390420\pi\)
−0.992487 + 0.122347i \(0.960958\pi\)
\(60\) 0 0
\(61\) 7.13477i 0.913513i −0.889592 0.456757i \(-0.849011\pi\)
0.889592 0.456757i \(-0.150989\pi\)
\(62\) 0 0
\(63\) 11.1565 1.40559
\(64\) 0 0
\(65\) 1.01082i 0.125376i
\(66\) 0 0
\(67\) 3.46410i 0.423207i 0.977356 + 0.211604i \(0.0678686\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) 6.13592i 0.728199i 0.931360 + 0.364100i \(0.118623\pi\)
−0.931360 + 0.364100i \(0.881377\pi\)
\(72\) 0 0
\(73\) 11.8716i 1.38947i 0.719268 + 0.694733i \(0.244477\pi\)
−0.719268 + 0.694733i \(0.755523\pi\)
\(74\) 0 0
\(75\) 0.792287i 0.0914854i
\(76\) 0 0
\(77\) −10.1168 11.8716i −1.15292 1.35289i
\(78\) 0 0
\(79\) 8.60485 0.968122 0.484061 0.875034i \(-0.339161\pi\)
0.484061 + 0.875034i \(0.339161\pi\)
\(80\) 0 0
\(81\) 3.74456 0.416063
\(82\) 0 0
\(83\) −1.75079 −0.192174 −0.0960868 0.995373i \(-0.530633\pi\)
−0.0960868 + 0.995373i \(0.530633\pi\)
\(84\) 0 0
\(85\) 2.71519i 0.294504i
\(86\) 0 0
\(87\) −7.25450 −0.777764
\(88\) 0 0
\(89\) −4.11684 −0.436385 −0.218192 0.975906i \(-0.570016\pi\)
−0.218192 + 0.975906i \(0.570016\pi\)
\(90\) 0 0
\(91\) 4.75372i 0.498325i
\(92\) 0 0
\(93\) 7.37228 0.764470
\(94\) 0 0
\(95\) −2.15121 −0.220710
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) −5.10328 5.98844i −0.512899 0.601861i
\(100\) 0 0
\(101\) 16.2912i 1.62103i −0.585717 0.810516i \(-0.699187\pi\)
0.585717 0.810516i \(-0.300813\pi\)
\(102\) 0 0
\(103\) 8.21782i 0.809726i −0.914377 0.404863i \(-0.867319\pi\)
0.914377 0.404863i \(-0.132681\pi\)
\(104\) 0 0
\(105\) 3.72601i 0.363621i
\(106\) 0 0
\(107\) −15.4589 −1.49447 −0.747235 0.664560i \(-0.768619\pi\)
−0.747235 + 0.664560i \(0.768619\pi\)
\(108\) 0 0
\(109\) 7.45202i 0.713774i 0.934148 + 0.356887i \(0.116162\pi\)
−0.934148 + 0.356887i \(0.883838\pi\)
\(110\) 0 0
\(111\) 4.25639i 0.403999i
\(112\) 0 0
\(113\) −11.4891 −1.08081 −0.540403 0.841406i \(-0.681728\pi\)
−0.540403 + 0.841406i \(0.681728\pi\)
\(114\) 0 0
\(115\) 5.04868i 0.470791i
\(116\) 0 0
\(117\) 2.39794i 0.221690i
\(118\) 0 0
\(119\) 12.7692i 1.17055i
\(120\) 0 0
\(121\) −1.74456 + 10.8608i −0.158597 + 0.987343i
\(122\) 0 0
\(123\) −8.60485 −0.775873
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −15.4589 −1.37176 −0.685879 0.727716i \(-0.740582\pi\)
−0.685879 + 0.727716i \(0.740582\pi\)
\(128\) 0 0
\(129\) 2.02163i 0.177995i
\(130\) 0 0
\(131\) 11.5569 1.00973 0.504867 0.863197i \(-0.331542\pi\)
0.504867 + 0.863197i \(0.331542\pi\)
\(132\) 0 0
\(133\) 10.1168 0.877242
\(134\) 0 0
\(135\) 4.25639i 0.366332i
\(136\) 0 0
\(137\) −11.4891 −0.981582 −0.490791 0.871277i \(-0.663292\pi\)
−0.490791 + 0.871277i \(0.663292\pi\)
\(138\) 0 0
\(139\) 0.800857 0.0679278 0.0339639 0.999423i \(-0.489187\pi\)
0.0339639 + 0.999423i \(0.489187\pi\)
\(140\) 0 0
\(141\) 1.48913 0.125407
\(142\) 0 0
\(143\) 2.55164 2.17448i 0.213379 0.181839i
\(144\) 0 0
\(145\) 9.15640i 0.760398i
\(146\) 0 0
\(147\) 11.9769i 0.987836i
\(148\) 0 0
\(149\) 1.70438i 0.139628i 0.997560 + 0.0698141i \(0.0222406\pi\)
−0.997560 + 0.0698141i \(0.977759\pi\)
\(150\) 0 0
\(151\) 9.40571 0.765426 0.382713 0.923867i \(-0.374990\pi\)
0.382713 + 0.923867i \(0.374990\pi\)
\(152\) 0 0
\(153\) 6.44121i 0.520741i
\(154\) 0 0
\(155\) 9.30506i 0.747401i
\(156\) 0 0
\(157\) −22.8614 −1.82454 −0.912269 0.409591i \(-0.865672\pi\)
−0.912269 + 0.409591i \(0.865672\pi\)
\(158\) 0 0
\(159\) 3.26172i 0.258671i
\(160\) 0 0
\(161\) 23.7432i 1.87123i
\(162\) 0 0
\(163\) 16.2333i 1.27149i −0.771900 0.635744i \(-0.780693\pi\)
0.771900 0.635744i \(-0.219307\pi\)
\(164\) 0 0
\(165\) −2.00000 + 1.70438i −0.155700 + 0.132686i
\(166\) 0 0
\(167\) 14.9094 1.15373 0.576863 0.816841i \(-0.304277\pi\)
0.576863 + 0.816841i \(0.304277\pi\)
\(168\) 0 0
\(169\) 11.9783 0.921404
\(170\) 0 0
\(171\) 5.10328 0.390258
\(172\) 0 0
\(173\) 6.44121i 0.489716i −0.969559 0.244858i \(-0.921259\pi\)
0.969559 0.244858i \(-0.0787413\pi\)
\(174\) 0 0
\(175\) 4.70285 0.355502
\(176\) 0 0
\(177\) −1.48913 −0.111930
\(178\) 0 0
\(179\) 1.87953i 0.140482i −0.997530 0.0702412i \(-0.977623\pi\)
0.997530 0.0702412i \(-0.0223769\pi\)
\(180\) 0 0
\(181\) −3.48913 −0.259345 −0.129672 0.991557i \(-0.541393\pi\)
−0.129672 + 0.991557i \(0.541393\pi\)
\(182\) 0 0
\(183\) 5.65278 0.417866
\(184\) 0 0
\(185\) −5.37228 −0.394978
\(186\) 0 0
\(187\) −6.85407 + 5.84096i −0.501219 + 0.427133i
\(188\) 0 0
\(189\) 20.0172i 1.45604i
\(190\) 0 0
\(191\) 16.7306i 1.21058i 0.796004 + 0.605292i \(0.206944\pi\)
−0.796004 + 0.605292i \(0.793056\pi\)
\(192\) 0 0
\(193\) 6.75846i 0.486485i 0.969966 + 0.243242i \(0.0782110\pi\)
−0.969966 + 0.243242i \(0.921789\pi\)
\(194\) 0 0
\(195\) 0.800857 0.0573505
\(196\) 0 0
\(197\) 26.7756i 1.90769i −0.300307 0.953843i \(-0.597089\pi\)
0.300307 0.953843i \(-0.402911\pi\)
\(198\) 0 0
\(199\) 7.13058i 0.505474i 0.967535 + 0.252737i \(0.0813307\pi\)
−0.967535 + 0.252737i \(0.918669\pi\)
\(200\) 0 0
\(201\) −2.74456 −0.193587
\(202\) 0 0
\(203\) 43.0612i 3.02231i
\(204\) 0 0
\(205\) 10.8608i 0.758550i
\(206\) 0 0
\(207\) 11.9769i 0.832451i
\(208\) 0 0
\(209\) −4.62772 5.43039i −0.320106 0.375628i
\(210\) 0 0
\(211\) −26.0659 −1.79445 −0.897226 0.441572i \(-0.854421\pi\)
−0.897226 + 0.441572i \(0.854421\pi\)
\(212\) 0 0
\(213\) −4.86141 −0.333098
\(214\) 0 0
\(215\) −2.55164 −0.174021
\(216\) 0 0
\(217\) 43.7604i 2.97065i
\(218\) 0 0
\(219\) −9.40571 −0.635579
\(220\) 0 0
\(221\) 2.74456 0.184619
\(222\) 0 0
\(223\) 19.8997i 1.33259i −0.745690 0.666293i \(-0.767880\pi\)
0.745690 0.666293i \(-0.232120\pi\)
\(224\) 0 0
\(225\) 2.37228 0.158152
\(226\) 0 0
\(227\) −6.85407 −0.454920 −0.227460 0.973787i \(-0.573042\pi\)
−0.227460 + 0.973787i \(0.573042\pi\)
\(228\) 0 0
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) 0 0
\(231\) 9.40571 8.01544i 0.618850 0.527377i
\(232\) 0 0
\(233\) 6.12395i 0.401193i 0.979674 + 0.200597i \(0.0642881\pi\)
−0.979674 + 0.200597i \(0.935712\pi\)
\(234\) 0 0
\(235\) 1.87953i 0.122607i
\(236\) 0 0
\(237\) 6.81751i 0.442845i
\(238\) 0 0
\(239\) −8.60485 −0.556602 −0.278301 0.960494i \(-0.589771\pi\)
−0.278301 + 0.960494i \(0.589771\pi\)
\(240\) 0 0
\(241\) 14.2695i 0.919182i 0.888131 + 0.459591i \(0.152004\pi\)
−0.888131 + 0.459591i \(0.847996\pi\)
\(242\) 0 0
\(243\) 15.7359i 1.00946i
\(244\) 0 0
\(245\) −15.1168 −0.965780
\(246\) 0 0
\(247\) 2.17448i 0.138359i
\(248\) 0 0
\(249\) 1.38712i 0.0879054i
\(250\) 0 0
\(251\) 6.63325i 0.418687i −0.977842 0.209344i \(-0.932867\pi\)
0.977842 0.209344i \(-0.0671327\pi\)
\(252\) 0 0
\(253\) −12.7446 + 10.8608i −0.801244 + 0.682811i
\(254\) 0 0
\(255\) −2.15121 −0.134714
\(256\) 0 0
\(257\) −20.7446 −1.29401 −0.647005 0.762486i \(-0.723979\pi\)
−0.647005 + 0.762486i \(0.723979\pi\)
\(258\) 0 0
\(259\) 25.2651 1.56989
\(260\) 0 0
\(261\) 21.7216i 1.34453i
\(262\) 0 0
\(263\) −14.9094 −0.919354 −0.459677 0.888086i \(-0.652035\pi\)
−0.459677 + 0.888086i \(0.652035\pi\)
\(264\) 0 0
\(265\) −4.11684 −0.252896
\(266\) 0 0
\(267\) 3.26172i 0.199614i
\(268\) 0 0
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) −28.2171 −1.71407 −0.857034 0.515259i \(-0.827696\pi\)
−0.857034 + 0.515259i \(0.827696\pi\)
\(272\) 0 0
\(273\) −3.76631 −0.227948
\(274\) 0 0
\(275\) −2.15121 2.52434i −0.129723 0.152223i
\(276\) 0 0
\(277\) 20.7107i 1.24439i 0.782863 + 0.622194i \(0.213758\pi\)
−0.782863 + 0.622194i \(0.786242\pi\)
\(278\) 0 0
\(279\) 22.0742i 1.32155i
\(280\) 0 0
\(281\) 6.81751i 0.406699i 0.979106 + 0.203349i \(0.0651827\pi\)
−0.979106 + 0.203349i \(0.934817\pi\)
\(282\) 0 0
\(283\) −30.7688 −1.82901 −0.914507 0.404571i \(-0.867421\pi\)
−0.914507 + 0.404571i \(0.867421\pi\)
\(284\) 0 0
\(285\) 1.70438i 0.100959i
\(286\) 0 0
\(287\) 51.0767i 3.01496i
\(288\) 0 0
\(289\) 9.62772 0.566336
\(290\) 0 0
\(291\) 11.0920i 0.650226i
\(292\) 0 0
\(293\) 24.7540i 1.44614i −0.690772 0.723072i \(-0.742729\pi\)
0.690772 0.723072i \(-0.257271\pi\)
\(294\) 0 0
\(295\) 1.87953i 0.109430i
\(296\) 0 0
\(297\) 10.7446 9.15640i 0.623463 0.531308i
\(298\) 0 0
\(299\) 5.10328 0.295130
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 0 0
\(303\) 12.9073 0.741504
\(304\) 0 0
\(305\) 7.13477i 0.408536i
\(306\) 0 0
\(307\) 3.35250 0.191337 0.0956686 0.995413i \(-0.469501\pi\)
0.0956686 + 0.995413i \(0.469501\pi\)
\(308\) 0 0
\(309\) 6.51087 0.370391
\(310\) 0 0
\(311\) 10.8896i 0.617495i −0.951144 0.308747i \(-0.900090\pi\)
0.951144 0.308747i \(-0.0999098\pi\)
\(312\) 0 0
\(313\) 24.7446 1.39865 0.699323 0.714806i \(-0.253485\pi\)
0.699323 + 0.714806i \(0.253485\pi\)
\(314\) 0 0
\(315\) −11.1565 −0.628597
\(316\) 0 0
\(317\) −1.37228 −0.0770750 −0.0385375 0.999257i \(-0.512270\pi\)
−0.0385375 + 0.999257i \(0.512270\pi\)
\(318\) 0 0
\(319\) 23.1138 19.6974i 1.29413 1.10284i
\(320\) 0 0
\(321\) 12.2479i 0.683611i
\(322\) 0 0
\(323\) 5.84096i 0.325000i
\(324\) 0 0
\(325\) 1.01082i 0.0560700i
\(326\) 0 0
\(327\) −5.90414 −0.326500
\(328\) 0 0
\(329\) 8.83915i 0.487318i
\(330\) 0 0
\(331\) 5.63858i 0.309925i 0.987920 + 0.154962i \(0.0495256\pi\)
−0.987920 + 0.154962i \(0.950474\pi\)
\(332\) 0 0
\(333\) 12.7446 0.698398
\(334\) 0 0
\(335\) 3.46410i 0.189264i
\(336\) 0 0
\(337\) 8.14558i 0.443718i 0.975079 + 0.221859i \(0.0712125\pi\)
−0.975079 + 0.221859i \(0.928787\pi\)
\(338\) 0 0
\(339\) 9.10268i 0.494390i
\(340\) 0 0
\(341\) −23.4891 + 20.0172i −1.27201 + 1.08399i
\(342\) 0 0
\(343\) 38.1723 2.06111
\(344\) 0 0
\(345\) −4.00000 −0.215353
\(346\) 0 0
\(347\) 20.5622 1.10384 0.551918 0.833898i \(-0.313896\pi\)
0.551918 + 0.833898i \(0.313896\pi\)
\(348\) 0 0
\(349\) 25.1303i 1.34519i −0.740009 0.672597i \(-0.765179\pi\)
0.740009 0.672597i \(-0.234821\pi\)
\(350\) 0 0
\(351\) −4.30243 −0.229647
\(352\) 0 0
\(353\) 14.2337 0.757583 0.378791 0.925482i \(-0.376340\pi\)
0.378791 + 0.925482i \(0.376340\pi\)
\(354\) 0 0
\(355\) 6.13592i 0.325661i
\(356\) 0 0
\(357\) 10.1168 0.535440
\(358\) 0 0
\(359\) 14.5090 0.765755 0.382878 0.923799i \(-0.374933\pi\)
0.382878 + 0.923799i \(0.374933\pi\)
\(360\) 0 0
\(361\) −14.3723 −0.756436
\(362\) 0 0
\(363\) −8.60485 1.38219i −0.451638 0.0725464i
\(364\) 0 0
\(365\) 11.8716i 0.621388i
\(366\) 0 0
\(367\) 26.8280i 1.40041i 0.713943 + 0.700204i \(0.246908\pi\)
−0.713943 + 0.700204i \(0.753092\pi\)
\(368\) 0 0
\(369\) 25.7648i 1.34126i
\(370\) 0 0
\(371\) 19.3609 1.00517
\(372\) 0 0
\(373\) 26.7756i 1.38639i 0.720750 + 0.693195i \(0.243798\pi\)
−0.720750 + 0.693195i \(0.756202\pi\)
\(374\) 0 0
\(375\) 0.792287i 0.0409135i
\(376\) 0 0
\(377\) −9.25544 −0.476679
\(378\) 0 0
\(379\) 35.9306i 1.84563i 0.385240 + 0.922816i \(0.374119\pi\)
−0.385240 + 0.922816i \(0.625881\pi\)
\(380\) 0 0
\(381\) 12.2479i 0.627479i
\(382\) 0 0
\(383\) 5.04868i 0.257975i −0.991646 0.128988i \(-0.958827\pi\)
0.991646 0.128988i \(-0.0411728\pi\)
\(384\) 0 0
\(385\) 10.1168 + 11.8716i 0.515602 + 0.605032i
\(386\) 0 0
\(387\) 6.05321 0.307702
\(388\) 0 0
\(389\) 31.7228 1.60841 0.804205 0.594352i \(-0.202591\pi\)
0.804205 + 0.594352i \(0.202591\pi\)
\(390\) 0 0
\(391\) −13.7081 −0.693250
\(392\) 0 0
\(393\) 9.15640i 0.461879i
\(394\) 0 0
\(395\) −8.60485 −0.432957
\(396\) 0 0
\(397\) 15.4891 0.777377 0.388688 0.921369i \(-0.372928\pi\)
0.388688 + 0.921369i \(0.372928\pi\)
\(398\) 0 0
\(399\) 8.01544i 0.401274i
\(400\) 0 0
\(401\) 25.3723 1.26703 0.633516 0.773730i \(-0.281611\pi\)
0.633516 + 0.773730i \(0.281611\pi\)
\(402\) 0 0
\(403\) 9.40571 0.468532
\(404\) 0 0
\(405\) −3.74456 −0.186069
\(406\) 0 0
\(407\) −11.5569 13.5615i −0.572855 0.672216i
\(408\) 0 0
\(409\) 12.8824i 0.636994i 0.947924 + 0.318497i \(0.103178\pi\)
−0.947924 + 0.318497i \(0.896822\pi\)
\(410\) 0 0
\(411\) 9.10268i 0.449002i
\(412\) 0 0
\(413\) 8.83915i 0.434946i
\(414\) 0 0
\(415\) 1.75079 0.0859427
\(416\) 0 0
\(417\) 0.634508i 0.0310720i
\(418\) 0 0
\(419\) 13.5615i 0.662520i −0.943539 0.331260i \(-0.892526\pi\)
0.943539 0.331260i \(-0.107474\pi\)
\(420\) 0 0
\(421\) −1.76631 −0.0860848 −0.0430424 0.999073i \(-0.513705\pi\)
−0.0430424 + 0.999073i \(0.513705\pi\)
\(422\) 0 0
\(423\) 4.45877i 0.216793i
\(424\) 0 0
\(425\) 2.71519i 0.131706i
\(426\) 0 0
\(427\) 33.5538i 1.62378i
\(428\) 0 0
\(429\) 1.72281 + 2.02163i 0.0831782 + 0.0976053i
\(430\) 0 0
\(431\) −18.0106 −0.867538 −0.433769 0.901024i \(-0.642817\pi\)
−0.433769 + 0.901024i \(0.642817\pi\)
\(432\) 0 0
\(433\) −10.2337 −0.491800 −0.245900 0.969295i \(-0.579083\pi\)
−0.245900 + 0.969295i \(0.579083\pi\)
\(434\) 0 0
\(435\) 7.25450 0.347826
\(436\) 0 0
\(437\) 10.8608i 0.519541i
\(438\) 0 0
\(439\) 18.8114 0.897820 0.448910 0.893577i \(-0.351812\pi\)
0.448910 + 0.893577i \(0.351812\pi\)
\(440\) 0 0
\(441\) 35.8614 1.70769
\(442\) 0 0
\(443\) 6.63325i 0.315155i 0.987507 + 0.157578i \(0.0503684\pi\)
−0.987507 + 0.157578i \(0.949632\pi\)
\(444\) 0 0
\(445\) 4.11684 0.195157
\(446\) 0 0
\(447\) −1.35036 −0.0638697
\(448\) 0 0
\(449\) −34.4674 −1.62662 −0.813308 0.581833i \(-0.802336\pi\)
−0.813308 + 0.581833i \(0.802336\pi\)
\(450\) 0 0
\(451\) 27.4163 23.3639i 1.29098 1.10016i
\(452\) 0 0
\(453\) 7.45202i 0.350127i
\(454\) 0 0
\(455\) 4.75372i 0.222858i
\(456\) 0 0
\(457\) 6.12395i 0.286466i −0.989689 0.143233i \(-0.954250\pi\)
0.989689 0.143233i \(-0.0457499\pi\)
\(458\) 0 0
\(459\) 11.5569 0.539431
\(460\) 0 0
\(461\) 3.72601i 0.173538i 0.996228 + 0.0867688i \(0.0276541\pi\)
−0.996228 + 0.0867688i \(0.972346\pi\)
\(462\) 0 0
\(463\) 19.8997i 0.924820i −0.886666 0.462410i \(-0.846985\pi\)
0.886666 0.462410i \(-0.153015\pi\)
\(464\) 0 0
\(465\) −7.37228 −0.341881
\(466\) 0 0
\(467\) 1.38219i 0.0639603i −0.999489 0.0319802i \(-0.989819\pi\)
0.999489 0.0319802i \(-0.0101813\pi\)
\(468\) 0 0
\(469\) 16.2912i 0.752256i
\(470\) 0 0
\(471\) 18.1128i 0.834594i
\(472\) 0 0
\(473\) −5.48913 6.44121i −0.252390 0.296167i
\(474\) 0 0
\(475\) 2.15121 0.0987044
\(476\) 0 0
\(477\) 9.76631 0.447169
\(478\) 0 0
\(479\) −31.7187 −1.44926 −0.724632 0.689136i \(-0.757990\pi\)
−0.724632 + 0.689136i \(0.757990\pi\)
\(480\) 0 0
\(481\) 5.43039i 0.247604i
\(482\) 0 0
\(483\) 18.8114 0.855949
\(484\) 0 0
\(485\) 14.0000 0.635707
\(486\) 0 0
\(487\) 35.9306i 1.62817i −0.580744 0.814086i \(-0.697238\pi\)
0.580744 0.814086i \(-0.302762\pi\)
\(488\) 0 0
\(489\) 12.8614 0.581613
\(490\) 0 0
\(491\) −2.95207 −0.133225 −0.0666125 0.997779i \(-0.521219\pi\)
−0.0666125 + 0.997779i \(0.521219\pi\)
\(492\) 0 0
\(493\) 24.8614 1.11970
\(494\) 0 0
\(495\) 5.10328 + 5.98844i 0.229376 + 0.269160i
\(496\) 0 0
\(497\) 28.8563i 1.29438i
\(498\) 0 0
\(499\) 24.6535i 1.10364i −0.833963 0.551820i \(-0.813933\pi\)
0.833963 0.551820i \(-0.186067\pi\)
\(500\) 0 0
\(501\) 11.8125i 0.527745i
\(502\) 0 0
\(503\) 17.0606 0.760696 0.380348 0.924843i \(-0.375804\pi\)
0.380348 + 0.924843i \(0.375804\pi\)
\(504\) 0 0
\(505\) 16.2912i 0.724947i
\(506\) 0 0
\(507\) 9.49021i 0.421475i
\(508\) 0 0
\(509\) −3.25544 −0.144295 −0.0721474 0.997394i \(-0.522985\pi\)
−0.0721474 + 0.997394i \(0.522985\pi\)
\(510\) 0 0
\(511\) 55.8304i 2.46979i
\(512\) 0 0
\(513\) 9.15640i 0.404265i
\(514\) 0 0
\(515\) 8.21782i 0.362121i
\(516\) 0 0
\(517\) −4.74456 + 4.04326i −0.208666 + 0.177823i
\(518\) 0 0
\(519\) 5.10328 0.224009
\(520\) 0 0
\(521\) −23.4891 −1.02908 −0.514539 0.857467i \(-0.672037\pi\)
−0.514539 + 0.857467i \(0.672037\pi\)
\(522\) 0 0
\(523\) −24.8646 −1.08725 −0.543627 0.839327i \(-0.682949\pi\)
−0.543627 + 0.839327i \(0.682949\pi\)
\(524\) 0 0
\(525\) 3.72601i 0.162616i
\(526\) 0 0
\(527\) −25.2651 −1.10056
\(528\) 0 0
\(529\) −2.48913 −0.108223
\(530\) 0 0
\(531\) 4.45877i 0.193494i
\(532\) 0 0
\(533\) −10.9783 −0.475521
\(534\) 0 0
\(535\) 15.4589 0.668347
\(536\) 0 0
\(537\) 1.48913 0.0642605
\(538\) 0 0
\(539\) −32.5196 38.1600i −1.40072 1.64367i
\(540\) 0 0
\(541\) 36.9429i 1.58830i −0.607724 0.794149i \(-0.707917\pi\)
0.607724 0.794149i \(-0.292083\pi\)
\(542\) 0 0
\(543\) 2.76439i 0.118631i
\(544\) 0 0
\(545\) 7.45202i 0.319210i
\(546\) 0 0
\(547\) 10.3556 0.442775 0.221388 0.975186i \(-0.428941\pi\)
0.221388 + 0.975186i \(0.428941\pi\)
\(548\) 0 0
\(549\) 16.9257i 0.722370i
\(550\) 0 0
\(551\) 19.6974i 0.839136i
\(552\) 0 0
\(553\) 40.4674 1.72085
\(554\) 0 0
\(555\) 4.25639i 0.180674i
\(556\) 0 0
\(557\) 21.3452i 0.904427i 0.891910 + 0.452214i \(0.149366\pi\)
−0.891910 + 0.452214i \(0.850634\pi\)
\(558\) 0 0
\(559\) 2.57924i 0.109090i
\(560\) 0 0
\(561\) −4.62772 5.43039i −0.195382 0.229271i
\(562\) 0 0
\(563\) −16.2598 −0.685268 −0.342634 0.939469i \(-0.611319\pi\)
−0.342634 + 0.939469i \(0.611319\pi\)
\(564\) 0 0
\(565\) 11.4891 0.483351
\(566\) 0 0
\(567\) 17.6101 0.739556
\(568\) 0 0
\(569\) 27.1519i 1.13827i 0.822245 + 0.569134i \(0.192722\pi\)
−0.822245 + 0.569134i \(0.807278\pi\)
\(570\) 0 0
\(571\) 24.4642 1.02380 0.511898 0.859047i \(-0.328943\pi\)
0.511898 + 0.859047i \(0.328943\pi\)
\(572\) 0 0
\(573\) −13.2554 −0.553754
\(574\) 0 0
\(575\) 5.04868i 0.210544i
\(576\) 0 0
\(577\) −3.48913 −0.145254 −0.0726271 0.997359i \(-0.523138\pi\)
−0.0726271 + 0.997359i \(0.523138\pi\)
\(578\) 0 0
\(579\) −5.35464 −0.222531
\(580\) 0 0
\(581\) −8.23369 −0.341591
\(582\) 0 0
\(583\) −8.85621 10.3923i −0.366787 0.430405i
\(584\) 0 0
\(585\) 2.39794i 0.0991426i
\(586\) 0 0
\(587\) 8.71516i 0.359713i −0.983693 0.179857i \(-0.942437\pi\)
0.983693 0.179857i \(-0.0575633\pi\)
\(588\) 0 0
\(589\) 20.0172i 0.824793i
\(590\) 0 0
\(591\) 21.2140 0.872627
\(592\) 0 0
\(593\) 24.7540i 1.01653i −0.861202 0.508263i \(-0.830288\pi\)
0.861202 0.508263i \(-0.169712\pi\)
\(594\) 0 0
\(595\) 12.7692i 0.523485i
\(596\) 0 0
\(597\) −5.64947 −0.231217
\(598\) 0 0
\(599\) 35.4333i 1.44777i 0.689923 + 0.723883i \(0.257644\pi\)
−0.689923 + 0.723883i \(0.742356\pi\)
\(600\) 0 0
\(601\) 14.2695i 0.582066i 0.956713 + 0.291033i \(0.0939990\pi\)
−0.956713 + 0.291033i \(0.906001\pi\)
\(602\) 0 0
\(603\) 8.21782i 0.334656i
\(604\) 0 0
\(605\) 1.74456 10.8608i 0.0709266 0.441553i
\(606\) 0 0
\(607\) −27.0158 −1.09654 −0.548270 0.836302i \(-0.684713\pi\)
−0.548270 + 0.836302i \(0.684713\pi\)
\(608\) 0 0
\(609\) −34.1168 −1.38248
\(610\) 0 0
\(611\) 1.89986 0.0768600
\(612\) 0 0
\(613\) 15.9149i 0.642795i 0.946944 + 0.321398i \(0.104153\pi\)
−0.946944 + 0.321398i \(0.895847\pi\)
\(614\) 0 0
\(615\) 8.60485 0.346981
\(616\) 0 0
\(617\) 32.7446 1.31825 0.659123 0.752035i \(-0.270928\pi\)
0.659123 + 0.752035i \(0.270928\pi\)
\(618\) 0 0
\(619\) 29.0024i 1.16571i 0.812578 + 0.582853i \(0.198064\pi\)
−0.812578 + 0.582853i \(0.801936\pi\)
\(620\) 0 0
\(621\) 21.4891 0.862329
\(622\) 0 0
\(623\) −19.3609 −0.775679
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 4.30243 3.66648i 0.171822 0.146425i
\(628\) 0 0
\(629\) 14.5868i 0.581613i
\(630\) 0 0
\(631\) 23.1615i 0.922044i 0.887389 + 0.461022i \(0.152517\pi\)
−0.887389 + 0.461022i \(0.847483\pi\)
\(632\) 0 0
\(633\) 20.6517i 0.820831i
\(634\) 0 0
\(635\) 15.4589 0.613469
\(636\) 0 0
\(637\) 15.2804i 0.605430i
\(638\) 0 0
\(639\) 14.5561i 0.575831i
\(640\) 0 0
\(641\) 36.3505 1.43576 0.717880 0.696167i \(-0.245113\pi\)
0.717880 + 0.696167i \(0.245113\pi\)
\(642\) 0 0
\(643\) 20.9870i 0.827646i 0.910357 + 0.413823i \(0.135807\pi\)
−0.910357 + 0.413823i \(0.864193\pi\)
\(644\) 0 0
\(645\) 2.02163i 0.0796017i
\(646\) 0 0
\(647\) 6.63325i 0.260780i 0.991463 + 0.130390i \(0.0416229\pi\)
−0.991463 + 0.130390i \(0.958377\pi\)
\(648\) 0 0
\(649\) 4.74456 4.04326i 0.186240 0.158712i
\(650\) 0 0
\(651\) 34.6708 1.35885
\(652\) 0 0
\(653\) −27.0951 −1.06031 −0.530156 0.847900i \(-0.677867\pi\)
−0.530156 + 0.847900i \(0.677867\pi\)
\(654\) 0 0
\(655\) −11.5569 −0.451566
\(656\) 0 0
\(657\) 28.1628i 1.09873i
\(658\) 0 0
\(659\) 0.549500 0.0214055 0.0107027 0.999943i \(-0.496593\pi\)
0.0107027 + 0.999943i \(0.496593\pi\)
\(660\) 0 0
\(661\) −19.2554 −0.748950 −0.374475 0.927237i \(-0.622177\pi\)
−0.374475 + 0.927237i \(0.622177\pi\)
\(662\) 0 0
\(663\) 2.17448i 0.0844499i
\(664\) 0 0
\(665\) −10.1168 −0.392314
\(666\) 0 0
\(667\) 46.2277 1.78994
\(668\) 0 0
\(669\) 15.7663 0.609561
\(670\) 0 0
\(671\) −18.0106 + 15.3484i −0.695290 + 0.592519i
\(672\) 0 0
\(673\) 14.9631i 0.576785i −0.957512 0.288392i \(-0.906879\pi\)
0.957512 0.288392i \(-0.0931208\pi\)
\(674\) 0 0
\(675\) 4.25639i 0.163828i
\(676\) 0 0
\(677\) 7.82833i 0.300867i −0.988620 0.150434i \(-0.951933\pi\)
0.988620 0.150434i \(-0.0480670\pi\)
\(678\) 0 0
\(679\) −65.8400 −2.52671
\(680\) 0 0
\(681\) 5.43039i 0.208093i
\(682\) 0 0
\(683\) 3.37153i 0.129008i −0.997917 0.0645040i \(-0.979453\pi\)
0.997917 0.0645040i \(-0.0205465\pi\)
\(684\) 0 0
\(685\) 11.4891 0.438977
\(686\) 0 0
\(687\) 1.58457i 0.0604553i
\(688\) 0 0
\(689\) 4.16137i 0.158536i
\(690\) 0 0
\(691\) 31.1769i 1.18603i −0.805193 0.593013i \(-0.797938\pi\)
0.805193 0.593013i \(-0.202062\pi\)
\(692\) 0 0
\(693\) −24.0000 28.1628i −0.911685 1.06981i
\(694\) 0 0
\(695\) −0.800857 −0.0303782
\(696\) 0 0
\(697\) 29.4891 1.11698
\(698\) 0 0
\(699\) −4.85193 −0.183517
\(700\) 0 0
\(701\) 10.5435i 0.398223i 0.979977 + 0.199112i \(0.0638057\pi\)
−0.979977 + 0.199112i \(0.936194\pi\)
\(702\) 0 0
\(703\) 11.5569 0.435878
\(704\) 0 0
\(705\) −1.48913 −0.0560837
\(706\) 0 0
\(707\) 76.6150i 2.88140i
\(708\) 0 0
\(709\) 19.2554 0.723153 0.361577 0.932342i \(-0.382239\pi\)
0.361577 + 0.932342i \(0.382239\pi\)
\(710\) 0 0
\(711\) 20.4131 0.765552
\(712\) 0 0
\(713\) −46.9783 −1.75935
\(714\) 0 0
\(715\) −2.55164 + 2.17448i −0.0954260 + 0.0813210i
\(716\) 0 0
\(717\) 6.81751i 0.254605i
\(718\) 0 0
\(719\) 22.5716i 0.841777i 0.907112 + 0.420889i \(0.138282\pi\)
−0.907112 + 0.420889i \(0.861718\pi\)
\(720\) 0 0
\(721\) 38.6472i 1.43930i
\(722\) 0 0
\(723\) −11.3056 −0.420459
\(724\) 0 0
\(725\) 9.15640i 0.340060i
\(726\) 0 0
\(727\) 15.1460i 0.561735i 0.959747 + 0.280868i \(0.0906222\pi\)
−0.959747 + 0.280868i \(0.909378\pi\)
\(728\) 0 0
\(729\) −1.23369 −0.0456921
\(730\) 0 0
\(731\) 6.92820i 0.256249i
\(732\) 0 0
\(733\) 41.0452i 1.51604i 0.652232 + 0.758019i \(0.273833\pi\)
−0.652232 + 0.758019i \(0.726167\pi\)
\(734\) 0 0
\(735\) 11.9769i 0.441774i
\(736\) 0 0
\(737\) 8.74456 7.45202i 0.322110 0.274499i
\(738\) 0 0
\(739\) −9.40571 −0.345995 −0.172997 0.984922i \(-0.555345\pi\)
−0.172997 + 0.984922i \(0.555345\pi\)
\(740\) 0 0
\(741\) −1.72281 −0.0632891
\(742\) 0 0
\(743\) 24.3151 0.892036 0.446018 0.895024i \(-0.352842\pi\)
0.446018 + 0.895024i \(0.352842\pi\)
\(744\) 0 0
\(745\) 1.70438i 0.0624436i
\(746\) 0 0
\(747\) −4.15335 −0.151963
\(748\) 0 0
\(749\) −72.7011 −2.65644
\(750\) 0 0
\(751\) 1.97210i 0.0719630i 0.999352 + 0.0359815i \(0.0114557\pi\)
−0.999352 + 0.0359815i \(0.988544\pi\)
\(752\) 0 0
\(753\) 5.25544 0.191519
\(754\) 0 0
\(755\) −9.40571 −0.342309
\(756\) 0 0
\(757\) −38.4674 −1.39812 −0.699060 0.715063i \(-0.746398\pi\)
−0.699060 + 0.715063i \(0.746398\pi\)
\(758\) 0 0
\(759\) −8.60485 10.0974i −0.312336 0.366511i
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 35.0458i 1.26874i
\(764\) 0 0
\(765\) 6.44121i 0.232882i
\(766\) 0 0
\(767\) −1.89986 −0.0685999
\(768\) 0 0
\(769\) 8.83915i 0.318748i 0.987218 + 0.159374i \(0.0509475\pi\)
−0.987218 + 0.159374i \(0.949052\pi\)
\(770\) 0 0
\(771\) 16.4356i 0.591915i
\(772\) 0 0
\(773\) −49.3723 −1.77580 −0.887899 0.460039i \(-0.847835\pi\)
−0.887899 + 0.460039i \(0.847835\pi\)
\(774\) 0 0
\(775\) 9.30506i 0.334248i
\(776\) 0 0
\(777\) 20.0172i 0.718112i
\(778\) 0 0
\(779\) 23.3639i 0.837097i
\(780\) 0 0
\(781\) 15.4891 13.1997i 0.554244 0.472321i
\(782\) 0 0
\(783\) −38.9732 −1.39279
\(784\) 0 0
\(785\) 22.8614 0.815959
\(786\) 0 0
\(787\) −12.7582 −0.454781 −0.227390 0.973804i \(-0.573019\pi\)
−0.227390 + 0.973804i \(0.573019\pi\)
\(788\) 0 0
\(789\) 11.8125i 0.420538i
\(790\) 0 0
\(791\) −54.0317 −1.92115
\(792\) 0 0
\(793\) 7.21194 0.256103
\(794\) 0 0
\(795\) 3.26172i 0.115681i
\(796\) 0 0
\(797\) −0.510875 −0.0180961 −0.00904806 0.999959i \(-0.502880\pi\)
−0.00904806 + 0.999959i \(0.502880\pi\)
\(798\) 0 0
\(799\) −5.10328 −0.180541
\(800\) 0 0
\(801\) −9.76631 −0.345076
\(802\) 0 0
\(803\) 29.9679 25.5383i 1.05754 0.901228i
\(804\) 0 0
\(805\) 23.7432i 0.836837i
\(806\) 0 0
\(807\) 4.75372i 0.167339i
\(808\) 0 0
\(809\) 48.8735i 1.71830i −0.511723 0.859150i \(-0.670993\pi\)
0.511723 0.859150i \(-0.329007\pi\)
\(810\) 0 0
\(811\) −37.3715 −1.31229 −0.656145 0.754635i \(-0.727814\pi\)
−0.656145 + 0.754635i \(0.727814\pi\)
\(812\) 0 0
\(813\) 22.3561i 0.784061i
\(814\) 0 0
\(815\) 16.2333i 0.568627i
\(816\) 0 0
\(817\) 5.48913 0.192040
\(818\) 0 0
\(819\) 11.2772i 0.394056i
\(820\) 0 0
\(821\) 9.47365i 0.330633i 0.986241 + 0.165316i \(0.0528645\pi\)
−0.986241 + 0.165316i \(0.947135\pi\)
\(822\) 0 0
\(823\) 47.6126i 1.65967i −0.558009 0.829835i \(-0.688435\pi\)
0.558009 0.829835i \(-0.311565\pi\)
\(824\) 0 0
\(825\) 2.00000 1.70438i 0.0696311 0.0593388i
\(826\) 0 0
\(827\) 24.8646 0.864628 0.432314 0.901723i \(-0.357697\pi\)
0.432314 + 0.901723i \(0.357697\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 0 0
\(831\) −16.4088 −0.569217
\(832\) 0 0
\(833\) 41.0452i 1.42213i
\(834\) 0 0
\(835\) −14.9094 −0.515962
\(836\) 0 0
\(837\) 39.6060 1.36898
\(838\) 0 0
\(839\) 48.2025i 1.66413i 0.554675 + 0.832067i \(0.312843\pi\)
−0.554675 + 0.832067i \(0.687157\pi\)
\(840\) 0 0
\(841\) −54.8397 −1.89102
\(842\) 0 0
\(843\) −5.40143 −0.186035
\(844\) 0 0
\(845\) −11.9783 −0.412064
\(846\) 0 0
\(847\) −8.20442 + 51.0767i −0.281907 + 1.75501i
\(848\) 0 0
\(849\) 24.3777i 0.836640i
\(850\) 0 0
\(851\) 27.1229i 0.929761i
\(852\) 0 0
\(853\) 39.0235i 1.33614i −0.744098 0.668070i \(-0.767121\pi\)
0.744098 0.668070i \(-0.232879\pi\)
\(854\) 0 0
\(855\) −5.10328 −0.174529
\(856\) 0 0
\(857\) 15.5976i 0.532804i 0.963862 + 0.266402i \(0.0858349\pi\)
−0.963862 + 0.266402i \(0.914165\pi\)
\(858\) 0 0
\(859\) 26.4232i 0.901548i −0.892638 0.450774i \(-0.851148\pi\)
0.892638 0.450774i \(-0.148852\pi\)
\(860\) 0 0
\(861\) −40.4674 −1.37912
\(862\) 0 0
\(863\) 34.3461i 1.16915i 0.811338 + 0.584577i \(0.198739\pi\)
−0.811338 + 0.584577i \(0.801261\pi\)
\(864\) 0 0
\(865\) 6.44121i 0.219008i
\(866\) 0 0
\(867\) 7.62792i 0.259058i
\(868\) 0 0
\(869\) −18.5109 21.7216i −0.627938 0.736853i
\(870\) 0 0
\(871\) −3.50157 −0.118646
\(872\) 0 0
\(873\) −33.2119 −1.12405
\(874\) 0 0
\(875\) −4.70285 −0.158986
\(876\) 0 0
\(877\) 21.3452i 0.720778i 0.932802 + 0.360389i \(0.117356\pi\)
−0.932802 + 0.360389i \(0.882644\pi\)
\(878\) 0 0
\(879\) 19.6123 0.661506
\(880\) 0 0
\(881\) −0.510875 −0.0172118 −0.00860590 0.999963i \(-0.502739\pi\)
−0.00860590 + 0.999963i \(0.502739\pi\)
\(882\) 0 0
\(883\) 34.8434i 1.17257i 0.810104 + 0.586287i \(0.199411\pi\)
−0.810104 + 0.586287i \(0.800589\pi\)
\(884\) 0 0
\(885\) 1.48913 0.0500564
\(886\) 0 0
\(887\) 0.149072 0.00500535 0.00250267 0.999997i \(-0.499203\pi\)
0.00250267 + 0.999997i \(0.499203\pi\)
\(888\) 0 0
\(889\) −72.7011 −2.43832
\(890\) 0 0
\(891\) −8.05535 9.45254i −0.269864 0.316672i
\(892\) 0 0
\(893\) 4.04326i 0.135303i
\(894\) 0 0
\(895\) 1.87953i 0.0628257i
\(896\) 0 0
\(897\) 4.04326i 0.135001i
\(898\) 0 0
\(899\) 85.2009 2.84161
\(900\) 0 0
\(901\) 11.1780i 0.372394i
\(902\) 0 0
\(903\) 9.50744i 0.316388i
\(904\) 0 0
\(905\) 3.48913 0.115982
\(906\) 0 0
\(907\) 20.5822i 0.683422i −0.939805 0.341711i \(-0.888994\pi\)
0.939805 0.341711i \(-0.111006\pi\)
\(908\) 0 0
\(909\) 38.6472i 1.28185i
\(910\) 0 0
\(911\) 48.1099i 1.59395i 0.604011 + 0.796976i \(0.293568\pi\)
−0.604011 + 0.796976i \(0.706432\pi\)
\(912\) 0 0
\(913\) 3.76631 + 4.41957i 0.124647 + 0.146267i
\(914\) 0 0
\(915\) −5.65278 −0.186875
\(916\) 0 0
\(917\) 54.3505 1.79481
\(918\) 0 0
\(919\) −8.60485 −0.283848 −0.141924 0.989878i \(-0.545329\pi\)
−0.141924 + 0.989878i \(0.545329\pi\)
\(920\) 0 0
\(921\) 2.65614i 0.0875228i
\(922\) 0 0
\(923\) −6.20228 −0.204151
\(924\) 0 0
\(925\) 5.37228 0.176640
\(926\) 0 0
\(927\) 19.4950i 0.640299i
\(928\) 0 0
\(929\) 33.6060 1.10258 0.551288 0.834315i \(-0.314137\pi\)
0.551288 + 0.834315i \(0.314137\pi\)
\(930\) 0 0
\(931\) 32.5196 1.06579
\(932\) 0 0
\(933\) 8.62772 0.282459
\(934\) 0 0
\(935\) 6.85407 5.84096i 0.224152 0.191020i
\(936\) 0 0
\(937\) 33.5932i 1.09744i −0.836006 0.548720i \(-0.815115\pi\)
0.836006 0.548720i \(-0.184885\pi\)
\(938\) 0 0
\(939\) 19.6048i 0.639778i
\(940\) 0 0
\(941\) 21.4043i 0.697760i 0.937167 + 0.348880i \(0.113438\pi\)
−0.937167 + 0.348880i \(0.886562\pi\)
\(942\) 0 0
\(943\) 54.8325 1.78559
\(944\) 0 0
\(945\) 20.0172i 0.651159i
\(946\) 0 0
\(947\) 19.9923i 0.649663i 0.945772 + 0.324832i \(0.105308\pi\)
−0.945772 + 0.324832i \(0.894692\pi\)
\(948\) 0 0
\(949\) −12.0000 −0.389536
\(950\) 0 0
\(951\) 1.08724i 0.0352562i
\(952\) 0 0
\(953\) 48.1799i 1.56070i −0.625342 0.780351i \(-0.715041\pi\)
0.625342 0.780351i \(-0.284959\pi\)
\(954\) 0 0
\(955\) 16.7306i 0.541390i
\(956\) 0 0
\(957\) 15.6060 + 18.3128i 0.504469 + 0.591969i
\(958\) 0 0
\(959\) −54.0317 −1.74477
\(960\) 0 0
\(961\) −55.5842 −1.79304
\(962\) 0 0
\(963\) −36.6729 −1.18177
\(964\) 0 0
\(965\) 6.75846i 0.217563i
\(966\) 0 0
\(967\) 52.5323 1.68932 0.844662 0.535300i \(-0.179802\pi\)
0.844662 + 0.535300i \(0.179802\pi\)
\(968\) 0 0
\(969\) 4.62772 0.148664
\(970\) 0 0
\(971\) 28.4125i 0.911801i −0.890031 0.455901i \(-0.849317\pi\)
0.890031 0.455901i \(-0.150683\pi\)
\(972\) 0 0
\(973\) 3.76631 0.120742
\(974\) 0 0
\(975\) −0.800857 −0.0256479
\(976\) 0 0
\(977\) 34.4674 1.10271 0.551355 0.834271i \(-0.314111\pi\)
0.551355 + 0.834271i \(0.314111\pi\)
\(978\) 0 0
\(979\) 8.85621 + 10.3923i 0.283046 + 0.332140i
\(980\) 0 0
\(981\) 17.6783i 0.564424i
\(982\) 0 0
\(983\) 16.1407i 0.514808i 0.966304 + 0.257404i \(0.0828671\pi\)
−0.966304 + 0.257404i \(0.917133\pi\)
\(984\) 0 0
\(985\) 26.7756i 0.853143i
\(986\) 0 0
\(987\) 7.00314 0.222912
\(988\) 0 0
\(989\) 12.8824i 0.409637i
\(990\) 0 0
\(991\) 17.3205i 0.550204i −0.961415 0.275102i \(-0.911288\pi\)
0.961415 0.275102i \(-0.0887116\pi\)
\(992\) 0 0
\(993\) −4.46738 −0.141768
\(994\) 0 0
\(995\) 7.13058i 0.226055i
\(996\) 0 0
\(997\) 26.1411i 0.827898i −0.910300 0.413949i \(-0.864149\pi\)
0.910300 0.413949i \(-0.135851\pi\)
\(998\) 0 0
\(999\) 22.8665i 0.723465i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.f.d.351.6 yes 8
4.3 odd 2 inner 880.2.f.d.351.3 8
8.3 odd 2 3520.2.f.j.2111.5 8
8.5 even 2 3520.2.f.j.2111.4 8
11.10 odd 2 inner 880.2.f.d.351.5 yes 8
44.43 even 2 inner 880.2.f.d.351.4 yes 8
88.21 odd 2 3520.2.f.j.2111.3 8
88.43 even 2 3520.2.f.j.2111.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
880.2.f.d.351.3 8 4.3 odd 2 inner
880.2.f.d.351.4 yes 8 44.43 even 2 inner
880.2.f.d.351.5 yes 8 11.10 odd 2 inner
880.2.f.d.351.6 yes 8 1.1 even 1 trivial
3520.2.f.j.2111.3 8 88.21 odd 2
3520.2.f.j.2111.4 8 8.5 even 2
3520.2.f.j.2111.5 8 8.3 odd 2
3520.2.f.j.2111.6 8 88.43 even 2