Properties

Label 880.2.cm.a.497.1
Level $880$
Weight $2$
Character 880.497
Analytic conductor $7.027$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(17,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 5, 18])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cm (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 497.1
Character \(\chi\) \(=\) 880.497
Dual form 880.2.cm.a.193.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.313634 + 1.98021i) q^{3} +(1.91314 + 1.15755i) q^{5} +(1.78576 - 0.282837i) q^{7} +(-0.969677 - 0.315067i) q^{9} +(-1.72268 + 2.83415i) q^{11} +(-2.00993 + 1.02411i) q^{13} +(-2.89220 + 3.42536i) q^{15} +(2.99738 + 1.52724i) q^{17} +(1.05647 - 0.767569i) q^{19} +3.62488i q^{21} +(3.16488 - 3.16488i) q^{23} +(2.32018 + 4.42908i) q^{25} +(-1.80258 + 3.53776i) q^{27} +(-2.37569 - 1.72604i) q^{29} +(1.23925 - 3.81401i) q^{31} +(-5.07190 - 4.30014i) q^{33} +(3.74380 + 1.52600i) q^{35} +(0.501987 + 3.16942i) q^{37} +(-1.39757 - 4.30127i) q^{39} +(0.766287 + 1.05470i) q^{41} +(-4.55431 - 4.55431i) q^{43} +(-1.49042 - 1.72521i) q^{45} +(7.62854 + 1.20824i) q^{47} +(-3.54845 + 1.15296i) q^{49} +(-3.96433 + 5.45644i) q^{51} +(-2.89146 - 5.67482i) q^{53} +(-6.57637 + 3.42803i) q^{55} +(1.18860 + 2.33276i) q^{57} +(-7.28135 + 10.0219i) q^{59} +(-8.85435 + 2.87695i) q^{61} +(-1.82072 - 0.288374i) q^{63} +(-5.03072 - 0.367324i) q^{65} +(2.46236 + 2.46236i) q^{67} +(5.27449 + 7.25972i) q^{69} +(2.09243 + 6.43984i) q^{71} +(-1.47735 - 9.32763i) q^{73} +(-9.49818 + 3.20531i) q^{75} +(-2.27469 + 5.54835i) q^{77} +(-0.353860 + 1.08907i) q^{79} +(-8.91472 - 6.47692i) q^{81} +(4.75092 - 9.32422i) q^{83} +(3.96654 + 6.39143i) q^{85} +(4.16301 - 4.16301i) q^{87} +3.85743i q^{89} +(-3.29960 + 2.39730i) q^{91} +(7.16385 + 3.65016i) q^{93} +(2.90966 - 0.245553i) q^{95} +(-0.693249 + 0.353228i) q^{97} +(2.56339 - 2.20545i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{3} - 2 q^{5} + 24 q^{11} - 10 q^{13} - 14 q^{15} + 24 q^{23} + 16 q^{25} + 16 q^{27} + 28 q^{31} + 66 q^{33} + 10 q^{35} - 8 q^{37} + 40 q^{41} - 28 q^{45} + 28 q^{47} - 20 q^{51} - 24 q^{53}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.313634 + 1.98021i −0.181076 + 1.14327i 0.714918 + 0.699208i \(0.246464\pi\)
−0.895995 + 0.444064i \(0.853536\pi\)
\(4\) 0 0
\(5\) 1.91314 + 1.15755i 0.855580 + 0.517670i
\(6\) 0 0
\(7\) 1.78576 0.282837i 0.674955 0.106902i 0.190458 0.981695i \(-0.439003\pi\)
0.484497 + 0.874793i \(0.339003\pi\)
\(8\) 0 0
\(9\) −0.969677 0.315067i −0.323226 0.105022i
\(10\) 0 0
\(11\) −1.72268 + 2.83415i −0.519407 + 0.854527i
\(12\) 0 0
\(13\) −2.00993 + 1.02411i −0.557454 + 0.284037i −0.709933 0.704270i \(-0.751275\pi\)
0.152478 + 0.988307i \(0.451275\pi\)
\(14\) 0 0
\(15\) −2.89220 + 3.42536i −0.746763 + 0.884423i
\(16\) 0 0
\(17\) 2.99738 + 1.52724i 0.726972 + 0.370411i 0.777981 0.628288i \(-0.216244\pi\)
−0.0510094 + 0.998698i \(0.516244\pi\)
\(18\) 0 0
\(19\) 1.05647 0.767569i 0.242370 0.176092i −0.459968 0.887935i \(-0.652139\pi\)
0.702339 + 0.711843i \(0.252139\pi\)
\(20\) 0 0
\(21\) 3.62488i 0.791014i
\(22\) 0 0
\(23\) 3.16488 3.16488i 0.659922 0.659922i −0.295439 0.955362i \(-0.595466\pi\)
0.955362 + 0.295439i \(0.0954660\pi\)
\(24\) 0 0
\(25\) 2.32018 + 4.42908i 0.464035 + 0.885817i
\(26\) 0 0
\(27\) −1.80258 + 3.53776i −0.346907 + 0.680843i
\(28\) 0 0
\(29\) −2.37569 1.72604i −0.441154 0.320517i 0.344939 0.938625i \(-0.387900\pi\)
−0.786093 + 0.618108i \(0.787900\pi\)
\(30\) 0 0
\(31\) 1.23925 3.81401i 0.222575 0.685016i −0.775953 0.630790i \(-0.782731\pi\)
0.998529 0.0542261i \(-0.0172692\pi\)
\(32\) 0 0
\(33\) −5.07190 4.30014i −0.882905 0.748558i
\(34\) 0 0
\(35\) 3.74380 + 1.52600i 0.632818 + 0.257940i
\(36\) 0 0
\(37\) 0.501987 + 3.16942i 0.0825262 + 0.521050i 0.993972 + 0.109631i \(0.0349668\pi\)
−0.911446 + 0.411419i \(0.865033\pi\)
\(38\) 0 0
\(39\) −1.39757 4.30127i −0.223790 0.688754i
\(40\) 0 0
\(41\) 0.766287 + 1.05470i 0.119674 + 0.164717i 0.864651 0.502373i \(-0.167540\pi\)
−0.744977 + 0.667090i \(0.767540\pi\)
\(42\) 0 0
\(43\) −4.55431 4.55431i −0.694526 0.694526i 0.268698 0.963224i \(-0.413407\pi\)
−0.963224 + 0.268698i \(0.913407\pi\)
\(44\) 0 0
\(45\) −1.49042 1.72521i −0.222178 0.257179i
\(46\) 0 0
\(47\) 7.62854 + 1.20824i 1.11274 + 0.176240i 0.685622 0.727957i \(-0.259530\pi\)
0.427114 + 0.904198i \(0.359530\pi\)
\(48\) 0 0
\(49\) −3.54845 + 1.15296i −0.506921 + 0.164709i
\(50\) 0 0
\(51\) −3.96433 + 5.45644i −0.555118 + 0.764054i
\(52\) 0 0
\(53\) −2.89146 5.67482i −0.397173 0.779496i 0.602656 0.798001i \(-0.294109\pi\)
−0.999829 + 0.0185052i \(0.994109\pi\)
\(54\) 0 0
\(55\) −6.57637 + 3.42803i −0.886757 + 0.462235i
\(56\) 0 0
\(57\) 1.18860 + 2.33276i 0.157434 + 0.308981i
\(58\) 0 0
\(59\) −7.28135 + 10.0219i −0.947952 + 1.30474i 0.00447977 + 0.999990i \(0.498574\pi\)
−0.952431 + 0.304753i \(0.901426\pi\)
\(60\) 0 0
\(61\) −8.85435 + 2.87695i −1.13368 + 0.368356i −0.814975 0.579496i \(-0.803249\pi\)
−0.318709 + 0.947853i \(0.603249\pi\)
\(62\) 0 0
\(63\) −1.82072 0.288374i −0.229390 0.0363318i
\(64\) 0 0
\(65\) −5.03072 0.367324i −0.623984 0.0455609i
\(66\) 0 0
\(67\) 2.46236 + 2.46236i 0.300825 + 0.300825i 0.841336 0.540512i \(-0.181769\pi\)
−0.540512 + 0.841336i \(0.681769\pi\)
\(68\) 0 0
\(69\) 5.27449 + 7.25972i 0.634974 + 0.873967i
\(70\) 0 0
\(71\) 2.09243 + 6.43984i 0.248326 + 0.764268i 0.995072 + 0.0991588i \(0.0316152\pi\)
−0.746746 + 0.665110i \(0.768385\pi\)
\(72\) 0 0
\(73\) −1.47735 9.32763i −0.172911 1.09172i −0.909600 0.415485i \(-0.863612\pi\)
0.736689 0.676232i \(-0.236388\pi\)
\(74\) 0 0
\(75\) −9.49818 + 3.20531i −1.09676 + 0.370118i
\(76\) 0 0
\(77\) −2.27469 + 5.54835i −0.259225 + 0.632293i
\(78\) 0 0
\(79\) −0.353860 + 1.08907i −0.0398123 + 0.122530i −0.968987 0.247110i \(-0.920519\pi\)
0.929175 + 0.369640i \(0.120519\pi\)
\(80\) 0 0
\(81\) −8.91472 6.47692i −0.990524 0.719658i
\(82\) 0 0
\(83\) 4.75092 9.32422i 0.521482 1.02347i −0.468658 0.883380i \(-0.655262\pi\)
0.990139 0.140086i \(-0.0447378\pi\)
\(84\) 0 0
\(85\) 3.96654 + 6.39143i 0.430232 + 0.693248i
\(86\) 0 0
\(87\) 4.16301 4.16301i 0.446321 0.446321i
\(88\) 0 0
\(89\) 3.85743i 0.408887i 0.978878 + 0.204443i \(0.0655384\pi\)
−0.978878 + 0.204443i \(0.934462\pi\)
\(90\) 0 0
\(91\) −3.29960 + 2.39730i −0.345892 + 0.251305i
\(92\) 0 0
\(93\) 7.16385 + 3.65016i 0.742857 + 0.378504i
\(94\) 0 0
\(95\) 2.90966 0.245553i 0.298525 0.0251932i
\(96\) 0 0
\(97\) −0.693249 + 0.353228i −0.0703888 + 0.0358649i −0.488831 0.872379i \(-0.662576\pi\)
0.418442 + 0.908244i \(0.362576\pi\)
\(98\) 0 0
\(99\) 2.56339 2.20545i 0.257630 0.221656i
\(100\) 0 0
\(101\) 9.28960 + 3.01837i 0.924350 + 0.300339i 0.732250 0.681036i \(-0.238470\pi\)
0.192100 + 0.981375i \(0.438470\pi\)
\(102\) 0 0
\(103\) −4.61435 + 0.730841i −0.454665 + 0.0720119i −0.379567 0.925164i \(-0.623927\pi\)
−0.0750982 + 0.997176i \(0.523927\pi\)
\(104\) 0 0
\(105\) −4.19597 + 6.93489i −0.409485 + 0.676776i
\(106\) 0 0
\(107\) 2.39372 15.1133i 0.231410 1.46106i −0.549015 0.835813i \(-0.684997\pi\)
0.780424 0.625250i \(-0.215003\pi\)
\(108\) 0 0
\(109\) 17.8837 1.71295 0.856476 0.516187i \(-0.172649\pi\)
0.856476 + 0.516187i \(0.172649\pi\)
\(110\) 0 0
\(111\) −6.43355 −0.610646
\(112\) 0 0
\(113\) 1.16850 7.37759i 0.109923 0.694025i −0.869760 0.493474i \(-0.835727\pi\)
0.979683 0.200551i \(-0.0642733\pi\)
\(114\) 0 0
\(115\) 9.71833 2.39135i 0.906239 0.222994i
\(116\) 0 0
\(117\) 2.27165 0.359793i 0.210014 0.0332629i
\(118\) 0 0
\(119\) 5.78457 + 1.87952i 0.530271 + 0.172295i
\(120\) 0 0
\(121\) −5.06477 9.76464i −0.460433 0.887694i
\(122\) 0 0
\(123\) −2.32886 + 1.18662i −0.209987 + 0.106994i
\(124\) 0 0
\(125\) −0.688059 + 11.1591i −0.0615419 + 0.998105i
\(126\) 0 0
\(127\) 0.183716 + 0.0936079i 0.0163021 + 0.00830635i 0.462123 0.886816i \(-0.347088\pi\)
−0.445820 + 0.895122i \(0.647088\pi\)
\(128\) 0 0
\(129\) 10.4469 7.59009i 0.919794 0.668270i
\(130\) 0 0
\(131\) 0.551708i 0.0482029i −0.999710 0.0241015i \(-0.992328\pi\)
0.999710 0.0241015i \(-0.00767248\pi\)
\(132\) 0 0
\(133\) 1.66950 1.66950i 0.144764 0.144764i
\(134\) 0 0
\(135\) −7.54370 + 4.68165i −0.649259 + 0.402932i
\(136\) 0 0
\(137\) 7.02615 13.7896i 0.600284 1.17812i −0.368362 0.929682i \(-0.620081\pi\)
0.968647 0.248442i \(-0.0799186\pi\)
\(138\) 0 0
\(139\) −1.15101 0.836256i −0.0976272 0.0709303i 0.537901 0.843008i \(-0.319218\pi\)
−0.635528 + 0.772078i \(0.719218\pi\)
\(140\) 0 0
\(141\) −4.78513 + 14.7271i −0.402981 + 1.24025i
\(142\) 0 0
\(143\) 0.559982 7.46065i 0.0468280 0.623891i
\(144\) 0 0
\(145\) −2.54705 6.05212i −0.211521 0.502601i
\(146\) 0 0
\(147\) −1.17019 7.38826i −0.0965153 0.609373i
\(148\) 0 0
\(149\) −7.35615 22.6399i −0.602639 1.85473i −0.512269 0.858825i \(-0.671195\pi\)
−0.0903702 0.995908i \(-0.528805\pi\)
\(150\) 0 0
\(151\) 8.45592 + 11.6386i 0.688133 + 0.947134i 0.999996 0.00299311i \(-0.000952737\pi\)
−0.311862 + 0.950127i \(0.600953\pi\)
\(152\) 0 0
\(153\) −2.42531 2.42531i −0.196075 0.196075i
\(154\) 0 0
\(155\) 6.78574 5.86223i 0.545044 0.470866i
\(156\) 0 0
\(157\) 13.3277 + 2.11091i 1.06367 + 0.168469i 0.663654 0.748040i \(-0.269005\pi\)
0.400016 + 0.916508i \(0.369005\pi\)
\(158\) 0 0
\(159\) 12.1442 3.94588i 0.963095 0.312928i
\(160\) 0 0
\(161\) 4.75657 6.54686i 0.374870 0.515965i
\(162\) 0 0
\(163\) 0.487228 + 0.956239i 0.0381626 + 0.0748984i 0.909300 0.416140i \(-0.136617\pi\)
−0.871138 + 0.491039i \(0.836617\pi\)
\(164\) 0 0
\(165\) −4.72563 14.0977i −0.367890 1.09750i
\(166\) 0 0
\(167\) 0.858874 + 1.68563i 0.0664616 + 0.130438i 0.921847 0.387554i \(-0.126680\pi\)
−0.855386 + 0.517992i \(0.826680\pi\)
\(168\) 0 0
\(169\) −4.65019 + 6.40044i −0.357707 + 0.492342i
\(170\) 0 0
\(171\) −1.26627 + 0.411435i −0.0968339 + 0.0314633i
\(172\) 0 0
\(173\) 18.7140 + 2.96401i 1.42280 + 0.225350i 0.819919 0.572480i \(-0.194019\pi\)
0.602883 + 0.797830i \(0.294019\pi\)
\(174\) 0 0
\(175\) 5.39599 + 7.25306i 0.407898 + 0.548280i
\(176\) 0 0
\(177\) −17.5618 17.5618i −1.32002 1.32002i
\(178\) 0 0
\(179\) 9.62961 + 13.2540i 0.719751 + 0.990652i 0.999532 + 0.0305880i \(0.00973800\pi\)
−0.279781 + 0.960064i \(0.590262\pi\)
\(180\) 0 0
\(181\) 4.59306 + 14.1360i 0.341400 + 1.05072i 0.963483 + 0.267769i \(0.0862864\pi\)
−0.622084 + 0.782951i \(0.713714\pi\)
\(182\) 0 0
\(183\) −2.91994 18.4357i −0.215848 1.36281i
\(184\) 0 0
\(185\) −2.70838 + 6.64461i −0.199124 + 0.488522i
\(186\) 0 0
\(187\) −9.49195 + 5.86407i −0.694120 + 0.428823i
\(188\) 0 0
\(189\) −2.21837 + 6.82744i −0.161363 + 0.496623i
\(190\) 0 0
\(191\) −1.54488 1.12242i −0.111784 0.0812156i 0.530489 0.847692i \(-0.322008\pi\)
−0.642273 + 0.766476i \(0.722008\pi\)
\(192\) 0 0
\(193\) 5.16774 10.1423i 0.371982 0.730056i −0.626811 0.779171i \(-0.715640\pi\)
0.998793 + 0.0491153i \(0.0156402\pi\)
\(194\) 0 0
\(195\) 2.30518 9.84666i 0.165077 0.705134i
\(196\) 0 0
\(197\) 13.8092 13.8092i 0.983863 0.983863i −0.0160086 0.999872i \(-0.505096\pi\)
0.999872 + 0.0160086i \(0.00509592\pi\)
\(198\) 0 0
\(199\) 22.3508i 1.58441i −0.610258 0.792203i \(-0.708934\pi\)
0.610258 0.792203i \(-0.291066\pi\)
\(200\) 0 0
\(201\) −5.64825 + 4.10369i −0.398397 + 0.289452i
\(202\) 0 0
\(203\) −4.73060 2.41036i −0.332023 0.169174i
\(204\) 0 0
\(205\) 0.245143 + 2.90480i 0.0171215 + 0.202880i
\(206\) 0 0
\(207\) −4.06606 + 2.07176i −0.282610 + 0.143997i
\(208\) 0 0
\(209\) 0.355449 + 4.31646i 0.0245869 + 0.298576i
\(210\) 0 0
\(211\) 0.358113 + 0.116358i 0.0246535 + 0.00801042i 0.321318 0.946971i \(-0.395874\pi\)
−0.296664 + 0.954982i \(0.595874\pi\)
\(212\) 0 0
\(213\) −13.4085 + 2.12369i −0.918733 + 0.145513i
\(214\) 0 0
\(215\) −3.44119 13.9848i −0.234687 0.953758i
\(216\) 0 0
\(217\) 1.13426 7.16142i 0.0769984 0.486149i
\(218\) 0 0
\(219\) 18.9340 1.27944
\(220\) 0 0
\(221\) −7.58859 −0.510464
\(222\) 0 0
\(223\) −1.19037 + 7.51570i −0.0797131 + 0.503289i 0.915237 + 0.402916i \(0.132003\pi\)
−0.994950 + 0.100372i \(0.967997\pi\)
\(224\) 0 0
\(225\) −0.854361 5.02579i −0.0569574 0.335053i
\(226\) 0 0
\(227\) 8.10167 1.28318i 0.537727 0.0851676i 0.118336 0.992974i \(-0.462244\pi\)
0.419390 + 0.907806i \(0.362244\pi\)
\(228\) 0 0
\(229\) 7.21772 + 2.34518i 0.476960 + 0.154974i 0.537624 0.843184i \(-0.319322\pi\)
−0.0606641 + 0.998158i \(0.519322\pi\)
\(230\) 0 0
\(231\) −10.2734 6.24450i −0.675943 0.410858i
\(232\) 0 0
\(233\) −23.3597 + 11.9023i −1.53034 + 0.779749i −0.997777 0.0666396i \(-0.978772\pi\)
−0.532566 + 0.846388i \(0.678772\pi\)
\(234\) 0 0
\(235\) 13.1958 + 11.1419i 0.860801 + 0.726818i
\(236\) 0 0
\(237\) −2.04560 1.04228i −0.132876 0.0677036i
\(238\) 0 0
\(239\) 1.84133 1.33781i 0.119106 0.0865356i −0.526638 0.850090i \(-0.676548\pi\)
0.645744 + 0.763554i \(0.276548\pi\)
\(240\) 0 0
\(241\) 6.29531i 0.405517i −0.979229 0.202758i \(-0.935009\pi\)
0.979229 0.202758i \(-0.0649906\pi\)
\(242\) 0 0
\(243\) 7.19883 7.19883i 0.461805 0.461805i
\(244\) 0 0
\(245\) −8.12326 1.90172i −0.518976 0.121496i
\(246\) 0 0
\(247\) −1.33735 + 2.62470i −0.0850936 + 0.167006i
\(248\) 0 0
\(249\) 16.9738 + 12.3322i 1.07567 + 0.781521i
\(250\) 0 0
\(251\) 8.21826 25.2932i 0.518732 1.59649i −0.257655 0.966237i \(-0.582950\pi\)
0.776387 0.630256i \(-0.217050\pi\)
\(252\) 0 0
\(253\) 3.51766 + 14.4218i 0.221153 + 0.906690i
\(254\) 0 0
\(255\) −13.9004 + 5.85000i −0.870476 + 0.366341i
\(256\) 0 0
\(257\) 3.09337 + 19.5307i 0.192959 + 1.21829i 0.873955 + 0.486007i \(0.161547\pi\)
−0.680996 + 0.732287i \(0.738453\pi\)
\(258\) 0 0
\(259\) 1.79286 + 5.51786i 0.111403 + 0.342863i
\(260\) 0 0
\(261\) 1.75983 + 2.42220i 0.108931 + 0.149931i
\(262\) 0 0
\(263\) 5.91748 + 5.91748i 0.364888 + 0.364888i 0.865609 0.500721i \(-0.166932\pi\)
−0.500721 + 0.865609i \(0.666932\pi\)
\(264\) 0 0
\(265\) 1.03710 14.2037i 0.0637085 0.872526i
\(266\) 0 0
\(267\) −7.63850 1.20982i −0.467469 0.0740398i
\(268\) 0 0
\(269\) −9.23539 + 3.00076i −0.563092 + 0.182960i −0.576712 0.816948i \(-0.695664\pi\)
0.0136201 + 0.999907i \(0.495664\pi\)
\(270\) 0 0
\(271\) −1.79360 + 2.46868i −0.108954 + 0.149962i −0.860012 0.510274i \(-0.829544\pi\)
0.751058 + 0.660236i \(0.229544\pi\)
\(272\) 0 0
\(273\) −3.71228 7.28576i −0.224677 0.440954i
\(274\) 0 0
\(275\) −16.5496 1.05417i −0.997977 0.0635687i
\(276\) 0 0
\(277\) −1.08057 2.12073i −0.0649249 0.127422i 0.856263 0.516540i \(-0.172780\pi\)
−0.921188 + 0.389117i \(0.872780\pi\)
\(278\) 0 0
\(279\) −2.40334 + 3.30791i −0.143884 + 0.198039i
\(280\) 0 0
\(281\) 26.8503 8.72419i 1.60175 0.520442i 0.634214 0.773157i \(-0.281324\pi\)
0.967541 + 0.252716i \(0.0813238\pi\)
\(282\) 0 0
\(283\) −16.8040 2.66149i −0.998893 0.158209i −0.364486 0.931209i \(-0.618755\pi\)
−0.634406 + 0.773000i \(0.718755\pi\)
\(284\) 0 0
\(285\) −0.426322 + 5.83874i −0.0252532 + 0.345857i
\(286\) 0 0
\(287\) 1.66672 + 1.66672i 0.0983831 + 0.0983831i
\(288\) 0 0
\(289\) −3.34052 4.59783i −0.196501 0.270461i
\(290\) 0 0
\(291\) −0.482038 1.48356i −0.0282576 0.0869678i
\(292\) 0 0
\(293\) −1.67148 10.5533i −0.0976492 0.616533i −0.987174 0.159646i \(-0.948965\pi\)
0.889525 0.456886i \(-0.151035\pi\)
\(294\) 0 0
\(295\) −25.5311 + 10.7448i −1.48648 + 0.625586i
\(296\) 0 0
\(297\) −6.92127 11.2032i −0.401613 0.650076i
\(298\) 0 0
\(299\) −3.12000 + 9.60236i −0.180434 + 0.555319i
\(300\) 0 0
\(301\) −9.42104 6.84479i −0.543020 0.394527i
\(302\) 0 0
\(303\) −8.89053 + 17.4487i −0.510748 + 1.00240i
\(304\) 0 0
\(305\) −20.2698 4.74532i −1.16064 0.271716i
\(306\) 0 0
\(307\) 22.9923 22.9923i 1.31224 1.31224i 0.392474 0.919763i \(-0.371619\pi\)
0.919763 0.392474i \(-0.128381\pi\)
\(308\) 0 0
\(309\) 9.36657i 0.532846i
\(310\) 0 0
\(311\) 11.2361 8.16354i 0.637143 0.462912i −0.221724 0.975109i \(-0.571168\pi\)
0.858868 + 0.512198i \(0.171168\pi\)
\(312\) 0 0
\(313\) −15.4928 7.89399i −0.875707 0.446195i −0.0424612 0.999098i \(-0.513520\pi\)
−0.833245 + 0.552903i \(0.813520\pi\)
\(314\) 0 0
\(315\) −3.14949 2.65927i −0.177453 0.149833i
\(316\) 0 0
\(317\) 14.3960 7.33513i 0.808560 0.411982i −0.000287853 1.00000i \(-0.500092\pi\)
0.808848 + 0.588018i \(0.200092\pi\)
\(318\) 0 0
\(319\) 8.98439 3.75964i 0.503029 0.210500i
\(320\) 0 0
\(321\) 29.1768 + 9.48011i 1.62849 + 0.529128i
\(322\) 0 0
\(323\) 4.33890 0.687214i 0.241423 0.0382376i
\(324\) 0 0
\(325\) −9.19926 6.52603i −0.510283 0.361999i
\(326\) 0 0
\(327\) −5.60894 + 35.4135i −0.310175 + 1.95837i
\(328\) 0 0
\(329\) 13.9645 0.769887
\(330\) 0 0
\(331\) −14.6837 −0.807090 −0.403545 0.914960i \(-0.632222\pi\)
−0.403545 + 0.914960i \(0.632222\pi\)
\(332\) 0 0
\(333\) 0.511816 3.23148i 0.0280473 0.177084i
\(334\) 0 0
\(335\) 1.86053 + 7.56111i 0.101652 + 0.413108i
\(336\) 0 0
\(337\) −13.3250 + 2.11047i −0.725859 + 0.114965i −0.508420 0.861109i \(-0.669770\pi\)
−0.217439 + 0.976074i \(0.569770\pi\)
\(338\) 0 0
\(339\) 14.2427 + 4.62772i 0.773555 + 0.251343i
\(340\) 0 0
\(341\) 8.67464 + 10.0825i 0.469758 + 0.545999i
\(342\) 0 0
\(343\) −17.2873 + 8.80832i −0.933426 + 0.475604i
\(344\) 0 0
\(345\) 1.68736 + 19.9943i 0.0908446 + 1.07646i
\(346\) 0 0
\(347\) −10.9022 5.55495i −0.585261 0.298205i 0.136177 0.990685i \(-0.456518\pi\)
−0.721438 + 0.692479i \(0.756518\pi\)
\(348\) 0 0
\(349\) −16.4807 + 11.9739i −0.882193 + 0.640951i −0.933831 0.357715i \(-0.883556\pi\)
0.0516378 + 0.998666i \(0.483556\pi\)
\(350\) 0 0
\(351\) 8.95670i 0.478073i
\(352\) 0 0
\(353\) 13.7886 13.7886i 0.733893 0.733893i −0.237495 0.971389i \(-0.576326\pi\)
0.971389 + 0.237495i \(0.0763264\pi\)
\(354\) 0 0
\(355\) −3.45131 + 14.7424i −0.183176 + 0.782444i
\(356\) 0 0
\(357\) −5.53607 + 10.8652i −0.293000 + 0.575045i
\(358\) 0 0
\(359\) −13.3648 9.71011i −0.705368 0.512480i 0.176308 0.984335i \(-0.443585\pi\)
−0.881676 + 0.471855i \(0.843585\pi\)
\(360\) 0 0
\(361\) −5.34436 + 16.4483i −0.281282 + 0.865697i
\(362\) 0 0
\(363\) 20.9245 6.96676i 1.09825 0.365660i
\(364\) 0 0
\(365\) 7.97079 19.5551i 0.417210 1.02356i
\(366\) 0 0
\(367\) 1.00765 + 6.36207i 0.0525990 + 0.332097i 0.999930 + 0.0118406i \(0.00376908\pi\)
−0.947331 + 0.320256i \(0.896231\pi\)
\(368\) 0 0
\(369\) −0.410749 1.26415i −0.0213827 0.0658092i
\(370\) 0 0
\(371\) −6.76851 9.31606i −0.351404 0.483666i
\(372\) 0 0
\(373\) 9.69631 + 9.69631i 0.502056 + 0.502056i 0.912076 0.410021i \(-0.134478\pi\)
−0.410021 + 0.912076i \(0.634478\pi\)
\(374\) 0 0
\(375\) −21.8816 4.86238i −1.12996 0.251092i
\(376\) 0 0
\(377\) 6.54262 + 1.03625i 0.336962 + 0.0533696i
\(378\) 0 0
\(379\) −20.4487 + 6.64419i −1.05038 + 0.341289i −0.782818 0.622251i \(-0.786218\pi\)
−0.267563 + 0.963540i \(0.586218\pi\)
\(380\) 0 0
\(381\) −0.242982 + 0.334436i −0.0124484 + 0.0171337i
\(382\) 0 0
\(383\) 0.137756 + 0.270362i 0.00703902 + 0.0138148i 0.894499 0.447069i \(-0.147532\pi\)
−0.887460 + 0.460884i \(0.847532\pi\)
\(384\) 0 0
\(385\) −10.7743 + 7.98168i −0.549107 + 0.406784i
\(386\) 0 0
\(387\) 2.98130 + 5.85112i 0.151548 + 0.297429i
\(388\) 0 0
\(389\) 2.11680 2.91353i 0.107326 0.147722i −0.751975 0.659191i \(-0.770899\pi\)
0.859301 + 0.511470i \(0.170899\pi\)
\(390\) 0 0
\(391\) 14.3199 4.65281i 0.724187 0.235303i
\(392\) 0 0
\(393\) 1.09249 + 0.173034i 0.0551091 + 0.00872842i
\(394\) 0 0
\(395\) −1.93763 + 1.67393i −0.0974927 + 0.0842244i
\(396\) 0 0
\(397\) 22.1781 + 22.1781i 1.11309 + 1.11309i 0.992731 + 0.120357i \(0.0384039\pi\)
0.120357 + 0.992731i \(0.461596\pi\)
\(398\) 0 0
\(399\) 2.78235 + 3.82957i 0.139292 + 0.191718i
\(400\) 0 0
\(401\) −3.08934 9.50802i −0.154274 0.474808i 0.843812 0.536639i \(-0.180306\pi\)
−0.998087 + 0.0618306i \(0.980306\pi\)
\(402\) 0 0
\(403\) 1.41517 + 8.93502i 0.0704945 + 0.445085i
\(404\) 0 0
\(405\) −9.55773 22.7104i −0.474927 1.12849i
\(406\) 0 0
\(407\) −9.84737 4.03719i −0.488116 0.200116i
\(408\) 0 0
\(409\) −9.39140 + 28.9037i −0.464375 + 1.42920i 0.395393 + 0.918512i \(0.370609\pi\)
−0.859767 + 0.510686i \(0.829391\pi\)
\(410\) 0 0
\(411\) 25.1026 + 18.2381i 1.23822 + 0.899619i
\(412\) 0 0
\(413\) −10.1682 + 19.9562i −0.500344 + 0.981981i
\(414\) 0 0
\(415\) 19.8824 12.3391i 0.975987 0.605701i
\(416\) 0 0
\(417\) 2.01695 2.01695i 0.0987706 0.0987706i
\(418\) 0 0
\(419\) 7.48185i 0.365512i 0.983158 + 0.182756i \(0.0585019\pi\)
−0.983158 + 0.182756i \(0.941498\pi\)
\(420\) 0 0
\(421\) −16.5226 + 12.0043i −0.805260 + 0.585056i −0.912453 0.409182i \(-0.865814\pi\)
0.107192 + 0.994238i \(0.465814\pi\)
\(422\) 0 0
\(423\) −7.01654 3.57511i −0.341156 0.173828i
\(424\) 0 0
\(425\) 0.190165 + 16.8191i 0.00922437 + 0.815847i
\(426\) 0 0
\(427\) −14.9981 + 7.64189i −0.725807 + 0.369817i
\(428\) 0 0
\(429\) 14.5980 + 3.44879i 0.704797 + 0.166509i
\(430\) 0 0
\(431\) 32.0182 + 10.4034i 1.54226 + 0.501112i 0.952000 0.306098i \(-0.0990236\pi\)
0.590264 + 0.807210i \(0.299024\pi\)
\(432\) 0 0
\(433\) 11.4564 1.81451i 0.550557 0.0871997i 0.125043 0.992151i \(-0.460093\pi\)
0.425514 + 0.904952i \(0.360093\pi\)
\(434\) 0 0
\(435\) 12.7833 3.14553i 0.612911 0.150816i
\(436\) 0 0
\(437\) 0.914330 5.77285i 0.0437383 0.276153i
\(438\) 0 0
\(439\) 10.7242 0.511837 0.255918 0.966698i \(-0.417622\pi\)
0.255918 + 0.966698i \(0.417622\pi\)
\(440\) 0 0
\(441\) 3.80411 0.181148
\(442\) 0 0
\(443\) 6.30958 39.8371i 0.299777 1.89272i −0.132835 0.991138i \(-0.542408\pi\)
0.432612 0.901580i \(-0.357592\pi\)
\(444\) 0 0
\(445\) −4.46515 + 7.37979i −0.211669 + 0.349836i
\(446\) 0 0
\(447\) 47.1388 7.46605i 2.22959 0.353132i
\(448\) 0 0
\(449\) 3.46337 + 1.12532i 0.163447 + 0.0531070i 0.389597 0.920985i \(-0.372614\pi\)
−0.226151 + 0.974092i \(0.572614\pi\)
\(450\) 0 0
\(451\) −4.30925 + 0.354856i −0.202915 + 0.0167095i
\(452\) 0 0
\(453\) −25.6988 + 13.0942i −1.20744 + 0.615220i
\(454\) 0 0
\(455\) −9.08757 + 0.766921i −0.426032 + 0.0359538i
\(456\) 0 0
\(457\) −16.1207 8.21391i −0.754094 0.384230i 0.0342910 0.999412i \(-0.489083\pi\)
−0.788385 + 0.615182i \(0.789083\pi\)
\(458\) 0 0
\(459\) −10.8060 + 7.85105i −0.504383 + 0.366456i
\(460\) 0 0
\(461\) 35.5884i 1.65751i −0.559608 0.828757i \(-0.689048\pi\)
0.559608 0.828757i \(-0.310952\pi\)
\(462\) 0 0
\(463\) 4.46802 4.46802i 0.207647 0.207647i −0.595620 0.803266i \(-0.703093\pi\)
0.803266 + 0.595620i \(0.203093\pi\)
\(464\) 0 0
\(465\) 9.48019 + 15.2757i 0.439633 + 0.708396i
\(466\) 0 0
\(467\) −3.92827 + 7.70967i −0.181779 + 0.356761i −0.963857 0.266419i \(-0.914160\pi\)
0.782079 + 0.623180i \(0.214160\pi\)
\(468\) 0 0
\(469\) 5.09363 + 3.70074i 0.235202 + 0.170884i
\(470\) 0 0
\(471\) −8.36006 + 25.7296i −0.385211 + 1.18556i
\(472\) 0 0
\(473\) 20.7532 5.06198i 0.954233 0.232750i
\(474\) 0 0
\(475\) 5.85082 + 2.89829i 0.268454 + 0.132983i
\(476\) 0 0
\(477\) 1.01584 + 6.41374i 0.0465120 + 0.293665i
\(478\) 0 0
\(479\) −4.75378 14.6306i −0.217206 0.668490i −0.998990 0.0449410i \(-0.985690\pi\)
0.781784 0.623549i \(-0.214310\pi\)
\(480\) 0 0
\(481\) −4.25480 5.85623i −0.194002 0.267021i
\(482\) 0 0
\(483\) 11.4723 + 11.4723i 0.522008 + 0.522008i
\(484\) 0 0
\(485\) −1.73516 0.126694i −0.0787894 0.00575290i
\(486\) 0 0
\(487\) 5.87316 + 0.930218i 0.266138 + 0.0421522i 0.288077 0.957607i \(-0.406984\pi\)
−0.0219390 + 0.999759i \(0.506984\pi\)
\(488\) 0 0
\(489\) −2.04636 + 0.664903i −0.0925396 + 0.0300679i
\(490\) 0 0
\(491\) −24.0702 + 33.1298i −1.08627 + 1.49513i −0.233851 + 0.972272i \(0.575133\pi\)
−0.852422 + 0.522855i \(0.824867\pi\)
\(492\) 0 0
\(493\) −4.48477 8.80185i −0.201984 0.396415i
\(494\) 0 0
\(495\) 7.45701 1.25208i 0.335168 0.0562769i
\(496\) 0 0
\(497\) 5.55801 + 10.9082i 0.249311 + 0.489300i
\(498\) 0 0
\(499\) −13.6289 + 18.7585i −0.610111 + 0.839746i −0.996587 0.0825534i \(-0.973692\pi\)
0.386475 + 0.922300i \(0.373692\pi\)
\(500\) 0 0
\(501\) −3.60727 + 1.17207i −0.161161 + 0.0523644i
\(502\) 0 0
\(503\) 3.30226 + 0.523026i 0.147240 + 0.0233206i 0.229619 0.973280i \(-0.426252\pi\)
−0.0823791 + 0.996601i \(0.526252\pi\)
\(504\) 0 0
\(505\) 14.2784 + 16.5277i 0.635379 + 0.735473i
\(506\) 0 0
\(507\) −11.2157 11.2157i −0.498108 0.498108i
\(508\) 0 0
\(509\) −13.0172 17.9166i −0.576977 0.794141i 0.416383 0.909189i \(-0.363298\pi\)
−0.993360 + 0.115049i \(0.963298\pi\)
\(510\) 0 0
\(511\) −5.27640 16.2391i −0.233414 0.718375i
\(512\) 0 0
\(513\) 0.811108 + 5.12114i 0.0358113 + 0.226104i
\(514\) 0 0
\(515\) −9.67385 3.94312i −0.426281 0.173755i
\(516\) 0 0
\(517\) −16.5658 + 19.5390i −0.728565 + 0.859323i
\(518\) 0 0
\(519\) −11.7387 + 36.1280i −0.515272 + 1.58584i
\(520\) 0 0
\(521\) 8.59679 + 6.24594i 0.376632 + 0.273639i 0.759956 0.649975i \(-0.225221\pi\)
−0.383323 + 0.923614i \(0.625221\pi\)
\(522\) 0 0
\(523\) −19.6244 + 38.5151i −0.858116 + 1.68415i −0.137847 + 0.990454i \(0.544018\pi\)
−0.720269 + 0.693694i \(0.755982\pi\)
\(524\) 0 0
\(525\) −16.0549 + 8.41036i −0.700694 + 0.367058i
\(526\) 0 0
\(527\) 9.53941 9.53941i 0.415543 0.415543i
\(528\) 0 0
\(529\) 2.96712i 0.129005i
\(530\) 0 0
\(531\) 10.2181 7.42391i 0.443429 0.322170i
\(532\) 0 0
\(533\) −2.62032 1.33512i −0.113499 0.0578304i
\(534\) 0 0
\(535\) 22.0739 26.1430i 0.954338 1.13026i
\(536\) 0 0
\(537\) −29.2658 + 14.9117i −1.26291 + 0.643487i
\(538\) 0 0
\(539\) 2.84517 12.0430i 0.122550 0.518728i
\(540\) 0 0
\(541\) −20.0780 6.52373i −0.863220 0.280477i −0.156247 0.987718i \(-0.549940\pi\)
−0.706973 + 0.707241i \(0.749940\pi\)
\(542\) 0 0
\(543\) −29.4327 + 4.66168i −1.26308 + 0.200052i
\(544\) 0 0
\(545\) 34.2140 + 20.7012i 1.46557 + 0.886744i
\(546\) 0 0
\(547\) −0.218056 + 1.37675i −0.00932342 + 0.0588658i −0.991911 0.126932i \(-0.959487\pi\)
0.982588 + 0.185798i \(0.0594870\pi\)
\(548\) 0 0
\(549\) 9.49230 0.405121
\(550\) 0 0
\(551\) −3.83469 −0.163363
\(552\) 0 0
\(553\) −0.323881 + 2.04490i −0.0137728 + 0.0869581i
\(554\) 0 0
\(555\) −12.3083 7.44713i −0.522456 0.316113i
\(556\) 0 0
\(557\) −3.78516 + 0.599510i −0.160382 + 0.0254021i −0.236109 0.971727i \(-0.575872\pi\)
0.0757269 + 0.997129i \(0.475872\pi\)
\(558\) 0 0
\(559\) 13.8180 + 4.48973i 0.584438 + 0.189895i
\(560\) 0 0
\(561\) −8.63507 20.6352i −0.364573 0.871218i
\(562\) 0 0
\(563\) 2.17596 1.10871i 0.0917058 0.0467264i −0.407536 0.913189i \(-0.633612\pi\)
0.499242 + 0.866463i \(0.333612\pi\)
\(564\) 0 0
\(565\) 10.7754 12.7617i 0.453324 0.536891i
\(566\) 0 0
\(567\) −17.7515 9.04483i −0.745492 0.379847i
\(568\) 0 0
\(569\) −5.21403 + 3.78822i −0.218584 + 0.158810i −0.691689 0.722196i \(-0.743133\pi\)
0.473105 + 0.881006i \(0.343133\pi\)
\(570\) 0 0
\(571\) 13.2864i 0.556019i 0.960578 + 0.278009i \(0.0896747\pi\)
−0.960578 + 0.278009i \(0.910325\pi\)
\(572\) 0 0
\(573\) 2.70715 2.70715i 0.113093 0.113093i
\(574\) 0 0
\(575\) 21.3606 + 6.67444i 0.890797 + 0.278343i
\(576\) 0 0
\(577\) −8.50263 + 16.6874i −0.353969 + 0.694704i −0.997496 0.0707197i \(-0.977470\pi\)
0.643527 + 0.765423i \(0.277470\pi\)
\(578\) 0 0
\(579\) 18.4630 + 13.4141i 0.767295 + 0.557473i
\(580\) 0 0
\(581\) 5.84679 17.9946i 0.242566 0.746540i
\(582\) 0 0
\(583\) 21.0643 + 1.58105i 0.872395 + 0.0654803i
\(584\) 0 0
\(585\) 4.76244 + 1.94120i 0.196903 + 0.0802588i
\(586\) 0 0
\(587\) 1.31860 + 8.32531i 0.0544244 + 0.343622i 0.999842 + 0.0177617i \(0.00565403\pi\)
−0.945418 + 0.325861i \(0.894346\pi\)
\(588\) 0 0
\(589\) −1.61829 4.98059i −0.0666805 0.205221i
\(590\) 0 0
\(591\) 23.0140 + 31.6760i 0.946669 + 1.30298i
\(592\) 0 0
\(593\) 4.37233 + 4.37233i 0.179550 + 0.179550i 0.791160 0.611610i \(-0.209478\pi\)
−0.611610 + 0.791160i \(0.709478\pi\)
\(594\) 0 0
\(595\) 8.89103 + 10.2917i 0.364497 + 0.421918i
\(596\) 0 0
\(597\) 44.2592 + 7.00996i 1.81141 + 0.286899i
\(598\) 0 0
\(599\) −34.7989 + 11.3068i −1.42184 + 0.461985i −0.916187 0.400750i \(-0.868750\pi\)
−0.505656 + 0.862735i \(0.668750\pi\)
\(600\) 0 0
\(601\) 6.33088 8.71371i 0.258242 0.355440i −0.660134 0.751147i \(-0.729501\pi\)
0.918376 + 0.395708i \(0.129501\pi\)
\(602\) 0 0
\(603\) −1.61188 3.16350i −0.0656410 0.128828i
\(604\) 0 0
\(605\) 1.61343 24.5438i 0.0655952 0.997846i
\(606\) 0 0
\(607\) −15.0249 29.4880i −0.609842 1.19688i −0.965043 0.262092i \(-0.915588\pi\)
0.355201 0.934790i \(-0.384412\pi\)
\(608\) 0 0
\(609\) 6.25669 8.61159i 0.253534 0.348959i
\(610\) 0 0
\(611\) −16.5702 + 5.38398i −0.670359 + 0.217813i
\(612\) 0 0
\(613\) −21.3721 3.38501i −0.863213 0.136719i −0.290898 0.956754i \(-0.593954\pi\)
−0.572314 + 0.820034i \(0.693954\pi\)
\(614\) 0 0
\(615\) −5.82899 0.425611i −0.235048 0.0171623i
\(616\) 0 0
\(617\) −23.2611 23.2611i −0.936455 0.936455i 0.0616431 0.998098i \(-0.480366\pi\)
−0.998098 + 0.0616431i \(0.980366\pi\)
\(618\) 0 0
\(619\) −24.3484 33.5126i −0.978643 1.34699i −0.937557 0.347831i \(-0.886918\pi\)
−0.0410856 0.999156i \(-0.513082\pi\)
\(620\) 0 0
\(621\) 5.49164 + 16.9015i 0.220372 + 0.678235i
\(622\) 0 0
\(623\) 1.09102 + 6.88845i 0.0437109 + 0.275980i
\(624\) 0 0
\(625\) −14.2336 + 20.5525i −0.569343 + 0.822100i
\(626\) 0 0
\(627\) −8.65895 0.649924i −0.345805 0.0259555i
\(628\) 0 0
\(629\) −3.33583 + 10.2666i −0.133008 + 0.409357i
\(630\) 0 0
\(631\) −25.4513 18.4915i −1.01320 0.736134i −0.0483238 0.998832i \(-0.515388\pi\)
−0.964878 + 0.262697i \(0.915388\pi\)
\(632\) 0 0
\(633\) −0.342729 + 0.672644i −0.0136223 + 0.0267352i
\(634\) 0 0
\(635\) 0.243118 + 0.391744i 0.00964783 + 0.0155459i
\(636\) 0 0
\(637\) 5.95137 5.95137i 0.235802 0.235802i
\(638\) 0 0
\(639\) 6.90382i 0.273111i
\(640\) 0 0
\(641\) −16.6022 + 12.0622i −0.655749 + 0.476430i −0.865225 0.501384i \(-0.832824\pi\)
0.209476 + 0.977814i \(0.432824\pi\)
\(642\) 0 0
\(643\) −15.7020 8.00058i −0.619228 0.315512i 0.116086 0.993239i \(-0.462965\pi\)
−0.735314 + 0.677727i \(0.762965\pi\)
\(644\) 0 0
\(645\) 28.7721 2.42815i 1.13290 0.0956082i
\(646\) 0 0
\(647\) −5.13354 + 2.61567i −0.201820 + 0.102833i −0.551980 0.833857i \(-0.686127\pi\)
0.350159 + 0.936690i \(0.386127\pi\)
\(648\) 0 0
\(649\) −15.8602 37.9010i −0.622566 1.48774i
\(650\) 0 0
\(651\) 13.8253 + 4.49212i 0.541858 + 0.176060i
\(652\) 0 0
\(653\) 5.76236 0.912669i 0.225499 0.0357155i −0.0426625 0.999090i \(-0.513584\pi\)
0.268161 + 0.963374i \(0.413584\pi\)
\(654\) 0 0
\(655\) 0.638627 1.05549i 0.0249532 0.0412415i
\(656\) 0 0
\(657\) −1.50628 + 9.51025i −0.0587654 + 0.371030i
\(658\) 0 0
\(659\) 5.21347 0.203088 0.101544 0.994831i \(-0.467622\pi\)
0.101544 + 0.994831i \(0.467622\pi\)
\(660\) 0 0
\(661\) 4.56016 0.177369 0.0886847 0.996060i \(-0.471734\pi\)
0.0886847 + 0.996060i \(0.471734\pi\)
\(662\) 0 0
\(663\) 2.38004 15.0270i 0.0924330 0.583599i
\(664\) 0 0
\(665\) 5.12651 1.26146i 0.198798 0.0489173i
\(666\) 0 0
\(667\) −12.9815 + 2.05606i −0.502644 + 0.0796110i
\(668\) 0 0
\(669\) −14.5093 4.71435i −0.560962 0.182267i
\(670\) 0 0
\(671\) 7.09949 30.0506i 0.274073 1.16009i
\(672\) 0 0
\(673\) −0.498417 + 0.253956i −0.0192126 + 0.00978930i −0.463570 0.886060i \(-0.653432\pi\)
0.444358 + 0.895849i \(0.353432\pi\)
\(674\) 0 0
\(675\) −19.8514 + 0.224449i −0.764079 + 0.00863905i
\(676\) 0 0
\(677\) −25.9390 13.2166i −0.996918 0.507955i −0.122157 0.992511i \(-0.538981\pi\)
−0.874760 + 0.484556i \(0.838981\pi\)
\(678\) 0 0
\(679\) −1.13807 + 0.826858i −0.0436752 + 0.0317319i
\(680\) 0 0
\(681\) 16.4454i 0.630190i
\(682\) 0 0
\(683\) −5.43554 + 5.43554i −0.207985 + 0.207985i −0.803411 0.595425i \(-0.796984\pi\)
0.595425 + 0.803411i \(0.296984\pi\)
\(684\) 0 0
\(685\) 29.4041 18.2483i 1.12347 0.697231i
\(686\) 0 0
\(687\) −6.90765 + 13.5570i −0.263543 + 0.517233i
\(688\) 0 0
\(689\) 11.6233 + 8.44481i 0.442812 + 0.321722i
\(690\) 0 0
\(691\) 2.91716 8.97809i 0.110974 0.341542i −0.880112 0.474766i \(-0.842533\pi\)
0.991086 + 0.133223i \(0.0425328\pi\)
\(692\) 0 0
\(693\) 3.95382 4.66342i 0.150193 0.177149i
\(694\) 0 0
\(695\) −1.23403 2.93222i −0.0468094 0.111225i
\(696\) 0 0
\(697\) 0.686067 + 4.33166i 0.0259866 + 0.164073i
\(698\) 0 0
\(699\) −16.2427 49.9899i −0.614356 1.89079i
\(700\) 0 0
\(701\) −11.5843 15.9445i −0.437535 0.602215i 0.532127 0.846664i \(-0.321393\pi\)
−0.969662 + 0.244449i \(0.921393\pi\)
\(702\) 0 0
\(703\) 2.96308 + 2.96308i 0.111755 + 0.111755i
\(704\) 0 0
\(705\) −26.2019 + 22.6360i −0.986822 + 0.852520i
\(706\) 0 0
\(707\) 17.4427 + 2.76266i 0.656001 + 0.103900i
\(708\) 0 0
\(709\) −42.2836 + 13.7388i −1.58799 + 0.515970i −0.964100 0.265540i \(-0.914450\pi\)
−0.623893 + 0.781510i \(0.714450\pi\)
\(710\) 0 0
\(711\) 0.686259 0.944555i 0.0257367 0.0354236i
\(712\) 0 0
\(713\) −8.14881 15.9929i −0.305175 0.598940i
\(714\) 0 0
\(715\) 9.70736 13.6250i 0.363035 0.509547i
\(716\) 0 0
\(717\) 2.07163 + 4.06580i 0.0773664 + 0.151840i
\(718\) 0 0
\(719\) 14.1002 19.4073i 0.525850 0.723770i −0.460641 0.887587i \(-0.652380\pi\)
0.986491 + 0.163816i \(0.0523804\pi\)
\(720\) 0 0
\(721\) −8.03342 + 2.61022i −0.299180 + 0.0972095i
\(722\) 0 0
\(723\) 12.4660 + 1.97442i 0.463616 + 0.0734296i
\(724\) 0 0
\(725\) 2.13276 14.5268i 0.0792087 0.539513i
\(726\) 0 0
\(727\) 17.6187 + 17.6187i 0.653441 + 0.653441i 0.953820 0.300379i \(-0.0971131\pi\)
−0.300379 + 0.953820i \(0.597113\pi\)
\(728\) 0 0
\(729\) −7.43339 10.2312i −0.275311 0.378933i
\(730\) 0 0
\(731\) −6.69547 20.6065i −0.247641 0.762161i
\(732\) 0 0
\(733\) −0.00846331 0.0534353i −0.000312600 0.00197368i 0.987532 0.157421i \(-0.0503180\pi\)
−0.987844 + 0.155448i \(0.950318\pi\)
\(734\) 0 0
\(735\) 6.31353 15.4893i 0.232878 0.571331i
\(736\) 0 0
\(737\) −11.2205 + 2.73683i −0.413313 + 0.100813i
\(738\) 0 0
\(739\) 5.95011 18.3126i 0.218878 0.673638i −0.779977 0.625808i \(-0.784769\pi\)
0.998855 0.0478303i \(-0.0152307\pi\)
\(740\) 0 0
\(741\) −4.77800 3.47142i −0.175524 0.127526i
\(742\) 0 0
\(743\) 3.38155 6.63666i 0.124057 0.243475i −0.820622 0.571471i \(-0.806373\pi\)
0.944679 + 0.327995i \(0.106373\pi\)
\(744\) 0 0
\(745\) 12.1334 51.8283i 0.444534 1.89884i
\(746\) 0 0
\(747\) −7.54462 + 7.54462i −0.276043 + 0.276043i
\(748\) 0 0
\(749\) 27.6659i 1.01089i
\(750\) 0 0
\(751\) −24.3907 + 17.7209i −0.890031 + 0.646645i −0.935886 0.352303i \(-0.885399\pi\)
0.0458552 + 0.998948i \(0.485399\pi\)
\(752\) 0 0
\(753\) 47.5082 + 24.2066i 1.73130 + 0.882139i
\(754\) 0 0
\(755\) 2.70514 + 32.0543i 0.0984500 + 1.16658i
\(756\) 0 0
\(757\) 39.6521 20.2037i 1.44118 0.734318i 0.453566 0.891223i \(-0.350152\pi\)
0.987614 + 0.156905i \(0.0501516\pi\)
\(758\) 0 0
\(759\) −29.6613 + 2.44254i −1.07664 + 0.0886584i
\(760\) 0 0
\(761\) 44.8060 + 14.5584i 1.62422 + 0.527740i 0.972932 0.231093i \(-0.0742301\pi\)
0.651285 + 0.758833i \(0.274230\pi\)
\(762\) 0 0
\(763\) 31.9361 5.05818i 1.15616 0.183118i
\(764\) 0 0
\(765\) −1.83254 7.44735i −0.0662555 0.269259i
\(766\) 0 0
\(767\) 4.37145 27.6003i 0.157844 0.996588i
\(768\) 0 0
\(769\) 29.7849 1.07407 0.537036 0.843559i \(-0.319544\pi\)
0.537036 + 0.843559i \(0.319544\pi\)
\(770\) 0 0
\(771\) −39.6451 −1.42778
\(772\) 0 0
\(773\) −1.11434 + 7.03566i −0.0400800 + 0.253055i −0.999590 0.0286180i \(-0.990889\pi\)
0.959510 + 0.281673i \(0.0908894\pi\)
\(774\) 0 0
\(775\) 19.7678 3.36044i 0.710082 0.120711i
\(776\) 0 0
\(777\) −11.4888 + 1.81965i −0.412158 + 0.0652794i
\(778\) 0 0
\(779\) 1.61912 + 0.526083i 0.0580108 + 0.0188489i
\(780\) 0 0
\(781\) −21.8560 5.16351i −0.782070 0.184765i
\(782\) 0 0
\(783\) 10.3887 5.29330i 0.371261 0.189167i
\(784\) 0 0
\(785\) 23.0543 + 19.4659i 0.822844 + 0.694769i
\(786\) 0 0
\(787\) 25.7117 + 13.1008i 0.916524 + 0.466992i 0.847604 0.530630i \(-0.178045\pi\)
0.0689202 + 0.997622i \(0.478045\pi\)
\(788\) 0 0
\(789\) −13.5737 + 9.86191i −0.483238 + 0.351093i
\(790\) 0 0
\(791\) 13.5051i 0.480187i
\(792\) 0 0
\(793\) 14.8503 14.8503i 0.527350 0.527350i
\(794\) 0 0
\(795\) 27.8010 + 6.50843i 0.985999 + 0.230830i
\(796\) 0 0
\(797\) 14.0459 27.5666i 0.497531 0.976460i −0.496569 0.867997i \(-0.665407\pi\)
0.994100 0.108463i \(-0.0345930\pi\)
\(798\) 0 0
\(799\) 21.0204 + 15.2722i 0.743647 + 0.540291i
\(800\) 0 0
\(801\) 1.21535 3.74046i 0.0429423 0.132163i
\(802\) 0 0
\(803\) 28.9809 + 11.8815i 1.02271 + 0.419288i
\(804\) 0 0
\(805\) 16.6783 7.01908i 0.587831 0.247390i
\(806\) 0 0
\(807\) −3.04559 19.2291i −0.107210 0.676897i
\(808\) 0 0
\(809\) 6.07857 + 18.7079i 0.213711 + 0.657735i 0.999243 + 0.0389136i \(0.0123897\pi\)
−0.785531 + 0.618822i \(0.787610\pi\)
\(810\) 0 0
\(811\) −24.8398 34.1891i −0.872243 1.20054i −0.978509 0.206202i \(-0.933890\pi\)
0.106266 0.994338i \(-0.466110\pi\)
\(812\) 0 0
\(813\) −4.32597 4.32597i −0.151718 0.151718i
\(814\) 0 0
\(815\) −0.174757 + 2.39340i −0.00612147 + 0.0838373i
\(816\) 0 0
\(817\) −8.30723 1.31574i −0.290633 0.0460318i
\(818\) 0 0
\(819\) 3.95486 1.28501i 0.138194 0.0449019i
\(820\) 0 0
\(821\) −31.2544 + 43.0180i −1.09079 + 1.50134i −0.243726 + 0.969844i \(0.578370\pi\)
−0.847061 + 0.531496i \(0.821630\pi\)
\(822\) 0 0
\(823\) −0.635792 1.24781i −0.0221623 0.0434960i 0.879660 0.475603i \(-0.157770\pi\)
−0.901822 + 0.432107i \(0.857770\pi\)
\(824\) 0 0
\(825\) 7.27797 32.4409i 0.253387 1.12945i
\(826\) 0 0
\(827\) 7.84783 + 15.4022i 0.272896 + 0.535588i 0.986259 0.165206i \(-0.0528290\pi\)
−0.713363 + 0.700794i \(0.752829\pi\)
\(828\) 0 0
\(829\) 21.0969 29.0374i 0.732727 1.00851i −0.266277 0.963897i \(-0.585794\pi\)
0.999004 0.0446158i \(-0.0142064\pi\)
\(830\) 0 0
\(831\) 4.53838 1.47461i 0.157435 0.0511536i
\(832\) 0 0
\(833\) −12.3969 1.96348i −0.429527 0.0680304i
\(834\) 0 0
\(835\) −0.308058 + 4.21903i −0.0106608 + 0.146006i
\(836\) 0 0
\(837\) 11.2592 + 11.2592i 0.389176 + 0.389176i
\(838\) 0 0
\(839\) −2.91587 4.01335i −0.100667 0.138556i 0.755712 0.654904i \(-0.227291\pi\)
−0.856379 + 0.516348i \(0.827291\pi\)
\(840\) 0 0
\(841\) −6.29681 19.3796i −0.217131 0.668261i
\(842\) 0 0
\(843\) 8.85453 + 55.9053i 0.304966 + 1.92548i
\(844\) 0 0
\(845\) −16.3053 + 6.86210i −0.560918 + 0.236063i
\(846\) 0 0
\(847\) −11.8063 16.0048i −0.405668 0.549932i
\(848\) 0 0
\(849\) 10.5406 32.4406i 0.361752 1.11336i
\(850\) 0 0
\(851\) 11.6196 + 8.44211i 0.398313 + 0.289392i
\(852\) 0 0
\(853\) −12.0658 + 23.6804i −0.413125 + 0.810803i 0.586875 + 0.809678i \(0.300358\pi\)
−0.999999 + 0.00112492i \(0.999642\pi\)
\(854\) 0 0
\(855\) −2.89880 0.678632i −0.0991368 0.0232087i
\(856\) 0 0
\(857\) −1.04396 + 1.04396i −0.0356609 + 0.0356609i −0.724712 0.689051i \(-0.758027\pi\)
0.689051 + 0.724712i \(0.258027\pi\)
\(858\) 0 0
\(859\) 13.9402i 0.475633i −0.971310 0.237816i \(-0.923568\pi\)
0.971310 0.237816i \(-0.0764316\pi\)
\(860\) 0 0
\(861\) −3.82318 + 2.77770i −0.130294 + 0.0946638i
\(862\) 0 0
\(863\) 45.7166 + 23.2938i 1.55621 + 0.792929i 0.999291 0.0376382i \(-0.0119834\pi\)
0.556919 + 0.830567i \(0.311983\pi\)
\(864\) 0 0
\(865\) 32.3715 + 27.3329i 1.10066 + 0.929347i
\(866\) 0 0
\(867\) 10.1524 5.17288i 0.344792 0.175680i
\(868\) 0 0
\(869\) −2.47699 2.87900i −0.0840262 0.0976635i
\(870\) 0 0
\(871\) −7.47089 2.42744i −0.253141 0.0822507i
\(872\) 0 0
\(873\) 0.783518 0.124097i 0.0265181 0.00420005i
\(874\) 0 0
\(875\) 1.92751 + 20.1222i 0.0651617 + 0.680254i
\(876\) 0 0
\(877\) 1.04392 6.59105i 0.0352507 0.222564i −0.963774 0.266720i \(-0.914060\pi\)
0.999025 + 0.0441563i \(0.0140600\pi\)
\(878\) 0 0
\(879\) 21.4220 0.722546
\(880\) 0 0
\(881\) −14.4573 −0.487080 −0.243540 0.969891i \(-0.578309\pi\)
−0.243540 + 0.969891i \(0.578309\pi\)
\(882\) 0 0
\(883\) 1.63650 10.3324i 0.0550725 0.347714i −0.944730 0.327849i \(-0.893676\pi\)
0.999803 0.0198651i \(-0.00632367\pi\)
\(884\) 0 0
\(885\) −13.2695 53.9267i −0.446050 1.81272i
\(886\) 0 0
\(887\) −9.76140 + 1.54605i −0.327756 + 0.0519114i −0.318144 0.948042i \(-0.603060\pi\)
−0.00961170 + 0.999954i \(0.503060\pi\)
\(888\) 0 0
\(889\) 0.354548 + 0.115200i 0.0118912 + 0.00386368i
\(890\) 0 0
\(891\) 33.7137 14.1080i 1.12945 0.472635i
\(892\) 0 0
\(893\) 8.98671 4.57896i 0.300729 0.153229i
\(894\) 0 0
\(895\) 3.08061 + 36.5034i 0.102973 + 1.22018i
\(896\) 0 0
\(897\) −18.0361 9.18986i −0.602208 0.306840i
\(898\) 0 0
\(899\) −9.52719 + 6.92191i −0.317750 + 0.230859i
\(900\) 0 0
\(901\) 21.4256i 0.713789i
\(902\) 0 0
\(903\) 16.5088 16.5088i 0.549380 0.549380i
\(904\) 0 0
\(905\) −7.57591 + 32.3607i −0.251832 + 1.07571i
\(906\) 0 0
\(907\) −5.25319 + 10.3100i −0.174429 + 0.342337i −0.961625 0.274366i \(-0.911532\pi\)
0.787196 + 0.616703i \(0.211532\pi\)
\(908\) 0 0
\(909\) −8.05692 5.85370i −0.267231 0.194155i
\(910\) 0 0
\(911\) 2.69510 8.29465i 0.0892925 0.274814i −0.896432 0.443182i \(-0.853850\pi\)
0.985724 + 0.168368i \(0.0538496\pi\)
\(912\) 0 0
\(913\) 18.2419 + 29.5274i 0.603718 + 0.977215i
\(914\) 0 0
\(915\) 15.7540 38.6500i 0.520811 1.27773i
\(916\) 0 0
\(917\) −0.156043 0.985219i −0.00515301 0.0325348i
\(918\) 0 0
\(919\) −1.78507 5.49388i −0.0588840 0.181226i 0.917288 0.398224i \(-0.130373\pi\)
−0.976172 + 0.216998i \(0.930373\pi\)
\(920\) 0 0
\(921\) 38.3182 + 52.7405i 1.26263 + 1.73786i
\(922\) 0 0
\(923\) −10.8007 10.8007i −0.355511 0.355511i
\(924\) 0 0
\(925\) −12.8729 + 9.57696i −0.423260 + 0.314889i
\(926\) 0 0
\(927\) 4.70469 + 0.745150i 0.154522 + 0.0244739i
\(928\) 0 0
\(929\) −17.2514 + 5.60532i −0.566000 + 0.183905i −0.578019 0.816023i \(-0.696174\pi\)
0.0120191 + 0.999928i \(0.496174\pi\)
\(930\) 0 0
\(931\) −2.86384 + 3.94174i −0.0938587 + 0.129185i
\(932\) 0 0
\(933\) 12.6414 + 24.8102i 0.413862 + 0.812251i
\(934\) 0 0
\(935\) −24.9473 + 0.231399i −0.815864 + 0.00756755i
\(936\) 0 0
\(937\) −14.5907 28.6359i −0.476659 0.935496i −0.996686 0.0813459i \(-0.974078\pi\)
0.520027 0.854150i \(-0.325922\pi\)
\(938\) 0 0
\(939\) 20.4908 28.2032i 0.668692 0.920376i
\(940\) 0 0
\(941\) −4.95612 + 1.61034i −0.161565 + 0.0524956i −0.388683 0.921372i \(-0.627070\pi\)
0.227118 + 0.973867i \(0.427070\pi\)
\(942\) 0 0
\(943\) 5.76321 + 0.912803i 0.187676 + 0.0297250i
\(944\) 0 0
\(945\) −12.1471 + 10.4940i −0.395146 + 0.341368i
\(946\) 0 0
\(947\) 0.545091 + 0.545091i 0.0177131 + 0.0177131i 0.715908 0.698195i \(-0.246013\pi\)
−0.698195 + 0.715908i \(0.746013\pi\)
\(948\) 0 0
\(949\) 12.5219 + 17.2349i 0.406478 + 0.559469i
\(950\) 0 0
\(951\) 10.0100 + 30.8076i 0.324596 + 0.999004i
\(952\) 0 0
\(953\) 2.12456 + 13.4139i 0.0688211 + 0.434519i 0.997908 + 0.0646568i \(0.0205953\pi\)
−0.929086 + 0.369863i \(0.879405\pi\)
\(954\) 0 0
\(955\) −1.65631 3.93562i −0.0535970 0.127354i
\(956\) 0 0
\(957\) 4.62705 + 18.9701i 0.149571 + 0.613216i
\(958\) 0 0
\(959\) 8.64682 26.6122i 0.279221 0.859352i
\(960\) 0 0
\(961\) 12.0686 + 8.76834i 0.389309 + 0.282850i
\(962\) 0 0
\(963\) −7.08285 + 13.9009i −0.228242 + 0.447950i
\(964\) 0 0
\(965\) 21.6267 13.4216i 0.696189 0.432057i
\(966\) 0 0
\(967\) −28.7882 + 28.7882i −0.925767 + 0.925767i −0.997429 0.0716619i \(-0.977170\pi\)
0.0716619 + 0.997429i \(0.477170\pi\)
\(968\) 0 0
\(969\) 8.80745i 0.282936i
\(970\) 0 0
\(971\) −23.7651 + 17.2663i −0.762657 + 0.554103i −0.899724 0.436459i \(-0.856232\pi\)
0.137067 + 0.990562i \(0.456232\pi\)
\(972\) 0 0
\(973\) −2.29195 1.16781i −0.0734765 0.0374382i
\(974\) 0 0
\(975\) 15.8081 16.1696i 0.506264 0.517843i
\(976\) 0 0
\(977\) −20.8453 + 10.6212i −0.666901 + 0.339803i −0.754450 0.656357i \(-0.772096\pi\)
0.0875496 + 0.996160i \(0.472096\pi\)
\(978\) 0 0
\(979\) −10.9325 6.64511i −0.349405 0.212379i
\(980\) 0 0
\(981\) −17.3414 5.63458i −0.553670 0.179898i
\(982\) 0 0
\(983\) 20.6008 3.26285i 0.657064 0.104069i 0.181005 0.983482i \(-0.442065\pi\)
0.476059 + 0.879413i \(0.342065\pi\)
\(984\) 0 0
\(985\) 42.4036 10.4341i 1.35109 0.332457i
\(986\) 0 0
\(987\) −4.37973 + 27.6526i −0.139408 + 0.880190i
\(988\) 0 0
\(989\) −28.8277 −0.916666
\(990\) 0 0
\(991\) 6.50787 0.206729 0.103365 0.994644i \(-0.467039\pi\)
0.103365 + 0.994644i \(0.467039\pi\)
\(992\) 0 0
\(993\) 4.60531 29.0768i 0.146145 0.922724i
\(994\) 0 0
\(995\) 25.8721 42.7601i 0.820200 1.35559i
\(996\) 0 0
\(997\) 26.0805 4.13075i 0.825978 0.130822i 0.270886 0.962611i \(-0.412683\pi\)
0.555092 + 0.831789i \(0.312683\pi\)
\(998\) 0 0
\(999\) −12.1175 3.93723i −0.383382 0.124568i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cm.a.497.1 32
4.3 odd 2 55.2.l.a.2.1 32
5.3 odd 4 inner 880.2.cm.a.673.1 32
11.6 odd 10 inner 880.2.cm.a.17.1 32
12.11 even 2 495.2.bj.a.442.4 32
20.3 even 4 55.2.l.a.13.1 yes 32
20.7 even 4 275.2.bm.b.68.4 32
20.19 odd 2 275.2.bm.b.57.4 32
44.3 odd 10 605.2.m.d.282.1 32
44.7 even 10 605.2.e.b.362.1 32
44.15 odd 10 605.2.e.b.362.16 32
44.19 even 10 605.2.m.c.282.4 32
44.27 odd 10 605.2.m.e.457.4 32
44.31 odd 10 605.2.m.c.602.1 32
44.35 even 10 605.2.m.d.602.4 32
44.39 even 10 55.2.l.a.17.1 yes 32
44.43 even 2 605.2.m.e.112.4 32
55.28 even 20 inner 880.2.cm.a.193.1 32
60.23 odd 4 495.2.bj.a.343.4 32
132.83 odd 10 495.2.bj.a.127.4 32
220.3 even 20 605.2.m.d.403.4 32
220.39 even 10 275.2.bm.b.182.4 32
220.43 odd 4 605.2.m.e.233.4 32
220.63 odd 20 605.2.m.c.403.1 32
220.83 odd 20 55.2.l.a.28.1 yes 32
220.103 even 20 605.2.e.b.483.1 32
220.123 odd 20 605.2.m.d.118.1 32
220.127 odd 20 275.2.bm.b.193.4 32
220.163 even 20 605.2.m.c.118.4 32
220.183 odd 20 605.2.e.b.483.16 32
220.203 even 20 605.2.m.e.578.4 32
660.83 even 20 495.2.bj.a.28.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.2.1 32 4.3 odd 2
55.2.l.a.13.1 yes 32 20.3 even 4
55.2.l.a.17.1 yes 32 44.39 even 10
55.2.l.a.28.1 yes 32 220.83 odd 20
275.2.bm.b.57.4 32 20.19 odd 2
275.2.bm.b.68.4 32 20.7 even 4
275.2.bm.b.182.4 32 220.39 even 10
275.2.bm.b.193.4 32 220.127 odd 20
495.2.bj.a.28.4 32 660.83 even 20
495.2.bj.a.127.4 32 132.83 odd 10
495.2.bj.a.343.4 32 60.23 odd 4
495.2.bj.a.442.4 32 12.11 even 2
605.2.e.b.362.1 32 44.7 even 10
605.2.e.b.362.16 32 44.15 odd 10
605.2.e.b.483.1 32 220.103 even 20
605.2.e.b.483.16 32 220.183 odd 20
605.2.m.c.118.4 32 220.163 even 20
605.2.m.c.282.4 32 44.19 even 10
605.2.m.c.403.1 32 220.63 odd 20
605.2.m.c.602.1 32 44.31 odd 10
605.2.m.d.118.1 32 220.123 odd 20
605.2.m.d.282.1 32 44.3 odd 10
605.2.m.d.403.4 32 220.3 even 20
605.2.m.d.602.4 32 44.35 even 10
605.2.m.e.112.4 32 44.43 even 2
605.2.m.e.233.4 32 220.43 odd 4
605.2.m.e.457.4 32 44.27 odd 10
605.2.m.e.578.4 32 220.203 even 20
880.2.cm.a.17.1 32 11.6 odd 10 inner
880.2.cm.a.193.1 32 55.28 even 20 inner
880.2.cm.a.497.1 32 1.1 even 1 trivial
880.2.cm.a.673.1 32 5.3 odd 4 inner