Properties

Label 495.2.bj.a.28.4
Level $495$
Weight $2$
Character 495.28
Analytic conductor $3.953$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,2,Mod(28,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 15, 18])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,10,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 28.4
Character \(\chi\) \(=\) 495.28
Dual form 495.2.bj.a.442.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.15100 - 2.25897i) q^{2} +(-2.60258 - 3.58214i) q^{4} +(-1.91314 + 1.15755i) q^{5} +(-1.78576 - 0.282837i) q^{7} +(-6.07934 + 0.962874i) q^{8} +(0.412838 + 5.65406i) q^{10} +(-1.72268 - 2.83415i) q^{11} +(-2.00993 - 1.02411i) q^{13} +(-2.69434 + 3.70844i) q^{14} +(-2.08573 + 6.41923i) q^{16} +(-2.99738 + 1.52724i) q^{17} +(-1.05647 - 0.767569i) q^{19} +(9.12557 + 3.84051i) q^{20} +(-8.38507 + 0.629367i) q^{22} +(3.16488 + 3.16488i) q^{23} +(2.32018 - 4.42908i) q^{25} +(-4.62687 + 3.36162i) q^{26} +(3.63442 + 7.13295i) q^{28} +(2.37569 - 1.72604i) q^{29} +(-1.23925 - 3.81401i) q^{31} +(3.39552 + 3.39552i) q^{32} +8.52886i q^{34} +(3.74380 - 1.52600i) q^{35} +(0.501987 - 3.16942i) q^{37} +(-2.94992 + 1.50306i) q^{38} +(10.5160 - 8.87923i) q^{40} +(-0.766287 + 1.05470i) q^{41} +(4.55431 - 4.55431i) q^{43} +(-5.66890 + 13.5469i) q^{44} +(10.7922 - 3.50658i) q^{46} +(7.62854 - 1.20824i) q^{47} +(-3.54845 - 1.15296i) q^{49} +(-7.33465 - 10.3391i) q^{50} +(1.56249 + 9.86517i) q^{52} +(2.89146 - 5.67482i) q^{53} +(6.57637 + 3.42803i) q^{55} +11.1286 q^{56} +(-1.16465 - 7.35329i) q^{58} +(-7.28135 - 10.0219i) q^{59} +(-8.85435 - 2.87695i) q^{61} +(-10.0421 - 1.59052i) q^{62} +(-1.25983 + 0.409344i) q^{64} +(5.03072 - 0.367324i) q^{65} +(-2.46236 + 2.46236i) q^{67} +(13.2717 + 6.76227i) q^{68} +(0.861947 - 10.2136i) q^{70} +(2.09243 - 6.43984i) q^{71} +(-1.47735 + 9.32763i) q^{73} +(-6.58185 - 4.78199i) q^{74} +5.78207i q^{76} +(2.27469 + 5.54835i) q^{77} +(0.353860 + 1.08907i) q^{79} +(-3.44026 - 14.6952i) q^{80} +(1.50055 + 2.94499i) q^{82} +(4.75092 + 9.32422i) q^{83} +(3.96654 - 6.39143i) q^{85} +(-5.04603 - 15.5301i) q^{86} +(13.2017 + 15.5710i) q^{88} +3.85743i q^{89} +(3.29960 + 2.39730i) q^{91} +(3.10019 - 19.5739i) q^{92} +(6.05109 - 18.6233i) q^{94} +(2.90966 + 0.245553i) q^{95} +(-0.693249 - 0.353228i) q^{97} +(-6.68878 + 6.68878i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 2 q^{5} + 10 q^{8} + 24 q^{11} - 10 q^{13} - 8 q^{16} - 16 q^{20} + 10 q^{22} + 24 q^{23} + 16 q^{25} - 20 q^{26} + 50 q^{28} - 28 q^{31} + 10 q^{35} - 8 q^{37} - 10 q^{38} - 50 q^{40}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.15100 2.25897i 0.813883 1.59733i 0.0119437 0.999929i \(-0.496198\pi\)
0.801939 0.597406i \(-0.203802\pi\)
\(3\) 0 0
\(4\) −2.60258 3.58214i −1.30129 1.79107i
\(5\) −1.91314 + 1.15755i −0.855580 + 0.517670i
\(6\) 0 0
\(7\) −1.78576 0.282837i −0.674955 0.106902i −0.190458 0.981695i \(-0.560997\pi\)
−0.484497 + 0.874793i \(0.660997\pi\)
\(8\) −6.07934 + 0.962874i −2.14937 + 0.340427i
\(9\) 0 0
\(10\) 0.412838 + 5.65406i 0.130551 + 1.78797i
\(11\) −1.72268 2.83415i −0.519407 0.854527i
\(12\) 0 0
\(13\) −2.00993 1.02411i −0.557454 0.284037i 0.152478 0.988307i \(-0.451275\pi\)
−0.709933 + 0.704270i \(0.751275\pi\)
\(14\) −2.69434 + 3.70844i −0.720093 + 0.991122i
\(15\) 0 0
\(16\) −2.08573 + 6.41923i −0.521434 + 1.60481i
\(17\) −2.99738 + 1.52724i −0.726972 + 0.370411i −0.777981 0.628288i \(-0.783756\pi\)
0.0510094 + 0.998698i \(0.483756\pi\)
\(18\) 0 0
\(19\) −1.05647 0.767569i −0.242370 0.176092i 0.459968 0.887935i \(-0.347861\pi\)
−0.702339 + 0.711843i \(0.747861\pi\)
\(20\) 9.12557 + 3.84051i 2.04054 + 0.858765i
\(21\) 0 0
\(22\) −8.38507 + 0.629367i −1.78770 + 0.134181i
\(23\) 3.16488 + 3.16488i 0.659922 + 0.659922i 0.955362 0.295439i \(-0.0954660\pi\)
−0.295439 + 0.955362i \(0.595466\pi\)
\(24\) 0 0
\(25\) 2.32018 4.42908i 0.464035 0.885817i
\(26\) −4.62687 + 3.36162i −0.907405 + 0.659268i
\(27\) 0 0
\(28\) 3.63442 + 7.13295i 0.686841 + 1.34800i
\(29\) 2.37569 1.72604i 0.441154 0.320517i −0.344939 0.938625i \(-0.612100\pi\)
0.786093 + 0.618108i \(0.212100\pi\)
\(30\) 0 0
\(31\) −1.23925 3.81401i −0.222575 0.685016i −0.998529 0.0542261i \(-0.982731\pi\)
0.775953 0.630790i \(-0.217269\pi\)
\(32\) 3.39552 + 3.39552i 0.600248 + 0.600248i
\(33\) 0 0
\(34\) 8.52886i 1.46269i
\(35\) 3.74380 1.52600i 0.632818 0.257940i
\(36\) 0 0
\(37\) 0.501987 3.16942i 0.0825262 0.521050i −0.911446 0.411419i \(-0.865033\pi\)
0.993972 0.109631i \(-0.0349668\pi\)
\(38\) −2.94992 + 1.50306i −0.478539 + 0.243828i
\(39\) 0 0
\(40\) 10.5160 8.87923i 1.66273 1.40393i
\(41\) −0.766287 + 1.05470i −0.119674 + 0.164717i −0.864651 0.502373i \(-0.832460\pi\)
0.744977 + 0.667090i \(0.232460\pi\)
\(42\) 0 0
\(43\) 4.55431 4.55431i 0.694526 0.694526i −0.268698 0.963224i \(-0.586593\pi\)
0.963224 + 0.268698i \(0.0865935\pi\)
\(44\) −5.66890 + 13.5469i −0.854620 + 2.04228i
\(45\) 0 0
\(46\) 10.7922 3.50658i 1.59122 0.517017i
\(47\) 7.62854 1.20824i 1.11274 0.176240i 0.427114 0.904198i \(-0.359530\pi\)
0.685622 + 0.727957i \(0.259530\pi\)
\(48\) 0 0
\(49\) −3.54845 1.15296i −0.506921 0.164709i
\(50\) −7.33465 10.3391i −1.03728 1.46217i
\(51\) 0 0
\(52\) 1.56249 + 9.86517i 0.216678 + 1.36805i
\(53\) 2.89146 5.67482i 0.397173 0.779496i −0.602656 0.798001i \(-0.705891\pi\)
0.999829 + 0.0185052i \(0.00589073\pi\)
\(54\) 0 0
\(55\) 6.57637 + 3.42803i 0.886757 + 0.462235i
\(56\) 11.1286 1.48712
\(57\) 0 0
\(58\) −1.16465 7.35329i −0.152926 0.965535i
\(59\) −7.28135 10.0219i −0.947952 1.30474i −0.952431 0.304753i \(-0.901426\pi\)
0.00447977 0.999990i \(-0.498574\pi\)
\(60\) 0 0
\(61\) −8.85435 2.87695i −1.13368 0.368356i −0.318709 0.947853i \(-0.603249\pi\)
−0.814975 + 0.579496i \(0.803249\pi\)
\(62\) −10.0421 1.59052i −1.27535 0.201996i
\(63\) 0 0
\(64\) −1.25983 + 0.409344i −0.157479 + 0.0511679i
\(65\) 5.03072 0.367324i 0.623984 0.0455609i
\(66\) 0 0
\(67\) −2.46236 + 2.46236i −0.300825 + 0.300825i −0.841336 0.540512i \(-0.818231\pi\)
0.540512 + 0.841336i \(0.318231\pi\)
\(68\) 13.2717 + 6.76227i 1.60943 + 0.820046i
\(69\) 0 0
\(70\) 0.861947 10.2136i 0.103022 1.22076i
\(71\) 2.09243 6.43984i 0.248326 0.764268i −0.746746 0.665110i \(-0.768385\pi\)
0.995072 0.0991588i \(-0.0316152\pi\)
\(72\) 0 0
\(73\) −1.47735 + 9.32763i −0.172911 + 1.09172i 0.736689 + 0.676232i \(0.236388\pi\)
−0.909600 + 0.415485i \(0.863612\pi\)
\(74\) −6.58185 4.78199i −0.765125 0.555896i
\(75\) 0 0
\(76\) 5.78207i 0.663249i
\(77\) 2.27469 + 5.54835i 0.259225 + 0.632293i
\(78\) 0 0
\(79\) 0.353860 + 1.08907i 0.0398123 + 0.122530i 0.968987 0.247110i \(-0.0794810\pi\)
−0.929175 + 0.369640i \(0.879481\pi\)
\(80\) −3.44026 14.6952i −0.384633 1.64297i
\(81\) 0 0
\(82\) 1.50055 + 2.94499i 0.165708 + 0.325220i
\(83\) 4.75092 + 9.32422i 0.521482 + 1.02347i 0.990139 + 0.140086i \(0.0447378\pi\)
−0.468658 + 0.883380i \(0.655262\pi\)
\(84\) 0 0
\(85\) 3.96654 6.39143i 0.430232 0.693248i
\(86\) −5.04603 15.5301i −0.544128 1.67465i
\(87\) 0 0
\(88\) 13.2017 + 15.5710i 1.40730 + 1.65988i
\(89\) 3.85743i 0.408887i 0.978878 + 0.204443i \(0.0655384\pi\)
−0.978878 + 0.204443i \(0.934462\pi\)
\(90\) 0 0
\(91\) 3.29960 + 2.39730i 0.345892 + 0.251305i
\(92\) 3.10019 19.5739i 0.323218 2.04072i
\(93\) 0 0
\(94\) 6.05109 18.6233i 0.624123 1.92085i
\(95\) 2.90966 + 0.245553i 0.298525 + 0.0251932i
\(96\) 0 0
\(97\) −0.693249 0.353228i −0.0703888 0.0358649i 0.418442 0.908244i \(-0.362576\pi\)
−0.488831 + 0.872379i \(0.662576\pi\)
\(98\) −6.68878 + 6.68878i −0.675669 + 0.675669i
\(99\) 0 0
\(100\) −21.9040 + 3.21584i −2.19040 + 0.321584i
\(101\) −9.28960 + 3.01837i −0.924350 + 0.300339i −0.732250 0.681036i \(-0.761530\pi\)
−0.192100 + 0.981375i \(0.561530\pi\)
\(102\) 0 0
\(103\) 4.61435 + 0.730841i 0.454665 + 0.0720119i 0.379567 0.925164i \(-0.376073\pi\)
0.0750982 + 0.997176i \(0.476073\pi\)
\(104\) 13.2051 + 4.29061i 1.29487 + 0.420729i
\(105\) 0 0
\(106\) −9.49117 13.0635i −0.921864 1.26884i
\(107\) 2.39372 + 15.1133i 0.231410 + 1.46106i 0.780424 + 0.625250i \(0.215003\pi\)
−0.549015 + 0.835813i \(0.684997\pi\)
\(108\) 0 0
\(109\) 17.8837 1.71295 0.856476 0.516187i \(-0.172649\pi\)
0.856476 + 0.516187i \(0.172649\pi\)
\(110\) 15.3132 10.9102i 1.46006 1.04024i
\(111\) 0 0
\(112\) 5.54022 10.8733i 0.523502 1.02743i
\(113\) −1.16850 7.37759i −0.109923 0.694025i −0.979683 0.200551i \(-0.935727\pi\)
0.869760 0.493474i \(-0.164273\pi\)
\(114\) 0 0
\(115\) −9.71833 2.39135i −0.906239 0.222994i
\(116\) −12.3658 4.01790i −1.14814 0.373053i
\(117\) 0 0
\(118\) −31.0201 + 4.91310i −2.85563 + 0.452288i
\(119\) 5.78457 1.87952i 0.530271 0.172295i
\(120\) 0 0
\(121\) −5.06477 + 9.76464i −0.460433 + 0.887694i
\(122\) −16.6904 + 16.6904i −1.51107 + 1.51107i
\(123\) 0 0
\(124\) −10.4371 + 14.3654i −0.937277 + 1.29005i
\(125\) 0.688059 + 11.1591i 0.0615419 + 0.998105i
\(126\) 0 0
\(127\) −0.183716 + 0.0936079i −0.0163021 + 0.00830635i −0.462123 0.886816i \(-0.652912\pi\)
0.445820 + 0.895122i \(0.352912\pi\)
\(128\) −2.02777 + 12.8028i −0.179231 + 1.13162i
\(129\) 0 0
\(130\) 4.96061 11.7871i 0.435074 1.03379i
\(131\) 0.551708i 0.0482029i 0.999710 + 0.0241015i \(0.00767248\pi\)
−0.999710 + 0.0241015i \(0.992328\pi\)
\(132\) 0 0
\(133\) 1.66950 + 1.66950i 0.144764 + 0.144764i
\(134\) 2.72821 + 8.39658i 0.235682 + 0.725354i
\(135\) 0 0
\(136\) 16.7516 12.1707i 1.43644 1.04363i
\(137\) −7.02615 13.7896i −0.600284 1.17812i −0.968647 0.248442i \(-0.920081\pi\)
0.368362 0.929682i \(-0.379919\pi\)
\(138\) 0 0
\(139\) 1.15101 0.836256i 0.0976272 0.0709303i −0.537901 0.843008i \(-0.680782\pi\)
0.635528 + 0.772078i \(0.280782\pi\)
\(140\) −15.2099 9.43929i −1.28547 0.797766i
\(141\) 0 0
\(142\) −12.1390 12.1390i −1.01868 1.01868i
\(143\) 0.559982 + 7.46065i 0.0468280 + 0.623891i
\(144\) 0 0
\(145\) −2.54705 + 6.05212i −0.211521 + 0.502601i
\(146\) 19.3704 + 14.0734i 1.60311 + 1.16473i
\(147\) 0 0
\(148\) −12.6598 + 6.45048i −1.04063 + 0.530226i
\(149\) 7.35615 22.6399i 0.602639 1.85473i 0.0903702 0.995908i \(-0.471195\pi\)
0.512269 0.858825i \(-0.328805\pi\)
\(150\) 0 0
\(151\) −8.45592 + 11.6386i −0.688133 + 0.947134i −0.999996 0.00299311i \(-0.999047\pi\)
0.311862 + 0.950127i \(0.399047\pi\)
\(152\) 7.16170 + 3.64907i 0.580891 + 0.295979i
\(153\) 0 0
\(154\) 15.1517 + 1.24771i 1.22096 + 0.100543i
\(155\) 6.78574 + 5.86223i 0.545044 + 0.470866i
\(156\) 0 0
\(157\) 13.3277 2.11091i 1.06367 0.168469i 0.400016 0.916508i \(-0.369005\pi\)
0.663654 + 0.748040i \(0.269005\pi\)
\(158\) 2.86747 + 0.454163i 0.228124 + 0.0361312i
\(159\) 0 0
\(160\) −10.4266 2.56562i −0.824291 0.202830i
\(161\) −4.75657 6.54686i −0.374870 0.515965i
\(162\) 0 0
\(163\) −0.487228 + 0.956239i −0.0381626 + 0.0748984i −0.909300 0.416140i \(-0.863383\pi\)
0.871138 + 0.491039i \(0.163383\pi\)
\(164\) 5.77242 0.450750
\(165\) 0 0
\(166\) 26.5315 2.05924
\(167\) 0.858874 1.68563i 0.0664616 0.130438i −0.855386 0.517992i \(-0.826680\pi\)
0.921847 + 0.387554i \(0.126680\pi\)
\(168\) 0 0
\(169\) −4.65019 6.40044i −0.357707 0.492342i
\(170\) −9.87255 16.3169i −0.757190 1.25145i
\(171\) 0 0
\(172\) −28.1671 4.46123i −2.14772 0.340166i
\(173\) −18.7140 + 2.96401i −1.42280 + 0.225350i −0.819919 0.572480i \(-0.805981\pi\)
−0.602883 + 0.797830i \(0.705981\pi\)
\(174\) 0 0
\(175\) −5.39599 + 7.25306i −0.407898 + 0.548280i
\(176\) 21.7861 5.14699i 1.64219 0.387969i
\(177\) 0 0
\(178\) 8.71383 + 4.43992i 0.653129 + 0.332786i
\(179\) 9.62961 13.2540i 0.719751 0.990652i −0.279781 0.960064i \(-0.590262\pi\)
0.999532 0.0305880i \(-0.00973800\pi\)
\(180\) 0 0
\(181\) 4.59306 14.1360i 0.341400 1.05072i −0.622084 0.782951i \(-0.713714\pi\)
0.963483 0.267769i \(-0.0862864\pi\)
\(182\) 9.21329 4.69440i 0.682934 0.347972i
\(183\) 0 0
\(184\) −22.2878 16.1930i −1.64307 1.19376i
\(185\) 2.70838 + 6.64461i 0.199124 + 0.488522i
\(186\) 0 0
\(187\) 9.49195 + 5.86407i 0.694120 + 0.428823i
\(188\) −24.1819 24.1819i −1.76365 1.76365i
\(189\) 0 0
\(190\) 3.90373 6.29021i 0.283206 0.456340i
\(191\) −1.54488 + 1.12242i −0.111784 + 0.0812156i −0.642273 0.766476i \(-0.722008\pi\)
0.530489 + 0.847692i \(0.322008\pi\)
\(192\) 0 0
\(193\) 5.16774 + 10.1423i 0.371982 + 0.730056i 0.998793 0.0491153i \(-0.0156402\pi\)
−0.626811 + 0.779171i \(0.715640\pi\)
\(194\) −1.59586 + 1.15946i −0.114576 + 0.0832446i
\(195\) 0 0
\(196\) 5.10504 + 15.7117i 0.364646 + 1.12226i
\(197\) −13.8092 13.8092i −0.983863 0.983863i 0.0160086 0.999872i \(-0.494904\pi\)
−0.999872 + 0.0160086i \(0.994904\pi\)
\(198\) 0 0
\(199\) 22.3508i 1.58441i −0.610258 0.792203i \(-0.708934\pi\)
0.610258 0.792203i \(-0.291066\pi\)
\(200\) −9.84050 + 29.1600i −0.695828 + 2.06192i
\(201\) 0 0
\(202\) −3.87394 + 24.4591i −0.272570 + 1.72094i
\(203\) −4.73060 + 2.41036i −0.332023 + 0.169174i
\(204\) 0 0
\(205\) 0.245143 2.90480i 0.0171215 0.202880i
\(206\) 6.96208 9.58248i 0.485071 0.667643i
\(207\) 0 0
\(208\) 10.7662 10.7662i 0.746501 0.746501i
\(209\) −0.355449 + 4.31646i −0.0245869 + 0.298576i
\(210\) 0 0
\(211\) −0.358113 + 0.116358i −0.0246535 + 0.00801042i −0.321318 0.946971i \(-0.604126\pi\)
0.296664 + 0.954982i \(0.404126\pi\)
\(212\) −27.8532 + 4.41152i −1.91297 + 0.302984i
\(213\) 0 0
\(214\) 36.8958 + 11.9882i 2.52215 + 0.819495i
\(215\) −3.44119 + 13.9848i −0.234687 + 0.953758i
\(216\) 0 0
\(217\) 1.13426 + 7.16142i 0.0769984 + 0.486149i
\(218\) 20.5843 40.3989i 1.39414 2.73616i
\(219\) 0 0
\(220\) −4.83583 32.4792i −0.326032 2.18974i
\(221\) 7.58859 0.510464
\(222\) 0 0
\(223\) 1.19037 + 7.51570i 0.0797131 + 0.503289i 0.994950 + 0.100372i \(0.0320034\pi\)
−0.915237 + 0.402916i \(0.867997\pi\)
\(224\) −5.10321 7.02396i −0.340972 0.469308i
\(225\) 0 0
\(226\) −18.0107 5.85204i −1.19806 0.389272i
\(227\) 8.10167 + 1.28318i 0.537727 + 0.0851676i 0.419390 0.907806i \(-0.362244\pi\)
0.118336 + 0.992974i \(0.462244\pi\)
\(228\) 0 0
\(229\) 7.21772 2.34518i 0.476960 0.154974i −0.0606641 0.998158i \(-0.519322\pi\)
0.537624 + 0.843184i \(0.319322\pi\)
\(230\) −16.5878 + 19.2010i −1.09377 + 1.26608i
\(231\) 0 0
\(232\) −12.7807 + 12.7807i −0.839092 + 0.839092i
\(233\) 23.3597 + 11.9023i 1.53034 + 0.779749i 0.997777 0.0666396i \(-0.0212278\pi\)
0.532566 + 0.846388i \(0.321228\pi\)
\(234\) 0 0
\(235\) −13.1958 + 11.1419i −0.860801 + 0.726818i
\(236\) −16.9496 + 52.1656i −1.10333 + 3.39569i
\(237\) 0 0
\(238\) 2.41228 15.2305i 0.156365 0.987248i
\(239\) 1.84133 + 1.33781i 0.119106 + 0.0865356i 0.645744 0.763554i \(-0.276548\pi\)
−0.526638 + 0.850090i \(0.676548\pi\)
\(240\) 0 0
\(241\) 6.29531i 0.405517i 0.979229 + 0.202758i \(0.0649906\pi\)
−0.979229 + 0.202758i \(0.935009\pi\)
\(242\) 16.2285 + 22.6803i 1.04321 + 1.45795i
\(243\) 0 0
\(244\) 12.7385 + 39.2050i 0.815498 + 2.50984i
\(245\) 8.12326 1.90172i 0.518976 0.121496i
\(246\) 0 0
\(247\) 1.33735 + 2.62470i 0.0850936 + 0.167006i
\(248\) 11.2062 + 21.9934i 0.711596 + 1.39658i
\(249\) 0 0
\(250\) 26.0002 + 11.2899i 1.64439 + 0.714037i
\(251\) 8.21826 + 25.2932i 0.518732 + 1.59649i 0.776387 + 0.630256i \(0.217050\pi\)
−0.257655 + 0.966237i \(0.582950\pi\)
\(252\) 0 0
\(253\) 3.51766 14.4218i 0.221153 0.906690i
\(254\) 0.522752i 0.0328004i
\(255\) 0 0
\(256\) 24.4439 + 17.7595i 1.52774 + 1.10997i
\(257\) −3.09337 + 19.5307i −0.192959 + 1.21829i 0.680996 + 0.732287i \(0.261547\pi\)
−0.873955 + 0.486007i \(0.838453\pi\)
\(258\) 0 0
\(259\) −1.79286 + 5.51786i −0.111403 + 0.342863i
\(260\) −14.4086 17.0648i −0.893586 1.05831i
\(261\) 0 0
\(262\) 1.24629 + 0.635018i 0.0769962 + 0.0392315i
\(263\) 5.91748 5.91748i 0.364888 0.364888i −0.500721 0.865609i \(-0.666932\pi\)
0.865609 + 0.500721i \(0.166932\pi\)
\(264\) 0 0
\(265\) 1.03710 + 14.2037i 0.0637085 + 0.872526i
\(266\) 5.69297 1.84976i 0.349058 0.113416i
\(267\) 0 0
\(268\) 15.2290 + 2.41203i 0.930258 + 0.147338i
\(269\) 9.23539 + 3.00076i 0.563092 + 0.182960i 0.576712 0.816948i \(-0.304336\pi\)
−0.0136201 + 0.999907i \(0.504336\pi\)
\(270\) 0 0
\(271\) 1.79360 + 2.46868i 0.108954 + 0.149962i 0.860012 0.510274i \(-0.170456\pi\)
−0.751058 + 0.660236i \(0.770456\pi\)
\(272\) −3.55198 22.4263i −0.215370 1.35979i
\(273\) 0 0
\(274\) −39.2374 −2.37042
\(275\) −16.5496 + 1.05417i −0.997977 + 0.0635687i
\(276\) 0 0
\(277\) −1.08057 + 2.12073i −0.0649249 + 0.127422i −0.921188 0.389117i \(-0.872780\pi\)
0.856263 + 0.516540i \(0.172780\pi\)
\(278\) −0.564265 3.56263i −0.0338424 0.213672i
\(279\) 0 0
\(280\) −21.2905 + 12.8819i −1.27235 + 0.769839i
\(281\) −26.8503 8.72419i −1.60175 0.520442i −0.634214 0.773157i \(-0.718676\pi\)
−0.967541 + 0.252716i \(0.918676\pi\)
\(282\) 0 0
\(283\) 16.8040 2.66149i 0.998893 0.158209i 0.364486 0.931209i \(-0.381245\pi\)
0.634406 + 0.773000i \(0.281245\pi\)
\(284\) −28.5141 + 9.26479i −1.69200 + 0.549764i
\(285\) 0 0
\(286\) 17.4979 + 7.32225i 1.03467 + 0.432974i
\(287\) 1.66672 1.66672i 0.0983831 0.0983831i
\(288\) 0 0
\(289\) −3.34052 + 4.59783i −0.196501 + 0.270461i
\(290\) 10.7399 + 12.7197i 0.630669 + 0.746927i
\(291\) 0 0
\(292\) 37.2578 18.9838i 2.18035 1.11094i
\(293\) 1.67148 10.5533i 0.0976492 0.616533i −0.889525 0.456886i \(-0.848965\pi\)
0.987174 0.159646i \(-0.0510354\pi\)
\(294\) 0 0
\(295\) 25.5311 + 10.7448i 1.48648 + 0.625586i
\(296\) 19.7514i 1.14803i
\(297\) 0 0
\(298\) −42.6760 42.6760i −2.47215 2.47215i
\(299\) −3.12000 9.60236i −0.180434 0.555319i
\(300\) 0 0
\(301\) −9.42104 + 6.84479i −0.543020 + 0.394527i
\(302\) 16.5584 + 32.4977i 0.952831 + 1.87004i
\(303\) 0 0
\(304\) 7.13071 5.18077i 0.408975 0.297137i
\(305\) 20.2698 4.74532i 1.16064 0.271716i
\(306\) 0 0
\(307\) −22.9923 22.9923i −1.31224 1.31224i −0.919763 0.392474i \(-0.871619\pi\)
−0.392474 0.919763i \(-0.628381\pi\)
\(308\) 13.9549 22.5882i 0.795154 1.28708i
\(309\) 0 0
\(310\) 21.0530 8.58134i 1.19573 0.487388i
\(311\) 11.2361 + 8.16354i 0.637143 + 0.462912i 0.858868 0.512198i \(-0.171168\pi\)
−0.221724 + 0.975109i \(0.571168\pi\)
\(312\) 0 0
\(313\) −15.4928 + 7.89399i −0.875707 + 0.446195i −0.833245 0.552903i \(-0.813520\pi\)
−0.0424612 + 0.999098i \(0.513520\pi\)
\(314\) 10.5718 32.5367i 0.596601 1.83615i
\(315\) 0 0
\(316\) 2.98025 4.10196i 0.167652 0.230753i
\(317\) −14.3960 7.33513i −0.808560 0.411982i 0.000287853 1.00000i \(-0.499908\pi\)
−0.808848 + 0.588018i \(0.799908\pi\)
\(318\) 0 0
\(319\) −8.98439 3.75964i −0.503029 0.210500i
\(320\) 1.93639 2.24144i 0.108248 0.125300i
\(321\) 0 0
\(322\) −20.2640 + 3.20950i −1.12927 + 0.178859i
\(323\) 4.33890 + 0.687214i 0.241423 + 0.0382376i
\(324\) 0 0
\(325\) −9.19926 + 6.52603i −0.510283 + 0.361999i
\(326\) 1.59932 + 2.20127i 0.0885779 + 0.121917i
\(327\) 0 0
\(328\) 3.64298 7.14975i 0.201150 0.394779i
\(329\) −13.9645 −0.769887
\(330\) 0 0
\(331\) 14.6837 0.807090 0.403545 0.914960i \(-0.367778\pi\)
0.403545 + 0.914960i \(0.367778\pi\)
\(332\) 21.0360 41.2854i 1.15450 2.26583i
\(333\) 0 0
\(334\) −2.81924 3.88034i −0.154262 0.212323i
\(335\) 1.86053 7.56111i 0.101652 0.413108i
\(336\) 0 0
\(337\) −13.3250 2.11047i −0.725859 0.114965i −0.217439 0.976074i \(-0.569770\pi\)
−0.508420 + 0.861109i \(0.669770\pi\)
\(338\) −19.8108 + 3.13772i −1.07757 + 0.170670i
\(339\) 0 0
\(340\) −33.2182 + 2.42547i −1.80151 + 0.131539i
\(341\) −8.67464 + 10.0825i −0.469758 + 0.545999i
\(342\) 0 0
\(343\) 17.2873 + 8.80832i 0.933426 + 0.475604i
\(344\) −23.3020 + 32.0725i −1.25636 + 1.72923i
\(345\) 0 0
\(346\) −14.8443 + 45.6861i −0.798035 + 2.45610i
\(347\) −10.9022 + 5.55495i −0.585261 + 0.298205i −0.721438 0.692479i \(-0.756518\pi\)
0.136177 + 0.990685i \(0.456518\pi\)
\(348\) 0 0
\(349\) −16.4807 11.9739i −0.882193 0.640951i 0.0516378 0.998666i \(-0.483556\pi\)
−0.933831 + 0.357715i \(0.883556\pi\)
\(350\) 10.1737 + 20.5377i 0.543805 + 1.09779i
\(351\) 0 0
\(352\) 3.77401 15.4728i 0.201156 0.824702i
\(353\) −13.7886 13.7886i −0.733893 0.733893i 0.237495 0.971389i \(-0.423674\pi\)
−0.971389 + 0.237495i \(0.923674\pi\)
\(354\) 0 0
\(355\) 3.45131 + 14.7424i 0.183176 + 0.782444i
\(356\) 13.8179 10.0393i 0.732345 0.532079i
\(357\) 0 0
\(358\) −18.8567 37.0084i −0.996610 1.95596i
\(359\) −13.3648 + 9.71011i −0.705368 + 0.512480i −0.881676 0.471855i \(-0.843585\pi\)
0.176308 + 0.984335i \(0.443585\pi\)
\(360\) 0 0
\(361\) −5.34436 16.4483i −0.281282 0.865697i
\(362\) −26.6462 26.6462i −1.40049 1.40049i
\(363\) 0 0
\(364\) 18.0588i 0.946537i
\(365\) −7.97079 19.5551i −0.417210 1.02356i
\(366\) 0 0
\(367\) −1.00765 + 6.36207i −0.0525990 + 0.332097i 0.947331 + 0.320256i \(0.103769\pi\)
−0.999930 + 0.0118406i \(0.996231\pi\)
\(368\) −26.9172 + 13.7150i −1.40315 + 0.714943i
\(369\) 0 0
\(370\) 18.1274 + 1.52981i 0.942396 + 0.0795310i
\(371\) −6.76851 + 9.31606i −0.351404 + 0.483666i
\(372\) 0 0
\(373\) 9.69631 9.69631i 0.502056 0.502056i −0.410021 0.912076i \(-0.634478\pi\)
0.912076 + 0.410021i \(0.134478\pi\)
\(374\) 24.1720 14.6925i 1.24991 0.759730i
\(375\) 0 0
\(376\) −45.2131 + 14.6906i −2.33169 + 0.757612i
\(377\) −6.54262 + 1.03625i −0.336962 + 0.0533696i
\(378\) 0 0
\(379\) 20.4487 + 6.64419i 1.05038 + 0.341289i 0.782818 0.622251i \(-0.213782\pi\)
0.267563 + 0.963540i \(0.413782\pi\)
\(380\) −6.69301 11.0619i −0.343344 0.567463i
\(381\) 0 0
\(382\) 0.757356 + 4.78176i 0.0387497 + 0.244656i
\(383\) 0.137756 0.270362i 0.00703902 0.0138148i −0.887460 0.460884i \(-0.847532\pi\)
0.894499 + 0.447069i \(0.147532\pi\)
\(384\) 0 0
\(385\) −10.7743 7.98168i −0.549107 0.406784i
\(386\) 28.8592 1.46889
\(387\) 0 0
\(388\) 0.538921 + 3.40262i 0.0273596 + 0.172742i
\(389\) −2.11680 2.91353i −0.107326 0.147722i 0.751975 0.659191i \(-0.229101\pi\)
−0.859301 + 0.511470i \(0.829101\pi\)
\(390\) 0 0
\(391\) −14.3199 4.65281i −0.724187 0.235303i
\(392\) 22.6824 + 3.59254i 1.14563 + 0.181451i
\(393\) 0 0
\(394\) −47.0890 + 15.3001i −2.37231 + 0.770810i
\(395\) −1.93763 1.67393i −0.0974927 0.0842244i
\(396\) 0 0
\(397\) 22.1781 22.1781i 1.11309 1.11309i 0.120357 0.992731i \(-0.461596\pi\)
0.992731 0.120357i \(-0.0384039\pi\)
\(398\) −50.4898 25.7259i −2.53083 1.28952i
\(399\) 0 0
\(400\) 23.5920 + 24.1316i 1.17960 + 1.20658i
\(401\) 3.08934 9.50802i 0.154274 0.474808i −0.843812 0.536639i \(-0.819694\pi\)
0.998087 + 0.0618306i \(0.0196939\pi\)
\(402\) 0 0
\(403\) −1.41517 + 8.93502i −0.0704945 + 0.445085i
\(404\) 34.9891 + 25.4211i 1.74077 + 1.26475i
\(405\) 0 0
\(406\) 13.4606i 0.668040i
\(407\) −9.84737 + 4.03719i −0.488116 + 0.200116i
\(408\) 0 0
\(409\) −9.39140 28.9037i −0.464375 1.42920i −0.859767 0.510686i \(-0.829391\pi\)
0.395393 0.918512i \(-0.370609\pi\)
\(410\) −6.27971 3.89721i −0.310133 0.192470i
\(411\) 0 0
\(412\) −9.39122 18.4313i −0.462672 0.908045i
\(413\) 10.1682 + 19.9562i 0.500344 + 0.981981i
\(414\) 0 0
\(415\) −19.8824 12.3391i −0.975987 0.605701i
\(416\) −3.34737 10.3021i −0.164118 0.505104i
\(417\) 0 0
\(418\) 9.34163 + 5.77121i 0.456914 + 0.282279i
\(419\) 7.48185i 0.365512i −0.983158 0.182756i \(-0.941498\pi\)
0.983158 0.182756i \(-0.0585019\pi\)
\(420\) 0 0
\(421\) −16.5226 12.0043i −0.805260 0.585056i 0.107192 0.994238i \(-0.465814\pi\)
−0.912453 + 0.409182i \(0.865814\pi\)
\(422\) −0.149340 + 0.942896i −0.00726976 + 0.0458995i
\(423\) 0 0
\(424\) −12.1141 + 37.2833i −0.588311 + 1.81064i
\(425\) −0.190165 + 16.8191i −0.00922437 + 0.815847i
\(426\) 0 0
\(427\) 14.9981 + 7.64189i 0.725807 + 0.369817i
\(428\) 47.9083 47.9083i 2.31573 2.31573i
\(429\) 0 0
\(430\) 27.6305 + 23.8702i 1.33246 + 1.15112i
\(431\) 32.0182 10.4034i 1.54226 0.501112i 0.590264 0.807210i \(-0.299024\pi\)
0.952000 + 0.306098i \(0.0990236\pi\)
\(432\) 0 0
\(433\) 11.4564 + 1.81451i 0.550557 + 0.0871997i 0.425514 0.904952i \(-0.360093\pi\)
0.125043 + 0.992151i \(0.460093\pi\)
\(434\) 17.4830 + 5.68056i 0.839210 + 0.272676i
\(435\) 0 0
\(436\) −46.5438 64.0620i −2.22904 3.06801i
\(437\) −0.914330 5.77285i −0.0437383 0.276153i
\(438\) 0 0
\(439\) −10.7242 −0.511837 −0.255918 0.966698i \(-0.582378\pi\)
−0.255918 + 0.966698i \(0.582378\pi\)
\(440\) −43.2808 14.5079i −2.06333 0.691639i
\(441\) 0 0
\(442\) 8.73450 17.1424i 0.415458 0.815382i
\(443\) 6.30958 + 39.8371i 0.299777 + 1.89272i 0.432612 + 0.901580i \(0.357592\pi\)
−0.132835 + 0.991138i \(0.542408\pi\)
\(444\) 0 0
\(445\) −4.46515 7.37979i −0.211669 0.349836i
\(446\) 18.3479 + 5.96159i 0.868797 + 0.282289i
\(447\) 0 0
\(448\) 2.36553 0.374664i 0.111761 0.0177012i
\(449\) −3.46337 + 1.12532i −0.163447 + 0.0531070i −0.389597 0.920985i \(-0.627386\pi\)
0.226151 + 0.974092i \(0.427386\pi\)
\(450\) 0 0
\(451\) 4.30925 + 0.354856i 0.202915 + 0.0167095i
\(452\) −23.3865 + 23.3865i −1.10001 + 1.10001i
\(453\) 0 0
\(454\) 12.2237 16.8245i 0.573688 0.789613i
\(455\) −9.08757 0.766921i −0.426032 0.0359538i
\(456\) 0 0
\(457\) −16.1207 + 8.21391i −0.754094 + 0.384230i −0.788385 0.615182i \(-0.789083\pi\)
0.0342910 + 0.999412i \(0.489083\pi\)
\(458\) 3.00993 19.0039i 0.140645 0.887996i
\(459\) 0 0
\(460\) 16.7265 + 41.0361i 0.779879 + 1.91332i
\(461\) 35.5884i 1.65751i −0.559608 0.828757i \(-0.689048\pi\)
0.559608 0.828757i \(-0.310952\pi\)
\(462\) 0 0
\(463\) −4.46802 4.46802i −0.207647 0.207647i 0.595620 0.803266i \(-0.296907\pi\)
−0.803266 + 0.595620i \(0.796907\pi\)
\(464\) 6.12479 + 18.8502i 0.284336 + 0.875097i
\(465\) 0 0
\(466\) 53.7742 39.0692i 2.49104 1.80985i
\(467\) −3.92827 7.70967i −0.181779 0.356761i 0.782079 0.623180i \(-0.214160\pi\)
−0.963857 + 0.266419i \(0.914160\pi\)
\(468\) 0 0
\(469\) 5.09363 3.70074i 0.235202 0.170884i
\(470\) 9.98082 + 42.6334i 0.460381 + 1.96653i
\(471\) 0 0
\(472\) 53.9157 + 53.9157i 2.48167 + 2.48167i
\(473\) −20.7532 5.06198i −0.954233 0.232750i
\(474\) 0 0
\(475\) −5.85082 + 2.89829i −0.268454 + 0.132983i
\(476\) −21.7875 15.8295i −0.998628 0.725545i
\(477\) 0 0
\(478\) 5.14145 2.61970i 0.235165 0.119822i
\(479\) −4.75378 + 14.6306i −0.217206 + 0.668490i 0.781784 + 0.623549i \(0.214310\pi\)
−0.998990 + 0.0449410i \(0.985690\pi\)
\(480\) 0 0
\(481\) −4.25480 + 5.85623i −0.194002 + 0.267021i
\(482\) 14.2209 + 7.24593i 0.647746 + 0.330043i
\(483\) 0 0
\(484\) 48.1597 7.27051i 2.18908 0.330478i
\(485\) 1.73516 0.126694i 0.0787894 0.00575290i
\(486\) 0 0
\(487\) −5.87316 + 0.930218i −0.266138 + 0.0421522i −0.288077 0.957607i \(-0.593016\pi\)
0.0219390 + 0.999759i \(0.493016\pi\)
\(488\) 56.5988 + 8.96437i 2.56211 + 0.405798i
\(489\) 0 0
\(490\) 5.05397 20.5391i 0.228315 0.927863i
\(491\) −24.0702 33.1298i −1.08627 1.49513i −0.852422 0.522855i \(-0.824867\pi\)
−0.233851 0.972272i \(-0.575133\pi\)
\(492\) 0 0
\(493\) −4.48477 + 8.80185i −0.201984 + 0.396415i
\(494\) 7.46842 0.336020
\(495\) 0 0
\(496\) 27.0678 1.21538
\(497\) −5.55801 + 10.9082i −0.249311 + 0.489300i
\(498\) 0 0
\(499\) 13.6289 + 18.7585i 0.610111 + 0.839746i 0.996587 0.0825534i \(-0.0263075\pi\)
−0.386475 + 0.922300i \(0.626308\pi\)
\(500\) 38.1829 31.5072i 1.70759 1.40905i
\(501\) 0 0
\(502\) 66.5959 + 10.5478i 2.97232 + 0.470769i
\(503\) 3.30226 0.523026i 0.147240 0.0233206i −0.0823791 0.996601i \(-0.526252\pi\)
0.229619 + 0.973280i \(0.426252\pi\)
\(504\) 0 0
\(505\) 14.2784 16.5277i 0.635379 0.735473i
\(506\) −28.5296 24.5458i −1.26829 1.09120i
\(507\) 0 0
\(508\) 0.813450 + 0.414474i 0.0360910 + 0.0183893i
\(509\) 13.0172 17.9166i 0.576977 0.794141i −0.416383 0.909189i \(-0.636702\pi\)
0.993360 + 0.115049i \(0.0367024\pi\)
\(510\) 0 0
\(511\) 5.27640 16.2391i 0.233414 0.718375i
\(512\) 45.1541 23.0072i 1.99555 1.01678i
\(513\) 0 0
\(514\) 40.5589 + 29.4678i 1.78898 + 1.29977i
\(515\) −9.67385 + 3.94312i −0.426281 + 0.173755i
\(516\) 0 0
\(517\) −16.5658 19.5390i −0.728565 0.859323i
\(518\) 10.4011 + 10.4011i 0.456998 + 0.456998i
\(519\) 0 0
\(520\) −30.2298 + 7.07704i −1.32567 + 0.310349i
\(521\) −8.59679 + 6.24594i −0.376632 + 0.273639i −0.759956 0.649975i \(-0.774779\pi\)
0.383323 + 0.923614i \(0.374779\pi\)
\(522\) 0 0
\(523\) 19.6244 + 38.5151i 0.858116 + 1.68415i 0.720269 + 0.693694i \(0.244018\pi\)
0.137847 + 0.990454i \(0.455982\pi\)
\(524\) 1.97629 1.43586i 0.0863348 0.0627259i
\(525\) 0 0
\(526\) −6.55638 20.1785i −0.285872 0.879823i
\(527\) 9.53941 + 9.53941i 0.415543 + 0.415543i
\(528\) 0 0
\(529\) 2.96712i 0.129005i
\(530\) 33.2795 + 14.0057i 1.44557 + 0.608370i
\(531\) 0 0
\(532\) 1.63538 10.3254i 0.0709028 0.447663i
\(533\) 2.62032 1.33512i 0.113499 0.0578304i
\(534\) 0 0
\(535\) −22.0739 26.1430i −0.954338 1.13026i
\(536\) 12.5986 17.3405i 0.544176 0.748994i
\(537\) 0 0
\(538\) 17.4086 17.4086i 0.750538 0.750538i
\(539\) 2.84517 + 12.0430i 0.122550 + 0.518728i
\(540\) 0 0
\(541\) −20.0780 + 6.52373i −0.863220 + 0.280477i −0.706973 0.707241i \(-0.749940\pi\)
−0.156247 + 0.987718i \(0.549940\pi\)
\(542\) 7.64114 1.21024i 0.328215 0.0519841i
\(543\) 0 0
\(544\) −15.3634 4.99188i −0.658702 0.214025i
\(545\) −34.2140 + 20.7012i −1.46557 + 0.886744i
\(546\) 0 0
\(547\) 0.218056 + 1.37675i 0.00932342 + 0.0588658i 0.991911 0.126932i \(-0.0405130\pi\)
−0.982588 + 0.185798i \(0.940513\pi\)
\(548\) −31.1101 + 61.0571i −1.32896 + 2.60823i
\(549\) 0 0
\(550\) −16.6673 + 38.5984i −0.710696 + 1.64584i
\(551\) −3.83469 −0.163363
\(552\) 0 0
\(553\) −0.323881 2.04490i −0.0137728 0.0869581i
\(554\) 3.54693 + 4.88193i 0.150695 + 0.207414i
\(555\) 0 0
\(556\) −5.99117 1.94665i −0.254082 0.0825563i
\(557\) 3.78516 + 0.599510i 0.160382 + 0.0254021i 0.236109 0.971727i \(-0.424128\pi\)
−0.0757269 + 0.997129i \(0.524128\pi\)
\(558\) 0 0
\(559\) −13.8180 + 4.48973i −0.584438 + 0.189895i
\(560\) 1.98715 + 27.2152i 0.0839722 + 1.15005i
\(561\) 0 0
\(562\) −50.6125 + 50.6125i −2.13496 + 2.13496i
\(563\) 2.17596 + 1.10871i 0.0917058 + 0.0467264i 0.499242 0.866463i \(-0.333612\pi\)
−0.407536 + 0.913189i \(0.633612\pi\)
\(564\) 0 0
\(565\) 10.7754 + 12.7617i 0.453324 + 0.536891i
\(566\) 13.3292 41.0231i 0.560269 1.72433i
\(567\) 0 0
\(568\) −6.51986 + 41.1648i −0.273567 + 1.72723i
\(569\) 5.21403 + 3.78822i 0.218584 + 0.158810i 0.691689 0.722196i \(-0.256867\pi\)
−0.473105 + 0.881006i \(0.656867\pi\)
\(570\) 0 0
\(571\) 13.2864i 0.556019i 0.960578 + 0.278009i \(0.0896747\pi\)
−0.960578 + 0.278009i \(0.910325\pi\)
\(572\) 25.2677 21.4228i 1.05649 0.895733i
\(573\) 0 0
\(574\) −1.84667 5.68346i −0.0770785 0.237223i
\(575\) 21.3606 6.67444i 0.890797 0.278343i
\(576\) 0 0
\(577\) −8.50263 16.6874i −0.353969 0.694704i 0.643527 0.765423i \(-0.277470\pi\)
−0.997496 + 0.0707197i \(0.977470\pi\)
\(578\) 6.54143 + 12.8383i 0.272088 + 0.534002i
\(579\) 0 0
\(580\) 28.3084 6.62722i 1.17544 0.275180i
\(581\) −5.84679 17.9946i −0.242566 0.746540i
\(582\) 0 0
\(583\) −21.0643 + 1.58105i −0.872395 + 0.0654803i
\(584\) 58.1284i 2.40537i
\(585\) 0 0
\(586\) −21.9158 15.9228i −0.905334 0.657764i
\(587\) 1.31860 8.32531i 0.0544244 0.343622i −0.945418 0.325861i \(-0.894346\pi\)
0.999842 0.0177617i \(-0.00565403\pi\)
\(588\) 0 0
\(589\) −1.61829 + 4.98059i −0.0666805 + 0.205221i
\(590\) 53.6585 45.3066i 2.20909 1.86524i
\(591\) 0 0
\(592\) 19.2983 + 9.83295i 0.793153 + 0.404132i
\(593\) −4.37233 + 4.37233i −0.179550 + 0.179550i −0.791160 0.611610i \(-0.790522\pi\)
0.611610 + 0.791160i \(0.290522\pi\)
\(594\) 0 0
\(595\) −8.89103 + 10.2917i −0.364497 + 0.421918i
\(596\) −100.244 + 32.5713i −4.10616 + 1.33417i
\(597\) 0 0
\(598\) −25.2826 4.00437i −1.03388 0.163751i
\(599\) −34.7989 11.3068i −1.42184 0.461985i −0.505656 0.862735i \(-0.668750\pi\)
−0.916187 + 0.400750i \(0.868750\pi\)
\(600\) 0 0
\(601\) 6.33088 + 8.71371i 0.258242 + 0.355440i 0.918376 0.395708i \(-0.129501\pi\)
−0.660134 + 0.751147i \(0.729501\pi\)
\(602\) 4.61853 + 29.1603i 0.188237 + 1.18848i
\(603\) 0 0
\(604\) 63.6982 2.59184
\(605\) −1.61343 24.5438i −0.0655952 0.997846i
\(606\) 0 0
\(607\) 15.0249 29.4880i 0.609842 1.19688i −0.355201 0.934790i \(-0.615588\pi\)
0.965043 0.262092i \(-0.0844124\pi\)
\(608\) −0.980962 6.19355i −0.0397833 0.251182i
\(609\) 0 0
\(610\) 12.6111 51.2508i 0.510607 2.07508i
\(611\) −16.5702 5.38398i −0.670359 0.217813i
\(612\) 0 0
\(613\) −21.3721 + 3.38501i −0.863213 + 0.136719i −0.572314 0.820034i \(-0.693954\pi\)
−0.290898 + 0.956754i \(0.593954\pi\)
\(614\) −78.4030 + 25.4747i −3.16409 + 1.02807i
\(615\) 0 0
\(616\) −19.1710 31.5401i −0.772421 1.27079i
\(617\) 23.2611 23.2611i 0.936455 0.936455i −0.0616431 0.998098i \(-0.519634\pi\)
0.998098 + 0.0616431i \(0.0196341\pi\)
\(618\) 0 0
\(619\) 24.3484 33.5126i 0.978643 1.34699i 0.0410856 0.999156i \(-0.486918\pi\)
0.937557 0.347831i \(-0.113082\pi\)
\(620\) 3.33893 39.5644i 0.134095 1.58894i
\(621\) 0 0
\(622\) 31.3741 15.9859i 1.25798 0.640975i
\(623\) 1.09102 6.88845i 0.0437109 0.275980i
\(624\) 0 0
\(625\) −14.2336 20.5525i −0.569343 0.822100i
\(626\) 44.0839i 1.76195i
\(627\) 0 0
\(628\) −42.2480 42.2480i −1.68588 1.68588i
\(629\) 3.33583 + 10.2666i 0.133008 + 0.409357i
\(630\) 0 0
\(631\) 25.4513 18.4915i 1.01320 0.736134i 0.0483238 0.998832i \(-0.484612\pi\)
0.964878 + 0.262697i \(0.0846121\pi\)
\(632\) −3.19987 6.28010i −0.127284 0.249809i
\(633\) 0 0
\(634\) −33.1397 + 24.0774i −1.31615 + 0.956236i
\(635\) 0.243118 0.391744i 0.00964783 0.0155459i
\(636\) 0 0
\(637\) 5.95137 + 5.95137i 0.235802 + 0.235802i
\(638\) −18.8340 + 15.9681i −0.745645 + 0.632184i
\(639\) 0 0
\(640\) −10.9404 26.8407i −0.432459 1.06097i
\(641\) 16.6022 + 12.0622i 0.655749 + 0.476430i 0.865225 0.501384i \(-0.167176\pi\)
−0.209476 + 0.977814i \(0.567176\pi\)
\(642\) 0 0
\(643\) 15.7020 8.00058i 0.619228 0.315512i −0.116086 0.993239i \(-0.537035\pi\)
0.735314 + 0.677727i \(0.237035\pi\)
\(644\) −11.0724 + 34.0774i −0.436314 + 1.34284i
\(645\) 0 0
\(646\) 6.54649 9.01047i 0.257568 0.354512i
\(647\) −5.13354 2.61567i −0.201820 0.102833i 0.350159 0.936690i \(-0.386127\pi\)
−0.551980 + 0.833857i \(0.686127\pi\)
\(648\) 0 0
\(649\) −15.8602 + 37.9010i −0.622566 + 1.48774i
\(650\) 4.15374 + 28.2924i 0.162923 + 1.10972i
\(651\) 0 0
\(652\) 4.69343 0.743366i 0.183809 0.0291125i
\(653\) −5.76236 0.912669i −0.225499 0.0357155i 0.0426625 0.999090i \(-0.486416\pi\)
−0.268161 + 0.963374i \(0.586416\pi\)
\(654\) 0 0
\(655\) −0.638627 1.05549i −0.0249532 0.0412415i
\(656\) −5.17212 7.11881i −0.201937 0.277943i
\(657\) 0 0
\(658\) −16.0732 + 31.5454i −0.626598 + 1.22977i
\(659\) 5.21347 0.203088 0.101544 0.994831i \(-0.467622\pi\)
0.101544 + 0.994831i \(0.467622\pi\)
\(660\) 0 0
\(661\) 4.56016 0.177369 0.0886847 0.996060i \(-0.471734\pi\)
0.0886847 + 0.996060i \(0.471734\pi\)
\(662\) 16.9010 33.1701i 0.656877 1.28919i
\(663\) 0 0
\(664\) −37.8606 52.1106i −1.46927 2.02228i
\(665\) −5.12651 1.26146i −0.198798 0.0489173i
\(666\) 0 0
\(667\) 12.9815 + 2.05606i 0.502644 + 0.0796110i
\(668\) −8.27346 + 1.31039i −0.320110 + 0.0507004i
\(669\) 0 0
\(670\) −14.9389 12.9058i −0.577139 0.498593i
\(671\) 7.09949 + 30.0506i 0.274073 + 1.16009i
\(672\) 0 0
\(673\) −0.498417 0.253956i −0.0192126 0.00978930i 0.444358 0.895849i \(-0.353432\pi\)
−0.463570 + 0.886060i \(0.653432\pi\)
\(674\) −20.1046 + 27.6716i −0.774401 + 1.06587i
\(675\) 0 0
\(676\) −10.8248 + 33.3153i −0.416338 + 1.28136i
\(677\) 25.9390 13.2166i 0.996918 0.507955i 0.122157 0.992511i \(-0.461019\pi\)
0.874760 + 0.484556i \(0.161019\pi\)
\(678\) 0 0
\(679\) 1.13807 + 0.826858i 0.0436752 + 0.0317319i
\(680\) −17.9599 + 42.6750i −0.688729 + 1.63651i
\(681\) 0 0
\(682\) 12.7916 + 31.2008i 0.489815 + 1.19474i
\(683\) −5.43554 5.43554i −0.207985 0.207985i 0.595425 0.803411i \(-0.296984\pi\)
−0.803411 + 0.595425i \(0.796984\pi\)
\(684\) 0 0
\(685\) 29.4041 + 18.2483i 1.12347 + 0.697231i
\(686\) 39.7955 28.9131i 1.51940 1.10391i
\(687\) 0 0
\(688\) 19.7361 + 38.7343i 0.752432 + 1.47673i
\(689\) −11.6233 + 8.44481i −0.442812 + 0.321722i
\(690\) 0 0
\(691\) −2.91716 8.97809i −0.110974 0.341542i 0.880112 0.474766i \(-0.157467\pi\)
−0.991086 + 0.133223i \(0.957467\pi\)
\(692\) 59.3222 + 59.3222i 2.25509 + 2.25509i
\(693\) 0 0
\(694\) 31.0215i 1.17756i
\(695\) −1.23403 + 2.93222i −0.0468094 + 0.111225i
\(696\) 0 0
\(697\) 0.686067 4.33166i 0.0259866 0.164073i
\(698\) −46.0182 + 23.4474i −1.74181 + 0.887499i
\(699\) 0 0
\(700\) 40.0249 + 0.452542i 1.51280 + 0.0171045i
\(701\) 11.5843 15.9445i 0.437535 0.602215i −0.532127 0.846664i \(-0.678607\pi\)
0.969662 + 0.244449i \(0.0786072\pi\)
\(702\) 0 0
\(703\) −2.96308 + 2.96308i −0.111755 + 0.111755i
\(704\) 3.33042 + 2.86537i 0.125520 + 0.107993i
\(705\) 0 0
\(706\) −47.0188 + 15.2773i −1.76958 + 0.574970i
\(707\) 17.4427 2.76266i 0.656001 0.103900i
\(708\) 0 0
\(709\) −42.2836 13.7388i −1.58799 0.515970i −0.623893 0.781510i \(-0.714450\pi\)
−0.964100 + 0.265540i \(0.914450\pi\)
\(710\) 37.2751 + 9.17212i 1.39891 + 0.344224i
\(711\) 0 0
\(712\) −3.71422 23.4507i −0.139196 0.878850i
\(713\) 8.14881 15.9929i 0.305175 0.598940i
\(714\) 0 0
\(715\) −9.70736 13.6250i −0.363035 0.509547i
\(716\) −72.5395 −2.71093
\(717\) 0 0
\(718\) 6.55191 + 41.3671i 0.244515 + 1.54381i
\(719\) 14.1002 + 19.4073i 0.525850 + 0.723770i 0.986491 0.163816i \(-0.0523804\pi\)
−0.460641 + 0.887587i \(0.652380\pi\)
\(720\) 0 0
\(721\) −8.03342 2.61022i −0.299180 0.0972095i
\(722\) −43.3075 6.85924i −1.61174 0.255274i
\(723\) 0 0
\(724\) −62.5908 + 20.3370i −2.32617 + 0.755819i
\(725\) −2.13276 14.5268i −0.0792087 0.539513i
\(726\) 0 0
\(727\) −17.6187 + 17.6187i −0.653441 + 0.653441i −0.953820 0.300379i \(-0.902887\pi\)
0.300379 + 0.953820i \(0.402887\pi\)
\(728\) −22.3677 11.3969i −0.829002 0.422398i
\(729\) 0 0
\(730\) −53.3489 4.50224i −1.97453 0.166635i
\(731\) −6.69547 + 20.6065i −0.247641 + 0.762161i
\(732\) 0 0
\(733\) −0.00846331 + 0.0534353i −0.000312600 + 0.00197368i −0.987844 0.155448i \(-0.950318\pi\)
0.987532 + 0.157421i \(0.0503180\pi\)
\(734\) 13.2119 + 9.59902i 0.487661 + 0.354306i
\(735\) 0 0
\(736\) 21.4928i 0.792235i
\(737\) 11.2205 + 2.73683i 0.413313 + 0.100813i
\(738\) 0 0
\(739\) −5.95011 18.3126i −0.218878 0.673638i −0.998855 0.0478303i \(-0.984769\pi\)
0.779977 0.625808i \(-0.215231\pi\)
\(740\) 16.7531 26.9949i 0.615858 0.992352i
\(741\) 0 0
\(742\) 13.2541 + 26.0127i 0.486575 + 0.954957i
\(743\) 3.38155 + 6.63666i 0.124057 + 0.243475i 0.944679 0.327995i \(-0.106373\pi\)
−0.820622 + 0.571471i \(0.806373\pi\)
\(744\) 0 0
\(745\) 12.1334 + 51.8283i 0.444534 + 1.89884i
\(746\) −10.7432 33.0642i −0.393337 1.21057i
\(747\) 0 0
\(748\) −3.69760 49.2632i −0.135198 1.80124i
\(749\) 27.6659i 1.01089i
\(750\) 0 0
\(751\) 24.3907 + 17.7209i 0.890031 + 0.646645i 0.935886 0.352303i \(-0.114601\pi\)
−0.0458552 + 0.998948i \(0.514601\pi\)
\(752\) −8.15512 + 51.4894i −0.297387 + 1.87763i
\(753\) 0 0
\(754\) −5.18973 + 15.9723i −0.188999 + 0.581678i
\(755\) 2.70514 32.0543i 0.0984500 1.16658i
\(756\) 0 0
\(757\) 39.6521 + 20.2037i 1.44118 + 0.734318i 0.987614 0.156905i \(-0.0501516\pi\)
0.453566 + 0.891223i \(0.350152\pi\)
\(758\) 38.5456 38.5456i 1.40004 1.40004i
\(759\) 0 0
\(760\) −17.9253 + 1.30883i −0.650218 + 0.0474764i
\(761\) −44.8060 + 14.5584i −1.62422 + 0.527740i −0.972932 0.231093i \(-0.925770\pi\)
−0.651285 + 0.758833i \(0.725770\pi\)
\(762\) 0 0
\(763\) −31.9361 5.05818i −1.15616 0.183118i
\(764\) 8.04134 + 2.61279i 0.290926 + 0.0945274i
\(765\) 0 0
\(766\) −0.452182 0.622375i −0.0163380 0.0224873i
\(767\) 4.37145 + 27.6003i 0.157844 + 0.996588i
\(768\) 0 0
\(769\) 29.7849 1.07407 0.537036 0.843559i \(-0.319544\pi\)
0.537036 + 0.843559i \(0.319544\pi\)
\(770\) −30.4316 + 15.1518i −1.09668 + 0.546033i
\(771\) 0 0
\(772\) 22.8815 44.9076i 0.823525 1.61626i
\(773\) 1.11434 + 7.03566i 0.0400800 + 0.253055i 0.999590 0.0286180i \(-0.00911063\pi\)
−0.959510 + 0.281673i \(0.909111\pi\)
\(774\) 0 0
\(775\) −19.7678 3.36044i −0.710082 0.120711i
\(776\) 4.55461 + 1.47988i 0.163501 + 0.0531247i
\(777\) 0 0
\(778\) −9.01803 + 1.42832i −0.323312 + 0.0512076i
\(779\) 1.61912 0.526083i 0.0580108 0.0188489i
\(780\) 0 0
\(781\) −21.8560 + 5.16351i −0.782070 + 0.184765i
\(782\) −26.9928 + 26.9928i −0.965260 + 0.965260i
\(783\) 0 0
\(784\) 14.8022 20.3735i 0.528651 0.727626i
\(785\) −23.0543 + 19.4659i −0.822844 + 0.694769i
\(786\) 0 0
\(787\) −25.7117 + 13.1008i −0.916524 + 0.466992i −0.847604 0.530630i \(-0.821955\pi\)
−0.0689202 + 0.997622i \(0.521955\pi\)
\(788\) −13.5270 + 85.4058i −0.481878 + 3.04246i
\(789\) 0 0
\(790\) −6.01157 + 2.45035i −0.213882 + 0.0871796i
\(791\) 13.5051i 0.480187i
\(792\) 0 0
\(793\) 14.8503 + 14.8503i 0.527350 + 0.527350i
\(794\) −24.5726 75.6268i −0.872051 2.68390i
\(795\) 0 0
\(796\) −80.0636 + 58.1696i −2.83778 + 2.06177i
\(797\) −14.0459 27.5666i −0.497531 0.976460i −0.994100 0.108463i \(-0.965407\pi\)
0.496569 0.867997i \(-0.334593\pi\)
\(798\) 0 0
\(799\) −21.0204 + 15.2722i −0.743647 + 0.540291i
\(800\) 22.9172 7.16084i 0.810246 0.253174i
\(801\) 0 0
\(802\) −17.9225 17.9225i −0.632866 0.632866i
\(803\) 28.9809 11.8815i 1.02271 0.419288i
\(804\) 0 0
\(805\) 16.6783 + 7.01908i 0.587831 + 0.247390i
\(806\) 18.5551 + 13.4811i 0.653575 + 0.474850i
\(807\) 0 0
\(808\) 53.5684 27.2945i 1.88453 0.960215i
\(809\) −6.07857 + 18.7079i −0.213711 + 0.657735i 0.785531 + 0.618822i \(0.212390\pi\)
−0.999243 + 0.0389136i \(0.987610\pi\)
\(810\) 0 0
\(811\) 24.8398 34.1891i 0.872243 1.20054i −0.106266 0.994338i \(-0.533890\pi\)
0.978509 0.206202i \(-0.0661105\pi\)
\(812\) 20.9460 + 10.6725i 0.735061 + 0.374532i
\(813\) 0 0
\(814\) −2.21447 + 26.8918i −0.0776170 + 0.942556i
\(815\) −0.174757 2.39340i −0.00612147 0.0838373i
\(816\) 0 0
\(817\) −8.30723 + 1.31574i −0.290633 + 0.0460318i
\(818\) −76.1023 12.0534i −2.66085 0.421438i
\(819\) 0 0
\(820\) −11.0434 + 6.68184i −0.385653 + 0.233340i
\(821\) 31.2544 + 43.0180i 1.09079 + 1.50134i 0.847061 + 0.531496i \(0.178370\pi\)
0.243726 + 0.969844i \(0.421630\pi\)
\(822\) 0 0
\(823\) 0.635792 1.24781i 0.0221623 0.0434960i −0.879660 0.475603i \(-0.842230\pi\)
0.901822 + 0.432107i \(0.142230\pi\)
\(824\) −28.7559 −1.00176
\(825\) 0 0
\(826\) 56.7841 1.97577
\(827\) 7.84783 15.4022i 0.272896 0.535588i −0.713363 0.700794i \(-0.752829\pi\)
0.986259 + 0.165206i \(0.0528290\pi\)
\(828\) 0 0
\(829\) 21.0969 + 29.0374i 0.732727 + 1.00851i 0.999004 + 0.0446158i \(0.0142064\pi\)
−0.266277 + 0.963897i \(0.585794\pi\)
\(830\) −50.7583 + 30.7114i −1.76185 + 1.06601i
\(831\) 0 0
\(832\) 2.95138 + 0.467453i 0.102321 + 0.0162060i
\(833\) 12.3969 1.96348i 0.429527 0.0680304i
\(834\) 0 0
\(835\) 0.308058 + 4.21903i 0.0106608 + 0.146006i
\(836\) 16.3872 9.96064i 0.566764 0.344496i
\(837\) 0 0
\(838\) −16.9013 8.61164i −0.583845 0.297484i
\(839\) −2.91587 + 4.01335i −0.100667 + 0.138556i −0.856379 0.516348i \(-0.827291\pi\)
0.755712 + 0.654904i \(0.227291\pi\)
\(840\) 0 0
\(841\) −6.29681 + 19.3796i −0.217131 + 0.668261i
\(842\) −46.1350 + 23.5070i −1.58992 + 0.810103i
\(843\) 0 0
\(844\) 1.34883 + 0.979980i 0.0464285 + 0.0337323i
\(845\) 16.3053 + 6.86210i 0.560918 + 0.236063i
\(846\) 0 0
\(847\) 11.8063 16.0048i 0.405668 0.549932i
\(848\) 30.3971 + 30.3971i 1.04384 + 1.04384i
\(849\) 0 0
\(850\) 37.7751 + 19.7885i 1.29567 + 0.678738i
\(851\) 11.6196 8.44211i 0.398313 0.289392i
\(852\) 0 0
\(853\) −12.0658 23.6804i −0.413125 0.810803i −0.999999 0.00112492i \(-0.999642\pi\)
0.586875 0.809678i \(-0.300358\pi\)
\(854\) 34.5257 25.0844i 1.18144 0.858369i
\(855\) 0 0
\(856\) −29.1045 89.5744i −0.994771 3.06159i
\(857\) 1.04396 + 1.04396i 0.0356609 + 0.0356609i 0.724712 0.689051i \(-0.241973\pi\)
−0.689051 + 0.724712i \(0.741973\pi\)
\(858\) 0 0
\(859\) 13.9402i 0.475633i −0.971310 0.237816i \(-0.923568\pi\)
0.971310 0.237816i \(-0.0764316\pi\)
\(860\) 59.0516 24.0698i 2.01364 0.820773i
\(861\) 0 0
\(862\) 13.3522 84.3026i 0.454778 2.87136i
\(863\) 45.7166 23.2938i 1.55621 0.792929i 0.556919 0.830567i \(-0.311983\pi\)
0.999291 + 0.0376382i \(0.0119834\pi\)
\(864\) 0 0
\(865\) 32.3715 27.3329i 1.10066 0.929347i
\(866\) 17.2852 23.7911i 0.587376 0.808454i
\(867\) 0 0
\(868\) 22.7012 22.7012i 0.770529 0.770529i
\(869\) 2.47699 2.87900i 0.0840262 0.0976635i
\(870\) 0 0
\(871\) 7.47089 2.42744i 0.253141 0.0822507i
\(872\) −108.721 + 17.2198i −3.68177 + 0.583135i
\(873\) 0 0
\(874\) −14.0931 4.57913i −0.476706 0.154891i
\(875\) 1.92751 20.1222i 0.0651617 0.680254i
\(876\) 0 0
\(877\) 1.04392 + 6.59105i 0.0352507 + 0.222564i 0.999025 0.0441563i \(-0.0140600\pi\)
−0.963774 + 0.266720i \(0.914060\pi\)
\(878\) −12.3436 + 24.2256i −0.416575 + 0.817574i
\(879\) 0 0
\(880\) −35.7219 + 35.0653i −1.20418 + 1.18205i
\(881\) 14.4573 0.487080 0.243540 0.969891i \(-0.421691\pi\)
0.243540 + 0.969891i \(0.421691\pi\)
\(882\) 0 0
\(883\) −1.63650 10.3324i −0.0550725 0.347714i −0.999803 0.0198651i \(-0.993676\pi\)
0.944730 0.327849i \(-0.106324\pi\)
\(884\) −19.7499 27.1834i −0.664260 0.914276i
\(885\) 0 0
\(886\) 97.2533 + 31.5995i 3.26729 + 1.06161i
\(887\) −9.76140 1.54605i −0.327756 0.0519114i −0.00961170 0.999954i \(-0.503060\pi\)
−0.318144 + 0.948042i \(0.603060\pi\)
\(888\) 0 0
\(889\) 0.354548 0.115200i 0.0118912 0.00386368i
\(890\) −21.8101 + 1.59249i −0.731078 + 0.0533805i
\(891\) 0 0
\(892\) 23.8243 23.8243i 0.797695 0.797695i
\(893\) −8.98671 4.57896i −0.300729 0.153229i
\(894\) 0 0
\(895\) −3.08061 + 36.5034i −0.102973 + 1.22018i
\(896\) 7.24221 22.2892i 0.241945 0.744631i
\(897\) 0 0
\(898\) −1.44429 + 9.11891i −0.0481967 + 0.304302i
\(899\) −9.52719 6.92191i −0.317750 0.230859i
\(900\) 0 0
\(901\) 21.4256i 0.713789i
\(902\) 5.76157 9.32604i 0.191839 0.310523i
\(903\) 0 0
\(904\) 14.2074 + 43.7258i 0.472530 + 1.45430i
\(905\) 7.57591 + 32.3607i 0.251832 + 1.07571i
\(906\) 0 0
\(907\) 5.25319 + 10.3100i 0.174429 + 0.342337i 0.961625 0.274366i \(-0.0884680\pi\)
−0.787196 + 0.616703i \(0.788468\pi\)
\(908\) −16.4887 32.3609i −0.547196 1.07393i
\(909\) 0 0
\(910\) −12.1923 + 19.6458i −0.404170 + 0.651253i
\(911\) 2.69510 + 8.29465i 0.0892925 + 0.274814i 0.985724 0.168368i \(-0.0538496\pi\)
−0.896432 + 0.443182i \(0.853850\pi\)
\(912\) 0 0
\(913\) 18.2419 29.5274i 0.603718 0.977215i
\(914\) 45.8704i 1.51726i
\(915\) 0 0
\(916\) −27.1854 19.7514i −0.898231 0.652603i
\(917\) 0.156043 0.985219i 0.00515301 0.0325348i
\(918\) 0 0
\(919\) 1.78507 5.49388i 0.0588840 0.181226i −0.917288 0.398224i \(-0.869627\pi\)
0.976172 + 0.216998i \(0.0696265\pi\)
\(920\) 61.3836 + 5.18031i 2.02376 + 0.170790i
\(921\) 0 0
\(922\) −80.3931 40.9623i −2.64761 1.34902i
\(923\) −10.8007 + 10.8007i −0.355511 + 0.355511i
\(924\) 0 0
\(925\) −12.8729 9.57696i −0.423260 0.314889i
\(926\) −15.2359 + 4.95043i −0.500681 + 0.162681i
\(927\) 0 0
\(928\) 13.9275 + 2.20590i 0.457192 + 0.0724121i
\(929\) 17.2514 + 5.60532i 0.566000 + 0.183905i 0.578019 0.816023i \(-0.303826\pi\)
−0.0120191 + 0.999928i \(0.503826\pi\)
\(930\) 0 0
\(931\) 2.86384 + 3.94174i 0.0938587 + 0.129185i
\(932\) −18.1595 114.654i −0.594833 3.75563i
\(933\) 0 0
\(934\) −21.9374 −0.717813
\(935\) −24.9473 0.231399i −0.815864 0.00756755i
\(936\) 0 0
\(937\) −14.5907 + 28.6359i −0.476659 + 0.935496i 0.520027 + 0.854150i \(0.325922\pi\)
−0.996686 + 0.0813459i \(0.974078\pi\)
\(938\) −2.49708 15.7659i −0.0815325 0.514776i
\(939\) 0 0
\(940\) 74.2550 + 18.2716i 2.42193 + 0.595955i
\(941\) 4.95612 + 1.61034i 0.161565 + 0.0524956i 0.388683 0.921372i \(-0.372930\pi\)
−0.227118 + 0.973867i \(0.572930\pi\)
\(942\) 0 0
\(943\) −5.76321 + 0.912803i −0.187676 + 0.0297250i
\(944\) 79.5200 25.8376i 2.58816 0.840943i
\(945\) 0 0
\(946\) −35.3219 + 41.0545i −1.14841 + 1.33480i
\(947\) 0.545091 0.545091i 0.0177131 0.0177131i −0.698195 0.715908i \(-0.746013\pi\)
0.715908 + 0.698195i \(0.246013\pi\)
\(948\) 0 0
\(949\) 12.5219 17.2349i 0.406478 0.559469i
\(950\) −0.187154 + 16.5528i −0.00607207 + 0.537043i
\(951\) 0 0
\(952\) −33.3567 + 16.9961i −1.08110 + 0.550846i
\(953\) −2.12456 + 13.4139i −0.0688211 + 0.434519i 0.929086 + 0.369863i \(0.120595\pi\)
−0.997908 + 0.0646568i \(0.979405\pi\)
\(954\) 0 0
\(955\) 1.65631 3.93562i 0.0535970 0.127354i
\(956\) 10.0777i 0.325935i
\(957\) 0 0
\(958\) 27.5786 + 27.5786i 0.891023 + 0.891023i
\(959\) 8.64682 + 26.6122i 0.279221 + 0.859352i
\(960\) 0 0
\(961\) 12.0686 8.76834i 0.389309 0.282850i
\(962\) 8.33177 + 16.3520i 0.268627 + 0.527210i
\(963\) 0 0
\(964\) 22.5507 16.3840i 0.726309 0.527694i
\(965\) −21.6267 13.4216i −0.696189 0.432057i
\(966\) 0 0
\(967\) 28.7882 + 28.7882i 0.925767 + 0.925767i 0.997429 0.0716619i \(-0.0228303\pi\)
−0.0716619 + 0.997429i \(0.522830\pi\)
\(968\) 21.3884 64.2393i 0.687448 2.06473i
\(969\) 0 0
\(970\) 1.71097 4.06550i 0.0549360 0.130535i
\(971\) −23.7651 17.2663i −0.762657 0.554103i 0.137067 0.990562i \(-0.456232\pi\)
−0.899724 + 0.436459i \(0.856232\pi\)
\(972\) 0 0
\(973\) −2.29195 + 1.16781i −0.0734765 + 0.0374382i
\(974\) −4.65870 + 14.3380i −0.149274 + 0.459419i
\(975\) 0 0
\(976\) 36.9357 50.8376i 1.18228 1.62727i
\(977\) 20.8453 + 10.6212i 0.666901 + 0.339803i 0.754450 0.656357i \(-0.227904\pi\)
−0.0875496 + 0.996160i \(0.527904\pi\)
\(978\) 0 0
\(979\) 10.9325 6.64511i 0.349405 0.212379i
\(980\) −27.9536 24.1493i −0.892946 0.771420i
\(981\) 0 0
\(982\) −102.544 + 16.2414i −3.27232 + 0.518284i
\(983\) 20.6008 + 3.26285i 0.657064 + 0.104069i 0.476059 0.879413i \(-0.342065\pi\)
0.181005 + 0.983482i \(0.442065\pi\)
\(984\) 0 0
\(985\) 42.4036 + 10.4341i 1.35109 + 0.332457i
\(986\) 14.7212 + 20.2619i 0.468817 + 0.645271i
\(987\) 0 0
\(988\) 5.92148 11.6216i 0.188387 0.369731i
\(989\) 28.8277 0.916666
\(990\) 0 0
\(991\) −6.50787 −0.206729 −0.103365 0.994644i \(-0.532961\pi\)
−0.103365 + 0.994644i \(0.532961\pi\)
\(992\) 8.74265 17.1584i 0.277579 0.544780i
\(993\) 0 0
\(994\) 18.2440 + 25.1108i 0.578666 + 0.796465i
\(995\) 25.8721 + 42.7601i 0.820200 + 1.35559i
\(996\) 0 0
\(997\) 26.0805 + 4.13075i 0.825978 + 0.130822i 0.555092 0.831789i \(-0.312683\pi\)
0.270886 + 0.962611i \(0.412683\pi\)
\(998\) 58.0618 9.19609i 1.83792 0.291097i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.bj.a.28.4 32
3.2 odd 2 55.2.l.a.28.1 yes 32
5.2 odd 4 inner 495.2.bj.a.127.4 32
11.2 odd 10 inner 495.2.bj.a.343.4 32
12.11 even 2 880.2.cm.a.193.1 32
15.2 even 4 55.2.l.a.17.1 yes 32
15.8 even 4 275.2.bm.b.182.4 32
15.14 odd 2 275.2.bm.b.193.4 32
33.2 even 10 55.2.l.a.13.1 yes 32
33.5 odd 10 605.2.m.c.403.1 32
33.8 even 10 605.2.e.b.483.1 32
33.14 odd 10 605.2.e.b.483.16 32
33.17 even 10 605.2.m.d.403.4 32
33.20 odd 10 605.2.m.e.233.4 32
33.26 odd 10 605.2.m.d.118.1 32
33.29 even 10 605.2.m.c.118.4 32
33.32 even 2 605.2.m.e.578.4 32
55.2 even 20 inner 495.2.bj.a.442.4 32
60.47 odd 4 880.2.cm.a.17.1 32
132.35 odd 10 880.2.cm.a.673.1 32
165.2 odd 20 55.2.l.a.2.1 32
165.17 odd 20 605.2.m.d.282.1 32
165.32 odd 4 605.2.m.e.457.4 32
165.47 even 20 605.2.e.b.362.1 32
165.62 odd 20 605.2.m.c.602.1 32
165.68 odd 20 275.2.bm.b.57.4 32
165.92 even 20 605.2.m.d.602.4 32
165.107 odd 20 605.2.e.b.362.16 32
165.134 even 10 275.2.bm.b.68.4 32
165.137 even 20 605.2.m.c.282.4 32
165.152 even 20 605.2.m.e.112.4 32
660.167 even 20 880.2.cm.a.497.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.2.1 32 165.2 odd 20
55.2.l.a.13.1 yes 32 33.2 even 10
55.2.l.a.17.1 yes 32 15.2 even 4
55.2.l.a.28.1 yes 32 3.2 odd 2
275.2.bm.b.57.4 32 165.68 odd 20
275.2.bm.b.68.4 32 165.134 even 10
275.2.bm.b.182.4 32 15.8 even 4
275.2.bm.b.193.4 32 15.14 odd 2
495.2.bj.a.28.4 32 1.1 even 1 trivial
495.2.bj.a.127.4 32 5.2 odd 4 inner
495.2.bj.a.343.4 32 11.2 odd 10 inner
495.2.bj.a.442.4 32 55.2 even 20 inner
605.2.e.b.362.1 32 165.47 even 20
605.2.e.b.362.16 32 165.107 odd 20
605.2.e.b.483.1 32 33.8 even 10
605.2.e.b.483.16 32 33.14 odd 10
605.2.m.c.118.4 32 33.29 even 10
605.2.m.c.282.4 32 165.137 even 20
605.2.m.c.403.1 32 33.5 odd 10
605.2.m.c.602.1 32 165.62 odd 20
605.2.m.d.118.1 32 33.26 odd 10
605.2.m.d.282.1 32 165.17 odd 20
605.2.m.d.403.4 32 33.17 even 10
605.2.m.d.602.4 32 165.92 even 20
605.2.m.e.112.4 32 165.152 even 20
605.2.m.e.233.4 32 33.20 odd 10
605.2.m.e.457.4 32 165.32 odd 4
605.2.m.e.578.4 32 33.32 even 2
880.2.cm.a.17.1 32 60.47 odd 4
880.2.cm.a.193.1 32 12.11 even 2
880.2.cm.a.497.1 32 660.167 even 20
880.2.cm.a.673.1 32 132.35 odd 10