Properties

Label 880.2.bo.b.81.1
Level $880$
Weight $2$
Character 880.81
Analytic conductor $7.027$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(81,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bo (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,1,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 81.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 880.81
Dual form 880.2.bo.b.641.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.118034 - 0.363271i) q^{3} +(0.809017 - 0.587785i) q^{5} +(2.30902 + 1.67760i) q^{9} +(3.30902 - 0.224514i) q^{11} +(-5.23607 - 3.80423i) q^{13} +(-0.118034 - 0.363271i) q^{15} +(4.11803 - 2.99193i) q^{17} +(-1.19098 + 3.66547i) q^{19} +6.00000 q^{23} +(0.309017 - 0.951057i) q^{25} +(1.80902 - 1.31433i) q^{27} +(1.47214 + 4.53077i) q^{29} +(-3.00000 - 2.17963i) q^{31} +(0.309017 - 1.22857i) q^{33} +(-0.618034 - 1.90211i) q^{37} +(-2.00000 + 1.45309i) q^{39} +(-1.50000 + 4.61653i) q^{41} +2.85410 q^{43} +2.85410 q^{45} +(3.47214 - 10.6861i) q^{47} +(5.66312 - 4.11450i) q^{49} +(-0.600813 - 1.84911i) q^{51} +(2.85410 + 2.07363i) q^{53} +(2.54508 - 2.12663i) q^{55} +(1.19098 + 0.865300i) q^{57} +(-3.57295 - 10.9964i) q^{59} +(6.23607 - 4.53077i) q^{61} -6.47214 q^{65} +0.618034 q^{67} +(0.708204 - 2.17963i) q^{69} +(-3.85410 + 2.80017i) q^{71} +(0.354102 + 1.08981i) q^{73} +(-0.309017 - 0.224514i) q^{75} +(5.85410 + 4.25325i) q^{79} +(2.38197 + 7.33094i) q^{81} +(-10.0172 + 7.27794i) q^{83} +(1.57295 - 4.84104i) q^{85} +1.81966 q^{87} -4.09017 q^{89} +(-1.14590 + 0.832544i) q^{93} +(1.19098 + 3.66547i) q^{95} +(6.16312 + 4.47777i) q^{97} +(8.01722 + 5.03280i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + q^{5} + 7 q^{9} + 11 q^{11} - 12 q^{13} + 4 q^{15} + 12 q^{17} - 7 q^{19} + 24 q^{23} - q^{25} + 5 q^{27} - 12 q^{29} - 12 q^{31} - q^{33} + 2 q^{37} - 8 q^{39} - 6 q^{41} - 2 q^{43}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.118034 0.363271i 0.0681470 0.209735i −0.911184 0.412000i \(-0.864830\pi\)
0.979331 + 0.202265i \(0.0648303\pi\)
\(4\) 0 0
\(5\) 0.809017 0.587785i 0.361803 0.262866i
\(6\) 0 0
\(7\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(8\) 0 0
\(9\) 2.30902 + 1.67760i 0.769672 + 0.559200i
\(10\) 0 0
\(11\) 3.30902 0.224514i 0.997706 0.0676935i
\(12\) 0 0
\(13\) −5.23607 3.80423i −1.45222 1.05510i −0.985305 0.170802i \(-0.945364\pi\)
−0.466919 0.884300i \(-0.654636\pi\)
\(14\) 0 0
\(15\) −0.118034 0.363271i −0.0304762 0.0937962i
\(16\) 0 0
\(17\) 4.11803 2.99193i 0.998770 0.725649i 0.0369459 0.999317i \(-0.488237\pi\)
0.961824 + 0.273668i \(0.0882371\pi\)
\(18\) 0 0
\(19\) −1.19098 + 3.66547i −0.273230 + 0.840916i 0.716452 + 0.697636i \(0.245765\pi\)
−0.989682 + 0.143280i \(0.954235\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) 0 0
\(27\) 1.80902 1.31433i 0.348145 0.252942i
\(28\) 0 0
\(29\) 1.47214 + 4.53077i 0.273369 + 0.841343i 0.989646 + 0.143527i \(0.0458444\pi\)
−0.716278 + 0.697815i \(0.754156\pi\)
\(30\) 0 0
\(31\) −3.00000 2.17963i −0.538816 0.391473i 0.284829 0.958578i \(-0.408063\pi\)
−0.823645 + 0.567106i \(0.808063\pi\)
\(32\) 0 0
\(33\) 0.309017 1.22857i 0.0537930 0.213867i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.618034 1.90211i −0.101604 0.312705i 0.887314 0.461165i \(-0.152568\pi\)
−0.988918 + 0.148460i \(0.952568\pi\)
\(38\) 0 0
\(39\) −2.00000 + 1.45309i −0.320256 + 0.232680i
\(40\) 0 0
\(41\) −1.50000 + 4.61653i −0.234261 + 0.720980i 0.762958 + 0.646448i \(0.223746\pi\)
−0.997219 + 0.0745320i \(0.976254\pi\)
\(42\) 0 0
\(43\) 2.85410 0.435246 0.217623 0.976033i \(-0.430170\pi\)
0.217623 + 0.976033i \(0.430170\pi\)
\(44\) 0 0
\(45\) 2.85410 0.425464
\(46\) 0 0
\(47\) 3.47214 10.6861i 0.506463 1.55873i −0.291834 0.956469i \(-0.594265\pi\)
0.798297 0.602264i \(-0.205735\pi\)
\(48\) 0 0
\(49\) 5.66312 4.11450i 0.809017 0.587785i
\(50\) 0 0
\(51\) −0.600813 1.84911i −0.0841307 0.258928i
\(52\) 0 0
\(53\) 2.85410 + 2.07363i 0.392041 + 0.284834i 0.766291 0.642493i \(-0.222100\pi\)
−0.374250 + 0.927328i \(0.622100\pi\)
\(54\) 0 0
\(55\) 2.54508 2.12663i 0.343179 0.286754i
\(56\) 0 0
\(57\) 1.19098 + 0.865300i 0.157750 + 0.114612i
\(58\) 0 0
\(59\) −3.57295 10.9964i −0.465158 1.43161i −0.858783 0.512339i \(-0.828779\pi\)
0.393625 0.919271i \(-0.371221\pi\)
\(60\) 0 0
\(61\) 6.23607 4.53077i 0.798447 0.580105i −0.112011 0.993707i \(-0.535729\pi\)
0.910458 + 0.413601i \(0.135729\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.47214 −0.802770
\(66\) 0 0
\(67\) 0.618034 0.0755049 0.0377524 0.999287i \(-0.487980\pi\)
0.0377524 + 0.999287i \(0.487980\pi\)
\(68\) 0 0
\(69\) 0.708204 2.17963i 0.0852577 0.262396i
\(70\) 0 0
\(71\) −3.85410 + 2.80017i −0.457398 + 0.332319i −0.792510 0.609859i \(-0.791226\pi\)
0.335112 + 0.942178i \(0.391226\pi\)
\(72\) 0 0
\(73\) 0.354102 + 1.08981i 0.0414445 + 0.127553i 0.969638 0.244545i \(-0.0786386\pi\)
−0.928193 + 0.372098i \(0.878639\pi\)
\(74\) 0 0
\(75\) −0.309017 0.224514i −0.0356822 0.0259246i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5.85410 + 4.25325i 0.658638 + 0.478528i 0.866203 0.499693i \(-0.166554\pi\)
−0.207565 + 0.978221i \(0.566554\pi\)
\(80\) 0 0
\(81\) 2.38197 + 7.33094i 0.264663 + 0.814549i
\(82\) 0 0
\(83\) −10.0172 + 7.27794i −1.09953 + 0.798857i −0.980984 0.194091i \(-0.937824\pi\)
−0.118549 + 0.992948i \(0.537824\pi\)
\(84\) 0 0
\(85\) 1.57295 4.84104i 0.170610 0.525084i
\(86\) 0 0
\(87\) 1.81966 0.195088
\(88\) 0 0
\(89\) −4.09017 −0.433557 −0.216779 0.976221i \(-0.569555\pi\)
−0.216779 + 0.976221i \(0.569555\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.14590 + 0.832544i −0.118824 + 0.0863308i
\(94\) 0 0
\(95\) 1.19098 + 3.66547i 0.122192 + 0.376069i
\(96\) 0 0
\(97\) 6.16312 + 4.47777i 0.625770 + 0.454648i 0.854932 0.518740i \(-0.173599\pi\)
−0.229162 + 0.973388i \(0.573599\pi\)
\(98\) 0 0
\(99\) 8.01722 + 5.03280i 0.805761 + 0.505815i
\(100\) 0 0
\(101\) −8.23607 5.98385i −0.819519 0.595416i 0.0970554 0.995279i \(-0.469058\pi\)
−0.916575 + 0.399863i \(0.869058\pi\)
\(102\) 0 0
\(103\) 4.85410 + 14.9394i 0.478289 + 1.47202i 0.841470 + 0.540303i \(0.181691\pi\)
−0.363181 + 0.931718i \(0.618309\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.590170 1.81636i 0.0570539 0.175594i −0.918468 0.395494i \(-0.870573\pi\)
0.975522 + 0.219901i \(0.0705733\pi\)
\(108\) 0 0
\(109\) −17.7082 −1.69614 −0.848069 0.529886i \(-0.822235\pi\)
−0.848069 + 0.529886i \(0.822235\pi\)
\(110\) 0 0
\(111\) −0.763932 −0.0725092
\(112\) 0 0
\(113\) −2.89919 + 8.92278i −0.272733 + 0.839385i 0.717078 + 0.696993i \(0.245479\pi\)
−0.989810 + 0.142391i \(0.954521\pi\)
\(114\) 0 0
\(115\) 4.85410 3.52671i 0.452647 0.328868i
\(116\) 0 0
\(117\) −5.70820 17.5680i −0.527724 1.62417i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.8992 1.48584i 0.990835 0.135076i
\(122\) 0 0
\(123\) 1.50000 + 1.08981i 0.135250 + 0.0982652i
\(124\) 0 0
\(125\) −0.309017 0.951057i −0.0276393 0.0850651i
\(126\) 0 0
\(127\) −6.23607 + 4.53077i −0.553362 + 0.402041i −0.829023 0.559214i \(-0.811103\pi\)
0.275662 + 0.961255i \(0.411103\pi\)
\(128\) 0 0
\(129\) 0.336881 1.03681i 0.0296607 0.0912863i
\(130\) 0 0
\(131\) 0.437694 0.0382415 0.0191208 0.999817i \(-0.493913\pi\)
0.0191208 + 0.999817i \(0.493913\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.690983 2.12663i 0.0594703 0.183031i
\(136\) 0 0
\(137\) 4.92705 3.57971i 0.420946 0.305835i −0.357072 0.934077i \(-0.616225\pi\)
0.778018 + 0.628241i \(0.216225\pi\)
\(138\) 0 0
\(139\) 4.00000 + 12.3107i 0.339276 + 1.04418i 0.964577 + 0.263800i \(0.0849759\pi\)
−0.625302 + 0.780383i \(0.715024\pi\)
\(140\) 0 0
\(141\) −3.47214 2.52265i −0.292407 0.212446i
\(142\) 0 0
\(143\) −18.1803 11.4127i −1.52032 0.954376i
\(144\) 0 0
\(145\) 3.85410 + 2.80017i 0.320066 + 0.232541i
\(146\) 0 0
\(147\) −0.826238 2.54290i −0.0681470 0.209735i
\(148\) 0 0
\(149\) −16.7082 + 12.1392i −1.36879 + 0.994484i −0.370959 + 0.928649i \(0.620971\pi\)
−0.997831 + 0.0658344i \(0.979029\pi\)
\(150\) 0 0
\(151\) 3.85410 11.8617i 0.313642 0.965292i −0.662667 0.748914i \(-0.730576\pi\)
0.976310 0.216378i \(-0.0694244\pi\)
\(152\) 0 0
\(153\) 14.5279 1.17451
\(154\) 0 0
\(155\) −3.70820 −0.297850
\(156\) 0 0
\(157\) 2.47214 7.60845i 0.197298 0.607221i −0.802644 0.596458i \(-0.796574\pi\)
0.999942 0.0107624i \(-0.00342585\pi\)
\(158\) 0 0
\(159\) 1.09017 0.792055i 0.0864561 0.0628140i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −9.20820 6.69015i −0.721242 0.524013i 0.165539 0.986203i \(-0.447064\pi\)
−0.886781 + 0.462190i \(0.847064\pi\)
\(164\) 0 0
\(165\) −0.472136 1.17557i −0.0367557 0.0915180i
\(166\) 0 0
\(167\) −16.3262 11.8617i −1.26336 0.917886i −0.264445 0.964401i \(-0.585189\pi\)
−0.998918 + 0.0465145i \(0.985189\pi\)
\(168\) 0 0
\(169\) 8.92705 + 27.4746i 0.686696 + 2.11343i
\(170\) 0 0
\(171\) −8.89919 + 6.46564i −0.680538 + 0.494440i
\(172\) 0 0
\(173\) −1.14590 + 3.52671i −0.0871210 + 0.268131i −0.985120 0.171866i \(-0.945020\pi\)
0.897999 + 0.439997i \(0.145020\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.41641 −0.331958
\(178\) 0 0
\(179\) −7.57295 + 23.3071i −0.566029 + 1.74206i 0.0988461 + 0.995103i \(0.468485\pi\)
−0.664875 + 0.746955i \(0.731515\pi\)
\(180\) 0 0
\(181\) −7.85410 + 5.70634i −0.583791 + 0.424149i −0.840089 0.542449i \(-0.817497\pi\)
0.256298 + 0.966598i \(0.417497\pi\)
\(182\) 0 0
\(183\) −0.909830 2.80017i −0.0672566 0.206994i
\(184\) 0 0
\(185\) −1.61803 1.17557i −0.118960 0.0864297i
\(186\) 0 0
\(187\) 12.9549 10.8249i 0.947357 0.791595i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.00000 + 21.5438i 0.506502 + 1.55885i 0.798230 + 0.602352i \(0.205770\pi\)
−0.291728 + 0.956501i \(0.594230\pi\)
\(192\) 0 0
\(193\) −14.5623 + 10.5801i −1.04822 + 0.761575i −0.971873 0.235507i \(-0.924325\pi\)
−0.0763450 + 0.997081i \(0.524325\pi\)
\(194\) 0 0
\(195\) −0.763932 + 2.35114i −0.0547063 + 0.168369i
\(196\) 0 0
\(197\) 1.05573 0.0752175 0.0376088 0.999293i \(-0.488026\pi\)
0.0376088 + 0.999293i \(0.488026\pi\)
\(198\) 0 0
\(199\) −22.1803 −1.57232 −0.786161 0.618021i \(-0.787935\pi\)
−0.786161 + 0.618021i \(0.787935\pi\)
\(200\) 0 0
\(201\) 0.0729490 0.224514i 0.00514543 0.0158360i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.50000 + 4.61653i 0.104765 + 0.322432i
\(206\) 0 0
\(207\) 13.8541 + 10.0656i 0.962927 + 0.699607i
\(208\) 0 0
\(209\) −3.11803 + 12.3965i −0.215679 + 0.857483i
\(210\) 0 0
\(211\) −15.4894 11.2537i −1.06633 0.774735i −0.0910821 0.995843i \(-0.529033\pi\)
−0.975249 + 0.221108i \(0.929033\pi\)
\(212\) 0 0
\(213\) 0.562306 + 1.73060i 0.0385286 + 0.118579i
\(214\) 0 0
\(215\) 2.30902 1.67760i 0.157474 0.114411i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0.437694 0.0295766
\(220\) 0 0
\(221\) −32.9443 −2.21607
\(222\) 0 0
\(223\) −1.23607 + 3.80423i −0.0827732 + 0.254750i −0.983875 0.178858i \(-0.942760\pi\)
0.901102 + 0.433608i \(0.142760\pi\)
\(224\) 0 0
\(225\) 2.30902 1.67760i 0.153934 0.111840i
\(226\) 0 0
\(227\) −1.04508 3.21644i −0.0693647 0.213483i 0.910365 0.413806i \(-0.135801\pi\)
−0.979730 + 0.200323i \(0.935801\pi\)
\(228\) 0 0
\(229\) −7.70820 5.60034i −0.509372 0.370081i 0.303213 0.952923i \(-0.401941\pi\)
−0.812585 + 0.582842i \(0.801941\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −15.3992 11.1882i −1.00883 0.732961i −0.0448700 0.998993i \(-0.514287\pi\)
−0.963964 + 0.266032i \(0.914287\pi\)
\(234\) 0 0
\(235\) −3.47214 10.6861i −0.226497 0.697087i
\(236\) 0 0
\(237\) 2.23607 1.62460i 0.145248 0.105529i
\(238\) 0 0
\(239\) −4.61803 + 14.2128i −0.298716 + 0.919353i 0.683232 + 0.730201i \(0.260574\pi\)
−0.981948 + 0.189151i \(0.939426\pi\)
\(240\) 0 0
\(241\) 13.8541 0.892421 0.446211 0.894928i \(-0.352773\pi\)
0.446211 + 0.894928i \(0.352773\pi\)
\(242\) 0 0
\(243\) 9.65248 0.619207
\(244\) 0 0
\(245\) 2.16312 6.65740i 0.138197 0.425325i
\(246\) 0 0
\(247\) 20.1803 14.6619i 1.28404 0.932913i
\(248\) 0 0
\(249\) 1.46149 + 4.49801i 0.0926183 + 0.285050i
\(250\) 0 0
\(251\) 14.4721 + 10.5146i 0.913473 + 0.663677i 0.941891 0.335919i \(-0.109047\pi\)
−0.0284177 + 0.999596i \(0.509047\pi\)
\(252\) 0 0
\(253\) 19.8541 1.34708i 1.24822 0.0846904i
\(254\) 0 0
\(255\) −1.57295 1.14281i −0.0985019 0.0715658i
\(256\) 0 0
\(257\) −2.88197 8.86978i −0.179772 0.553282i 0.820047 0.572296i \(-0.193947\pi\)
−0.999819 + 0.0190144i \(0.993947\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −4.20163 + 12.9313i −0.260074 + 0.800426i
\(262\) 0 0
\(263\) 0.180340 0.0111202 0.00556012 0.999985i \(-0.498230\pi\)
0.00556012 + 0.999985i \(0.498230\pi\)
\(264\) 0 0
\(265\) 3.52786 0.216715
\(266\) 0 0
\(267\) −0.482779 + 1.48584i −0.0295456 + 0.0909320i
\(268\) 0 0
\(269\) 19.7082 14.3188i 1.20163 0.873036i 0.207186 0.978302i \(-0.433569\pi\)
0.994444 + 0.105266i \(0.0335694\pi\)
\(270\) 0 0
\(271\) 6.18034 + 19.0211i 0.375429 + 1.15545i 0.943189 + 0.332257i \(0.107810\pi\)
−0.567760 + 0.823194i \(0.692190\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.809017 3.21644i 0.0487856 0.193959i
\(276\) 0 0
\(277\) −7.61803 5.53483i −0.457723 0.332555i 0.334914 0.942249i \(-0.391293\pi\)
−0.792638 + 0.609693i \(0.791293\pi\)
\(278\) 0 0
\(279\) −3.27051 10.0656i −0.195800 0.602611i
\(280\) 0 0
\(281\) 3.78115 2.74717i 0.225565 0.163882i −0.469263 0.883058i \(-0.655480\pi\)
0.694828 + 0.719176i \(0.255480\pi\)
\(282\) 0 0
\(283\) 0.763932 2.35114i 0.0454110 0.139761i −0.925780 0.378062i \(-0.876591\pi\)
0.971191 + 0.238301i \(0.0765906\pi\)
\(284\) 0 0
\(285\) 1.47214 0.0872018
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2.75329 8.47375i 0.161958 0.498456i
\(290\) 0 0
\(291\) 2.35410 1.71036i 0.138000 0.100263i
\(292\) 0 0
\(293\) 3.47214 + 10.6861i 0.202844 + 0.624291i 0.999795 + 0.0202463i \(0.00644505\pi\)
−0.796951 + 0.604044i \(0.793555\pi\)
\(294\) 0 0
\(295\) −9.35410 6.79615i −0.544617 0.395687i
\(296\) 0 0
\(297\) 5.69098 4.75528i 0.330224 0.275929i
\(298\) 0 0
\(299\) −31.4164 22.8254i −1.81686 1.32002i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −3.14590 + 2.28563i −0.180727 + 0.131306i
\(304\) 0 0
\(305\) 2.38197 7.33094i 0.136391 0.419768i
\(306\) 0 0
\(307\) −12.5623 −0.716969 −0.358484 0.933536i \(-0.616706\pi\)
−0.358484 + 0.933536i \(0.616706\pi\)
\(308\) 0 0
\(309\) 6.00000 0.341328
\(310\) 0 0
\(311\) 0.854102 2.62866i 0.0484317 0.149057i −0.923916 0.382595i \(-0.875030\pi\)
0.972348 + 0.233538i \(0.0750303\pi\)
\(312\) 0 0
\(313\) −26.0623 + 18.9354i −1.47313 + 1.07029i −0.493437 + 0.869782i \(0.664260\pi\)
−0.979692 + 0.200509i \(0.935740\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.09017 6.60440i −0.510555 0.370940i 0.302479 0.953156i \(-0.402186\pi\)
−0.813034 + 0.582216i \(0.802186\pi\)
\(318\) 0 0
\(319\) 5.88854 + 14.6619i 0.329695 + 0.820907i
\(320\) 0 0
\(321\) −0.590170 0.428784i −0.0329401 0.0239324i
\(322\) 0 0
\(323\) 6.06231 + 18.6579i 0.337316 + 1.03815i
\(324\) 0 0
\(325\) −5.23607 + 3.80423i −0.290445 + 0.211020i
\(326\) 0 0
\(327\) −2.09017 + 6.43288i −0.115587 + 0.355739i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 14.5623 0.800417 0.400208 0.916424i \(-0.368938\pi\)
0.400208 + 0.916424i \(0.368938\pi\)
\(332\) 0 0
\(333\) 1.76393 5.42882i 0.0966629 0.297498i
\(334\) 0 0
\(335\) 0.500000 0.363271i 0.0273179 0.0198476i
\(336\) 0 0
\(337\) 8.51722 + 26.2133i 0.463963 + 1.42793i 0.860283 + 0.509818i \(0.170287\pi\)
−0.396320 + 0.918112i \(0.629713\pi\)
\(338\) 0 0
\(339\) 2.89919 + 2.10638i 0.157462 + 0.114403i
\(340\) 0 0
\(341\) −10.4164 6.53888i −0.564080 0.354100i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −0.708204 2.17963i −0.0381284 0.117347i
\(346\) 0 0
\(347\) 7.50000 5.44907i 0.402621 0.292521i −0.367987 0.929831i \(-0.619953\pi\)
0.770608 + 0.637310i \(0.219953\pi\)
\(348\) 0 0
\(349\) 4.47214 13.7638i 0.239388 0.736760i −0.757121 0.653275i \(-0.773395\pi\)
0.996509 0.0834857i \(-0.0266053\pi\)
\(350\) 0 0
\(351\) −14.4721 −0.772465
\(352\) 0 0
\(353\) −3.27051 −0.174072 −0.0870358 0.996205i \(-0.527739\pi\)
−0.0870358 + 0.996205i \(0.527739\pi\)
\(354\) 0 0
\(355\) −1.47214 + 4.53077i −0.0781329 + 0.240468i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.61803 4.97980i −0.0853966 0.262824i 0.899236 0.437465i \(-0.144123\pi\)
−0.984632 + 0.174641i \(0.944123\pi\)
\(360\) 0 0
\(361\) 3.35410 + 2.43690i 0.176532 + 0.128258i
\(362\) 0 0
\(363\) 0.746711 4.13474i 0.0391922 0.217018i
\(364\) 0 0
\(365\) 0.927051 + 0.673542i 0.0485241 + 0.0352548i
\(366\) 0 0
\(367\) 0.708204 + 2.17963i 0.0369679 + 0.113776i 0.967838 0.251576i \(-0.0809488\pi\)
−0.930870 + 0.365352i \(0.880949\pi\)
\(368\) 0 0
\(369\) −11.2082 + 8.14324i −0.583476 + 0.423920i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 27.1246 1.40446 0.702230 0.711951i \(-0.252188\pi\)
0.702230 + 0.711951i \(0.252188\pi\)
\(374\) 0 0
\(375\) −0.381966 −0.0197246
\(376\) 0 0
\(377\) 9.52786 29.3238i 0.490710 1.51025i
\(378\) 0 0
\(379\) 9.16312 6.65740i 0.470678 0.341967i −0.327028 0.945015i \(-0.606047\pi\)
0.797705 + 0.603047i \(0.206047\pi\)
\(380\) 0 0
\(381\) 0.909830 + 2.80017i 0.0466120 + 0.143457i
\(382\) 0 0
\(383\) −2.85410 2.07363i −0.145838 0.105957i 0.512474 0.858703i \(-0.328729\pi\)
−0.658312 + 0.752745i \(0.728729\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.59017 + 4.78804i 0.334997 + 0.243390i
\(388\) 0 0
\(389\) 5.43769 + 16.7355i 0.275702 + 0.848524i 0.989033 + 0.147696i \(0.0471857\pi\)
−0.713331 + 0.700828i \(0.752814\pi\)
\(390\) 0 0
\(391\) 24.7082 17.9516i 1.24955 0.907849i
\(392\) 0 0
\(393\) 0.0516628 0.159002i 0.00260604 0.00802057i
\(394\) 0 0
\(395\) 7.23607 0.364086
\(396\) 0 0
\(397\) 3.12461 0.156820 0.0784099 0.996921i \(-0.475016\pi\)
0.0784099 + 0.996921i \(0.475016\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 29.3435 21.3193i 1.46534 1.06463i 0.483412 0.875393i \(-0.339397\pi\)
0.981931 0.189240i \(-0.0606025\pi\)
\(402\) 0 0
\(403\) 7.41641 + 22.8254i 0.369438 + 1.13701i
\(404\) 0 0
\(405\) 6.23607 + 4.53077i 0.309873 + 0.225136i
\(406\) 0 0
\(407\) −2.47214 6.15537i −0.122539 0.305110i
\(408\) 0 0
\(409\) −9.32624 6.77591i −0.461153 0.335047i 0.332831 0.942987i \(-0.391996\pi\)
−0.793983 + 0.607940i \(0.791996\pi\)
\(410\) 0 0
\(411\) −0.718847 2.21238i −0.0354581 0.109129i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −3.82624 + 11.7759i −0.187823 + 0.578059i
\(416\) 0 0
\(417\) 4.94427 0.242122
\(418\) 0 0
\(419\) −1.03444 −0.0505358 −0.0252679 0.999681i \(-0.508044\pi\)
−0.0252679 + 0.999681i \(0.508044\pi\)
\(420\) 0 0
\(421\) 4.90983 15.1109i 0.239290 0.736460i −0.757233 0.653145i \(-0.773449\pi\)
0.996523 0.0833152i \(-0.0265508\pi\)
\(422\) 0 0
\(423\) 25.9443 18.8496i 1.26145 0.916500i
\(424\) 0 0
\(425\) −1.57295 4.84104i −0.0762992 0.234825i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −6.29180 + 5.25731i −0.303771 + 0.253825i
\(430\) 0 0
\(431\) −8.23607 5.98385i −0.396717 0.288232i 0.371485 0.928439i \(-0.378849\pi\)
−0.768203 + 0.640207i \(0.778849\pi\)
\(432\) 0 0
\(433\) −9.28115 28.5645i −0.446024 1.37272i −0.881357 0.472451i \(-0.843369\pi\)
0.435333 0.900269i \(-0.356631\pi\)
\(434\) 0 0
\(435\) 1.47214 1.06957i 0.0705835 0.0512819i
\(436\) 0 0
\(437\) −7.14590 + 21.9928i −0.341835 + 1.05206i
\(438\) 0 0
\(439\) 38.3607 1.83086 0.915428 0.402483i \(-0.131853\pi\)
0.915428 + 0.402483i \(0.131853\pi\)
\(440\) 0 0
\(441\) 19.9787 0.951367
\(442\) 0 0
\(443\) 12.4098 38.1935i 0.589609 1.81463i 0.00969290 0.999953i \(-0.496915\pi\)
0.579916 0.814676i \(-0.303085\pi\)
\(444\) 0 0
\(445\) −3.30902 + 2.40414i −0.156862 + 0.113967i
\(446\) 0 0
\(447\) 2.43769 + 7.50245i 0.115299 + 0.354854i
\(448\) 0 0
\(449\) −14.7361 10.7064i −0.695438 0.505265i 0.183005 0.983112i \(-0.441417\pi\)
−0.878443 + 0.477847i \(0.841417\pi\)
\(450\) 0 0
\(451\) −3.92705 + 15.6129i −0.184918 + 0.735184i
\(452\) 0 0
\(453\) −3.85410 2.80017i −0.181082 0.131563i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.92705 3.57971i 0.230478 0.167452i −0.466553 0.884493i \(-0.654504\pi\)
0.697030 + 0.717042i \(0.254504\pi\)
\(458\) 0 0
\(459\) 3.51722 10.8249i 0.164170 0.505263i
\(460\) 0 0
\(461\) −8.18034 −0.380996 −0.190498 0.981688i \(-0.561010\pi\)
−0.190498 + 0.981688i \(0.561010\pi\)
\(462\) 0 0
\(463\) −23.1246 −1.07469 −0.537346 0.843362i \(-0.680573\pi\)
−0.537346 + 0.843362i \(0.680573\pi\)
\(464\) 0 0
\(465\) −0.437694 + 1.34708i −0.0202976 + 0.0624695i
\(466\) 0 0
\(467\) −32.1803 + 23.3804i −1.48913 + 1.08192i −0.514659 + 0.857395i \(0.672082\pi\)
−0.974469 + 0.224520i \(0.927918\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −2.47214 1.79611i −0.113910 0.0827605i
\(472\) 0 0
\(473\) 9.44427 0.640786i 0.434248 0.0294634i
\(474\) 0 0
\(475\) 3.11803 + 2.26538i 0.143065 + 0.103943i
\(476\) 0 0
\(477\) 3.11146 + 9.57608i 0.142464 + 0.438458i
\(478\) 0 0
\(479\) 4.09017 2.97168i 0.186885 0.135780i −0.490409 0.871492i \(-0.663153\pi\)
0.677294 + 0.735713i \(0.263153\pi\)
\(480\) 0 0
\(481\) −4.00000 + 12.3107i −0.182384 + 0.561321i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.61803 0.345917
\(486\) 0 0
\(487\) 12.5279 38.5568i 0.567692 1.74718i −0.0921236 0.995748i \(-0.529365\pi\)
0.659815 0.751428i \(-0.270635\pi\)
\(488\) 0 0
\(489\) −3.51722 + 2.55541i −0.159054 + 0.115560i
\(490\) 0 0
\(491\) −11.6803 35.9484i −0.527126 1.62233i −0.760072 0.649838i \(-0.774837\pi\)
0.232946 0.972490i \(-0.425163\pi\)
\(492\) 0 0
\(493\) 19.6180 + 14.2533i 0.883552 + 0.641938i
\(494\) 0 0
\(495\) 9.44427 0.640786i 0.424488 0.0288012i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 12.4443 + 38.2995i 0.557082 + 1.71452i 0.690380 + 0.723447i \(0.257443\pi\)
−0.133298 + 0.991076i \(0.542557\pi\)
\(500\) 0 0
\(501\) −6.23607 + 4.53077i −0.278607 + 0.202420i
\(502\) 0 0
\(503\) −7.43769 + 22.8909i −0.331630 + 1.02065i 0.636728 + 0.771089i \(0.280288\pi\)
−0.968358 + 0.249565i \(0.919712\pi\)
\(504\) 0 0
\(505\) −10.1803 −0.453019
\(506\) 0 0
\(507\) 11.0344 0.490057
\(508\) 0 0
\(509\) −6.14590 + 18.9151i −0.272412 + 0.838398i 0.717480 + 0.696579i \(0.245295\pi\)
−0.989893 + 0.141820i \(0.954705\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2.66312 + 8.19624i 0.117580 + 0.361873i
\(514\) 0 0
\(515\) 12.7082 + 9.23305i 0.559990 + 0.406857i
\(516\) 0 0
\(517\) 9.09017 36.1401i 0.399785 1.58944i
\(518\) 0 0
\(519\) 1.14590 + 0.832544i 0.0502993 + 0.0365446i
\(520\) 0 0
\(521\) 3.80902 + 11.7229i 0.166876 + 0.513592i 0.999170 0.0407434i \(-0.0129726\pi\)
−0.832294 + 0.554335i \(0.812973\pi\)
\(522\) 0 0
\(523\) −8.20820 + 5.96361i −0.358920 + 0.260770i −0.752601 0.658476i \(-0.771201\pi\)
0.393682 + 0.919247i \(0.371201\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −18.8754 −0.822225
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 10.1976 31.3849i 0.442536 1.36199i
\(532\) 0 0
\(533\) 25.4164 18.4661i 1.10091 0.799856i
\(534\) 0 0
\(535\) −0.590170 1.81636i −0.0255153 0.0785279i
\(536\) 0 0
\(537\) 7.57295 + 5.50207i 0.326797 + 0.237432i
\(538\) 0 0
\(539\) 17.8156 14.8864i 0.767372 0.641202i
\(540\) 0 0
\(541\) 11.3262 + 8.22899i 0.486953 + 0.353792i 0.804011 0.594614i \(-0.202695\pi\)
−0.317058 + 0.948406i \(0.602695\pi\)
\(542\) 0 0
\(543\) 1.14590 + 3.52671i 0.0491752 + 0.151346i
\(544\) 0 0
\(545\) −14.3262 + 10.4086i −0.613669 + 0.445856i
\(546\) 0 0
\(547\) 11.6976 36.0014i 0.500152 1.53931i −0.308620 0.951185i \(-0.599867\pi\)
0.808772 0.588123i \(-0.200133\pi\)
\(548\) 0 0
\(549\) 22.0000 0.938937
\(550\) 0 0
\(551\) −18.3607 −0.782191
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −0.618034 + 0.449028i −0.0262341 + 0.0190602i
\(556\) 0 0
\(557\) 8.14590 + 25.0705i 0.345153 + 1.06227i 0.961502 + 0.274798i \(0.0886110\pi\)
−0.616349 + 0.787473i \(0.711389\pi\)
\(558\) 0 0
\(559\) −14.9443 10.8576i −0.632075 0.459230i
\(560\) 0 0
\(561\) −2.40325 5.98385i −0.101465 0.252638i
\(562\) 0 0
\(563\) 1.69098 + 1.22857i 0.0712664 + 0.0517781i 0.622848 0.782343i \(-0.285975\pi\)
−0.551582 + 0.834121i \(0.685975\pi\)
\(564\) 0 0
\(565\) 2.89919 + 8.92278i 0.121970 + 0.375384i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.39261 7.36369i 0.100303 0.308702i −0.888296 0.459271i \(-0.848111\pi\)
0.988599 + 0.150569i \(0.0481106\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 8.65248 0.361462
\(574\) 0 0
\(575\) 1.85410 5.70634i 0.0773214 0.237971i
\(576\) 0 0
\(577\) 22.5344 16.3722i 0.938121 0.681585i −0.00984657 0.999952i \(-0.503134\pi\)
0.947968 + 0.318367i \(0.103134\pi\)
\(578\) 0 0
\(579\) 2.12461 + 6.53888i 0.0882959 + 0.271747i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 9.90983 + 6.22088i 0.410423 + 0.257642i
\(584\) 0 0
\(585\) −14.9443 10.8576i −0.617870 0.448909i
\(586\) 0 0
\(587\) 4.01064 + 12.3435i 0.165537 + 0.509470i 0.999075 0.0429910i \(-0.0136887\pi\)
−0.833539 + 0.552461i \(0.813689\pi\)
\(588\) 0 0
\(589\) 11.5623 8.40051i 0.476417 0.346137i
\(590\) 0 0
\(591\) 0.124612 0.383516i 0.00512584 0.0157757i
\(592\) 0 0
\(593\) −31.8541 −1.30809 −0.654046 0.756455i \(-0.726930\pi\)
−0.654046 + 0.756455i \(0.726930\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.61803 + 8.05748i −0.107149 + 0.329771i
\(598\) 0 0
\(599\) 2.38197 1.73060i 0.0973245 0.0707104i −0.538059 0.842907i \(-0.680842\pi\)
0.635383 + 0.772197i \(0.280842\pi\)
\(600\) 0 0
\(601\) −0.0278640 0.0857567i −0.00113660 0.00349809i 0.950487 0.310766i \(-0.100585\pi\)
−0.951623 + 0.307267i \(0.900585\pi\)
\(602\) 0 0
\(603\) 1.42705 + 1.03681i 0.0581140 + 0.0422223i
\(604\) 0 0
\(605\) 7.94427 7.60845i 0.322981 0.309328i
\(606\) 0 0
\(607\) 10.7082 + 7.77997i 0.434633 + 0.315779i 0.783499 0.621394i \(-0.213433\pi\)
−0.348866 + 0.937173i \(0.613433\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −58.8328 + 42.7445i −2.38012 + 1.72926i
\(612\) 0 0
\(613\) 4.23607 13.0373i 0.171093 0.526571i −0.828340 0.560225i \(-0.810715\pi\)
0.999434 + 0.0336545i \(0.0107146\pi\)
\(614\) 0 0
\(615\) 1.85410 0.0747646
\(616\) 0 0
\(617\) −14.9098 −0.600247 −0.300124 0.953900i \(-0.597028\pi\)
−0.300124 + 0.953900i \(0.597028\pi\)
\(618\) 0 0
\(619\) 3.39261 10.4414i 0.136360 0.419674i −0.859439 0.511239i \(-0.829187\pi\)
0.995799 + 0.0915645i \(0.0291868\pi\)
\(620\) 0 0
\(621\) 10.8541 7.88597i 0.435560 0.316453i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 0 0
\(627\) 4.13525 + 2.59590i 0.165146 + 0.103670i
\(628\) 0 0
\(629\) −8.23607 5.98385i −0.328394 0.238592i
\(630\) 0 0
\(631\) −0.527864 1.62460i −0.0210139 0.0646742i 0.940000 0.341175i \(-0.110825\pi\)
−0.961014 + 0.276501i \(0.910825\pi\)
\(632\) 0 0
\(633\) −5.91641 + 4.29852i −0.235156 + 0.170851i
\(634\) 0 0
\(635\) −2.38197 + 7.33094i −0.0945254 + 0.290919i
\(636\) 0 0
\(637\) −45.3050 −1.79505
\(638\) 0 0
\(639\) −13.5967 −0.537879
\(640\) 0 0
\(641\) −6.15248 + 18.9354i −0.243008 + 0.747902i 0.752949 + 0.658078i \(0.228630\pi\)
−0.995958 + 0.0898240i \(0.971370\pi\)
\(642\) 0 0
\(643\) 4.30902 3.13068i 0.169931 0.123462i −0.499569 0.866274i \(-0.666508\pi\)
0.669500 + 0.742812i \(0.266508\pi\)
\(644\) 0 0
\(645\) −0.336881 1.03681i −0.0132647 0.0408245i
\(646\) 0 0
\(647\) 8.47214 + 6.15537i 0.333074 + 0.241992i 0.741734 0.670694i \(-0.234004\pi\)
−0.408660 + 0.912687i \(0.634004\pi\)
\(648\) 0 0
\(649\) −14.2918 35.5851i −0.561002 1.39684i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.00000 15.3884i −0.195665 0.602195i −0.999968 0.00797602i \(-0.997461\pi\)
0.804303 0.594219i \(-0.202539\pi\)
\(654\) 0 0
\(655\) 0.354102 0.257270i 0.0138359 0.0100524i
\(656\) 0 0
\(657\) −1.01064 + 3.11044i −0.0394289 + 0.121350i
\(658\) 0 0
\(659\) 9.09017 0.354103 0.177051 0.984202i \(-0.443344\pi\)
0.177051 + 0.984202i \(0.443344\pi\)
\(660\) 0 0
\(661\) −1.12461 −0.0437423 −0.0218712 0.999761i \(-0.506962\pi\)
−0.0218712 + 0.999761i \(0.506962\pi\)
\(662\) 0 0
\(663\) −3.88854 + 11.9677i −0.151019 + 0.464787i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.83282 + 27.1846i 0.342008 + 1.05259i
\(668\) 0 0
\(669\) 1.23607 + 0.898056i 0.0477891 + 0.0347208i
\(670\) 0 0
\(671\) 19.6180 16.3925i 0.757346 0.632824i
\(672\) 0 0
\(673\) −32.2426 23.4257i −1.24286 0.902993i −0.245077 0.969504i \(-0.578813\pi\)
−0.997786 + 0.0665110i \(0.978813\pi\)
\(674\) 0 0
\(675\) −0.690983 2.12663i −0.0265959 0.0818539i
\(676\) 0 0
\(677\) −24.7082 + 17.9516i −0.949613 + 0.689935i −0.950715 0.310065i \(-0.899649\pi\)
0.00110199 + 0.999999i \(0.499649\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.29180 −0.0495017
\(682\) 0 0
\(683\) −33.8885 −1.29671 −0.648355 0.761339i \(-0.724543\pi\)
−0.648355 + 0.761339i \(0.724543\pi\)
\(684\) 0 0
\(685\) 1.88197 5.79210i 0.0719062 0.221305i
\(686\) 0 0
\(687\) −2.94427 + 2.13914i −0.112331 + 0.0816132i
\(688\) 0 0
\(689\) −7.05573 21.7153i −0.268802 0.827287i
\(690\) 0 0
\(691\) 36.2426 + 26.3318i 1.37874 + 1.00171i 0.996997 + 0.0774393i \(0.0246744\pi\)
0.381738 + 0.924271i \(0.375326\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.4721 + 7.60845i 0.397231 + 0.288605i
\(696\) 0 0
\(697\) 7.63525 + 23.4989i 0.289206 + 0.890084i
\(698\) 0 0
\(699\) −5.88197 + 4.27350i −0.222476 + 0.161639i
\(700\) 0 0
\(701\) 0.909830 2.80017i 0.0343638 0.105761i −0.932403 0.361419i \(-0.882292\pi\)
0.966767 + 0.255658i \(0.0822923\pi\)
\(702\) 0 0
\(703\) 7.70820 0.290720
\(704\) 0 0
\(705\) −4.29180 −0.161638
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −9.00000 + 6.53888i −0.338002 + 0.245573i −0.743818 0.668382i \(-0.766987\pi\)
0.405816 + 0.913955i \(0.366987\pi\)
\(710\) 0 0
\(711\) 6.38197 + 19.6417i 0.239342 + 0.736620i
\(712\) 0 0
\(713\) −18.0000 13.0778i −0.674105 0.489766i
\(714\) 0 0
\(715\) −21.4164 + 1.45309i −0.800928 + 0.0543423i
\(716\) 0 0
\(717\) 4.61803 + 3.35520i 0.172464 + 0.125302i
\(718\) 0 0
\(719\) 4.81966 + 14.8334i 0.179743 + 0.553192i 0.999818 0.0190636i \(-0.00606850\pi\)
−0.820075 + 0.572256i \(0.806069\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.63525 5.03280i 0.0608158 0.187172i
\(724\) 0 0
\(725\) 4.76393 0.176928
\(726\) 0 0
\(727\) −37.8885 −1.40521 −0.702604 0.711581i \(-0.747980\pi\)
−0.702604 + 0.711581i \(0.747980\pi\)
\(728\) 0 0
\(729\) −6.00658 + 18.4863i −0.222466 + 0.684679i
\(730\) 0 0
\(731\) 11.7533 8.53926i 0.434711 0.315836i
\(732\) 0 0
\(733\) 9.29180 + 28.5972i 0.343200 + 1.05626i 0.962540 + 0.271139i \(0.0874003\pi\)
−0.619340 + 0.785123i \(0.712600\pi\)
\(734\) 0 0
\(735\) −2.16312 1.57160i −0.0797878 0.0579693i
\(736\) 0 0
\(737\) 2.04508 0.138757i 0.0753317 0.00511119i
\(738\) 0 0
\(739\) −34.0623 24.7477i −1.25300 0.910359i −0.254610 0.967044i \(-0.581947\pi\)
−0.998392 + 0.0566844i \(0.981947\pi\)
\(740\) 0 0
\(741\) −2.94427 9.06154i −0.108161 0.332884i
\(742\) 0 0
\(743\) 35.0344 25.4540i 1.28529 0.933817i 0.285590 0.958352i \(-0.407810\pi\)
0.999699 + 0.0245348i \(0.00781044\pi\)
\(744\) 0 0
\(745\) −6.38197 + 19.6417i −0.233817 + 0.719615i
\(746\) 0 0
\(747\) −35.3394 −1.29300
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −4.27051 + 13.1433i −0.155833 + 0.479605i −0.998244 0.0592301i \(-0.981135\pi\)
0.842411 + 0.538835i \(0.181135\pi\)
\(752\) 0 0
\(753\) 5.52786 4.01623i 0.201447 0.146359i
\(754\) 0 0
\(755\) −3.85410 11.8617i −0.140265 0.431692i
\(756\) 0 0
\(757\) 27.7082 + 20.1312i 1.00707 + 0.731680i 0.963593 0.267374i \(-0.0861559\pi\)
0.0434789 + 0.999054i \(0.486156\pi\)
\(758\) 0 0
\(759\) 1.85410 7.37143i 0.0672996 0.267566i
\(760\) 0 0
\(761\) 0.791796 + 0.575274i 0.0287026 + 0.0208536i 0.602044 0.798463i \(-0.294353\pi\)
−0.573341 + 0.819317i \(0.694353\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 11.7533 8.53926i 0.424941 0.308738i
\(766\) 0 0
\(767\) −23.1246 + 71.1702i −0.834981 + 2.56981i
\(768\) 0 0
\(769\) 45.7771 1.65076 0.825382 0.564575i \(-0.190960\pi\)
0.825382 + 0.564575i \(0.190960\pi\)
\(770\) 0 0
\(771\) −3.56231 −0.128293
\(772\) 0 0
\(773\) −7.38197 + 22.7194i −0.265511 + 0.817158i 0.726064 + 0.687627i \(0.241347\pi\)
−0.991575 + 0.129532i \(0.958653\pi\)
\(774\) 0 0
\(775\) −3.00000 + 2.17963i −0.107763 + 0.0782945i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −15.1353 10.9964i −0.542277 0.393987i
\(780\) 0 0
\(781\) −12.1246 + 10.1311i −0.433853 + 0.362519i
\(782\) 0 0
\(783\) 8.61803 + 6.26137i 0.307983 + 0.223763i
\(784\) 0 0
\(785\) −2.47214 7.60845i −0.0882343 0.271557i
\(786\) 0 0
\(787\) −3.79180 + 2.75490i −0.135163 + 0.0982016i −0.653312 0.757089i \(-0.726621\pi\)
0.518149 + 0.855290i \(0.326621\pi\)
\(788\) 0 0
\(789\) 0.0212862 0.0655123i 0.000757810 0.00233230i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −49.8885 −1.77159
\(794\) 0 0
\(795\) 0.416408 1.28157i 0.0147685 0.0454527i
\(796\) 0 0
\(797\) −18.4164 + 13.3803i −0.652343 + 0.473955i −0.864068 0.503374i \(-0.832092\pi\)
0.211726 + 0.977329i \(0.432092\pi\)
\(798\) 0 0
\(799\) −17.6738 54.3942i −0.625253 1.92433i
\(800\) 0 0
\(801\) −9.44427 6.86167i −0.333697 0.242445i
\(802\) 0 0
\(803\) 1.41641 + 3.52671i 0.0499839 + 0.124455i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −2.87539 8.84953i −0.101218 0.311518i
\(808\) 0 0
\(809\) 20.3885 14.8131i 0.716823 0.520802i −0.168545 0.985694i \(-0.553907\pi\)
0.885368 + 0.464892i \(0.153907\pi\)
\(810\) 0 0
\(811\) 10.5000 32.3157i 0.368705 1.13476i −0.578924 0.815382i \(-0.696527\pi\)
0.947628 0.319375i \(-0.103473\pi\)
\(812\) 0 0
\(813\) 7.63932 0.267923
\(814\) 0 0
\(815\) −11.3820 −0.398693
\(816\) 0 0
\(817\) −3.39919 + 10.4616i −0.118922 + 0.366006i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.43769 + 22.8909i 0.259577 + 0.798897i 0.992893 + 0.119009i \(0.0379717\pi\)
−0.733316 + 0.679888i \(0.762028\pi\)
\(822\) 0 0
\(823\) −31.9787 23.2339i −1.11471 0.809883i −0.131309 0.991341i \(-0.541918\pi\)
−0.983399 + 0.181459i \(0.941918\pi\)
\(824\) 0 0
\(825\) −1.07295 0.673542i −0.0373553 0.0234497i
\(826\) 0 0
\(827\) 16.6803 + 12.1190i 0.580032 + 0.421418i 0.838736 0.544539i \(-0.183295\pi\)
−0.258703 + 0.965957i \(0.583295\pi\)
\(828\) 0 0
\(829\) 0.965558 + 2.97168i 0.0335352 + 0.103211i 0.966423 0.256956i \(-0.0827197\pi\)
−0.932888 + 0.360167i \(0.882720\pi\)
\(830\) 0 0
\(831\) −2.90983 + 2.11412i −0.100941 + 0.0733378i
\(832\) 0 0
\(833\) 11.0106 33.8873i 0.381496 1.17412i
\(834\) 0 0
\(835\) −20.1803 −0.698369
\(836\) 0 0
\(837\) −8.29180 −0.286606
\(838\) 0 0
\(839\) −0.763932 + 2.35114i −0.0263739 + 0.0811704i −0.963377 0.268150i \(-0.913588\pi\)
0.937003 + 0.349321i \(0.113588\pi\)
\(840\) 0 0
\(841\) 5.10081 3.70596i 0.175890 0.127792i
\(842\) 0 0
\(843\) −0.551663 1.69784i −0.0190003 0.0584768i
\(844\) 0 0
\(845\) 23.3713 + 16.9803i 0.803998 + 0.584139i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −0.763932 0.555029i −0.0262181 0.0190485i
\(850\) 0 0
\(851\) −3.70820 11.4127i −0.127116 0.391222i
\(852\) 0 0
\(853\) 6.00000 4.35926i 0.205436 0.149258i −0.480310 0.877099i \(-0.659476\pi\)
0.685746 + 0.727841i \(0.259476\pi\)
\(854\) 0 0
\(855\) −3.39919 + 10.4616i −0.116250 + 0.357780i
\(856\) 0 0
\(857\) −26.6738 −0.911158 −0.455579 0.890195i \(-0.650568\pi\)
−0.455579 + 0.890195i \(0.650568\pi\)
\(858\) 0 0
\(859\) 34.6180 1.18115 0.590576 0.806982i \(-0.298901\pi\)
0.590576 + 0.806982i \(0.298901\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 34.4164 25.0050i 1.17155 0.851180i 0.180355 0.983602i \(-0.442275\pi\)
0.991193 + 0.132422i \(0.0422754\pi\)
\(864\) 0 0
\(865\) 1.14590 + 3.52671i 0.0389617 + 0.119912i
\(866\) 0 0
\(867\) −2.75329 2.00038i −0.0935066 0.0679365i
\(868\) 0 0
\(869\) 20.3262 + 12.7598i 0.689520 + 0.432845i
\(870\) 0 0
\(871\) −3.23607 2.35114i −0.109650 0.0796654i
\(872\) 0 0
\(873\) 6.71885 + 20.6785i 0.227399 + 0.699861i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −13.0557 + 40.1814i −0.440861 + 1.35683i 0.446099 + 0.894983i \(0.352813\pi\)
−0.886960 + 0.461846i \(0.847187\pi\)
\(878\) 0 0
\(879\) 4.29180 0.144759
\(880\) 0 0
\(881\) −26.9230 −0.907058 −0.453529 0.891241i \(-0.649835\pi\)
−0.453529 + 0.891241i \(0.649835\pi\)
\(882\) 0 0
\(883\) −7.35410 + 22.6336i −0.247485 + 0.761681i 0.747733 + 0.664000i \(0.231143\pi\)
−0.995218 + 0.0976812i \(0.968857\pi\)
\(884\) 0 0
\(885\) −3.57295 + 2.59590i −0.120103 + 0.0872602i
\(886\) 0 0
\(887\) −2.88854 8.89002i −0.0969878 0.298498i 0.890779 0.454437i \(-0.150160\pi\)
−0.987767 + 0.155939i \(0.950160\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 9.52786 + 23.7234i 0.319195 + 0.794764i
\(892\) 0 0
\(893\) 35.0344 + 25.4540i 1.17238 + 0.851786i
\(894\) 0 0
\(895\) 7.57295 + 23.3071i 0.253136 + 0.779072i
\(896\) 0 0
\(897\) −12.0000 + 8.71851i −0.400668 + 0.291103i
\(898\) 0 0
\(899\) 5.45898 16.8010i 0.182067 0.560345i
\(900\) 0 0
\(901\) 17.9574 0.598249
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.00000 + 9.23305i −0.0997234 + 0.306917i
\(906\) 0 0
\(907\) −37.3885 + 27.1644i −1.24147 + 0.901978i −0.997695 0.0678548i \(-0.978385\pi\)
−0.243771 + 0.969833i \(0.578385\pi\)
\(908\) 0 0
\(909\) −8.97871 27.6336i −0.297805 0.916550i
\(910\) 0 0
\(911\) −35.9787 26.1401i −1.19203 0.866059i −0.198551 0.980091i \(-0.563623\pi\)
−0.993477 + 0.114032i \(0.963623\pi\)
\(912\) 0 0
\(913\) −31.5132 + 26.3318i −1.04293 + 0.871456i
\(914\) 0 0
\(915\) −2.38197 1.73060i −0.0787454 0.0572119i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −20.7984 + 15.1109i −0.686075 + 0.498463i −0.875368 0.483458i \(-0.839381\pi\)
0.189292 + 0.981921i \(0.439381\pi\)
\(920\) 0 0
\(921\) −1.48278 + 4.56352i −0.0488592 + 0.150373i
\(922\) 0 0
\(923\) 30.8328 1.01487
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 0 0
\(927\) −13.8541 + 42.6385i −0.455028 + 1.40043i
\(928\) 0 0
\(929\) −3.02786 + 2.19987i −0.0993410 + 0.0721755i −0.636347 0.771403i \(-0.719555\pi\)
0.537006 + 0.843578i \(0.319555\pi\)
\(930\) 0 0
\(931\) 8.33688 + 25.6583i 0.273230 + 0.840916i
\(932\) 0 0
\(933\) −0.854102 0.620541i −0.0279620 0.0203156i
\(934\) 0 0
\(935\) 4.11803 16.3722i 0.134674 0.535429i
\(936\) 0 0
\(937\) 10.5344 + 7.65372i 0.344145 + 0.250036i 0.746409 0.665488i \(-0.231776\pi\)
−0.402264 + 0.915524i \(0.631776\pi\)
\(938\) 0 0
\(939\) 3.80244 + 11.7027i 0.124088 + 0.381903i
\(940\) 0 0
\(941\) −27.3607 + 19.8787i −0.891933 + 0.648027i −0.936381 0.350985i \(-0.885847\pi\)
0.0444485 + 0.999012i \(0.485847\pi\)
\(942\) 0 0
\(943\) −9.00000 + 27.6992i −0.293080 + 0.902008i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.5066 1.25130 0.625648 0.780106i \(-0.284835\pi\)
0.625648 + 0.780106i \(0.284835\pi\)
\(948\) 0 0
\(949\) 2.29180 7.05342i 0.0743948 0.228964i
\(950\) 0 0
\(951\) −3.47214 + 2.52265i −0.112592 + 0.0818027i
\(952\) 0 0
\(953\) −13.1180 40.3732i −0.424935 1.30781i −0.903057 0.429521i \(-0.858682\pi\)
0.478122 0.878293i \(-0.341318\pi\)
\(954\) 0 0
\(955\) 18.3262 + 13.3148i 0.593023 + 0.430857i
\(956\) 0 0
\(957\) 6.02129 0.408539i 0.194641 0.0132062i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −5.33030 16.4050i −0.171945 0.529193i
\(962\) 0 0
\(963\) 4.40983 3.20393i 0.142105 0.103245i
\(964\) 0 0
\(965\) −5.56231 + 17.1190i −0.179057 + 0.551081i
\(966\) 0 0
\(967\) 20.3607 0.654755 0.327378 0.944894i \(-0.393835\pi\)
0.327378 + 0.944894i \(0.393835\pi\)
\(968\) 0 0
\(969\) 7.49342 0.240723
\(970\) 0 0
\(971\) −6.00000 + 18.4661i −0.192549 + 0.592605i 0.807447 + 0.589940i \(0.200849\pi\)
−0.999996 + 0.00266566i \(0.999151\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0.763932 + 2.35114i 0.0244654 + 0.0752968i
\(976\) 0 0
\(977\) −29.5066 21.4378i −0.943999 0.685855i 0.00538090 0.999986i \(-0.498287\pi\)
−0.949380 + 0.314130i \(0.898287\pi\)
\(978\) 0 0
\(979\) −13.5344 + 0.918300i −0.432563 + 0.0293490i
\(980\) 0 0
\(981\) −40.8885 29.7073i −1.30547 0.948480i
\(982\) 0 0
\(983\) −6.03444 18.5721i −0.192469 0.592358i −0.999997 0.00252883i \(-0.999195\pi\)
0.807528 0.589829i \(-0.200805\pi\)
\(984\) 0 0
\(985\) 0.854102 0.620541i 0.0272140 0.0197721i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 17.1246 0.544531
\(990\) 0 0
\(991\) 6.83282 0.217052 0.108526 0.994094i \(-0.465387\pi\)
0.108526 + 0.994094i \(0.465387\pi\)
\(992\) 0 0
\(993\) 1.71885 5.29007i 0.0545460 0.167875i
\(994\) 0 0
\(995\) −17.9443 + 13.0373i −0.568872 + 0.413309i
\(996\) 0 0
\(997\) 3.05573 + 9.40456i 0.0967759 + 0.297846i 0.987712 0.156282i \(-0.0499509\pi\)
−0.890937 + 0.454128i \(0.849951\pi\)
\(998\) 0 0
\(999\) −3.61803 2.62866i −0.114470 0.0831670i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.bo.b.81.1 4
4.3 odd 2 110.2.g.b.81.1 4
11.3 even 5 inner 880.2.bo.b.641.1 4
11.5 even 5 9680.2.a.bx.1.1 2
11.6 odd 10 9680.2.a.bw.1.1 2
12.11 even 2 990.2.n.c.631.1 4
20.3 even 4 550.2.ba.b.499.2 8
20.7 even 4 550.2.ba.b.499.1 8
20.19 odd 2 550.2.h.b.301.1 4
44.3 odd 10 110.2.g.b.91.1 yes 4
44.27 odd 10 1210.2.a.n.1.2 2
44.39 even 10 1210.2.a.q.1.2 2
132.47 even 10 990.2.n.c.91.1 4
220.3 even 20 550.2.ba.b.399.1 8
220.39 even 10 6050.2.a.ch.1.1 2
220.47 even 20 550.2.ba.b.399.2 8
220.159 odd 10 6050.2.a.cw.1.1 2
220.179 odd 10 550.2.h.b.201.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.g.b.81.1 4 4.3 odd 2
110.2.g.b.91.1 yes 4 44.3 odd 10
550.2.h.b.201.1 4 220.179 odd 10
550.2.h.b.301.1 4 20.19 odd 2
550.2.ba.b.399.1 8 220.3 even 20
550.2.ba.b.399.2 8 220.47 even 20
550.2.ba.b.499.1 8 20.7 even 4
550.2.ba.b.499.2 8 20.3 even 4
880.2.bo.b.81.1 4 1.1 even 1 trivial
880.2.bo.b.641.1 4 11.3 even 5 inner
990.2.n.c.91.1 4 132.47 even 10
990.2.n.c.631.1 4 12.11 even 2
1210.2.a.n.1.2 2 44.27 odd 10
1210.2.a.q.1.2 2 44.39 even 10
6050.2.a.ch.1.1 2 220.39 even 10
6050.2.a.cw.1.1 2 220.159 odd 10
9680.2.a.bw.1.1 2 11.6 odd 10
9680.2.a.bx.1.1 2 11.5 even 5