L(s) = 1 | + (0.118 − 0.363i)3-s + (0.809 − 0.587i)5-s + (2.30 + 1.67i)9-s + (3.30 − 0.224i)11-s + (−5.23 − 3.80i)13-s + (−0.118 − 0.363i)15-s + (4.11 − 2.99i)17-s + (−1.19 + 3.66i)19-s + 6·23-s + (0.309 − 0.951i)25-s + (1.80 − 1.31i)27-s + (1.47 + 4.53i)29-s + (−3 − 2.17i)31-s + (0.309 − 1.22i)33-s + (−0.618 − 1.90i)37-s + ⋯ |
L(s) = 1 | + (0.0681 − 0.209i)3-s + (0.361 − 0.262i)5-s + (0.769 + 0.559i)9-s + (0.997 − 0.0676i)11-s + (−1.45 − 1.05i)13-s + (−0.0304 − 0.0937i)15-s + (0.998 − 0.725i)17-s + (−0.273 + 0.840i)19-s + 1.25·23-s + (0.0618 − 0.190i)25-s + (0.348 − 0.252i)27-s + (0.273 + 0.841i)29-s + (−0.538 − 0.391i)31-s + (0.0537 − 0.213i)33-s + (−0.101 − 0.312i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.79026 - 0.492387i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.79026 - 0.492387i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (-3.30 + 0.224i)T \) |
good | 3 | \( 1 + (-0.118 + 0.363i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (5.23 + 3.80i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-4.11 + 2.99i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.19 - 3.66i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 6T + 23T^{2} \) |
| 29 | \( 1 + (-1.47 - 4.53i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (3 + 2.17i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (0.618 + 1.90i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.5 - 4.61i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 2.85T + 43T^{2} \) |
| 47 | \( 1 + (-3.47 + 10.6i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-2.85 - 2.07i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (3.57 + 10.9i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-6.23 + 4.53i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 0.618T + 67T^{2} \) |
| 71 | \( 1 + (3.85 - 2.80i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.354 - 1.08i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-5.85 - 4.25i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (10.0 - 7.27i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 4.09T + 89T^{2} \) |
| 97 | \( 1 + (-6.16 - 4.47i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.985830273784157752158304073538, −9.394769241688187190083785931867, −8.324610021581143441510007155544, −7.43049768342632571979543970457, −6.84647289865728509663038842366, −5.49603533428830808868138786612, −4.92949968654195410395236448137, −3.63936259560345730915493385973, −2.39462182435982885377145105230, −1.08979403215113393851802691039,
1.35712205292447136471387394509, 2.70086950652882444142206156718, 3.98033003017654160826917477038, 4.71899654062276273011647475013, 5.95972398377433460588965353262, 6.93974912229450638271661907502, 7.34448742798484318129203209587, 8.869798628568234930835120767308, 9.381217945090375824689547705858, 10.06481512918152400173677216852