Properties

Label 880.2.bk.b.243.20
Level $880$
Weight $2$
Character 880.243
Analytic conductor $7.027$
Analytic rank $0$
Dimension $236$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(243,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.243"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bk (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [236] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(236\)
Relative dimension: \(118\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 243.20
Character \(\chi\) \(=\) 880.243
Dual form 880.2.bk.b.507.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.23415 + 0.690563i) q^{2} -1.48151 q^{3} +(1.04624 - 1.70452i) q^{4} +(-1.55039 + 1.61130i) q^{5} +(1.82841 - 1.02308i) q^{6} +(2.89237 - 2.89237i) q^{7} +(-0.114146 + 2.82612i) q^{8} -0.805118 q^{9} +(0.800715 - 3.05922i) q^{10} +(0.707107 + 0.707107i) q^{11} +(-1.55003 + 2.52526i) q^{12} +3.15509i q^{13} +(-1.57225 + 5.56697i) q^{14} +(2.29693 - 2.38716i) q^{15} +(-1.81074 - 3.56668i) q^{16} +(-1.30571 + 1.30571i) q^{17} +(0.993635 - 0.555985i) q^{18} +(-3.06068 - 3.06068i) q^{19} +(1.12439 + 4.32848i) q^{20} +(-4.28508 + 4.28508i) q^{21} +(-1.36098 - 0.384373i) q^{22} +(-0.293363 - 0.293363i) q^{23} +(0.169109 - 4.18694i) q^{24} +(-0.192552 - 4.99629i) q^{25} +(-2.17879 - 3.89385i) q^{26} +5.63733 q^{27} +(-1.90396 - 7.95620i) q^{28} +(3.64395 - 3.64395i) q^{29} +(-1.18627 + 4.53228i) q^{30} -5.61108i q^{31} +(4.69774 + 3.15138i) q^{32} +(-1.04759 - 1.04759i) q^{33} +(0.709763 - 2.51311i) q^{34} +(0.176150 + 9.14477i) q^{35} +(-0.842351 + 1.37234i) q^{36} -0.849705i q^{37} +(5.89093 + 1.66374i) q^{38} -4.67431i q^{39} +(-4.37675 - 4.56553i) q^{40} +0.0766293i q^{41} +(2.32930 - 8.24754i) q^{42} +12.3051i q^{43} +(1.94508 - 0.465467i) q^{44} +(1.24825 - 1.29728i) q^{45} +(0.564639 + 0.159468i) q^{46} +(4.95296 + 4.95296i) q^{47} +(2.68264 + 5.28408i) q^{48} -9.73155i q^{49} +(3.68789 + 6.03320i) q^{50} +(1.93442 - 1.93442i) q^{51} +(5.37790 + 3.30100i) q^{52} +3.15026 q^{53} +(-6.95731 + 3.89294i) q^{54} +(-2.23565 + 0.0430640i) q^{55} +(7.84403 + 8.50433i) q^{56} +(4.53444 + 4.53444i) q^{57} +(-1.98080 + 7.01356i) q^{58} +(4.56405 - 4.56405i) q^{59} +(-1.66579 - 6.41270i) q^{60} +(3.06868 + 3.06868i) q^{61} +(3.87481 + 6.92491i) q^{62} +(-2.32870 + 2.32870i) q^{63} +(-7.97394 - 0.645180i) q^{64} +(-5.08379 - 4.89164i) q^{65} +(2.01631 + 0.569453i) q^{66} +3.46931i q^{67} +(0.859508 + 3.59169i) q^{68} +(0.434621 + 0.434621i) q^{69} +(-6.53243 - 11.1644i) q^{70} +5.88208 q^{71} +(0.0919009 - 2.27536i) q^{72} +(10.2695 - 10.2695i) q^{73} +(0.586775 + 1.04866i) q^{74} +(0.285269 + 7.40207i) q^{75} +(-8.41920 + 2.01476i) q^{76} +4.09042 q^{77} +(3.22791 + 5.76879i) q^{78} +16.9605 q^{79} +(8.55435 + 2.61212i) q^{80} -5.93643 q^{81} +(-0.0529173 - 0.0945719i) q^{82} +14.7531 q^{83} +(2.82074 + 11.7872i) q^{84} +(-0.0795198 - 4.12824i) q^{85} +(-8.49743 - 15.1863i) q^{86} +(-5.39857 + 5.39857i) q^{87} +(-2.07908 + 1.91766i) q^{88} +0.571426 q^{89} +(-0.644670 + 2.46304i) q^{90} +(9.12568 + 9.12568i) q^{91} +(-0.806971 + 0.193112i) q^{92} +8.31289i q^{93} +(-9.53302 - 2.69235i) q^{94} +(9.67693 - 0.186401i) q^{95} +(-6.95977 - 4.66881i) q^{96} +(2.26353 - 2.26353i) q^{97} +(6.72025 + 12.0102i) q^{98} +(-0.569305 - 0.569305i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 236 q + 4 q^{3} + 4 q^{5} - 4 q^{7} + 12 q^{8} + 240 q^{9} - 8 q^{12} + 12 q^{14} - 4 q^{15} - 8 q^{16} + 8 q^{17} + 28 q^{18} + 28 q^{19} + 4 q^{20} + 16 q^{21} + 4 q^{22} - 8 q^{23} + 12 q^{25} + 8 q^{26}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.23415 + 0.690563i −0.872675 + 0.488302i
\(3\) −1.48151 −0.855352 −0.427676 0.903932i \(-0.640668\pi\)
−0.427676 + 0.903932i \(0.640668\pi\)
\(4\) 1.04624 1.70452i 0.523122 0.852258i
\(5\) −1.55039 + 1.61130i −0.693358 + 0.720594i
\(6\) 1.82841 1.02308i 0.746444 0.417670i
\(7\) 2.89237 2.89237i 1.09321 1.09321i 0.0980276 0.995184i \(-0.468747\pi\)
0.995184 0.0980276i \(-0.0312533\pi\)
\(8\) −0.114146 + 2.82612i −0.0403566 + 0.999185i
\(9\) −0.805118 −0.268373
\(10\) 0.800715 3.05922i 0.253208 0.967412i
\(11\) 0.707107 + 0.707107i 0.213201 + 0.213201i
\(12\) −1.55003 + 2.52526i −0.447454 + 0.728980i
\(13\) 3.15509i 0.875065i 0.899203 + 0.437532i \(0.144147\pi\)
−0.899203 + 0.437532i \(0.855853\pi\)
\(14\) −1.57225 + 5.56697i −0.420201 + 1.48784i
\(15\) 2.29693 2.38716i 0.593065 0.616361i
\(16\) −1.81074 3.56668i −0.452686 0.891670i
\(17\) −1.30571 + 1.30571i −0.316680 + 0.316680i −0.847491 0.530810i \(-0.821888\pi\)
0.530810 + 0.847491i \(0.321888\pi\)
\(18\) 0.993635 0.555985i 0.234202 0.131047i
\(19\) −3.06068 3.06068i −0.702169 0.702169i 0.262707 0.964876i \(-0.415385\pi\)
−0.964876 + 0.262707i \(0.915385\pi\)
\(20\) 1.12439 + 4.32848i 0.251421 + 0.967878i
\(21\) −4.28508 + 4.28508i −0.935081 + 0.935081i
\(22\) −1.36098 0.384373i −0.290161 0.0819485i
\(23\) −0.293363 0.293363i −0.0611704 0.0611704i 0.675860 0.737030i \(-0.263772\pi\)
−0.737030 + 0.675860i \(0.763772\pi\)
\(24\) 0.169109 4.18694i 0.0345191 0.854655i
\(25\) −0.192552 4.99629i −0.0385105 0.999258i
\(26\) −2.17879 3.89385i −0.427296 0.763647i
\(27\) 5.63733 1.08491
\(28\) −1.90396 7.95620i −0.359814 1.50358i
\(29\) 3.64395 3.64395i 0.676665 0.676665i −0.282579 0.959244i \(-0.591190\pi\)
0.959244 + 0.282579i \(0.0911899\pi\)
\(30\) −1.18627 + 4.53228i −0.216582 + 0.827478i
\(31\) 5.61108i 1.00778i −0.863768 0.503890i \(-0.831902\pi\)
0.863768 0.503890i \(-0.168098\pi\)
\(32\) 4.69774 + 3.15138i 0.830452 + 0.557090i
\(33\) −1.04759 1.04759i −0.182362 0.182362i
\(34\) 0.709763 2.51311i 0.121723 0.430995i
\(35\) 0.176150 + 9.14477i 0.0297748 + 1.54575i
\(36\) −0.842351 + 1.37234i −0.140392 + 0.228723i
\(37\) 0.849705i 0.139691i −0.997558 0.0698453i \(-0.977749\pi\)
0.997558 0.0698453i \(-0.0222506\pi\)
\(38\) 5.89093 + 1.66374i 0.955635 + 0.269895i
\(39\) 4.67431i 0.748489i
\(40\) −4.37675 4.56553i −0.692025 0.721873i
\(41\) 0.0766293i 0.0119675i 0.999982 + 0.00598374i \(0.00190469\pi\)
−0.999982 + 0.00598374i \(0.998095\pi\)
\(42\) 2.32930 8.24754i 0.359420 1.27262i
\(43\) 12.3051i 1.87651i 0.345950 + 0.938253i \(0.387557\pi\)
−0.345950 + 0.938253i \(0.612443\pi\)
\(44\) 1.94508 0.465467i 0.293232 0.0701719i
\(45\) 1.24825 1.29728i 0.186078 0.193388i
\(46\) 0.564639 + 0.159468i 0.0832515 + 0.0235122i
\(47\) 4.95296 + 4.95296i 0.722463 + 0.722463i 0.969106 0.246643i \(-0.0793275\pi\)
−0.246643 + 0.969106i \(0.579328\pi\)
\(48\) 2.68264 + 5.28408i 0.387206 + 0.762692i
\(49\) 9.73155i 1.39022i
\(50\) 3.68789 + 6.03320i 0.521547 + 0.853223i
\(51\) 1.93442 1.93442i 0.270873 0.270873i
\(52\) 5.37790 + 3.30100i 0.745781 + 0.457766i
\(53\) 3.15026 0.432722 0.216361 0.976313i \(-0.430581\pi\)
0.216361 + 0.976313i \(0.430581\pi\)
\(54\) −6.95731 + 3.89294i −0.946769 + 0.529761i
\(55\) −2.23565 + 0.0430640i −0.301455 + 0.00580675i
\(56\) 7.84403 + 8.50433i 1.04820 + 1.13644i
\(57\) 4.53444 + 4.53444i 0.600602 + 0.600602i
\(58\) −1.98080 + 7.01356i −0.260092 + 0.920925i
\(59\) 4.56405 4.56405i 0.594189 0.594189i −0.344571 0.938760i \(-0.611976\pi\)
0.938760 + 0.344571i \(0.111976\pi\)
\(60\) −1.66579 6.41270i −0.215053 0.827876i
\(61\) 3.06868 + 3.06868i 0.392904 + 0.392904i 0.875721 0.482817i \(-0.160386\pi\)
−0.482817 + 0.875721i \(0.660386\pi\)
\(62\) 3.87481 + 6.92491i 0.492101 + 0.879464i
\(63\) −2.32870 + 2.32870i −0.293388 + 0.293388i
\(64\) −7.97394 0.645180i −0.996743 0.0806475i
\(65\) −5.08379 4.89164i −0.630566 0.606733i
\(66\) 2.01631 + 0.569453i 0.248190 + 0.0700949i
\(67\) 3.46931i 0.423844i 0.977287 + 0.211922i \(0.0679722\pi\)
−0.977287 + 0.211922i \(0.932028\pi\)
\(68\) 0.859508 + 3.59169i 0.104231 + 0.435556i
\(69\) 0.434621 + 0.434621i 0.0523222 + 0.0523222i
\(70\) −6.53243 11.1644i −0.780775 1.33440i
\(71\) 5.88208 0.698074 0.349037 0.937109i \(-0.386509\pi\)
0.349037 + 0.937109i \(0.386509\pi\)
\(72\) 0.0919009 2.27536i 0.0108306 0.268154i
\(73\) 10.2695 10.2695i 1.20195 1.20195i 0.228375 0.973573i \(-0.426659\pi\)
0.973573 0.228375i \(-0.0733413\pi\)
\(74\) 0.586775 + 1.04866i 0.0682112 + 0.121904i
\(75\) 0.285269 + 7.40207i 0.0329400 + 0.854718i
\(76\) −8.41920 + 2.01476i −0.965749 + 0.231108i
\(77\) 4.09042 0.466147
\(78\) 3.22791 + 5.76879i 0.365488 + 0.653187i
\(79\) 16.9605 1.90821 0.954103 0.299478i \(-0.0968126\pi\)
0.954103 + 0.299478i \(0.0968126\pi\)
\(80\) 8.55435 + 2.61212i 0.956405 + 0.292044i
\(81\) −5.93643 −0.659603
\(82\) −0.0529173 0.0945719i −0.00584374 0.0104437i
\(83\) 14.7531 1.61936 0.809680 0.586872i \(-0.199641\pi\)
0.809680 + 0.586872i \(0.199641\pi\)
\(84\) 2.82074 + 11.7872i 0.307768 + 1.28609i
\(85\) −0.0795198 4.12824i −0.00862513 0.447771i
\(86\) −8.49743 15.1863i −0.916302 1.63758i
\(87\) −5.39857 + 5.39857i −0.578787 + 0.578787i
\(88\) −2.07908 + 1.91766i −0.221631 + 0.204423i
\(89\) 0.571426 0.0605711 0.0302855 0.999541i \(-0.490358\pi\)
0.0302855 + 0.999541i \(0.490358\pi\)
\(90\) −0.644670 + 2.46304i −0.0679542 + 0.259627i
\(91\) 9.12568 + 9.12568i 0.956631 + 0.956631i
\(92\) −0.806971 + 0.193112i −0.0841325 + 0.0201333i
\(93\) 8.31289i 0.862007i
\(94\) −9.53302 2.69235i −0.983256 0.277695i
\(95\) 9.67693 0.186401i 0.992832 0.0191243i
\(96\) −6.95977 4.66881i −0.710329 0.476509i
\(97\) 2.26353 2.26353i 0.229827 0.229827i −0.582794 0.812620i \(-0.698040\pi\)
0.812620 + 0.582794i \(0.198040\pi\)
\(98\) 6.72025 + 12.0102i 0.678848 + 1.21321i
\(99\) −0.569305 0.569305i −0.0572173 0.0572173i
\(100\) −8.71771 4.89913i −0.871771 0.489913i
\(101\) −13.4033 + 13.4033i −1.33368 + 1.33368i −0.431627 + 0.902052i \(0.642060\pi\)
−0.902052 + 0.431627i \(0.857940\pi\)
\(102\) −1.05152 + 3.72321i −0.104116 + 0.368652i
\(103\) 6.38559 + 6.38559i 0.629190 + 0.629190i 0.947864 0.318674i \(-0.103238\pi\)
−0.318674 + 0.947864i \(0.603238\pi\)
\(104\) −8.91668 0.360140i −0.874352 0.0353147i
\(105\) −0.260969 13.5481i −0.0254679 1.32216i
\(106\) −3.88789 + 2.17546i −0.377625 + 0.211299i
\(107\) −1.32856 −0.128437 −0.0642184 0.997936i \(-0.520455\pi\)
−0.0642184 + 0.997936i \(0.520455\pi\)
\(108\) 5.89803 9.60892i 0.567538 0.924619i
\(109\) 13.0761 13.0761i 1.25246 1.25246i 0.297849 0.954613i \(-0.403731\pi\)
0.954613 0.297849i \(-0.0962692\pi\)
\(110\) 2.72939 1.59701i 0.260237 0.152269i
\(111\) 1.25885i 0.119485i
\(112\) −15.5535 5.07881i −1.46967 0.479902i
\(113\) 3.37196 + 3.37196i 0.317207 + 0.317207i 0.847694 0.530486i \(-0.177991\pi\)
−0.530486 + 0.847694i \(0.677991\pi\)
\(114\) −8.72749 2.46486i −0.817405 0.230855i
\(115\) 0.927523 0.0178663i 0.0864919 0.00166604i
\(116\) −2.39871 10.0236i −0.222714 0.930672i
\(117\) 2.54022i 0.234844i
\(118\) −2.48095 + 8.78449i −0.228390 + 0.808678i
\(119\) 7.55316i 0.692397i
\(120\) 6.48421 + 6.76389i 0.591925 + 0.617456i
\(121\) 1.00000i 0.0909091i
\(122\) −5.90633 1.66809i −0.534734 0.151022i
\(123\) 0.113527i 0.0102364i
\(124\) −9.56417 5.87056i −0.858888 0.527192i
\(125\) 8.34904 + 7.43596i 0.746761 + 0.665093i
\(126\) 1.26584 4.48207i 0.112770 0.399294i
\(127\) −14.1632 14.1632i −1.25678 1.25678i −0.952623 0.304155i \(-0.901626\pi\)
−0.304155 0.952623i \(-0.598374\pi\)
\(128\) 10.2866 4.71026i 0.909213 0.416332i
\(129\) 18.2301i 1.60507i
\(130\) 9.65213 + 2.52633i 0.846548 + 0.221574i
\(131\) 4.96880 4.96880i 0.434126 0.434126i −0.455903 0.890029i \(-0.650684\pi\)
0.890029 + 0.455903i \(0.150684\pi\)
\(132\) −2.88166 + 0.689596i −0.250817 + 0.0600216i
\(133\) −17.7052 −1.53524
\(134\) −2.39578 4.28164i −0.206964 0.369878i
\(135\) −8.74009 + 9.08342i −0.752227 + 0.781776i
\(136\) −3.54105 3.83913i −0.303642 0.329203i
\(137\) −6.53817 6.53817i −0.558594 0.558594i 0.370313 0.928907i \(-0.379250\pi\)
−0.928907 + 0.370313i \(0.879250\pi\)
\(138\) −0.836520 0.236254i −0.0712093 0.0201112i
\(139\) −6.53886 + 6.53886i −0.554619 + 0.554619i −0.927770 0.373151i \(-0.878277\pi\)
0.373151 + 0.927770i \(0.378277\pi\)
\(140\) 15.7717 + 9.26741i 1.33295 + 0.783239i
\(141\) −7.33787 7.33787i −0.617960 0.617960i
\(142\) −7.25936 + 4.06195i −0.609192 + 0.340871i
\(143\) −2.23099 + 2.23099i −0.186564 + 0.186564i
\(144\) 1.45786 + 2.87160i 0.121489 + 0.239300i
\(145\) 0.221923 + 11.5211i 0.0184297 + 0.956771i
\(146\) −5.58232 + 19.7657i −0.461996 + 1.63582i
\(147\) 14.4174i 1.18913i
\(148\) −1.44833 0.888999i −0.119052 0.0730753i
\(149\) −7.47260 7.47260i −0.612180 0.612180i 0.331334 0.943514i \(-0.392501\pi\)
−0.943514 + 0.331334i \(0.892501\pi\)
\(150\) −5.46366 8.93826i −0.446106 0.729806i
\(151\) 9.48714 0.772052 0.386026 0.922488i \(-0.373847\pi\)
0.386026 + 0.922488i \(0.373847\pi\)
\(152\) 8.99923 8.30050i 0.729934 0.673260i
\(153\) 1.05125 1.05125i 0.0849884 0.0849884i
\(154\) −5.04819 + 2.82470i −0.406795 + 0.227620i
\(155\) 9.04111 + 8.69939i 0.726200 + 0.698752i
\(156\) −7.96743 4.89047i −0.637905 0.391551i
\(157\) 9.98223 0.796669 0.398334 0.917240i \(-0.369588\pi\)
0.398334 + 0.917240i \(0.369588\pi\)
\(158\) −20.9318 + 11.7123i −1.66524 + 0.931781i
\(159\) −4.66716 −0.370130
\(160\) −12.3612 + 2.68358i −0.977236 + 0.212155i
\(161\) −1.69702 −0.133744
\(162\) 7.32644 4.09948i 0.575619 0.322086i
\(163\) 19.5974 1.53499 0.767494 0.641056i \(-0.221503\pi\)
0.767494 + 0.641056i \(0.221503\pi\)
\(164\) 0.130616 + 0.0801730i 0.0101994 + 0.00626046i
\(165\) 3.31215 0.0637999i 0.257851 0.00496682i
\(166\) −18.2075 + 10.1879i −1.41317 + 0.790736i
\(167\) −12.3245 + 12.3245i −0.953695 + 0.953695i −0.998974 0.0452795i \(-0.985582\pi\)
0.0452795 + 0.998974i \(0.485582\pi\)
\(168\) −11.6210 12.5993i −0.896582 0.972056i
\(169\) 3.04540 0.234261
\(170\) 2.94895 + 5.03995i 0.226174 + 0.386547i
\(171\) 2.46421 + 2.46421i 0.188443 + 0.188443i
\(172\) 20.9742 + 12.8741i 1.59927 + 0.981642i
\(173\) 5.34557i 0.406416i −0.979136 0.203208i \(-0.934863\pi\)
0.979136 0.203208i \(-0.0651368\pi\)
\(174\) 2.93458 10.3907i 0.222470 0.787716i
\(175\) −15.0080 13.8942i −1.13450 1.05030i
\(176\) 1.24163 3.80241i 0.0935917 0.286618i
\(177\) −6.76171 + 6.76171i −0.508241 + 0.508241i
\(178\) −0.705225 + 0.394606i −0.0528588 + 0.0295770i
\(179\) 1.30147 + 1.30147i 0.0972763 + 0.0972763i 0.754070 0.656794i \(-0.228088\pi\)
−0.656794 + 0.754070i \(0.728088\pi\)
\(180\) −0.905264 3.48494i −0.0674744 0.259752i
\(181\) −13.9447 + 13.9447i −1.03650 + 1.03650i −0.0371901 + 0.999308i \(0.511841\pi\)
−0.999308 + 0.0371901i \(0.988159\pi\)
\(182\) −17.5643 4.96058i −1.30195 0.367703i
\(183\) −4.54629 4.54629i −0.336072 0.336072i
\(184\) 0.862566 0.795593i 0.0635892 0.0586519i
\(185\) 1.36913 + 1.31738i 0.100660 + 0.0968555i
\(186\) −5.74058 10.2593i −0.420920 0.752251i
\(187\) −1.84655 −0.135033
\(188\) 13.6244 3.26039i 0.993661 0.237788i
\(189\) 16.3052 16.3052i 1.18603 1.18603i
\(190\) −11.8141 + 6.91258i −0.857081 + 0.501491i
\(191\) 7.86548i 0.569126i −0.958657 0.284563i \(-0.908151\pi\)
0.958657 0.284563i \(-0.0918485\pi\)
\(192\) 11.8135 + 0.955843i 0.852566 + 0.0689820i
\(193\) 2.45386 + 2.45386i 0.176632 + 0.176632i 0.789886 0.613254i \(-0.210140\pi\)
−0.613254 + 0.789886i \(0.710140\pi\)
\(194\) −1.23042 + 4.35664i −0.0883391 + 0.312789i
\(195\) 7.53170 + 7.24703i 0.539356 + 0.518970i
\(196\) −16.5876 10.1816i −1.18483 0.727256i
\(197\) 23.3992i 1.66713i −0.552425 0.833563i \(-0.686297\pi\)
0.552425 0.833563i \(-0.313703\pi\)
\(198\) 1.09575 + 0.309465i 0.0778714 + 0.0219928i
\(199\) 17.5047i 1.24088i −0.784255 0.620439i \(-0.786955\pi\)
0.784255 0.620439i \(-0.213045\pi\)
\(200\) 14.1421 + 0.0261290i 0.999998 + 0.00184760i
\(201\) 5.13983i 0.362536i
\(202\) 7.28584 25.7975i 0.512630 1.81511i
\(203\) 21.0793i 1.47948i
\(204\) −1.27337 5.32113i −0.0891539 0.372554i
\(205\) −0.123472 0.118806i −0.00862369 0.00829774i
\(206\) −12.2904 3.47111i −0.856313 0.241844i
\(207\) 0.236192 + 0.236192i 0.0164165 + 0.0164165i
\(208\) 11.2532 5.71306i 0.780269 0.396130i
\(209\) 4.32846i 0.299406i
\(210\) 9.67789 + 16.5401i 0.667838 + 1.14138i
\(211\) 12.3456 12.3456i 0.849905 0.849905i −0.140216 0.990121i \(-0.544780\pi\)
0.990121 + 0.140216i \(0.0447796\pi\)
\(212\) 3.29595 5.36967i 0.226366 0.368790i
\(213\) −8.71438 −0.597099
\(214\) 1.63964 0.917456i 0.112084 0.0627160i
\(215\) −19.8271 19.0777i −1.35220 1.30109i
\(216\) −0.643478 + 15.9318i −0.0437831 + 1.08402i
\(217\) −16.2293 16.2293i −1.10172 1.10172i
\(218\) −7.10797 + 25.1677i −0.481412 + 1.70457i
\(219\) −15.2143 + 15.2143i −1.02809 + 1.02809i
\(220\) −2.26564 + 3.85576i −0.152749 + 0.259955i
\(221\) −4.11963 4.11963i −0.277116 0.277116i
\(222\) −0.869315 1.55361i −0.0583446 0.104271i
\(223\) −18.9155 + 18.9155i −1.26668 + 1.26668i −0.318883 + 0.947794i \(0.603308\pi\)
−0.947794 + 0.318883i \(0.896692\pi\)
\(224\) 22.7025 4.47265i 1.51688 0.298842i
\(225\) 0.155027 + 4.02260i 0.0103352 + 0.268174i
\(226\) −6.49005 1.83295i −0.431712 0.121926i
\(227\) 3.01644i 0.200208i 0.994977 + 0.100104i \(0.0319176\pi\)
−0.994977 + 0.100104i \(0.968082\pi\)
\(228\) 12.4732 2.98489i 0.826055 0.197679i
\(229\) 10.8003 + 10.8003i 0.713705 + 0.713705i 0.967308 0.253604i \(-0.0816159\pi\)
−0.253604 + 0.967308i \(0.581616\pi\)
\(230\) −1.13236 + 0.662563i −0.0746658 + 0.0436881i
\(231\) −6.06001 −0.398720
\(232\) 9.88232 + 10.7142i 0.648806 + 0.703422i
\(233\) 11.1011 11.1011i 0.727255 0.727255i −0.242817 0.970072i \(-0.578072\pi\)
0.970072 + 0.242817i \(0.0780715\pi\)
\(234\) 1.75418 + 3.13501i 0.114675 + 0.204942i
\(235\) −15.6597 + 0.301644i −1.02153 + 0.0196771i
\(236\) −3.00438 12.5546i −0.195569 0.817236i
\(237\) −25.1272 −1.63219
\(238\) −5.21594 9.32172i −0.338099 0.604238i
\(239\) −7.52700 −0.486881 −0.243441 0.969916i \(-0.578276\pi\)
−0.243441 + 0.969916i \(0.578276\pi\)
\(240\) −12.6734 3.86989i −0.818063 0.249800i
\(241\) 6.17299 0.397638 0.198819 0.980036i \(-0.436289\pi\)
0.198819 + 0.980036i \(0.436289\pi\)
\(242\) −0.690563 1.23415i −0.0443911 0.0793341i
\(243\) −8.11710 −0.520712
\(244\) 8.44121 2.02002i 0.540393 0.129319i
\(245\) 15.6804 + 15.0877i 1.00179 + 0.963921i
\(246\) 0.0783978 + 0.140109i 0.00499846 + 0.00893306i
\(247\) 9.65673 9.65673i 0.614443 0.614443i
\(248\) 15.8576 + 0.640481i 1.00696 + 0.0406706i
\(249\) −21.8569 −1.38512
\(250\) −15.4390 3.41154i −0.976445 0.215765i
\(251\) −9.71239 9.71239i −0.613041 0.613041i 0.330697 0.943737i \(-0.392716\pi\)
−0.943737 + 0.330697i \(0.892716\pi\)
\(252\) 1.53291 + 6.40568i 0.0965643 + 0.403520i
\(253\) 0.414878i 0.0260831i
\(254\) 27.2600 + 7.69889i 1.71045 + 0.483071i
\(255\) 0.117810 + 6.11605i 0.00737753 + 0.383002i
\(256\) −9.44241 + 12.9167i −0.590151 + 0.807293i
\(257\) −6.14195 + 6.14195i −0.383125 + 0.383125i −0.872227 0.489102i \(-0.837325\pi\)
0.489102 + 0.872227i \(0.337325\pi\)
\(258\) 12.5891 + 22.4987i 0.783761 + 1.40071i
\(259\) −2.45766 2.45766i −0.152711 0.152711i
\(260\) −13.6568 + 3.54754i −0.846956 + 0.220009i
\(261\) −2.93381 + 2.93381i −0.181598 + 0.181598i
\(262\) −2.70096 + 9.56350i −0.166866 + 0.590835i
\(263\) −5.26324 5.26324i −0.324545 0.324545i 0.525963 0.850508i \(-0.323705\pi\)
−0.850508 + 0.525963i \(0.823705\pi\)
\(264\) 3.08019 2.84104i 0.189573 0.174854i
\(265\) −4.88415 + 5.07601i −0.300031 + 0.311817i
\(266\) 21.8509 12.2266i 1.33976 0.749660i
\(267\) −0.846576 −0.0518096
\(268\) 5.91349 + 3.62975i 0.361224 + 0.221722i
\(269\) −20.1781 + 20.1781i −1.23028 + 1.23028i −0.266424 + 0.963856i \(0.585842\pi\)
−0.963856 + 0.266424i \(0.914158\pi\)
\(270\) 4.51390 17.2459i 0.274707 1.04955i
\(271\) 7.09237i 0.430831i 0.976523 + 0.215415i \(0.0691105\pi\)
−0.976523 + 0.215415i \(0.930889\pi\)
\(272\) 7.02134 + 2.29274i 0.425731 + 0.139018i
\(273\) −13.5198 13.5198i −0.818256 0.818256i
\(274\) 12.5841 + 3.55405i 0.760233 + 0.214708i
\(275\) 3.39676 3.66907i 0.204832 0.221253i
\(276\) 1.19554 0.286098i 0.0719629 0.0172211i
\(277\) 2.69961i 0.162204i 0.996706 + 0.0811020i \(0.0258440\pi\)
−0.996706 + 0.0811020i \(0.974156\pi\)
\(278\) 3.55443 12.5854i 0.213181 0.754824i
\(279\) 4.51758i 0.270461i
\(280\) −25.8643 0.546015i −1.54569 0.0326306i
\(281\) 3.18063i 0.189741i −0.995490 0.0948704i \(-0.969756\pi\)
0.995490 0.0948704i \(-0.0302437\pi\)
\(282\) 14.1233 + 3.98876i 0.841030 + 0.237527i
\(283\) 23.1925i 1.37865i −0.724453 0.689324i \(-0.757907\pi\)
0.724453 0.689324i \(-0.242093\pi\)
\(284\) 6.15410 10.0261i 0.365178 0.594939i
\(285\) −14.3365 + 0.276155i −0.849221 + 0.0163580i
\(286\) 1.21273 4.29401i 0.0717103 0.253910i
\(287\) 0.221640 + 0.221640i 0.0130830 + 0.0130830i
\(288\) −3.78224 2.53723i −0.222871 0.149508i
\(289\) 13.5903i 0.799427i
\(290\) −8.22990 14.0654i −0.483277 0.825951i
\(291\) −3.35345 + 3.35345i −0.196583 + 0.196583i
\(292\) −6.76008 28.2488i −0.395603 1.65314i
\(293\) −22.6517 −1.32333 −0.661664 0.749801i \(-0.730149\pi\)
−0.661664 + 0.749801i \(0.730149\pi\)
\(294\) −9.95614 17.7932i −0.580654 1.03772i
\(295\) 0.277959 + 14.4301i 0.0161834 + 0.840155i
\(296\) 2.40137 + 0.0969902i 0.139577 + 0.00563744i
\(297\) 3.98620 + 3.98620i 0.231303 + 0.231303i
\(298\) 14.3826 + 4.06200i 0.833162 + 0.235305i
\(299\) 0.925587 0.925587i 0.0535281 0.0535281i
\(300\) 12.9154 + 7.25813i 0.745671 + 0.419049i
\(301\) 35.5908 + 35.5908i 2.05142 + 2.05142i
\(302\) −11.7085 + 6.55147i −0.673750 + 0.376995i
\(303\) 19.8572 19.8572i 1.14077 1.14077i
\(304\) −5.37436 + 16.4586i −0.308241 + 0.943965i
\(305\) −9.70222 + 0.186888i −0.555548 + 0.0107012i
\(306\) −0.571443 + 2.02335i −0.0326672 + 0.115667i
\(307\) 16.9039i 0.964759i −0.875962 0.482379i \(-0.839773\pi\)
0.875962 0.482379i \(-0.160227\pi\)
\(308\) 4.27958 6.97219i 0.243852 0.397277i
\(309\) −9.46033 9.46033i −0.538179 0.538179i
\(310\) −17.1656 4.49288i −0.974938 0.255178i
\(311\) 27.8539 1.57945 0.789724 0.613463i \(-0.210224\pi\)
0.789724 + 0.613463i \(0.210224\pi\)
\(312\) 13.2102 + 0.533553i 0.747879 + 0.0302065i
\(313\) −14.0290 + 14.0290i −0.792965 + 0.792965i −0.981975 0.189010i \(-0.939472\pi\)
0.189010 + 0.981975i \(0.439472\pi\)
\(314\) −12.3196 + 6.89336i −0.695233 + 0.389015i
\(315\) −0.141822 7.36262i −0.00799074 0.414836i
\(316\) 17.7448 28.9094i 0.998225 1.62628i
\(317\) −11.6983 −0.657043 −0.328521 0.944497i \(-0.606550\pi\)
−0.328521 + 0.944497i \(0.606550\pi\)
\(318\) 5.75996 3.22297i 0.323003 0.180735i
\(319\) 5.15333 0.288531
\(320\) 13.4023 11.8481i 0.749213 0.662329i
\(321\) 1.96828 0.109859
\(322\) 2.09438 1.17190i 0.116715 0.0653076i
\(323\) 7.99271 0.444726
\(324\) −6.21096 + 10.1187i −0.345053 + 0.562152i
\(325\) 15.7638 0.607520i 0.874416 0.0336992i
\(326\) −24.1861 + 13.5333i −1.33955 + 0.749538i
\(327\) −19.3724 + 19.3724i −1.07130 + 1.07130i
\(328\) −0.216564 0.00874691i −0.0119577 0.000482967i
\(329\) 28.6515 1.57961
\(330\) −4.04363 + 2.36599i −0.222594 + 0.130243i
\(331\) 8.29523 + 8.29523i 0.455947 + 0.455947i 0.897323 0.441375i \(-0.145509\pi\)
−0.441375 + 0.897323i \(0.645509\pi\)
\(332\) 15.4353 25.1468i 0.847123 1.38011i
\(333\) 0.684113i 0.0374891i
\(334\) 6.69939 23.7210i 0.366574 1.29796i
\(335\) −5.59009 5.37880i −0.305419 0.293875i
\(336\) 23.0427 + 7.52432i 1.25708 + 0.410486i
\(337\) 7.80621 7.80621i 0.425231 0.425231i −0.461769 0.887000i \(-0.652785\pi\)
0.887000 + 0.461769i \(0.152785\pi\)
\(338\) −3.75847 + 2.10304i −0.204434 + 0.114390i
\(339\) −4.99561 4.99561i −0.271324 0.271324i
\(340\) −7.11985 4.18361i −0.386128 0.226888i
\(341\) 3.96763 3.96763i 0.214859 0.214859i
\(342\) −4.74290 1.33951i −0.256466 0.0724323i
\(343\) −7.90065 7.90065i −0.426595 0.426595i
\(344\) −34.7757 1.40457i −1.87498 0.0757295i
\(345\) −1.37414 + 0.0264692i −0.0739811 + 0.00142505i
\(346\) 3.69146 + 6.59723i 0.198454 + 0.354669i
\(347\) 26.6040 1.42818 0.714088 0.700056i \(-0.246841\pi\)
0.714088 + 0.700056i \(0.246841\pi\)
\(348\) 3.55372 + 14.8502i 0.190499 + 0.796052i
\(349\) 1.21594 1.21594i 0.0650878 0.0650878i −0.673814 0.738901i \(-0.735345\pi\)
0.738901 + 0.673814i \(0.235345\pi\)
\(350\) 28.1169 + 6.78347i 1.50291 + 0.362592i
\(351\) 17.7863i 0.949363i
\(352\) 1.09345 + 5.55017i 0.0582808 + 0.295825i
\(353\) 21.0331 + 21.0331i 1.11948 + 1.11948i 0.991818 + 0.127659i \(0.0407464\pi\)
0.127659 + 0.991818i \(0.459254\pi\)
\(354\) 3.67556 13.0143i 0.195354 0.691704i
\(355\) −9.11955 + 9.47777i −0.484015 + 0.503028i
\(356\) 0.597852 0.974005i 0.0316861 0.0516221i
\(357\) 11.1901i 0.592244i
\(358\) −2.50495 0.707459i −0.132391 0.0373904i
\(359\) 27.3352i 1.44270i 0.692571 + 0.721349i \(0.256478\pi\)
−0.692571 + 0.721349i \(0.743522\pi\)
\(360\) 3.52380 + 3.67579i 0.185721 + 0.193731i
\(361\) 0.264442i 0.0139180i
\(362\) 7.58011 26.8394i 0.398402 1.41065i
\(363\) 1.48151i 0.0777593i
\(364\) 25.1025 6.00716i 1.31573 0.314861i
\(365\) 0.625427 + 32.4688i 0.0327364 + 1.69950i
\(366\) 8.75030 + 2.47130i 0.457386 + 0.129177i
\(367\) 2.80960 + 2.80960i 0.146660 + 0.146660i 0.776624 0.629964i \(-0.216930\pi\)
−0.629964 + 0.776624i \(0.716930\pi\)
\(368\) −0.515126 + 1.57754i −0.0268528 + 0.0822348i
\(369\) 0.0616956i 0.00321174i
\(370\) −2.59944 0.680371i −0.135138 0.0353708i
\(371\) 9.11171 9.11171i 0.473056 0.473056i
\(372\) 14.1694 + 8.69732i 0.734652 + 0.450935i
\(373\) −18.8843 −0.977794 −0.488897 0.872341i \(-0.662601\pi\)
−0.488897 + 0.872341i \(0.662601\pi\)
\(374\) 2.27892 1.27516i 0.117840 0.0659369i
\(375\) −12.3692 11.0165i −0.638743 0.568889i
\(376\) −14.5630 + 13.4323i −0.751031 + 0.692719i
\(377\) 11.4970 + 11.4970i 0.592126 + 0.592126i
\(378\) −8.86328 + 31.3829i −0.455878 + 1.61416i
\(379\) 0.772930 0.772930i 0.0397028 0.0397028i −0.686977 0.726679i \(-0.741063\pi\)
0.726679 + 0.686977i \(0.241063\pi\)
\(380\) 9.80672 16.6895i 0.503074 0.856153i
\(381\) 20.9829 + 20.9829i 1.07499 + 1.07499i
\(382\) 5.43161 + 9.70717i 0.277905 + 0.496662i
\(383\) −23.8262 + 23.8262i −1.21746 + 1.21746i −0.248947 + 0.968517i \(0.580084\pi\)
−0.968517 + 0.248947i \(0.919916\pi\)
\(384\) −15.2397 + 6.97832i −0.777697 + 0.356111i
\(385\) −6.34177 + 6.59088i −0.323206 + 0.335902i
\(386\) −4.72297 1.33388i −0.240393 0.0678927i
\(387\) 9.90704i 0.503603i
\(388\) −1.49001 6.22643i −0.0756440 0.316099i
\(389\) −2.75557 2.75557i −0.139713 0.139713i 0.633791 0.773504i \(-0.281498\pi\)
−0.773504 + 0.633791i \(0.781498\pi\)
\(390\) −14.2998 3.74279i −0.724097 0.189524i
\(391\) 0.766092 0.0387429
\(392\) 27.5026 + 1.11082i 1.38909 + 0.0561047i
\(393\) −7.36134 + 7.36134i −0.371330 + 0.371330i
\(394\) 16.1586 + 28.8781i 0.814061 + 1.45486i
\(395\) −26.2955 + 27.3284i −1.32307 + 1.37504i
\(396\) −1.56602 + 0.374756i −0.0786955 + 0.0188322i
\(397\) −15.8149 −0.793729 −0.396865 0.917877i \(-0.629902\pi\)
−0.396865 + 0.917877i \(0.629902\pi\)
\(398\) 12.0881 + 21.6034i 0.605923 + 1.08288i
\(399\) 26.2305 1.31317
\(400\) −17.4715 + 9.73378i −0.873575 + 0.486689i
\(401\) 12.3269 0.615574 0.307787 0.951455i \(-0.400412\pi\)
0.307787 + 0.951455i \(0.400412\pi\)
\(402\) 3.54938 + 6.34331i 0.177027 + 0.316376i
\(403\) 17.7035 0.881873
\(404\) 8.82300 + 36.8693i 0.438961 + 1.83432i
\(405\) 9.20381 9.56535i 0.457341 0.475306i
\(406\) 14.5566 + 26.0150i 0.722431 + 1.29110i
\(407\) 0.600832 0.600832i 0.0297821 0.0297821i
\(408\) 5.24611 + 5.68772i 0.259721 + 0.281584i
\(409\) 4.28692 0.211974 0.105987 0.994367i \(-0.466200\pi\)
0.105987 + 0.994367i \(0.466200\pi\)
\(410\) 0.234426 + 0.0613582i 0.0115775 + 0.00303027i
\(411\) 9.68639 + 9.68639i 0.477795 + 0.477795i
\(412\) 17.5652 4.20344i 0.865376 0.207089i
\(413\) 26.4018i 1.29915i
\(414\) −0.454601 0.128390i −0.0223424 0.00631004i
\(415\) −22.8731 + 23.7716i −1.12279 + 1.16690i
\(416\) −9.94289 + 14.8218i −0.487490 + 0.726699i
\(417\) 9.68741 9.68741i 0.474395 0.474395i
\(418\) 2.98907 + 5.34196i 0.146200 + 0.261284i
\(419\) −3.66585 3.66585i −0.179088 0.179088i 0.611870 0.790958i \(-0.290418\pi\)
−0.790958 + 0.611870i \(0.790418\pi\)
\(420\) −23.3660 13.7298i −1.14014 0.669945i
\(421\) −13.3808 + 13.3808i −0.652140 + 0.652140i −0.953508 0.301368i \(-0.902557\pi\)
0.301368 + 0.953508i \(0.402557\pi\)
\(422\) −6.71088 + 23.7617i −0.326680 + 1.15670i
\(423\) −3.98772 3.98772i −0.193889 0.193889i
\(424\) −0.359589 + 8.90303i −0.0174632 + 0.432369i
\(425\) 6.77511 + 6.27228i 0.328641 + 0.304250i
\(426\) 10.7548 6.01783i 0.521074 0.291565i
\(427\) 17.7515 0.859055
\(428\) −1.39000 + 2.26455i −0.0671882 + 0.109461i
\(429\) 3.30524 3.30524i 0.159578 0.159578i
\(430\) 37.6440 + 9.85286i 1.81535 + 0.475147i
\(431\) 16.9286i 0.815421i −0.913111 0.407710i \(-0.866327\pi\)
0.913111 0.407710i \(-0.133673\pi\)
\(432\) −10.2078 20.1066i −0.491121 0.967378i
\(433\) 14.7943 + 14.7943i 0.710968 + 0.710968i 0.966738 0.255770i \(-0.0823289\pi\)
−0.255770 + 0.966738i \(0.582329\pi\)
\(434\) 31.2367 + 8.82200i 1.49941 + 0.423470i
\(435\) −0.328782 17.0686i −0.0157639 0.818377i
\(436\) −8.60760 35.9692i −0.412229 1.72261i
\(437\) 1.79578i 0.0859039i
\(438\) 8.27028 29.2832i 0.395169 1.39921i
\(439\) 14.0052i 0.668433i −0.942496 0.334216i \(-0.891528\pi\)
0.942496 0.334216i \(-0.108472\pi\)
\(440\) 0.133486 6.32315i 0.00636371 0.301444i
\(441\) 7.83505i 0.373098i
\(442\) 7.92909 + 2.23937i 0.377148 + 0.106516i
\(443\) 11.1114i 0.527920i 0.964534 + 0.263960i \(0.0850287\pi\)
−0.964534 + 0.263960i \(0.914971\pi\)
\(444\) 2.14573 + 1.31706i 0.101832 + 0.0625051i
\(445\) −0.885936 + 0.920737i −0.0419974 + 0.0436471i
\(446\) 10.2822 36.4069i 0.486876 1.72392i
\(447\) 11.0708 + 11.0708i 0.523629 + 0.523629i
\(448\) −24.9296 + 21.1975i −1.17782 + 1.00149i
\(449\) 21.5211i 1.01564i −0.861462 0.507822i \(-0.830451\pi\)
0.861462 0.507822i \(-0.169549\pi\)
\(450\) −2.96919 4.85743i −0.139969 0.228982i
\(451\) −0.0541851 + 0.0541851i −0.00255148 + 0.00255148i
\(452\) 9.27546 2.21966i 0.436281 0.104404i
\(453\) −14.0553 −0.660376
\(454\) −2.08304 3.72273i −0.0977620 0.174716i
\(455\) −28.8526 + 0.555769i −1.35263 + 0.0260549i
\(456\) −13.3325 + 12.2973i −0.624351 + 0.575874i
\(457\) −6.80915 6.80915i −0.318519 0.318519i 0.529679 0.848198i \(-0.322312\pi\)
−0.848198 + 0.529679i \(0.822312\pi\)
\(458\) −20.7875 5.87089i −0.971335 0.274329i
\(459\) −7.36071 + 7.36071i −0.343568 + 0.343568i
\(460\) 0.939962 1.59967i 0.0438260 0.0745850i
\(461\) −1.86893 1.86893i −0.0870446 0.0870446i 0.662244 0.749288i \(-0.269604\pi\)
−0.749288 + 0.662244i \(0.769604\pi\)
\(462\) 7.47896 4.18482i 0.347953 0.194696i
\(463\) 7.98057 7.98057i 0.370889 0.370889i −0.496912 0.867801i \(-0.665533\pi\)
0.867801 + 0.496912i \(0.165533\pi\)
\(464\) −19.5951 6.39855i −0.909679 0.297045i
\(465\) −13.3945 12.8883i −0.621157 0.597679i
\(466\) −6.03437 + 21.3663i −0.279537 + 0.989777i
\(467\) 15.8301i 0.732531i −0.930510 0.366266i \(-0.880636\pi\)
0.930510 0.366266i \(-0.119364\pi\)
\(468\) −4.32985 2.65769i −0.200147 0.122852i
\(469\) 10.0345 + 10.0345i 0.463351 + 0.463351i
\(470\) 19.1181 11.1863i 0.881853 0.515986i
\(471\) −14.7888 −0.681432
\(472\) 12.3776 + 13.4195i 0.569726 + 0.617685i
\(473\) −8.70100 + 8.70100i −0.400072 + 0.400072i
\(474\) 31.0107 17.3519i 1.42437 0.797001i
\(475\) −14.7027 + 15.8814i −0.674607 + 0.728689i
\(476\) 12.8745 + 7.90246i 0.590101 + 0.362209i
\(477\) −2.53633 −0.116131
\(478\) 9.28944 5.19787i 0.424889 0.237745i
\(479\) 27.4005 1.25196 0.625981 0.779838i \(-0.284699\pi\)
0.625981 + 0.779838i \(0.284699\pi\)
\(480\) 18.3132 3.97576i 0.835881 0.181468i
\(481\) 2.68090 0.122238
\(482\) −7.61839 + 4.26284i −0.347008 + 0.194167i
\(483\) 2.51417 0.114398
\(484\) 1.70452 + 1.04624i 0.0774780 + 0.0475566i
\(485\) 0.137853 + 7.15658i 0.00625957 + 0.324964i
\(486\) 10.0177 5.60537i 0.454412 0.254265i
\(487\) 1.99789 1.99789i 0.0905329 0.0905329i −0.660390 0.750923i \(-0.729609\pi\)
0.750923 + 0.660390i \(0.229609\pi\)
\(488\) −9.02275 + 8.32219i −0.408441 + 0.376728i
\(489\) −29.0338 −1.31296
\(490\) −29.7710 7.79220i −1.34492 0.352016i
\(491\) 30.7971 + 30.7971i 1.38985 + 1.38985i 0.825607 + 0.564245i \(0.190833\pi\)
0.564245 + 0.825607i \(0.309167\pi\)
\(492\) −0.193509 0.118777i −0.00872406 0.00535489i
\(493\) 9.51587i 0.428573i
\(494\) −5.24926 + 18.5864i −0.236175 + 0.836243i
\(495\) 1.79997 0.0346716i 0.0809024 0.00155837i
\(496\) −20.0129 + 10.1602i −0.898607 + 0.456208i
\(497\) 17.0131 17.0131i 0.763143 0.763143i
\(498\) 26.9746 15.0935i 1.20876 0.676358i
\(499\) −14.7637 14.7637i −0.660913 0.660913i 0.294682 0.955595i \(-0.404786\pi\)
−0.955595 + 0.294682i \(0.904786\pi\)
\(500\) 21.4099 6.45122i 0.957478 0.288507i
\(501\) 18.2588 18.2588i 0.815745 0.815745i
\(502\) 18.6936 + 5.27951i 0.834334 + 0.235636i
\(503\) −8.57296 8.57296i −0.382249 0.382249i 0.489663 0.871912i \(-0.337120\pi\)
−0.871912 + 0.489663i \(0.837120\pi\)
\(504\) −6.31537 6.84699i −0.281309 0.304989i
\(505\) −0.816284 42.3771i −0.0363242 1.88576i
\(506\) 0.286499 + 0.512021i 0.0127364 + 0.0227621i
\(507\) −4.51180 −0.200376
\(508\) −38.9595 + 9.32319i −1.72855 + 0.413650i
\(509\) −2.76247 + 2.76247i −0.122444 + 0.122444i −0.765674 0.643229i \(-0.777594\pi\)
0.643229 + 0.765674i \(0.277594\pi\)
\(510\) −4.36891 7.46675i −0.193459 0.330633i
\(511\) 59.4060i 2.62797i
\(512\) 2.73355 22.4617i 0.120807 0.992676i
\(513\) −17.2541 17.2541i −0.761787 0.761787i
\(514\) 3.33867 11.8215i 0.147263 0.521424i
\(515\) −20.1892 + 0.388893i −0.889645 + 0.0171367i
\(516\) −31.0735 19.0732i −1.36794 0.839650i
\(517\) 7.00454i 0.308059i
\(518\) 4.73028 + 1.33595i 0.207837 + 0.0586981i
\(519\) 7.91954i 0.347629i
\(520\) 14.4047 13.8090i 0.631686 0.605567i
\(521\) 25.1306i 1.10099i −0.834838 0.550495i \(-0.814439\pi\)
0.834838 0.550495i \(-0.185561\pi\)
\(522\) 1.59478 5.64674i 0.0698015 0.247151i
\(523\) 21.8562i 0.955705i 0.878440 + 0.477852i \(0.158585\pi\)
−0.878440 + 0.477852i \(0.841415\pi\)
\(524\) −3.27081 13.6680i −0.142886 0.597088i
\(525\) 22.2346 + 20.5844i 0.970397 + 0.898377i
\(526\) 10.1302 + 2.86102i 0.441698 + 0.124746i
\(527\) 7.32643 + 7.32643i 0.319144 + 0.319144i
\(528\) −1.83950 + 5.63333i −0.0800539 + 0.245159i
\(529\) 22.8279i 0.992516i
\(530\) 2.52246 9.63736i 0.109569 0.418620i
\(531\) −3.67460 + 3.67460i −0.159464 + 0.159464i
\(532\) −18.5240 + 30.1788i −0.803117 + 1.30842i
\(533\) −0.241772 −0.0104723
\(534\) 1.04480 0.584614i 0.0452129 0.0252987i
\(535\) 2.05979 2.14071i 0.0890527 0.0925508i
\(536\) −9.80470 0.396007i −0.423498 0.0171049i
\(537\) −1.92814 1.92814i −0.0832055 0.0832055i
\(538\) 10.9685 38.8370i 0.472886 1.67438i
\(539\) 6.88125 6.88125i 0.296396 0.296396i
\(540\) 6.33854 + 24.4011i 0.272767 + 1.05006i
\(541\) −30.4868 30.4868i −1.31073 1.31073i −0.920877 0.389854i \(-0.872525\pi\)
−0.389854 0.920877i \(-0.627475\pi\)
\(542\) −4.89773 8.75304i −0.210376 0.375975i
\(543\) 20.6592 20.6592i 0.886571 0.886571i
\(544\) −10.2487 + 2.01910i −0.439408 + 0.0865682i
\(545\) 0.796356 + 41.3425i 0.0341121 + 1.77092i
\(546\) 26.0217 + 7.34917i 1.11363 + 0.314515i
\(547\) 4.71953i 0.201793i −0.994897 0.100896i \(-0.967829\pi\)
0.994897 0.100896i \(-0.0321710\pi\)
\(548\) −17.9849 + 4.30389i −0.768279 + 0.183853i
\(549\) −2.47065 2.47065i −0.105445 0.105445i
\(550\) −1.65838 + 6.87385i −0.0707135 + 0.293102i
\(551\) −22.3060 −0.950266
\(552\) −1.27790 + 1.17868i −0.0543911 + 0.0501680i
\(553\) 49.0560 49.0560i 2.08607 2.08607i
\(554\) −1.86425 3.33172i −0.0792046 0.141551i
\(555\) −2.02838 1.95171i −0.0860999 0.0828456i
\(556\) 4.30434 + 17.9868i 0.182545 + 0.762812i
\(557\) −38.3455 −1.62475 −0.812375 0.583136i \(-0.801825\pi\)
−0.812375 + 0.583136i \(0.801825\pi\)
\(558\) −3.11968 5.57537i −0.132066 0.236024i
\(559\) −38.8236 −1.64206
\(560\) 32.2975 17.1871i 1.36482 0.726287i
\(561\) 2.73569 0.115501
\(562\) 2.19643 + 3.92537i 0.0926508 + 0.165582i
\(563\) 42.2358 1.78003 0.890013 0.455936i \(-0.150695\pi\)
0.890013 + 0.455936i \(0.150695\pi\)
\(564\) −20.1847 + 4.83031i −0.849930 + 0.203393i
\(565\) −10.6611 + 0.205358i −0.448516 + 0.00863949i
\(566\) 16.0159 + 28.6229i 0.673197 + 1.20311i
\(567\) −17.1703 + 17.1703i −0.721086 + 0.721086i
\(568\) −0.671415 + 16.6235i −0.0281719 + 0.697506i
\(569\) 1.49200 0.0625478 0.0312739 0.999511i \(-0.490044\pi\)
0.0312739 + 0.999511i \(0.490044\pi\)
\(570\) 17.5027 10.2411i 0.733106 0.428952i
\(571\) −16.1387 16.1387i −0.675382 0.675382i 0.283569 0.958952i \(-0.408481\pi\)
−0.958952 + 0.283569i \(0.908481\pi\)
\(572\) 1.46859 + 6.13691i 0.0614049 + 0.256597i
\(573\) 11.6528i 0.486803i
\(574\) −0.426593 0.120480i −0.0178056 0.00502874i
\(575\) −1.40924 + 1.52221i −0.0587693 + 0.0634807i
\(576\) 6.41997 + 0.519446i 0.267499 + 0.0216436i
\(577\) 12.2291 12.2291i 0.509106 0.509106i −0.405146 0.914252i \(-0.632779\pi\)
0.914252 + 0.405146i \(0.132779\pi\)
\(578\) −9.38493 16.7724i −0.390362 0.697640i
\(579\) −3.63542 3.63542i −0.151083 0.151083i
\(580\) 19.8700 + 11.6756i 0.825057 + 0.484802i
\(581\) 42.6712 42.6712i 1.77030 1.77030i
\(582\) 1.82289 6.45442i 0.0755610 0.267544i
\(583\) 2.22757 + 2.22757i 0.0922566 + 0.0922566i
\(584\) 27.8505 + 30.1949i 1.15246 + 1.24948i
\(585\) 4.09305 + 3.93835i 0.169227 + 0.162831i
\(586\) 27.9556 15.6424i 1.15483 0.646183i
\(587\) −20.4112 −0.842462 −0.421231 0.906953i \(-0.638402\pi\)
−0.421231 + 0.906953i \(0.638402\pi\)
\(588\) 24.5747 + 15.0842i 1.01344 + 0.622060i
\(589\) −17.1737 + 17.1737i −0.707632 + 0.707632i
\(590\) −10.3080 17.6170i −0.424372 0.725279i
\(591\) 34.6663i 1.42598i
\(592\) −3.03063 + 1.53860i −0.124558 + 0.0632360i
\(593\) −7.70227 7.70227i −0.316294 0.316294i 0.531048 0.847342i \(-0.321798\pi\)
−0.847342 + 0.531048i \(0.821798\pi\)
\(594\) −7.67228 2.16684i −0.314797 0.0889064i
\(595\) −12.1704 11.7104i −0.498937 0.480079i
\(596\) −20.5553 + 4.91899i −0.841980 + 0.201490i
\(597\) 25.9335i 1.06139i
\(598\) −0.503135 + 1.78149i −0.0205747 + 0.0728504i
\(599\) 1.05486i 0.0431004i 0.999768 + 0.0215502i \(0.00686018\pi\)
−0.999768 + 0.0215502i \(0.993140\pi\)
\(600\) −20.9517 0.0387104i −0.855351 0.00158035i
\(601\) 23.9274i 0.976020i 0.872838 + 0.488010i \(0.162277\pi\)
−0.872838 + 0.488010i \(0.837723\pi\)
\(602\) −68.5020 19.3466i −2.79193 0.788509i
\(603\) 2.79320i 0.113748i
\(604\) 9.92587 16.1710i 0.403878 0.657987i
\(605\) −1.61130 1.55039i −0.0655085 0.0630325i
\(606\) −10.7941 + 38.2194i −0.438479 + 1.55256i
\(607\) 19.0611 + 19.0611i 0.773664 + 0.773664i 0.978745 0.205081i \(-0.0657457\pi\)
−0.205081 + 0.978745i \(0.565746\pi\)
\(608\) −4.73293 24.0237i −0.191946 0.974289i
\(609\) 31.2292i 1.26547i
\(610\) 11.8449 6.93065i 0.479587 0.280614i
\(611\) −15.6270 + 15.6270i −0.632202 + 0.632202i
\(612\) −0.692006 2.89173i −0.0279727 0.116891i
\(613\) 17.3805 0.701991 0.350995 0.936377i \(-0.385843\pi\)
0.350995 + 0.936377i \(0.385843\pi\)
\(614\) 11.6732 + 20.8620i 0.471094 + 0.841920i
\(615\) 0.182926 + 0.176012i 0.00737629 + 0.00709749i
\(616\) −0.466905 + 11.5600i −0.0188121 + 0.465767i
\(617\) 6.12592 + 6.12592i 0.246620 + 0.246620i 0.819582 0.572962i \(-0.194206\pi\)
−0.572962 + 0.819582i \(0.694206\pi\)
\(618\) 18.2084 + 5.14250i 0.732450 + 0.206861i
\(619\) 17.2117 17.2117i 0.691797 0.691797i −0.270830 0.962627i \(-0.587298\pi\)
0.962627 + 0.270830i \(0.0872983\pi\)
\(620\) 24.2875 6.30902i 0.975408 0.253377i
\(621\) −1.65378 1.65378i −0.0663641 0.0663641i
\(622\) −34.3758 + 19.2348i −1.37834 + 0.771247i
\(623\) 1.65277 1.65277i 0.0662170 0.0662170i
\(624\) −16.6718 + 8.46398i −0.667405 + 0.338830i
\(625\) −24.9258 + 1.92410i −0.997034 + 0.0769638i
\(626\) 7.62595 27.0018i 0.304794 1.07921i
\(627\) 6.41267i 0.256097i
\(628\) 10.4439 17.0149i 0.416755 0.678967i
\(629\) 1.10947 + 1.10947i 0.0442373 + 0.0442373i
\(630\) 5.25938 + 8.98863i 0.209539 + 0.358115i
\(631\) 27.7765 1.10576 0.552882 0.833259i \(-0.313528\pi\)
0.552882 + 0.833259i \(0.313528\pi\)
\(632\) −1.93597 + 47.9325i −0.0770088 + 1.90665i
\(633\) −18.2902 + 18.2902i −0.726968 + 0.726968i
\(634\) 14.4375 8.07843i 0.573385 0.320835i
\(635\) 44.7796 0.862561i 1.77702 0.0342297i
\(636\) −4.88299 + 7.95524i −0.193623 + 0.315446i
\(637\) 30.7039 1.21653
\(638\) −6.35997 + 3.55870i −0.251794 + 0.140890i
\(639\) −4.73577 −0.187344
\(640\) −8.35861 + 23.8775i −0.330403 + 0.943840i
\(641\) −14.2633 −0.563367 −0.281683 0.959507i \(-0.590893\pi\)
−0.281683 + 0.959507i \(0.590893\pi\)
\(642\) −2.42915 + 1.35922i −0.0958710 + 0.0536442i
\(643\) −8.84820 −0.348939 −0.174470 0.984663i \(-0.555821\pi\)
−0.174470 + 0.984663i \(0.555821\pi\)
\(644\) −1.77550 + 2.89260i −0.0699646 + 0.113985i
\(645\) 29.3741 + 28.2639i 1.15661 + 1.11289i
\(646\) −9.86419 + 5.51947i −0.388101 + 0.217161i
\(647\) 6.56354 6.56354i 0.258040 0.258040i −0.566217 0.824256i \(-0.691594\pi\)
0.824256 + 0.566217i \(0.191594\pi\)
\(648\) 0.677619 16.7771i 0.0266194 0.659066i
\(649\) 6.45455 0.253363
\(650\) −19.0353 + 11.6356i −0.746625 + 0.456387i
\(651\) 24.0439 + 24.0439i 0.942355 + 0.942355i
\(652\) 20.5037 33.4041i 0.802987 1.30821i
\(653\) 26.2559i 1.02747i 0.857949 + 0.513736i \(0.171739\pi\)
−0.857949 + 0.513736i \(0.828261\pi\)
\(654\) 10.5305 37.2863i 0.411777 1.45801i
\(655\) 0.302608 + 15.7098i 0.0118239 + 0.613833i
\(656\) 0.273312 0.138756i 0.0106710 0.00541751i
\(657\) −8.26812 + 8.26812i −0.322570 + 0.322570i
\(658\) −35.3602 + 19.7857i −1.37849 + 0.771327i
\(659\) −26.6116 26.6116i −1.03664 1.03664i −0.999303 0.0373371i \(-0.988112\pi\)
−0.0373371 0.999303i \(-0.511888\pi\)
\(660\) 3.35657 5.71236i 0.130654 0.222353i
\(661\) −21.1931 + 21.1931i −0.824315 + 0.824315i −0.986724 0.162408i \(-0.948074\pi\)
0.162408 + 0.986724i \(0.448074\pi\)
\(662\) −15.9659 4.50916i −0.620533 0.175254i
\(663\) 6.10328 + 6.10328i 0.237032 + 0.237032i
\(664\) −1.68400 + 41.6940i −0.0653519 + 1.61804i
\(665\) 27.4501 28.5284i 1.06447 1.10628i
\(666\) −0.472423 0.844297i −0.0183060 0.0327158i
\(667\) −2.13800 −0.0827837
\(668\) 8.11282 + 33.9016i 0.313895 + 1.31169i
\(669\) 28.0236 28.0236i 1.08346 1.08346i
\(670\) 10.6134 + 2.77793i 0.410031 + 0.107321i
\(671\) 4.33977i 0.167535i
\(672\) −33.6341 + 6.62630i −1.29746 + 0.255615i
\(673\) −22.2740 22.2740i −0.858601 0.858601i 0.132572 0.991173i \(-0.457676\pi\)
−0.991173 + 0.132572i \(0.957676\pi\)
\(674\) −4.24334 + 15.0247i −0.163447 + 0.578730i
\(675\) −1.08548 28.1658i −0.0417802 1.08410i
\(676\) 3.18623 5.19093i 0.122547 0.199651i
\(677\) 27.4482i 1.05492i 0.849580 + 0.527460i \(0.176856\pi\)
−0.849580 + 0.527460i \(0.823144\pi\)
\(678\) 9.61510 + 2.71554i 0.369266 + 0.104290i
\(679\) 13.0939i 0.502498i
\(680\) 11.6760 + 0.246489i 0.447754 + 0.00945242i
\(681\) 4.46889i 0.171248i
\(682\) −2.15675 + 7.63655i −0.0825861 + 0.292419i
\(683\) 28.5470i 1.09232i 0.837681 + 0.546160i \(0.183911\pi\)
−0.837681 + 0.546160i \(0.816089\pi\)
\(684\) 6.77845 1.62212i 0.259181 0.0620232i
\(685\) 20.6717 0.398186i 0.789825 0.0152139i
\(686\) 15.2065 + 4.29467i 0.580586 + 0.163971i
\(687\) −16.0008 16.0008i −0.610469 0.610469i
\(688\) 43.8883 22.2813i 1.67322 0.849468i
\(689\) 9.93937i 0.378660i
\(690\) 1.67761 0.981596i 0.0638655 0.0373687i
\(691\) 18.7853 18.7853i 0.714625 0.714625i −0.252874 0.967499i \(-0.581376\pi\)
0.967499 + 0.252874i \(0.0813759\pi\)
\(692\) −9.11161 5.59278i −0.346371 0.212605i
\(693\) −3.29327 −0.125101
\(694\) −32.8333 + 18.3717i −1.24633 + 0.697382i
\(695\) −0.398228 20.6739i −0.0151056 0.784204i
\(696\) −14.6408 15.8732i −0.554958 0.601673i
\(697\) −0.100055 0.100055i −0.00378987 0.00378987i
\(698\) −0.660967 + 2.34033i −0.0250180 + 0.0885830i
\(699\) −16.4464 + 16.4464i −0.622059 + 0.622059i
\(700\) −39.3849 + 11.0447i −1.48861 + 0.417451i
\(701\) −35.5160 35.5160i −1.34142 1.34142i −0.894645 0.446777i \(-0.852572\pi\)
−0.446777 0.894645i \(-0.647428\pi\)
\(702\) −12.2826 21.9509i −0.463576 0.828485i
\(703\) −2.60068 + 2.60068i −0.0980864 + 0.0980864i
\(704\) −5.18222 6.09464i −0.195312 0.229700i
\(705\) 23.2001 0.446889i 0.873766 0.0168308i
\(706\) −40.4826 11.4333i −1.52358 0.430297i
\(707\) 77.5345i 2.91599i
\(708\) 4.45103 + 18.5998i 0.167280 + 0.699025i
\(709\) 9.43396 + 9.43396i 0.354300 + 0.354300i 0.861707 0.507407i \(-0.169396\pi\)
−0.507407 + 0.861707i \(0.669396\pi\)
\(710\) 4.70987 17.9946i 0.176758 0.675325i
\(711\) −13.6552 −0.512110
\(712\) −0.0652259 + 1.61492i −0.00244444 + 0.0605217i
\(713\) −1.64608 + 1.64608i −0.0616463 + 0.0616463i
\(714\) 7.72748 + 13.8103i 0.289194 + 0.516836i
\(715\) −0.135871 7.05369i −0.00508128 0.263793i
\(716\) 3.58003 0.856718i 0.133792 0.0320171i
\(717\) 11.1514 0.416455
\(718\) −18.8767 33.7357i −0.704473 1.25901i
\(719\) 34.7155 1.29467 0.647334 0.762206i \(-0.275884\pi\)
0.647334 + 0.762206i \(0.275884\pi\)
\(720\) −6.88726 2.10306i −0.256673 0.0783765i
\(721\) 36.9389 1.37568
\(722\) 0.182614 + 0.326361i 0.00679619 + 0.0121459i
\(723\) −9.14537 −0.340120
\(724\) 9.17936 + 38.3584i 0.341148 + 1.42558i
\(725\) −18.9079 17.5046i −0.702222 0.650104i
\(726\) 1.02308 + 1.82841i 0.0379700 + 0.0678586i
\(727\) 8.19846 8.19846i 0.304064 0.304064i −0.538537 0.842602i \(-0.681023\pi\)
0.842602 + 0.538537i \(0.181023\pi\)
\(728\) −26.8319 + 24.7486i −0.994458 + 0.917245i
\(729\) 29.8349 1.10500
\(730\) −23.1937 39.6395i −0.858436 1.46712i
\(731\) −16.0668 16.0668i −0.594253 0.594253i
\(732\) −12.5058 + 2.99269i −0.462226 + 0.110613i
\(733\) 31.1798i 1.15165i −0.817572 0.575827i \(-0.804680\pi\)
0.817572 0.575827i \(-0.195320\pi\)
\(734\) −5.40767 1.52726i −0.199601 0.0563721i
\(735\) −23.2307 22.3527i −0.856879 0.824492i
\(736\) −0.453646 2.30264i −0.0167216 0.0848765i
\(737\) −2.45317 + 2.45317i −0.0903638 + 0.0903638i
\(738\) 0.0426047 + 0.0761415i 0.00156830 + 0.00280281i
\(739\) 1.89949 + 1.89949i 0.0698740 + 0.0698740i 0.741180 0.671306i \(-0.234266\pi\)
−0.671306 + 0.741180i \(0.734266\pi\)
\(740\) 3.67793 0.955397i 0.135203 0.0351211i
\(741\) −14.3066 + 14.3066i −0.525565 + 0.525565i
\(742\) −4.95299 + 17.5374i −0.181830 + 0.643819i
\(743\) −25.4178 25.4178i −0.932488 0.932488i 0.0653732 0.997861i \(-0.479176\pi\)
−0.997861 + 0.0653732i \(0.979176\pi\)
\(744\) −23.4933 0.948882i −0.861304 0.0347877i
\(745\) 23.6261 0.455094i 0.865592 0.0166734i
\(746\) 23.3061 13.0408i 0.853296 0.477459i
\(747\) −11.8780 −0.434592
\(748\) −1.93194 + 3.14747i −0.0706388 + 0.115083i
\(749\) −3.84268 + 3.84268i −0.140409 + 0.140409i
\(750\) 22.8730 + 5.05425i 0.835205 + 0.184555i
\(751\) 20.8704i 0.761572i −0.924663 0.380786i \(-0.875654\pi\)
0.924663 0.380786i \(-0.124346\pi\)
\(752\) 8.69708 26.6342i 0.317150 0.971248i
\(753\) 14.3890 + 14.3890i 0.524366 + 0.524366i
\(754\) −22.1284 6.24960i −0.805870 0.227597i
\(755\) −14.7088 + 15.2866i −0.535308 + 0.556336i
\(756\) −10.7332 44.8518i −0.390364 1.63124i
\(757\) 31.7309i 1.15328i 0.816999 + 0.576639i \(0.195636\pi\)
−0.816999 + 0.576639i \(0.804364\pi\)
\(758\) −0.420154 + 1.48767i −0.0152607 + 0.0540345i
\(759\) 0.614647i 0.0223103i
\(760\) −0.577790 + 27.3695i −0.0209586 + 0.992795i
\(761\) 26.9647i 0.977469i 0.872433 + 0.488735i \(0.162541\pi\)
−0.872433 + 0.488735i \(0.837459\pi\)
\(762\) −40.3861 11.4060i −1.46303 0.413196i
\(763\) 75.6416i 2.73841i
\(764\) −13.4068 8.22922i −0.485042 0.297723i
\(765\) 0.0640228 + 3.32372i 0.00231475 + 0.120169i
\(766\) 12.9516 45.8586i 0.467960 1.65694i
\(767\) 14.4000 + 14.4000i 0.519954 + 0.519954i
\(768\) 13.9891 19.1362i 0.504787 0.690520i
\(769\) 29.6864i 1.07052i 0.844687 + 0.535260i \(0.179787\pi\)
−0.844687 + 0.535260i \(0.820213\pi\)
\(770\) 3.27526 12.5135i 0.118032 0.450956i
\(771\) 9.09939 9.09939i 0.327706 0.327706i
\(772\) 6.74997 1.61530i 0.242937 0.0581359i
\(773\) −25.4587 −0.915686 −0.457843 0.889033i \(-0.651378\pi\)
−0.457843 + 0.889033i \(0.651378\pi\)
\(774\) 6.84144 + 12.2268i 0.245910 + 0.439482i
\(775\) −28.0346 + 1.08043i −1.00703 + 0.0388101i
\(776\) 6.13864 + 6.65539i 0.220364 + 0.238914i
\(777\) 3.64105 + 3.64105i 0.130622 + 0.130622i
\(778\) 5.30368 + 1.49789i 0.190146 + 0.0537019i
\(779\) 0.234538 0.234538i 0.00840319 0.00840319i
\(780\) 20.2327 5.25573i 0.724446 0.188185i
\(781\) 4.15926 + 4.15926i 0.148830 + 0.148830i
\(782\) −0.945471 + 0.529035i −0.0338100 + 0.0189182i
\(783\) 20.5422 20.5422i 0.734118 0.734118i
\(784\) −34.7093 + 17.6213i −1.23962 + 0.629334i
\(785\) −15.4764 + 16.0843i −0.552376 + 0.574075i
\(786\) 4.00151 14.1685i 0.142729 0.505372i
\(787\) 35.0861i 1.25068i 0.780351 + 0.625342i \(0.215040\pi\)
−0.780351 + 0.625342i \(0.784960\pi\)
\(788\) −39.8843 24.4813i −1.42082 0.872111i
\(789\) 7.79756 + 7.79756i 0.277600 + 0.277600i
\(790\) 13.5805 51.8860i 0.483174 1.84602i
\(791\) 19.5059 0.693550
\(792\) 1.67391 1.54394i 0.0594797 0.0548615i
\(793\) −9.68197 + 9.68197i −0.343817 + 0.343817i
\(794\) 19.5180 10.9212i 0.692668 0.387580i
\(795\) 7.23593 7.52017i 0.256632 0.266713i
\(796\) −29.8371 18.3142i −1.05755 0.649131i
\(797\) −9.53566 −0.337770 −0.168885 0.985636i \(-0.554017\pi\)
−0.168885 + 0.985636i \(0.554017\pi\)
\(798\) −32.3724 + 18.1138i −1.14597 + 0.641223i
\(799\) −12.9342 −0.457580
\(800\) 14.8406 24.0781i 0.524696 0.851290i
\(801\) −0.460066 −0.0162556
\(802\) −15.2132 + 8.51247i −0.537196 + 0.300586i
\(803\) 14.5232 0.512512
\(804\) −8.76092 5.37752i −0.308974 0.189651i
\(805\) 2.63106 2.73441i 0.0927326 0.0963753i
\(806\) −21.8487 + 12.2254i −0.769588 + 0.430620i
\(807\) 29.8941 29.8941i 1.05232 1.05232i
\(808\) −36.3495 39.4093i −1.27877 1.38642i
\(809\) 15.6353 0.549708 0.274854 0.961486i \(-0.411370\pi\)
0.274854 + 0.961486i \(0.411370\pi\)
\(810\) −4.75339 + 18.1609i −0.167017 + 0.638108i
\(811\) −7.73722 7.73722i −0.271691 0.271691i 0.558090 0.829781i \(-0.311534\pi\)
−0.829781 + 0.558090i \(0.811534\pi\)
\(812\) −35.9300 22.0541i −1.26089 0.773947i
\(813\) 10.5074i 0.368512i
\(814\) −0.326603 + 1.15643i −0.0114474 + 0.0405328i
\(815\) −30.3837 + 31.5773i −1.06430 + 1.10610i
\(816\) −10.4022 3.39672i −0.364150 0.118909i
\(817\) 37.6619 37.6619i 1.31762 1.31762i
\(818\) −5.29069 + 2.96039i −0.184985 + 0.103508i
\(819\) −7.34725 7.34725i −0.256734 0.256734i
\(820\) −0.331688 + 0.0861609i −0.0115831 + 0.00300887i
\(821\) 11.5270 11.5270i 0.402296 0.402296i −0.476745 0.879041i \(-0.658184\pi\)
0.879041 + 0.476745i \(0.158184\pi\)
\(822\) −18.6435 5.26538i −0.650267 0.183651i
\(823\) 16.9733 + 16.9733i 0.591653 + 0.591653i 0.938078 0.346425i \(-0.112604\pi\)
−0.346425 + 0.938078i \(0.612604\pi\)
\(824\) −18.7753 + 17.3176i −0.654070 + 0.603286i
\(825\) −5.03234 + 5.43577i −0.175204 + 0.189249i
\(826\) 18.2321 + 32.5838i 0.634377 + 1.13373i
\(827\) 3.34289 0.116244 0.0581218 0.998309i \(-0.481489\pi\)
0.0581218 + 0.998309i \(0.481489\pi\)
\(828\) 0.649707 0.155478i 0.0225789 0.00540324i
\(829\) −33.0586 + 33.0586i −1.14817 + 1.14817i −0.161259 + 0.986912i \(0.551555\pi\)
−0.986912 + 0.161259i \(0.948445\pi\)
\(830\) 11.8130 45.1329i 0.410035 1.56659i
\(831\) 3.99951i 0.138742i
\(832\) 2.03560 25.1585i 0.0705718 0.872215i
\(833\) 12.7066 + 12.7066i 0.440256 + 0.440256i
\(834\) −5.26593 + 18.6455i −0.182344 + 0.645640i
\(835\) −0.750580 38.9661i −0.0259749 1.34848i
\(836\) −7.37792 4.52863i −0.255171 0.156626i
\(837\) 31.6315i 1.09335i
\(838\) 7.05570 + 1.99270i 0.243735 + 0.0688367i
\(839\) 10.0892i 0.348318i 0.984718 + 0.174159i \(0.0557206\pi\)
−0.984718 + 0.174159i \(0.944279\pi\)
\(840\) 38.3184 + 0.808929i 1.32211 + 0.0279107i
\(841\) 2.44321i 0.0842486i
\(842\) 7.27360 25.7542i 0.250665 0.887548i
\(843\) 4.71215i 0.162295i
\(844\) −8.12674 33.9598i −0.279734 1.16894i
\(845\) −4.72157 + 4.90704i −0.162427 + 0.168807i
\(846\) 7.67521 + 2.16766i 0.263879 + 0.0745258i
\(847\) 2.89237 + 2.89237i 0.0993828 + 0.0993828i
\(848\) −5.70432 11.2360i −0.195887 0.385845i
\(849\) 34.3599i 1.17923i
\(850\) −12.6929 3.06228i −0.435363 0.105035i
\(851\) −0.249272 + 0.249272i −0.00854493 + 0.00854493i
\(852\) −9.11737 + 14.8538i −0.312356 + 0.508883i
\(853\) 1.93972 0.0664149 0.0332074 0.999448i \(-0.489428\pi\)
0.0332074 + 0.999448i \(0.489428\pi\)
\(854\) −21.9080 + 12.2585i −0.749676 + 0.419478i
\(855\) −7.79107 + 0.150075i −0.266449 + 0.00513245i
\(856\) 0.151650 3.75468i 0.00518328 0.128332i
\(857\) −30.4341 30.4341i −1.03961 1.03961i −0.999182 0.0404274i \(-0.987128\pi\)
−0.0404274 0.999182i \(-0.512872\pi\)
\(858\) −1.79668 + 6.36163i −0.0613376 + 0.217182i
\(859\) 34.6172 34.6172i 1.18112 1.18112i 0.201671 0.979453i \(-0.435363\pi\)
0.979453 0.201671i \(-0.0646372\pi\)
\(860\) −53.2623 + 13.8357i −1.81623 + 0.471792i
\(861\) −0.328362 0.328362i −0.0111906 0.0111906i
\(862\) 11.6903 + 20.8924i 0.398172 + 0.711597i
\(863\) −22.8307 + 22.8307i −0.777167 + 0.777167i −0.979348 0.202181i \(-0.935197\pi\)
0.202181 + 0.979348i \(0.435197\pi\)
\(864\) 26.4828 + 17.7654i 0.900962 + 0.604390i
\(865\) 8.61330 + 8.28775i 0.292861 + 0.281792i
\(866\) −28.4747 8.04195i −0.967611 0.273277i
\(867\) 20.1341i 0.683792i
\(868\) −44.6429 + 10.6833i −1.51528 + 0.362614i
\(869\) 11.9929 + 11.9929i 0.406831 + 0.406831i
\(870\) 12.1927 + 20.8381i 0.413372 + 0.706479i
\(871\) −10.9460 −0.370891
\(872\) 35.4620 + 38.4472i 1.20090 + 1.30199i
\(873\) −1.82241 + 1.82241i −0.0616792 + 0.0616792i
\(874\) −1.24010 2.21626i −0.0419470 0.0749661i
\(875\) 45.6560 2.64094i 1.54345 0.0892802i
\(876\) 10.0151 + 41.8510i 0.338380 + 1.41401i
\(877\) −35.8585 −1.21086 −0.605428 0.795900i \(-0.706998\pi\)
−0.605428 + 0.795900i \(0.706998\pi\)
\(878\) 9.67149 + 17.2845i 0.326397 + 0.583324i
\(879\) 33.5588 1.13191
\(880\) 4.20179 + 7.89588i 0.141642 + 0.266170i
\(881\) 18.6467 0.628224 0.314112 0.949386i \(-0.398293\pi\)
0.314112 + 0.949386i \(0.398293\pi\)
\(882\) −5.41060 9.66961i −0.182184 0.325593i
\(883\) −16.0468 −0.540018 −0.270009 0.962858i \(-0.587027\pi\)
−0.270009 + 0.962858i \(0.587027\pi\)
\(884\) −11.3321 + 2.71183i −0.381140 + 0.0912086i
\(885\) −0.411800 21.3784i −0.0138425 0.718628i
\(886\) −7.67315 13.7132i −0.257784 0.460702i
\(887\) 25.5256 25.5256i 0.857067 0.857067i −0.133925 0.990992i \(-0.542758\pi\)
0.990992 + 0.133925i \(0.0427580\pi\)
\(888\) −3.55766 0.143692i −0.119387 0.00482200i
\(889\) −81.9301 −2.74785
\(890\) 0.457550 1.74812i 0.0153371 0.0585971i
\(891\) −4.19769 4.19769i −0.140628 0.140628i
\(892\) 12.4515 + 52.0321i 0.416908 + 1.74216i
\(893\) 30.3189i 1.01458i
\(894\) −21.3080 6.01790i −0.712647 0.201269i
\(895\) −4.11484 + 0.0792616i −0.137544 + 0.00264942i
\(896\) 16.1287 43.3763i 0.538822 1.44910i
\(897\) −1.37127 + 1.37127i −0.0457853 + 0.0457853i
\(898\) 14.8617 + 26.5602i 0.495941 + 0.886326i
\(899\) −20.4465 20.4465i −0.681929 0.681929i
\(900\) 7.01879 + 3.94438i 0.233960 + 0.131479i
\(901\) −4.11332 + 4.11332i −0.137035 + 0.137035i
\(902\) 0.0294542 0.104291i 0.000980718 0.00347250i
\(903\) −52.7282 52.7282i −1.75468 1.75468i
\(904\) −9.91447 + 9.14468i −0.329750 + 0.304148i
\(905\) −0.849253 44.0887i −0.0282301 1.46556i
\(906\) 17.3463 9.70609i 0.576294 0.322463i
\(907\) −14.0890 −0.467817 −0.233908 0.972259i \(-0.575152\pi\)
−0.233908 + 0.972259i \(0.575152\pi\)
\(908\) 5.14156 + 3.15593i 0.170629 + 0.104733i
\(909\) 10.7912 10.7912i 0.357923 0.357923i
\(910\) 35.2246 20.6104i 1.16768 0.683229i
\(911\) 12.0656i 0.399753i −0.979821 0.199876i \(-0.935946\pi\)
0.979821 0.199876i \(-0.0640540\pi\)
\(912\) 7.96219 24.3836i 0.263655 0.807422i
\(913\) 10.4320 + 10.4320i 0.345249 + 0.345249i
\(914\) 13.1056 + 3.70135i 0.433496 + 0.122430i
\(915\) 14.3740 0.276877i 0.475189 0.00915327i
\(916\) 29.7091 7.10952i 0.981615 0.234905i
\(917\) 28.7431i 0.949182i
\(918\) 4.00117 14.1672i 0.132058 0.467589i
\(919\) 13.5317i 0.446371i 0.974776 + 0.223186i \(0.0716456\pi\)
−0.974776 + 0.223186i \(0.928354\pi\)
\(920\) −0.0553805 + 2.62333i −0.00182584 + 0.0864887i
\(921\) 25.0434i 0.825208i
\(922\) 3.59715 + 1.01592i 0.118466 + 0.0334576i
\(923\) 18.5585i 0.610860i
\(924\) −6.34026 + 10.3294i −0.208579 + 0.339812i
\(925\) −4.24537 + 0.163613i −0.139587 + 0.00537955i
\(926\) −4.33812 + 15.3603i −0.142559 + 0.504771i
\(927\) −5.14115 5.14115i −0.168858 0.168858i
\(928\) 28.6018 5.63488i 0.938901 0.184974i
\(929\) 23.1897i 0.760828i −0.924816 0.380414i \(-0.875781\pi\)
0.924816 0.380414i \(-0.124219\pi\)
\(930\) 25.4310 + 6.65626i 0.833915 + 0.218267i
\(931\) −29.7852 + 29.7852i −0.976170 + 0.976170i
\(932\) −7.30750 30.5364i −0.239365 1.00025i
\(933\) −41.2659 −1.35098
\(934\) 10.9317 + 19.5367i 0.357696 + 0.639262i
\(935\) 2.86288 2.97534i 0.0936262 0.0973039i
\(936\) 7.17898 + 0.289956i 0.234652 + 0.00947750i
\(937\) 39.7908 + 39.7908i 1.29991 + 1.29991i 0.928450 + 0.371458i \(0.121142\pi\)
0.371458 + 0.928450i \(0.378858\pi\)
\(938\) −19.3135 5.45461i −0.630610 0.178099i
\(939\) 20.7841 20.7841i 0.678265 0.678265i
\(940\) −15.8697 + 27.0078i −0.517614 + 0.880898i
\(941\) 1.43026 + 1.43026i 0.0466253 + 0.0466253i 0.730035 0.683410i \(-0.239504\pi\)
−0.683410 + 0.730035i \(0.739504\pi\)
\(942\) 18.2516 10.2126i 0.594669 0.332745i
\(943\) 0.0224802 0.0224802i 0.000732055 0.000732055i
\(944\) −24.5429 8.01419i −0.798802 0.260840i
\(945\) 0.993016 + 51.5521i 0.0323028 + 1.67699i
\(946\) 4.72974 16.7469i 0.153777 0.544489i
\(947\) 19.7585i 0.642066i 0.947068 + 0.321033i \(0.104030\pi\)
−0.947068 + 0.321033i \(0.895970\pi\)
\(948\) −26.2892 + 42.8297i −0.853834 + 1.39104i
\(949\) 32.4011 + 32.4011i 1.05178 + 1.05178i
\(950\) 7.17823 29.7532i 0.232892 0.965320i
\(951\) 17.3312 0.562003
\(952\) −21.3462 0.862162i −0.691833 0.0279428i
\(953\) 20.8735 20.8735i 0.676160 0.676160i −0.282969 0.959129i \(-0.591319\pi\)
0.959129 + 0.282969i \(0.0913194\pi\)
\(954\) 3.13021 1.75150i 0.101344 0.0567069i
\(955\) 12.6736 + 12.1946i 0.410109 + 0.394608i
\(956\) −7.87508 + 12.8299i −0.254698 + 0.414948i
\(957\) −7.63472 −0.246796
\(958\) −33.8163 + 18.9218i −1.09256 + 0.611336i
\(959\) −37.8216 −1.22132
\(960\) −19.8557 + 17.5531i −0.640841 + 0.566524i
\(961\) −0.484224 −0.0156201
\(962\) −3.30862 + 1.85133i −0.106674 + 0.0596892i
\(963\) 1.06965 0.0344690
\(964\) 6.45846 10.5220i 0.208013 0.338890i
\(965\) −7.75833 + 0.149444i −0.249750 + 0.00481077i
\(966\) −3.10285 + 1.73619i −0.0998327 + 0.0558610i
\(967\) −20.8535 + 20.8535i −0.670602 + 0.670602i −0.957855 0.287253i \(-0.907258\pi\)
0.287253 + 0.957855i \(0.407258\pi\)
\(968\) −2.82612 0.114146i −0.0908350 0.00366879i
\(969\) −11.8413 −0.380398
\(970\) −5.11220 8.73709i −0.164143 0.280531i
\(971\) −11.6225 11.6225i −0.372983 0.372983i 0.495580 0.868562i \(-0.334956\pi\)
−0.868562 + 0.495580i \(0.834956\pi\)
\(972\) −8.49247 + 13.8357i −0.272396 + 0.443781i
\(973\) 37.8256i 1.21263i
\(974\) −1.08602 + 3.84536i −0.0347984 + 0.123213i
\(975\) −23.3542 + 0.900050i −0.747933 + 0.0288247i
\(976\) 5.38841 16.5016i 0.172479 0.528203i
\(977\) 21.5641 21.5641i 0.689898 0.689898i −0.272311 0.962209i \(-0.587788\pi\)
0.962209 + 0.272311i \(0.0877880\pi\)
\(978\) 35.8321 20.0497i 1.14578 0.641119i
\(979\) 0.404059 + 0.404059i 0.0129138 + 0.0129138i
\(980\) 42.1228 10.9420i 1.34557 0.349530i
\(981\) −10.5278 + 10.5278i −0.336127 + 0.336127i
\(982\) −59.2755 16.7408i −1.89156 0.534221i
\(983\) −37.2725 37.2725i −1.18881 1.18881i −0.977397 0.211412i \(-0.932194\pi\)
−0.211412 0.977397i \(-0.567806\pi\)
\(984\) 0.320842 + 0.0129587i 0.0102281 + 0.000413107i
\(985\) 37.7031 + 36.2780i 1.20132 + 1.15591i
\(986\) −6.57131 11.7440i −0.209273 0.374005i
\(987\) −42.4476 −1.35112
\(988\) −6.35674 26.5634i −0.202235 0.845093i
\(989\) 3.60985 3.60985i 0.114787 0.114787i
\(990\) −2.19748 + 1.28578i −0.0698405 + 0.0408648i
\(991\) 45.6153i 1.44902i −0.689266 0.724508i \(-0.742067\pi\)
0.689266 0.724508i \(-0.257933\pi\)
\(992\) 17.6826 26.3594i 0.561425 0.836913i
\(993\) −12.2895 12.2895i −0.389995 0.389995i
\(994\) −9.24808 + 32.7454i −0.293331 + 1.03862i
\(995\) 28.2053 + 27.1392i 0.894168 + 0.860372i
\(996\) −22.8676 + 37.2554i −0.724588 + 1.18048i
\(997\) 33.3810i 1.05719i −0.848875 0.528593i \(-0.822720\pi\)
0.848875 0.528593i \(-0.177280\pi\)
\(998\) 28.4158 + 8.02532i 0.899487 + 0.254037i
\(999\) 4.79007i 0.151551i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.bk.b.243.20 yes 236
5.2 odd 4 880.2.s.b.67.40 236
16.11 odd 4 880.2.s.b.683.40 yes 236
80.27 even 4 inner 880.2.bk.b.507.20 yes 236
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
880.2.s.b.67.40 236 5.2 odd 4
880.2.s.b.683.40 yes 236 16.11 odd 4
880.2.bk.b.243.20 yes 236 1.1 even 1 trivial
880.2.bk.b.507.20 yes 236 80.27 even 4 inner